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ABSTRACT Methods for the detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) are
increasingly considering Deep Learning (DL) due to its high accuracy in several fields, including medical
imaging. In most cases, such methods use transfer learning techniques to compensate for the limited
availability of labeled data. However, current methods for ALL detection use traditional transfer learning,
which requires the models to be fully trained on the source domain, then fine-tuned on the target domain,
with the drawback of possibly overfitting the source domain and reducing the generalization capability on the
target domain. To overcome this drawback and increase the classification accuracy that can be obtained using
transfer learning, in this paper we propose our method named ‘‘Deep Learning for Acute Lymphoblastic
Leukemia’’ (DL4ALL), a novel multi-task learning DL model for ALL detection, trained using a cross-
dataset transfer learning approach. The method adapts an existing model into a multi-task classification
problem, then trains it using transfer learning procedures that consider both source and target databases
at the same time, interleaving batches from the two domains even when they are significantly different.
The proposed DL4ALL represents the first work in the literature using a multi-task cross-dataset transfer
learning procedure for ALL detection. Results on a publicly-available ALL database confirm the validity
of our approach, which achieves a higher accuracy in detecting ALL with respect to existing methods, even
when not using manual labels for the source domain.

INDEX TERMS Acute lymphoblastic leukemia (ALL), deep learning (DL), convolutional neural
networks (CNNs).

I. INTRODUCTION
Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is
a disease which affects the blood cells, can spread rapidly in
the body, andmay result in a fatal outcome if left undiagnosed
and untreated. It is therefore important to detect the presence
of ALL as soon as possible, in particular one of the main
steps in detecting its presence is the analysis of White Blood

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

Cells (WBC) in peripheral blood samples. Such analysis,
usually performed manually by an expert pathologist, has the
purpose of detecting the presence of lymphoblasts, which
are WBCs with malformations. Although lymphoblasts
occur normally in the bone marrow, a greater concentra-
tion of lymphoblasts in peripheral blood, with respect to
standard levels, can be associated with the presence of
ALL [1], [2], [3]

The main problem with manually analyzing WBCs is that
the process is time consuming and repetitive, therefore easily
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causing fatigue and a decreasing accuracy in labeling samples
when more time is spent in the process. Hence, to partially
automate the inspection process, an increasing number of
methods in the literature are considering Computer Aided
Diagnosis (CAD) systems, which often use techniques such
as image processing and Machine Learning (ML) to auto-
matically classify WBCs [4], [5]. Within ML-based CADs,
the majority of the methods are considering Deep Learning
(DL) and Convolutional Neural Networks (CNN), because of
their high accuracy in several fields and their capability of
automatically learning data representations, without the need
for handcrafted feature extraction [6], [7].

CAD systems based on DL for the detection of ALL are
being proposed in the literature for increasing the accuracy
and reliability of the classification [5], [8], [9], by introduc-
ing original learning procedures [2], [10], [11], [12], ad-hoc
network architectures [13], [14], [15], or DL-based pre-
processing [1]. Approaches that introduce original learning
procedures usually consider transfer learning [1], [2], [10],
[16], due to the limited dimensionality of the ALL databases,
as happens in several medical fields because of the scarcity
of labeled samples [17], [18]. In particular, the histopatho-
logical transfer learning approach, based on pre-training the
CNN on a histopathology database (source domain) and fine
tuning it on the ALL database (target domain), achieved a
state-of-the-art accuracy in the detection of ALL, because of
the higher similarity of the source and target domains, with
respect to using models pre-trained on the ImageNet database
[2], [19]. Moreover, pre-training the CNN on different but
related databases with respect to the one used for ALL clas-
sification has been associated with a greater generalization
capability in medical imaging [17], [20], [21]. However, such
pre-training uses a traditional transfer learning procedure,
which requires the models to be fully trained on the source
domain, then fine tuned on the target domain, and has the
drawback that the CNN may not be able to fully adapt its
structure on the target domain during the fine tuning phase,
possibly overfitting the source domain and reducing the gen-
eralization capability on the target domain [22], [23].

To overcome the drawback of different source and target
databases in transfer learning approaches for ALL detection,
in this paper we introduce ourmethod named ‘‘Deep Learning
for Acute Lymphoblastic Leukemia’’ (DL4ALL),1 a multi-
task model with two separate fully-connected (FC) layers as
outputs, one for the source domain and one for the target
domain. Differently from the approaches in the literature
for ALL detection, DL4ALL is trained by introducing three
novel cross-dataset transfer learning procedures, namely reg-
ular, greedy, and self-supervised, which differ based on how
the source domain and the corresponding labels are used.
All procedures use both source and target domains at the same
time, interleaving data batches during training even when
the respective databases are significantly different from each
other.

1https://iebil.di.unimi.it/cnnALL/index.htm

This work represents the first method in the literature
that uses a multi-task cross-dataset transfer learning proce-
dure for ALL detection. While methods based on multi-task
cross-dataset learning have already been proposed in the
literature [15], [20], [22], [23], [24], [25], such approaches
do not consider the problem of ALL detection.

To evaluate the validity of the approach, we consider a
histopathology database as a source domain and the ALL
database as target domain. We chose the histopathology
database given the high accuracy demonstrated in transfer
learning for medical imaging [17] and for ALL detection [2],
together with the fact that histopathological tissue labeling
and cancer detection are two interrelated problems [26].
In training, the model can therefore take advantage of both
databases, without a pre-training step on the source database
which could excessively bias the model towards the source
domain. In testing, we apply the trained model on the
ALL database, with the purpose of classifying each WBC
sample as either ‘‘normal’’ or ‘‘lymphoblast’’. We evaluate
our method using recent databases for histopathology tissue
type classification and ALL classification, two different DL
models (CNN and attention-based), and three different cross-
dataset transfer learning procedures (regular, greedy, and
self-supervised), obtaining superior results in ALL detection
with respect to the state-of-the art.

The remainder of the paper is structured as follows.
Section II reviews the related works. Section III introduces
the methodology. Section IV describes the experimental
results. Finally, Section V concludes the work.

II. RELATED WORKS
In this section we first review the most recent approaches for
ALL detection and then present an overview of the techniques
for learning with limited labeled data.

A. ACUTE LYMPHOBLASTIC LEUKEMIA DETECTION
When considering ML approaches for CAD systems and
ALL detection, traditional approaches usually describe
a handcrafted feature extraction step. However, recent
approaches for medical imaging and ALL detection have
been almost exclusively focusing on DL, which in most cases
is able to learn representations directly from data [27] and
does not require handcrafted features [5], [28]. Therefore,
in this paper we will review only the methods using DL-based
models. In particular, it is possible to divide DL-based meth-
ods for ALL detection in three categories, based on the
approach used to achieve a more accurate classification of
WBCs [1], [2]: i) original learning procedures; ii) ad-hoc
network architectures; iii) DL-based preprocessing.

The approaches belonging to i) include methods that pre-
train a CNN on databases containing general purpose images
(e.g., ImageNet) and then fine tune it on the target ALL
dataset, such as the works described in [10], [11], [16],
and [28]. A similar method is described in [12], with
the difference that, after the pre-training step, the method
applies swarm optimization to perform a feature selection
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that better adapts the CNN to classify ALL samples. The
works described in [2], [19], and [29] also perform a pre-
training of the CNN but on histopathology images, achieving
amore accurate classification thanmethods performing a pre-
training using general purpose images.

The methods belonging to ii) introduce ad-hoc modifica-
tions of existing CNN architectures, with the purpose of better
adapting them for the classification of ALL. For example,
the approach proposed in [15] proposes a modification of
the ResNet architecture [30] that is able to extract features
from WBC samples at both the local and global level. Other
approaches describe ad-hoc architectures to reduce overfit-
ting in the case of small datasets, for example considering
Bayesian CNNs [31] or shallowCNNswith a reduced number
of layers with respect to a ResNet [32].

The approaches belonging to iii) describe methods that
use DL to preprocess the images with the aim of enhancing
the details of the WBC samples, such as the methodology
introduced in [13], which describes a convolutional layer
specifically designed to perform a stain deconvolution and
normalize the colors. Differently, the approach presented
in [1] uses a procedure based on CNN to perform an adaptive
and intelligent tuning of the unsharpening algorithm, to nor-
malize the focus quality of ALL images.

B. LEARNING WITH LIMITED LABELS
Training DL using supervised learning techniques enables,
in the majority of situations, to obtain the best classifica-
tion accuracy on the considered databases. For example, the
accuracy on the ImageNet database has greatly improved by
using deeper DL models such as CNNs and attention-based
mechanisms in a supervised learning fashion [33]. How-
ever, supervised deep learning requires the labeling (often
manual) of an extensive number of samples, using an expen-
sive and time consuming processing. In many application
scenarios (e.g., medical imaging), there is a limited avail-
ability of such labeled samples, with the number of available
labels greatly inferior to general purpose databases such as
ImageNet.

To overcome the scarcity of labeled data, several
approaches have been proposed in the literature, including
data augmentation, domain adaptation, few-shot learning,
multi-task learning, semi/weakly-supervised learning, unsu-
pervised learning, and self-supervised learning [33], [34].
Among the above mentioned techniques, data augmenta-
tion and domain adaptation using supervised fine tuning
(often referred to as ‘‘transfer learning’’) are considered as
common practice when designing DL-based methods, for
example considering a CNN pre-trained on a source domain
(e.g., ImageNet) and fine tuned on a target domain, with
the images randomly rotated, flipped, or cropped during the
tuning process [35]. Other supervised domain adaptation
methods include knowledge distillation (e.g., the teacher-
student method), in which the knowledge from a larger model
is ‘‘distilled’’ into a smaller one to avoid overfitting and

reducing the computational complexity when training on the
target database [36], [37].

When very few labeled samples are available for the target
domain, few-shot learning techniques have been proposed to
use as much as possible the knowledge of the pre-trained
model to generalize to unseen data [36], [38]. Another
approach that has been proposed in the case of few labeled
samples is multi-task learning, which consists in training the
model on multiple tasks at the same, for example by using
multiple datasets with limited samples, to force the model to
learn a general representation and limit overfitting [15], [20].

In the cases where the target data contains both labeled and
unlabeled samples, some approaches consider semi/weakly-
supervised learning, which can also leverage unlabeled
samples when performing a domain adaptation, for example
analyzing them in the latent space and automatically assign-
ing them a label based on the closest sample [39].

When only unlabeled samples are available, unsupervised
learning methods can be used to extract knowledge and per-
form decisions based on the underlying structures within the
data. Examples of traditional unsupervised learning include
approaches for dimensionality reduction (e.g., PCA) and data
clustering (e.g., self-organizing maps), while recent methods
include DL-based approaches for replicating complex data
distribution and reduce noise (e.g., autoencoders, generative
adversarial networks) [34]. Unsupervised learning techniques
are often useful when performing domain adaptation using
DL models: since the objective is to accurately classify
samples in the target domain, the need for labels in the
source domain is reduced. For example, it is possible to train
an autoencoder to replicate unlabeled data from the source
domain, then fine tune it on the labeled data of the target
domain in a supervised way [40]. Combining supervised and
unsupervised approaches, self-supervised learning methods
are being increasingly considered due to their advantage of
performing a supervised learning but using pseudo labels,
which can also be automatically generated, without the need
for a manual labeling process [41].

In this paper, we propose an innovative method for ALL
detection that considers recent advances in DL approaches,
such as multi-task learning and self-supervised learning,
to cope with the limited availability of labeled samples in
ALL database. To the best of our knowledge, this is the
first method in the literature for ALL detection considering a
multi-task architecture trained using a cross-dataset transfer
learning procedure that uses both source and target domains
at the same time.

III. METHODOLOGY
This section describes the proposed methodology for ALL
detection based onDL4ALL, consisting of amulti-taskmodel
trained using three multi-task cross-dataset transfer learning
procedures. Our method considers a model with an existing
architecture, then creates a multi-task learning architecture
by substituting the last FC layer with two layers, respectively
one for the source domain and one for the target domain.
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The learning phase is then performed using a cross-dataset
transfer learning procedure that uses source and target
domains at the same time, in which the batches for each
database are extracted in an interleaved fashion to compute
the loss and adjust the weights of the model.

We propose three novel procedures for ALL detection, reg-
ular, greedy, and self-supervised, which differ in the way they
use the data from the source domain, by considering different
amounts of source data, different labels, and different levels
of supervised learning. Lastly, the trained model is applied
only on the target domain to perform the ALL detection,
by classifying each WBCs sample as either ‘‘normal’’ or
‘‘lymphoblast’’.

Our method executes the following steps: A) creation of
DL4ALL; B) cross-dataset transfer learning; C) deep ALL
classification. Fig. 1 shows the outline of the methodology.

A. CREATION OF DL4ALL
To make the proposed method applicable to any DL-based
model, we create the DL4ALL by starting from an exist-
ing deep architecture (e.g., CNN-based [33], attention-
based [42]). In this way, it is also possible to consider
pre-trained architectures (e.g., models pre-trained on Ima-
geNet are widely available [43]). To create the DL4ALL,
as a first step we remove the last fully connected layer of
the chosen model, which usually has a number of neurons
equal to the number of possible classes. As an example,
in most cases the last FC layer has an output size of 1000,
corresponding to the 1000 classes of the ImageNet database.

As a second step, we create the novel multi-task learning
architecture for ALL detection by connecting two FC lay-
ers in parallel, one for the source domain and one for the
target domain. Each FC layer is then responsible for classi-
fying samples of the database in the corresponding domain.
As shown in Fig. 2, one FC layer outputs the classification
of the histopathological tissue type (source domain, shown in
blue in the figure) and one FC layer outputs the classification
of the ALL (target domain, shown in green in the figure).

Lastly, we apply a sigmoid layer after the FC layer cor-
responding to the histopathological database, since such
database has samples with multiple labels [44]. Differently,
we apply a softmax layer after the FC layer corresponding
to the ALL database, since such database has samples each
belonging to a single class [45].

B. CROSS-DATASET TRANSFER LEARNING
To train the DL4ALL, we propose three innovative cross-
dataset transfer learning procedures for ALL detection, all of
which use both source and target domains at the same time,
considering batches from the two databases in an interleaved
fashion. In this way, we take advantage of both databases
without the model biasing on the source domain.

While traditional transfer learning procedures perform
a full training on the source domain followed by a deep
tuning on the target domain, our method uses a training

procedure –based on gradient descent– in which the odd-
numbered batches are pulled from the source domain and the
even-numbered batches are pulled from the target domain.
As mentioned in the introduction, we consider a histopathol-
ogy database as a source domain and the ALL database
as target domain, given that transfer learning procedures
with histopathology databases as source domain are proven
to increase classification accuracy in the case of ALL
detection [2], [19], [26].

We propose three novel cross-dataset transfer learning pro-
cedures for ALL detection, which differ in the way the source
domain is used to help increasing the classification accuracy
in the target domain, by considering different amounts of
source data, different labels, and different levels of supervised
learning:

• Regular cross-dataset transfer learning;
• Greedy cross-dataset transfer learning;
• Self-supervised cross-dataset transfer learning.

1) REGULAR CROSS-DATASET TRANSFER LEARNING
The first procedure we propose consists in training
the DL4ALL by interleaving batches from databases of the
source and the target domains, respectively, computing the
loss for each batch, and considering an aggregated global loss
as the weighted sum of the two losses. For each epoch, the
procedure is based on the following steps:

1) Forward pass (source domain): we extract a batch from
the source database, apply the DL4ALL, and consider
the output of the corresponding FC layer.

2) Loss computation (source domain): based on the output
of the FC layer corresponding to the source domain,
we compute the multi-label loss Lsource following
Eqn. 1:

Lsource(x, y)

= −
1
C

∑
i

w[i] y[i] log ((1 + exp(−x[i]))−1)

+ (1 − y[i]) log
(

exp(−x[i])
(1 + exp(−x[i]))

)
, (1)

where the choice of using a multi-label loss is caused
by the histopathological database in the source domain
having samples with multiple possible labels each [44].

3) Batch normalization update: we extract a batch from
the target database and we update the parameters of the
batch normalization layer by performing a preliminary
forward pass without computing the loss. In fact, the
parameters of the batch normalization layer are updated
during the forward pass and not during backpropaga-
tion. Without a preliminary forward pass, the model
would compute the output of the forward pass in the
target domain using the batch normalization parame-
ters tuned for the source domain, resulting in lower
accuracies [20].
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FIGURE 1. Outline of the proposed methodology. The method executes the following steps: A) creation of DL4ALL, in which
we adapt the model to perform a multi-task learning; B) cross-dataset transfer learning, in which we interleave data from
source and target domains during the training; C) deep ALL classification, in which we apply the trained model on the ALL
images to predict the presence of a lymphoblast.

FIGURE 2. DL4ALL: starting from an existing deep architecture, first we remove the last fully connected layer of the chosen
model. Second, we create the novel multi-task learning architecture by connecting two fully-connected layers (FC) in
parallel.

4) Forward pass (target domain): we extract a batch from
the target database, apply the DL4ALL, and consider
the output of the corresponding FC layer.

5) Loss computation (target domain): based on the output
of the FC layer corresponding to the target domain,
we compute the cross-entropy loss Ltarget as described
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in Eqn. 2:

Ltarget (x, class) = −w[i] log

(
exp (x[class])∑

j exp (x[j])

)
, (2)

where the choice of using a cross-entropy loss is caused
by the ALL database in the target domain having sam-
ples that each belong to a single class.

6) Aggregated global loss: we compute the aggregated
global loss as the weighted sum of Lsource and Ltarget ,
according to Eqn. 3:

Lglobal = w1 · Lsource + w2 · Ltarget , (3)

with w1,w2 chosen experimentally.
7) Gradient normalization: following the stochastic gradi-

ent descent (SGD) algorithm, we compute the gradients
based on the Lglobal loss. Then, we take into account
that the weights of the last two FC layers of DL4ALL
may see a different number of samples, since the
batch size may be different in the source and target
databases [20]. Therefore, we normalize the gradients
of the FC layers by considering the respective batch
sizes, following Eqn. 4:

∂FC,source = ∂FC,source ·
|Bsource| + |Btarget |

|Bsource|
;

∂FC,target = ∂FC,target ·
|Bsource| + |Btarget |

|Btarget |
, (4)

where ∂FC,source and ∂FC,target indicate the gradients
of the FC layers for the source and target domain,
respectively, while |Bsource| and |Btarget | describe the
cardinality of the batches for the source and target
databases, respectively.

8) Backpropagation: following the SGD algorithm,
we update the weights of DL4ALL considering the
computed gradients.

The pseucodode for the regular cross-dataset transfer
learning procedure is described in Alg. 1. The steps 1 − 8
consist in a single iteration of the algorithm. An epoch of
the training algorithm iterates the algorithm until there are
no more batches to extract. After each epoch, we validate the
model on the validation subset of the target domain (ALL
database). After the last epoch, we keep the weights of the
model for whichwe achieved the greatest validation accuracy.

2) GREEDY CROSS-DATASET TRANSFER LEARNING
The second procedure we propose consists in training the
DL4ALL by also considering both source and target domains
at the same time and interleaving batches. However, dif-
ferently than the regular cross-dataset transfer learning
(Section III-B1), at each iteration we consider each batch
from the source domain only if it helps reduce the target loss
Ltarget , following the greedy design paradigm [46].

For each iteration of the algorithm, after the forward pass
in the source domain, we compute the Lsource and perform
the backpropagation, obtaining a DL4ALL whose weights

have been updated only considering the source domain. Then,
we update the batch normalization parameters, perform the
forward pass in the target domain, and compute Ltarget .
If Ltarget is reduced with respect to the previous iteration of
the algorithm, we compute Lglobal , normalize the gradients,
and perform the backpropagation, obtaining a DL4ALL with
weights updated considering both domains, similarly to the
regular cross-dataset transfer learning.
The main difference with respect to the regular cross-

dataset transfer learning is that if Ltarget is not reduced with
respect to the previous iteration, we roll back DL4ALL to
the state it was before backpropagating Lsource, and only
consider the loss of the target domain when backpropagating
Lglobal = Ltarget . The outline of the greedy cross-dataset
transfer learning procedure is shown in Fig. 3.

3) SELF-SUPERVISED CROSS-DATASET TRANSFER LEARNING
The third procedure we propose consists in training the
DL4ALL using a cross-dataset transfer learning with similar
steps as the regular procedure described in Section III-B1.
However, differently from the regular cross-dataset transfer
learning, in this procedure we consider a self-supervised
approach, rather than a supervised learning approach, to com-
pute Lsource, without the need to use manually-obtained labels
at the sample level for the source domain.

The regular cross-dataset transfer learning procedure takes
advantage of each sample in the source domain being man-
ually labeled using fine-grained annotations. Such labeling
enables to consider supervised learning approaches and
obtain a high classification accuracy, since supervised learn-
ing usually performs better than unsupervised learning [47].
When a histopathological database is considered in the source
domain, as it is in this paper, it is then possible to obtain a
high classification accuracy of histological tissues. However,
the labeling is extremely time-consuming and expensive to
obtain, since expert personnel is required to perform amanual
classification of histological tissues [44].

In the case of transfer learning, when using the histopatho-
logical database as a source domain, the need for long and
expensive labeling is reduced, since the interest is towards
achieving an increased accuracy in the target domain. There-
fore, to avoid the need to have manually-annotated labels
for each sample in the source domain, we propose a self-
supervised cross-dataset transfer learning procedure, where
we compute Lsource without using the manual labels, but
instead by considering self-supervised labels extracted from
the data itself.

To compute the self-supervised labels, we consider as
source domain a histopathological database composed of
several image patches, obtained by cropping whole slide
images (WSI) into smaller areas. For example, in our work
we consider a database where 100 WSIs are divided into
17, 668 patches. Since current deep models are not able to
directly process WSIs due to their extremely high dimen-
sions, the models need to process each patch separately.
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FIGURE 3. Outline of a single iteration of the proposed greedy cross-dataset transfer
learning procedure: after the forward pass in the source domain, we backpropagate the
loss of the source domain and compute the target loss. If the resulting target loss is reduced
with respect to the previous iteration of the algorithm after considering the source domain
(source domain helps decreasing target loss), we keep the model and backpropagate the
target loss as well, otherwise (source domain does not help decreasing target loss) we roll
back DL4ALL and consider only the target domain.

To use supervised learning approaches, each patch has to be
manually labeled [44]. However, instead of using patch-level
labels, we obtain self-supervised labels by considering WSI-
level labels. In particular, for each patch we consider as label
the progressive number indicating which WSI it was cropped
from. Such number can be easily extracted by the filename
of each patch. Moreover, it is a label that can be applied with
limited effort and even by non-expert personnel.

The difference with the regular procedure described in
Section III-B1 is in Step 2:
2) Loss computation (source domain): based on the output

of the FC layer corresponding to the source domain,
we compute the cross-entropy loss Lsource, following
Eqn. 5:

Lsource(x, class) = − log

(
exp (x[class])∑

j exp (x[j])

)
, (5)

where class is the progressive number indicating which
WSI each image patch was cropped from.

C. DEEP ALL CLASSIFICATION
To perform the final deep ALL classification, we apply the
DL4ALL model –trained using the procedures described in

Section III-B–on the testing subset of the target domain.
We obtain three different DL4ALL, one for each procedure
proposed: DL4ALL reg, DL4ALL greedy, and DL4ALL self .
Each DL4ALL model gives two outputs (outputsource and
outputtarget ), one for each of the two FC layers. However,
we are interested only in classifying samples in the target
domain, so we discard outputsource and compute the error
measures considering outputtarget . The output for each image
in the target domain (ALL) is then a binary number that
indicates the predicted presence of a lymphoblast (0: normal;
1: lymphoblast).

IV. EXPERIMENTAL RESULTS
This section describes the experimental results, including the
used databases, the model and training parameters, the error
measures, and the results both in terms of quantitative and
qualitative evaluation.

A. USED DATABASES
In this workwe consider two databases, one for the source and
one for the target domain respectively. For the source domain,
we use a histopathology database, the Atlas of Digital
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Algorithm 1 Pseudocode Describing the Proposed
regular Cross-Dataset Transfer Learning Procedure

model = initializeWeigths(model);
while epoch < maxEpochs do

while batches < numBatches do
// 1. Forward pass (source
domain)
batchsource = load(sourceDomain,
batchSizesource);
input, target = decomposeBatch(batchsource);
outputsource, outputtarget = model(input);
// 2. Loss computation (source
domain)
Lsource = MultiLabelLoss(outputsource, target);
// 3. Batch normalization update
batchtarget = load(targetDomain,
batchSizetarget );
input, target = decomposeBatch(batchtarget );
outputsource, outputtarget = model(input);
// 4. Forward pass (target
domain)
batchtarget = load(targetDomain,
batchSizetarget );
input, target = decomposeBatch(batchtarget );
outputsource, outputtarget = model(input);
// 5. Loss computation (target
domain)
Ltarget = CrossEntropyLoss(outputtarget ,
target);
// 6. Aggregated total loss
Lglobal = w1 · Lsource + w2 · Ltarget ;
// 7. Gradient normalization
∂ , ∂FC,source, ∂FC,target =
computeGradients(Lglobal , DL4ALL);

∂FC,source = normGradients(batchSizesource);
∂FC,target = normGradients(batchSizetarget );
// 8. Backpropagation
DL4ALL = updateWeights(∂ , ∂FC,source,
∂FC,target );

end
end

Pathology (ADP) [44],2 containing 17, 668 RGB image
patches {p} extracted from 100 WSIs, with image size 272×

272 pixels. Each patch p has beenmanually labeled according
to three levels of labeling, with each level having a more
detailed classification. Therefore, each patch p is associated
to a set of labels L(p) = {l1, l2, l3}, where l1 corresponds
to the most coarse classification, l2 to the intermediate clas-
sification, and l3 to the most detailed classification. Within
each level, since each patch can describe multiple histological
tissues, the labels are not mutually exclusive, and each patch

2https://www.dsp.utoronto.ca/projects/ADP

can be associated to multiple labels [44]. Then, each level
of classification has a different number of output classes,
for example the first level of labels l1 has 9 possible out-
puts, hence in l1 is described by a vector with 9 elements
|{l1}| = 9. Moreover, each patch is also associated with the
self-supervised label lself , indicating the progressive number
of the WSI it was extracted from, with lself ∈ [1, 100]. Fig. 4
shows examples of patches from the ADP database and the
corresponding labels, while Table 1 lists the class distribution
of samples for the database.

For the target domain, we use an ALL database, the
C_NMC_2019 Dataset from the ALL Challenge in ISBI
2019 [13],3 containing 10, 661 RGB samples of WBCs, with
image size 450 × 450 pixels, divided in two classes (0: nor-
mal; 1: lymphoblast). The images have been cropped to show
only the region of interest surrounding the cell. Table 2 lists
the class distribution of samples for the database.

B. MODEL AND TRAINING PARAMETERS
In this paper, we consider two models, a ResNet18 CNN [30]
and the Vision Transformer (ViT), an attention-based model
for image classification [42]. We chose the ResNet18 since
it is one of most used CNNs and it exhibits high accuracy
for histopathological image classification and ALL detection,
also in transfer learning configurations [2], [26], [44]. More-
over, we considered the ViT since it exhibited state-of-the-art
performance for image classification and object recognition,
especially in transfer learning configurations, when pre-
trained on large databases such as the ImageNet-21k [43].
In particular, we consider a ViTwhich divides the input image
in patches of 16×16 pixels, with 12 heads, 12 layers, hidden
size= 768, and MLP size= 3072. We considered the default
parameters of the model. Both the ResNet18 and ViT are pre-
trained on the ImageNet database [48].

We split both the ADP and the CNMC databases using
70% data for training, 20% for validation, and 10% for test-
ing. Before training, we normalize data to have 0 mean and
1 standard deviation, with normalization parameters com-
puted on the training subsets of the respective databases.
Then, we perform data augmentation on the training subsets,
by randomly applying rotations, horizontal flips, and vertical
flips. We repeat the training and testing 5 times and average
the results.

After creating the multi-task DL4ALL using the procedure
described in Section III-A, we apply awarmup phase inwhich
we train only the last 2 FC layers of DL4ALL separately using
a standard SGD. In particular, first we apply the SGD for
1 epoch to the FC layer corresponding to the source domain
(the remaining layers are frozen). Second, we apply the SGD
for 1 epoch to the FC layer corresponding to the target domain
(the remaining layers are frozen). Such warmup phase is used
to reduce the problem of large gradients initially flowing

3https://wiki.cancerimagingarchive.net/display/
Public/C_NMC_2019+Dataset%3A+ALL+Challenge+dataset+
of+ISBI+2019
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TABLE 1. Number of samples for each class in the histopathology database Atlas of Digital Pathology (ADP),
according to each level of labeling l1, l2, l3.

TABLE 2. Number of samples for each class
in the ALL database C_NMC_2019.

towards the last FC layers, since the convolutional layers
might be pre-trained and are followed by FC layers with
random initialization [20].

After the warmup phase, we train the models using the pro-
posed cross-dataset transfer learning procedures described

in Section III-B. We use a SGD for 100 epochs, with momen-
tum m = 0.9, weight decay 5e−4, and batch size 8. We chose
the number of epochs, momentum, and weight decay fol-
lowing common practices regarding learning with SGD [49],
while we chose the batch size considering the amount of
RAM in our GPUs. We consider different learning rates for
the last FC layers and for the rest of the model. In particular,
we consider lrFC = 1e−3 for the last FC layers and lrshared =

2e−4 for the rest of the model shared between tasks. We use
a higher learning rate for the FC layers to enable such layers
to learn more specific features in their respective domains,
with respect to the rest of the model which is shared between
source and target domains. We chose lrshared by performing
a grid search in the range [2e−2, 1e−4], then we computed
lrFC = 5 · lrshared [20]. We computed the best values on
the ResNet18 and then used them also for the ViT. In both
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FIGURE 4. Examples of patches p belonging to the histopathology
database Atlas of Digital Pathology (ADP). The associated set of labels are
indicated on the right of each sample, with the label li+1 representing a
more precise classification than li . For simplicity, for each patch p and
level l , only one type of tissue is indicated. Moreover, lself indicates the
progressive number of the WSI it was extracted from.

cases, we consider a deep tuning approach, enabling gradient
update on all layers of the model [17]. To compute the losses
we apply a class weighting procedure to compensate for the
class imbalance, by weighing the contribution of each class
to the loss by w[i] = N/ni, where N is the total number of
samples for the database and ni is the number of samples for
the i−th class (Eqn. 1, Eqn. 2). During the computation of the
aggregated global loss, we chose the parameters w1,w2 by
varying their values in the range [0, 1] so that w1 + w2 = 1.
We obtained the best results for w1 = w2 = 0.5. We also
considered methods for automatically learning the best val-
ues [50], [51], without increasing the resulting accuracy.
After the last epoch, we select the values of the weights for
which we obtained the highest classification accuracy on the
validation subset.

We train a different DL4ALL considering the two mod-
els (ResNet18 and ViT) and the three different learning
procedures described in Section III-B, namely ‘‘regular’’,
‘‘greedy’’, and ‘‘self-supervised’’. For the ‘‘regular’’ and the
‘‘greedy’’ procedures, we consider the different labeling
levels of the ADP database L(p) = {l1, l2, l3}, as described
in Section IV-A. Table 3 summarizes the different DL4ALL
models obtained using the proposed approach.

C. ERROR MEASURES
We consider both quantitative and qualitative error measures.
As quantitative error measures, we consider the classifica-
tion accuracy describing the percentage of samples correctly
classified, with respect to the total number of samples in the
testing subset, the specificity, and the sensitivity. In addi-
tion, we include the confusion matrix, which describes the
percentages of true positives, true negatives, false positives,

TABLE 3. Summary of the different DL4ALL models obtained using the
proposed approach, based on the different learning procedures and the
labels considered.

and false negatives, according to the error measures descri-
bed in [45].

As qualitative measures, we consider the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [52], since it is
often used to show the distribution of the samples in the latent
space, and the Grad-CAM [53], which outputs an activation
map showing the degree in which the different regions of the
image influence the model decision.

D. RESULTS
1) QUANTITATIVE EVALUATION
Table 4 shows the accuracy results, in terms of classifica-
tion accuracy, specificity, and sensitivity, obtained using the
proposed DL4ALL trained using the innovative cross-dataset
transfer learning procedures, and applied on the CNMC
database [13]. As a comparison, we include the correspond-
ing results obtained using the ResNet18 and ViT in a standard
transfer learning procedure with a deep tuning approach,
in which the databases for the source and target domain are
used in sequence, following a procedure often performed in
medical imaging [2], [18]. We chose such procedures as a
comparison since it allows us to compare the same back-
bone models under the different learning procedures. For
example, ResNet18ImageNet,ADP,CNMC describes a ResNet18
pre-trained on the ImageNet database, then deep tuned on
the ADP database, then again deep tuned and tested on the
CNMC database. Moreover, we compare the results with
the ALLNet and with the OrthoALLNet, methods based on
the ResNet18 CNN that currently achieve the state of the art
accuracy on the ALL-IDB2 and ALL-IDB Patches databases,
respectively [19], [29]. Lastly, we report the results of the
MMA-MTL model described in [15].

From Table 4, it is possible to observe that the DL4ALL
trained using the proposed cross-dataset transfer learning pro-
cedures always increases the classification accuracy on the
CNMC database. When comparing the proposed DL4ALL
against the compared methods in a standard transfer learn-
ing approach, DL4ALL always performs equal or better,
assuming the same model and the same level of label-
ing li on the source histopathological databases. As an
example, DL4ALL based on the ResNet18 and using the
l1 labels of ADP performs better than the ResNet18 trained
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TABLE 4. Accuracy results of DL4ALL on the CNMC database using the proposed methodology.

using the l1 labels of ADP and fine tuned on CNMC,
even when pretraining on ImageNet: DL4ALL ResNet18,1 ≥

ResNet18ADP,1,CNMC ≥ ResNet18ImageNet,ADP,1,CNMC . The
increase in accuracy is valid also when comparing against
ALLNet and OrthoALLNet, which are based on the
ResNet18, and when considering both the ‘‘regular’’ and
the ‘‘greedy’’ learning algorithms, indicating that the pro-
posed methodology can effectively increase the classification
accuracy on the target database, with respect to using the
standard transfer learning approach currently used for ALL
detection, by considering the source and target domains in
an interleaved fashion with a multi-task architecture. In par-
ticular, DL4ALL greedy,ViT ,2 achieves the highest accuracy,
highest specificity, and highest sensitivity on the CNMC
database, with in average 97.85 % of correctly classified
samples, a specificity of 98.79%, and a sensitivity of 95.81%,

indicating the validity of the proposed approach. Moreover,
Table 5 reports the corresponding confusion matrix.

It is worth noting that the ‘‘self-supervised’’ algorithm of
DL4ALL, both using the ResNet18 and the ViT architectures,
performs almost in-par with the state of the art, assuming the
same architecture, despite not usingmanually-obtained labels
at the sample level for the source domain. This result indicate
a limited necessity for labeled samples in the source domain,
possibly enabling the collection of even larger histopathologi-
cal databases, when removing the necessity for a complex and
time-consuming labeling of each patch, in turn fostering the
research on further transfer learning approaches leveraging
larger databases in the source domain.

We performed the experiments on a machine composed
of an Intel Core i7 7800X @4 GHz CPU, 32 GB DDR4
RAM @ 2667 MHz, SSD SATA PCIe 256 GB, 2 x NVIDIA
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FIGURE 5. Result of the t-SNE algorithm on the feature space corresponding to the last convolutional layer of DL4ALL and
analyzing the two classes of the CNMC database (a–c), compared with a ResNet18 trained using a standard transfer learning
procedure (d–e). It is possible to see how the proposed approach better disentangles the representations of the feature
space, when classifying CNMC samples as either ‘‘normal’’ or ‘‘lymphoblast’’.

RTX 6000, running PyTorch. The ViT model in the ‘‘greedy’’
configuration (DL4ALL greedy,ViT ) took the longest to train,
with an average of 36 hours of training for 100 epochs. This is
due to the high number of parameters of the ViT (≈ 86M ) and
the fact that the ‘‘greedy’’ learning algorithm has to perform
additional computations to roll back the weight update step

for every time it processes a batch for which the accuracy
does not increase (see Fig. 3). Because of the considerable
training times, we did not perform a tuning of the hyperpa-
rameters (e.g., the learning rate) for the ViT, which may result
in even higher accuracies. Instead, we computed the best
values on the ResNet18 and then used them also for the ViT.
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FIGURE 6. Result of the Grad-CAM method considering the DL4ALL models trained using the proposed methodology and applied on the CNMC
database. It is possible to see that the heatmaps obtained using the DL4ALLself ,ResNet18 are the most focused on the WBC themselves, rather
than the background.

However, in this paper we considered an unofficial imple-
mentation of the ViT,4 not included in the PyTorch distribu-
tion. Future optimized implementations may reduce this gap.

2) QUALITATIVE EVALUATION
To perform the qualitative evaluation we considered our
approaches based on CNNs, since the t-SNE and Grad-CAM
algorithms are mostly used for analyzing the predictions of
CNN-based models.

We apply the t-SNE algorithm [52] on the fea-
ture space corresponding to the last convolutional layer
of DL4ALLreg,ResNet18,1, DL4ALLgreedy,ResNet18,1, and
DL4ALLself ,ResNet18 and considering the two classes in
the CNMC database. We considered the methods using
ResNet18, 1 since the DL4ALLgreedy,ResNet18,1 is the best
performing of the CNN-based approaches. We com-
pare the results with the state of the art represented
by ResNet18ADP,1,CNMC and ResNet18ImageNet,ADP,1,CNMC .

4https://github.com/lukemelas/PyTorch-Pretrained-
ViT

TABLE 5. Average confusion matrix of the DL4ALLgreedy,ViT ,2 on the
CNMC database using the proposed methodology.

Fig. 5 shows the results. From the Figure, it is possible to
observe that the proposed approach better disentangles the
representations of the feature space, when classifying CNMC
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samples as either ‘‘normal’’ or ‘‘lymphoblast’’, with respect
to the state of the art.

We also apply the Grad-CAM method, as shown in Fig. 6.
From the Figure, it is possible to observe that the heatmaps
obtained using the DL4ALL trained with the proposed
methodology are more focused on the WBCs, suggesting
that DL4ALL is able to learn features more related to
the cell itself, rather than database-specific (e.g., the back-
ground). In particular, the Grad-CAM heatmaps obtained
using DL4ALL self ,ResNet18 are the ones most corresponding
to each WBC.

V. CONCLUSION
In this paper we proposed a method named ‘‘Deep Learn-
ing for Acute Lymphoblastic Leukemia’’ (DL4ALL), the
first approach in the literature based on multi-task learning
and cross-dataset transfer learning for Acute Lymphoblastic
(or Lymphocytic) Leukemia (ALL) detection. The method
first adapts an existing deep model into a multi-task learning
configuration, then uses innovative learning procedures that
consider databases from both the source and target domains
at the same time, even when they are significantly different,
by interleaving batches during training. We proposed differ-
ent variations of the cross-dataset transfer learning procedure,
namely ‘‘regular’’, ‘‘greedy’’, and ‘‘self-supervised’’, based
on how the source domain and the corresponding labels are
used to help increase the classification accuracy of the target
domain.

The results on a publicly-available ALL dataset demon-
strate a greater accuracy in detecting ALL samples with
respect to current methods in the literature. In particular,
the ‘‘greedy’’ learning procedure, which at each iteration
considers the source domain only if it helps in reducing the
target loss, achieved the best results. Moreover, the ‘‘self-
supervised’’ also performed better than the state of the art,
despite not usingmanually-obtained labels at the sample level
for the source domain. Future works will consider differ-
ent databases as either source or target domains, different
DL models, different learning algorithms, as well as more
computationally efficient implementations, and optimized
architectures.
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