Abstract Submission

OL47_5

T2 - Planetary interiors

Mineralogy at extreme conditions in Earth and other planets

IMA2022-1180

High-pressure behavior of natural REE-bearing phosphates and arsenates

Francesco Pagliaro^{* 1}, Paolo Lotti¹, Davide Comboni², Tommaso Battiston¹, Alessandro Guastoni³, Nicola Rotiroti¹, G. Diego Gatta¹

¹Earth Science Department, University of Milan, Milano, Italy, ²ESRF, Grenoble, France, ³University of Padova, Padova, Italy

Please designate the presenter/contributor author(s)?: Francesco Pagliaro

Abstract Content: ATO_4 compounds (A= Sc, Y, Ln, U and Th; *T* stands for tetrahedrally-coordinated cations, *e.g.* P and As), represent a wide class of minerals, which includes the REE-bearing arsenates chernovite-(Y) (YAsO₄) and gasparite-(Ce) (CeAsO₄), and the more common REE-bearing phosphates, xenotime-(Y) (YPO₄) and monazite-(Ce) (CePO₄). Chernovite-(Y) and xenotime-(Y) share the same HREE-enriched, zircon-type structure ($I4_1/amd$), whereas the LREE-enriched gasparite-(Ce) and monazite-(Ce) crystallize in the so-called monazite-type structure ($P2_1/n$).

The H*P* behavior of the REE TO_4 compounds has been object of many studies, mainly focused on their synthetic counterparts. In this work, we have studied the H*P* and combined H*P*–H*T* behavior of natural samples of the abovementioned minerals, using *in situ* single-crystal synchrotron X-ray diffraction. A special attention was devoted to the relationships between chemical and structural features at non-ambient conditions. In particular, the compressional behavior of the REE-polyhedron, *T*-site tetrahedron and the deformation mechanisms acting at the atomic scale, poorly studied in the current literature, have been described and discussed. For both the arsenates and phosphates, the monazite-type minerals are found to be more compressible than the zircon-type ones, and the arsenates more compressible than the phosphate analogues. The analysis of the refined structure models showed that the *T*-tetrahedron is almost uncompressible and the nature of its dominant cation (As or P) significantly affects the response to (*T*,*P*)-stimuli of the *A*-polyhedron.

Disclosure of Interest: None Declared