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1. INTRODUCTION 

Peptides play critical roles in human physiology, acting as neurotransmitters, hormones, 

growth factors and antibacterial agents [1]. They have significantly influenced the 

development of the modern pharmaceutical industry and contributed to the progress of 

biological and chemical research [2]. In particular, all the physiological studies made in the 

first half of the 20th century on peptide hormones such as insulin, oxytocin, gonadotropin-

releasing hormone (GnRH), and vasopressin, determined significant advances in the fields of 

pharmacology, biology, and chemistry [3]. The first commercially available peptide drug is 

represented by insulin (1923) for treating diabetes (Figure 1) and it is still on the “World Health 

Organization's List of Essential Medicines”, the most effective and safe medicines needed in 

the health system [4].  

 
Figure 1. 2D structure representation of insulin [5]. 

Nevertheless, peptide drug discovery has been considered only a niche area until the end of 

the 20th century mainly due to the perception by pharmaceutical companies that peptides’ 

drawbacks outweigh their advantages [5]. However, over the past two decades, peptide drug 

discovery showed a dramatic increase of interest, since many pharmaceutical companies 

started to appreciate the fundamental role played by the peptides for the treatment of 

unsatisfied medical needs, probably due to the recent scientific findings and achievements 

made by the academia and private researches on the improvement of the peptide 

pharmacokinetic profile [6]. In fact, over the last years, the number of FDA-approved peptide-

based drugs has dramatically increased, leading to more than 100 peptide drug approvals until 

July 2022 [7]. 

The use of peptides as drug candidates has some advantages and disadvantages: 

(1) peptides are the natural physiological messengers for most endocrine signalling pathways; 

therefore, it is possible to develop extremely potent and selective drugs;  
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(2) peptides are unable to cross membranes, consequently, their application is restricted to 

the extracellular compartment and transmembrane targets;  

(3) peptides are also generally unable to cross the blood-brain barrier (BBB), which, from the 

toxicology point of view, it could be considered as an advantage but, in concrete, it precludes 

reaching targets in the Central Nervous System (CNS);  

(4) peptides are metabolically unstable and, as a consequence, they have short plasma half-

lives because, after they are produced in response to a biological signal and performed their 

functions, they are rapidly metabolized (i.e., the signal is turned off). In addition, being cleared 

primarily through proteolytic degradation and renal filtration, peptides are endowed with 

suboptimal pharmacokinetic properties (in particular, poor oral bioavailability), needing 

considerable efforts to discover new analogs with suitable plasma exposure. However, the 

proteolytic instability and the rapid clearance suggest that they cannot be accumulated in 

tissues; 

 (5) hepatic metabolism of peptides is not worthy of note and therefore drug-drug interactions 

and non-mechanistic-based toxicology are rarely observed. These issues, instead, are 

frequently observed in small molecules [5].  

The small molecules dominate the global drug market showing several advantages compared 

to peptides, such as the low cost and the final price (the HPLC purification cost of peptides is 

still high in comparison with small molecules), the possibility of oral intake and their capacity 

(not in all cases) to penetrate membranes. These features allow small molecules to reach a 

wide range of biological targets [8]. However, peptides can show some advantages compared 

to small molecules in the optimization stage:  

(1) in the most of cases, peptides from natural source or affinity matured hits show a high 

affinity and potency, which must be merely conserved during the optimization;  

(2) the polymeric nature of peptides allows the optimization of each residue. Of course, the 

ADMET properties of peptides are restricted.  

Nevertheless, despite the poor pharmacokinetic properties of peptides, this class of 

compounds can even represent a valuable alternative to small molecules and biological 
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treatments. However, in the majority of cases, they need several optimization processes 

regarding their chemical structures, in order to be used as potential drug candidates.  

Among them, the most promising strategies are:  

(1) the protection from degradation at the C- and N- terms by carboxy- and amino-peptidases 

by capping process (acetylation and amidation, respectively) [9];  

(2) the proteolytic stabilization through directed backbone modifications (substitution by D-

aa, α-Methylation, N-Methylation or using β-aa) [10,11];  

(3) the proteolytic stabilization or solubility improvement through the side chain modification 

(for example, aromatic residues can be substituted by different unnatural heterocycles) [12];  

(4) the chain cyclization, preventing the degradation of peptides by proteases and limiting the 

access of enzymes to the backbone amide bonds [13].  

In particular, cyclic peptides possess a degree of structural pre-organisation which is not 

observed in linear peptides, significantly restricting the conformational flexibility [14]. If the 

cyclic peptide is pre-organised into the correct bioactive conformation, it is able to efficiently 

reduce the entropic cost of binding to the biological target, compared to the linear analogue 

[15]. 

The most recent findings regarding peptide delivery also determined the current growing 

interest in the peptide drug discovery process. In fact, parenteral administrations are the only 

canonical delivery methods for therapeutic peptides with all the issues related and the low 

compliance by patients [16]. Therefore, many drug carrier systems are currently being 

developed with the aim at increasing the oral bioavailability. Among them, the Nanoparticles 

(NPs), which are solid particles with sizes ranging from 10 to 1000 nm [17] encapsulate 

peptides or proteins into a polymeric matrix, protecting against the hydrolysis and the 

enzymatic degradation [17]. NPs are often constituted by PLA (polylactic acid), PLGA 

(polylactic-co-glycolic acid) (Figure 2), chitosan, poly-alkyl-cyanoacrylates or gelatin, which are 

non-toxic, non-thrombogenic, non-immunogenic, non-inflammatory, stable in blood and 

highly biodegradable [16].  
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Significant clinical successes were also reached using the slow-release subcutaneous 

polymeric depot technologies, such as PLGA microspheres [18], or the osmotic pumps, which 

are able to release the drug with a controllable zero-order kinetic for up to a year [19]. 

 
Figure 2. Representation of a PLGA (polylactic-co-glycolic acid) nanoparticle. 

 
On the other hand, it is possible to mimic the biological effects, the conformational properties 

of the most active peptides by designing peptidomimetics. In fact, if properly designed, they 

are capable to reproduce the secondary structure and the pharmacological effects of the 

parent peptides, without containing the fleeting amide bonds [20]. The conformation 

assumed by peptidomimetics represents their key feature, not only to enhance target binding 

affinity/selectivity and to confer cell-membrane permeability for targeting protein-protein 

interactions in cells, but also to ameliorate the pharmacokinetic drawbacks of peptides 

[21]. The classification of peptidomimetics has evolved together with the progress made over 

the years. The modern classification proposed by Grossmann refers to four classes (from A to 

D) of peptidomimetics, based on their similarity to the native substrate (Figure 3) [22]. 

 
Figure 3. Grossmann classification of peptidomimetics. As an example, an α-helical peptide and corresponding 
helix mimetics are shown. Modifications are highlighted in red [22]. 
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The mimicry of secondary structure features, such as β-turn, γ-turn, α-helix, or β-strand, 

represents one of the most well-investigated strategies in order to develop peptidomimetics 

targeting peptide-protein or peptide-receptor interactions [23]. This is mainly because the 

bioactive peptides often shape these kind of secondary structure conformations to be 

recognized by the targeted proteins. For example, receptors such as G-protein coupled 

receptors (GPCRs) often recognize a β-turn conformation of their endogenous peptide ligands 

[24] while the proteolytic enzymes are likely to recognize an extended β-strand conformation 

of their target peptides [25]. A clear and exhaustive review about various peptidomimetic 

scaffolds is available in literature [26]. Examples of β-turn mimics developed by Hirschmann 

and Smith are shown in Figure 4. 

 
Figure 4. Examples of minimalist peptidomimetics designed by Hirschmann and Smith. The β-turn mimetics in 
which sugar (A) [27], steroid (B) [28] or catechol (C) [29] backbones were used to hold relevant sidechains at 
appropriate distances. 

 

2. STRATEGIES FOR PEPTIDE DRUG DESIGN 

Drug discovery is a very expensive and time-consuming process. Traditional approaches are 

based on a systematic synthesis and screening of large number of compounds to identify 

potential candidates. Nevertheless, over the last decade, increasing efforts have been 

dedicated to the application of computational weaponry, combined with biological 

experiments, in the field of drug discovery, design, development, and optimization [30]. The 

available computational methods play a crucial role in the clarification of the molecular 

recognition events between the protein target and candidate hits leading, with the final goal 

to design lead compounds active on the identified target [31]. As a consequence, the 

“Computer-Aided Drug Design” (CADD) approaches have been widely employed in Lead 

Identification and Lead Optimization stages of the drug development process. Compared to 

the most traditional drug discovery methods, CADD are green methods that dramatically 
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reduce the time and cost necessary for the drug development process. Consolidated 

molecular modeling techniques are used to predict the ligand binding affinity, the position, 

and the orientation of a ligand in a ligand-protein complex [32]. 

CADD methods mainly involve two types of approaches: 

1) Ligand Based Drug Design (LBDD). This approach is applied when the three-

dimensional (3D) structure of biological target is unknown. It is considered an indirect 

approach because it relies on the investigation of known molecules interacting with 

the biological target of interest. The known ligands are used to develop 3D 

Quantitative Structure Activity Relationships (3D-QSAR) or pharmacophore models, 

which represent the most important and widely used tools in LBDD. In fact, they are 

able to offer predictive models suitable for the lead identification and optimization 

processes [33]. 

2)   Structure Based Drug Design (SBDD). This approach is applied when the structures of 

the drug target have been experimentally deciphered by X-ray diffraction [34], 

cryogenic electron microscopy (cryo-EM) [35], Nuclear Magnetic Resonance (NMR) 

[36], or they are predicted by homology modeling techniques. The latter approach can 

be applied only if a high sequence homology exists between the target protein and at 

least one solved structure [37]. Homology modelling can be divided in the following 

steps: (1) identification of homologous protein with at least one known 3D structure 

used as template; (2) sequence alignment of target and template proteins; (3) 

generation of models for the target based on the 3D structure of the template and the 

alignment; (4) models refinement, selection, and validation [38]. In the last decades, 

homology modeling has become the principal option to obtain the 3D structure of the 

drug target in the absence of crystal structures. In the SBDD approach, candidate drugs 

are designed through a detailed analysis of the protein binding sites, with the final goal 

to design ligands with high affinity and selectivity. Many successful applications have 

been reported in the field of molecular docking-based virtual screening [39,40]. 

In this PhD research thesis, only SBDD computational techniques have been adopted since in 

all the case studies the solved crystal structures of the drug targets were available. The 

computational protocols applied in this study are explained in detail in the next paragraphs. 
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2.1. Computational protocols applied 

System selection and preparation 

The first step of a SBDD project involves the acquisition of the target structure model, which 

commonly consists of a large biological molecule (protein, DNA, or RNA) [41]. The structures 

of these macromolecules can be easily retrieved from the Protein Data Bank (PDB) [42], which 

provides access to the atomic coordinates obtained by experimental methods. However, it is 

not unusual that the experimental 3D structure of the studied target is not complete, since 

many protein loops cannot be solved due to their high conformational mobility. To overcome 

this issue, computational prediction methods, such as homology modeling, can be used to 

obtain the complete the 3D structure of target macromolecules [43]. 

The “Protein Preparation Wizard” of Maestro (Schrödinger, LLC, New York, NY, 2021), was 

used to convert the raw PDB structure into all-atom, fully prepared protein model readable 

by the most common computational software. For example, it was used to add the missing 

hydrogen atoms, to correct the metal ionization states, to ensure the proper formal charge 

and force field assignment, and to add the residues missing sidechains. Then, the system was 

optimized by determining the most likely ligand protonation state, as well as the energy 

penalties associated with alternate protonation states, also determining the optimal 

protonation states for protein histidine residues. Finally, the system was subjected to a 

restraint minimization allowing hydrogen atoms to be energy minimized, while allowing for 

sufficient heavy-atom movement to relax strained bonds, angles, and clashes. 

Once optimized the target structure, molecular docking of ligands (i.e., peptides or small 

molecules) in the active site can be accomplished. 

 
Molecular Docking 

Molecular docking is a key component of the CADD toolbox, since it is a computational 

procedure aiming at predicting the favored binding modes of a molecule (i.e., peptides or 

small molecules) within the putative active site of a macromolecular target (receptor). Since 

nowadays more and more protein structures are experimentally determined the usage of 

molecular docking in the last decades is dramatically increased as a valuable tool in the drug 

discovery process [44]. 
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Numerous docking programs are available. Among them, the most commonly used are 

AutoDock, DOCK, GOLD, MOE-Dock, HADDOCK, GLIDE, and FLEXX [44]. 

However, all the different programs share two fundamental stages: 

1) Pose generation: in which different orientations and conformations of the ligands 

within the protein binding site are predicted; 

2) Ranking step: in which the ligand-protein binding affinity of the predicted poses are 

estimated using several scoring functions. They must recognize the best binding poses 

in the pool of predicted poses by assigning them the highest docking score. 

The reliability of docking can be evaluated by analyzing the accuracy of the generated poses 

by comparing the best ranked solutions with the resolved complex structures. 

In all the case studies reported in this PhD research activity, we decided to use GLIDE software 

[45] (Schrödinger, LLC, New York, NY, 2021), since it demonstrated to be one of the best 

predictive tool, as reported by many comparison studies, conducted to evaluate the relative 

performance of different docking programs [46,47,48]. In addition, GLIDE permits the tuning 

of the docking parameters to be adapted on the different systems, to obtain the best balance 

between speed and accuracy. As a further demonstration of the GLIDE algorithm accuracy, 

the paper first reporting on Glide [45] is the second most cited paper in the Journal of 

Medicinal Chemistry. In addition, many citing references report on the application of GLIDE in 

drug discovery projects. 

 
Grid-based Ligand Docking with Energetics (GLIDE) software 

The purpose of GLIDE software is to explore different conformations and orientations of the 

ligands within the target binding site. It is characterized by three docking modes which provide 

an array of options in the balance of speed vs. accuracy for most situations. High-Throughput 

Virtual Screening (HTVS) mode to dock compounds at a rate of about 2 seconds/compound. 

Standard Precision (SP) mode performs exhaustive sampling and is the recommended balance 

between speed and accuracy, requiring about 10 seconds/compound. GLIDE Extra Precision 

(XP) mode employs a different sampling approach making it the most accurate method; 

however it can dock compounds at a rate of about 2 minutes/compound [49]. 
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In a standard docking protocol, the ligand poses generated by the GLIDE algorithm are refined 

in the binding site by the OPLS3 force field [50], in case of SP or XP calculations, or by the 

OPLS2005 force field during HTVS calculations. GLIDE uses Emodel [45] scoring function to pick 

the best pose of each ligand (pose selection), and then uses GlideScore (Gscore) [49] function 

to rank all these best poses in order to clarify which compounds strongly bind to the protein 

target (i.e., are endowed with the lowest Gscores).  

Before performing docking calculations, the docking grid must be generated. The grid set up 

phase involves the generation of a grid that represents the shape and properties of the target 

using the OPLS2005 force field. The grid center can be defined by the centroid of a ligand in 

complex with the target in the X-ray structure or by the centroid of a set of selected residues 

that best represent the binding site. Practically, it is necessary to define two types of grids: the 

bounding box and enclosing box (Figure 5). The first (green in Figure 5) encompasses the area 

within the centroid of the ligand is free to move and rotate during the docking calculation 

phase. The second one (purple in Figure 5) contains the bounding box, representing the 

physical space in which the ligand atoms can be confined to during the calculations. It should 

be big enough to contain all residues involved in protein-ligand interaction. 

 
Figure 5. Example of a receptor grid generation step using GLIDE, in which it is observable the bounding box 

(green) and the enclosing box (purple). 
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The ligand docking phase involves the application of a series of hierarchical filters (Figure 6A). 

Firstly, GLIDE performs a full conformational search within the binding site, producing a 

multitude of ligand conformations. Then, the software performs a check of the generated 

conformations and eliminates those that are not suitable for binding with the receptor (e.g., 

those endowed with an excessively high energy). At this stage each ligand is considered to be 

composed of a central part (core) and a series of rotational groups (Figure 6B). Each of the 

possible conformation of the core and the various rotational groups are then rebuilt and 

subjected to a further docking step. For each conformation assumed by the ligand, 

determined through the previous phase, the distances between the center of mass of the 

ligand and its surface are calculated. 

 
Figure 6. (A) Representation of the GLIDE docking funnel showing the application of the various hierarchical 
filters. (B) Example of a molecule divided into core and rotamer groups. 

 
At this point the steric analysis of the binding site takes place and all those conformations that 

have a high number of steric clashes (i.e., too close physical contacts with the receptor) are 

discarded. Subsequently, the conformations that have been considered acceptable are moved 

around the diameter of the ligand and evaluated on the basis of a score taking into account 

the number of H-bonds, ligand-metal interactions, and the presence of steric clashes with the 

target. Then, the top scoring poses are re-scored by a “refinement” procedure, in which the 

whole ligand is allowed to rigidly move by ±1 Å in all the cartesian axes of space (x, y, or z). At 

this point, a very limited number of refined conformations (typically 100-400) will then 

undergo a minimization within the grid including the binding site.  

Finally, the minimized poses are re-scored using the Schrödinger’s GlideScore scoring function 

(Gscore) [45], and the best docking structure is selected among the ones showing the lowest 

Gscore value, expressed in kcal/mol. 
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Molecular Dynamics (MD) 

MD is a computational technique that simulates the time dependent behavior of a biological 

system such as a protein or a nucleic acid, providing accurate and predictive information on 

the possible conformations that the system can assume. The result of the MD simulations 

allows to obtain a trajectory, composed by several snapshots (frames), which describes the 

variation of the vectors position, velocity and acceleration of the atoms on the system, over 

the simulation time. MD simulations typically allow the observation of events that occur in a 

time scale ranging from femtoseconds (fs, 10-15 s) to tens of microseconds (µs, 10-6 s) [51]. 

However, thanks to recent advances in computer simulations and in the GPU development, 

full-atoms MD simulations can reach millisecond (ms, 10-3 s) timescales, making MD an 

emerging and powerful method successfully complementing biological experiments [52]. In 

fact, different bio-phenomena occur on average in a time scale ranging from femtoseconds to 

milliseconds (Table 1), therefore, it is necessary that MD simulations’ duration is long enough 

to cover the time scale corresponding to the phenomenon under investigation [53]. 

 

Table 1. Time scale of the main biophysical phenomena. 

Motion patterns Functional examples Time scale 

Local motions 
Atom fluctuations 
Side chain motions 

Ligand flexibility on docking; 
Diffusion motions of 

molecules. 
fs – ps (10-15 – 10-12 s) 

Mid-scale motions 
Loop fluctuations 
N- and C-terminal motions 
Rigid body movement 

Conformational adaptation 
of the active site; 

Binding specificity. 
ns – µs (10-9 – 10-6 s) 

Long-scale motions 
Domain fluctuations 
Subunit motions 

Intra-domain motions; 
Allosteric transitions. µs – ms (10-6 – 10-3 s) 

 
MD simulations unveil principles on the base of a large variety of fundamental processes by 

mimicking the real-life perpetual motion of atoms triggered by interatomic forces. In MD, 

these forces are expressed through analytical functions and associated parameters, which are 

commonly referred to as the force field. The forces' effect on the movement of atoms is 

determined by Newton's second law [54]. 
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�⃗� = 𝑚�⃗�  (eq.I) 
 
where (F) is the force acting on an atom of mass (m) with acceleration (a). 

Acceleration is the second derivative of position, so the equation of motion can be written as: 

!!""
!#!

=
$#"
%"

  (eq.II) 

 
According to eq.II, an atom with mass (mi) is moving along (xi) direction under a force (Fxi) due 

to the interactions with other atoms. The force acting on an atom is the derivative of the 

potential energy with respect to the change in the atom’s position. 
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The potential energy (V) comes from the force field (FF) parameters. During the MD 

simulation, initial positions and velocities of all atoms are updated from time (t) to time (t + 

Δt) and the time is partitioned into small time steps (in the order of femtoseconds, typically 

2). At each step, the forces acting on atoms are combined with the current positions and 

velocities to generate new positions and new velocities. Therefore, MD trajectories that 

describe positions and velocities of atoms as function of the simulation time are obtained by 

integrating the equations of motion. 

Generally speaking, starting from a ligand/receptor complex, previously generated by docking, 

a MD algorithm like AMBER20 [55] is used to perform the MD simulations, and the typical 

protocol steps are: 

1) Selection of the force fields, solvation, and neutralization of the system: the TLEAP 

module of AmberTools20 [55] was used to load the proper force fields parameters. In 

particular, the ff14SB [56] force field parameters were used to describe the protein, 

while the TIP3P [57] model and the parameters proposed by Joung et al. [58] were 

used to describe water and counter ions, respectively. Then, the system was solvated 

in a box of water with a minimum distance of 10 Å from the protein surface. This box 

is replicated in all directions using the Periodic Boundary Conditions (PBC). PBC allow 

to avoid problems with boundary effects because when an atom leaves the simulation 

box it re-appears on the opposite side with the same velocity. Finally, the net charge 

of the system was neutralized by adding a proper number of ions. 
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2) Minimization and equilibration step: The solvated system was relaxed by a two-step 

protocol to remove atomic clashes [59]. First, we performed an energy minimization 

for 10,000 steps, or until the energy gradient of 0.2 kcal/mol/Å was reached, 

restraining the atomic coordinates of backbone with harmonic potential 

(k = 20 kcal/mol/Å2). This first phase was followed by an energy minimization for 

100,000 steps or until an energy gradient of 0.0001 kcal/mol/Å was reached, without 

any restraint. After minimization, the temperature of the system was gradually 

increased to 300 K over 40 ps under constant volume condition (NVT) constraining the 

backbone coordinates in the first 20 with a harmonic potential (k = 20 kcal/mol/Å2). 

Finally, the system was equilibrated at 300 K for 20 ps under constant pressure 

conditions (NPT, 1 atm). 

3) MD production: in this step, long time-scale (usually 500 ns-long) MD simulation is 

carried out under constant pressure and temperature values, using the Berendsen 

barostat and thermostat, respectively [60]. Electrostatic interactions were treated 

with PME [61] with a cut-off of 9 Å. During these calculations, all bonds involving 

hydrogen atoms were constrained with the SHAKE [62] algorithm. All calculations were 

performed using the PMEMD of AMBER code in the GPU accelerated version [63] with 

a time step of 2 fs. 

4) Trajectory analysis: in order to extract useful information from MD simulations, it is 

necessary to evaluate a series of parameters, among them the most important studied 

in this PhD thesis are the Root-Mean-Square Deviation (RMSD), the estimation of the 

binding free energy (∆G) and the identification of the most representative structure 

through cluster analysis. 

 
Binding Pose Metadynamics (BPMD) 

In the BPMD tool, available in the Maestro suite (Schrödinger, LLC, New York, NY, 2021), the 

simulating system free-energy landscape is sampled by a history-dependent bias on a small 

set of collective variables (CVs). Then, monitoring the system free-energy values as function 

of the CVs variation, and by adopting the well-tempered algorithm, the simulating systems 

explore their free-energy landscapes escaping from the free-energy minima in which they 

could be trapped. Essentially, the ligand is automatically obliged to move in the binding site 

and the observed mobility under the biasing potential is considered indicative of the predicted 
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binding mode stability or instability. Applying this method, we were able to reliably 

discriminate between the correct ligand binding poses generated with the docking procedure. 

This method was applied in case study 2 (see Chapter 4.2.2. for details) allowing us to 

discriminate the most favorable pose between the two best docking poses of each generated 

peptidomimetic, significantly reducing the overall computational time cost by reducing the 

amount of MD simulations to be performed. In particular, the best two docking poses of each 

ligand were subjected to twenty independent metadynamics simulations (each of 10 ns), using 

as CV the RMSD value of the ligand heavy atoms relative to their starting position. Before 

running the simulations, the systems were solvated by water molecules, followed by multiple 

minimization and restrained MD steps which guaranteed the system to slowly reach the final 

temperature of 300 K, as well as to remove the atomic clashes which could be present in the 

initial starting structures. Among the different scores provided by BPMD, that are related to 

the ligand stability during the course of the metadynamics simulations, we used the PoseScore 

(i.e., a value indicative of the average RMSD from the starting pose) in order to select which 

of the two best docking poses to be simulated by MD. 

 
Root-Mean-Square Deviation (RMSD) 

In bioinformatics, the RMSD of atomic positions is the measure of the average distance 

between the atoms of superimposed proteins. Notably, RMSD calculation can be also applied 

to other, non-protein molecules, such as small organic molecules [64]. 

(eq.IV) 
 

where δi is the distance between atom i and either a reference structure or the mean position 

of the N equivalent atoms.  

In this PhD research work, it was calculated for the backbone (C, N, O, and Cα) or only Cα 

atoms. RMSD represents a formidable tool in the computational drug discovery process, in 

fact, it is possible to calculate, in an unbiased way, how the ligand remains stable in the binding 

site pocket during the MD simulations time. It can be done by plotting the RMSD of the ligand 

backbone atoms (peptide) vs. the simulation time. An example of RMSD plot in which the 

peptide ligand remains stable during the entire MD simulation is shown in Figure 7. 
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Estimation of the binding free energy (∆G): MM-GBSA method 

Free energy methods permit to estimate the difference of Gibbs free energy (∆G) between 

two different molecular structures. In the case of drug design, it is usually calculated for the 

ligand, and the target, both in the free form, and for the ligand/protein complex form [65]. 

Then, the ligand binding free energy can be easily calculated by eq.V: 

∆G()*# = G+,-./01 − (G20+0.3,2 − G/)45*#)         (eq.V) 

 
In this work, we have applied the Molecular Mechanics-Generalized Born Surface Area (MM-

GBSA) approach, which is able to calculate the binding free energy of any kind of ligands 

(proteins, peptides, ions, small molecules, and others) to the biological counterpart. The 

binding free energy ∆G()*#	is related to the change in enthalpy (∆H) and entropy (∆S) by the 

eq.VI: 

∆G()*# = ∆H − T∆S        (eq.VI) 

 
In particular, in the MM-GBSA calculation, the free energy of each Gx state (where x is ligand, 

receptor, or the complex) is estimated by eq. VII: 

Gx = Ebond + Eel + EvdW + Gpol + Gnp − TS								(eq.VII) 
 
where the first three terms are represented by standard molecular mechanics energy terms 

from bonded (bond, angle and dihedral), electrostatic and van der Waals (vdW) interactions. 

Gpol term is equal to the polar contributions to the solvation free energies and is obtained by 

adopting the Generalized Born (GB) model (giving the MM-GBSA approach), while the non-

polar term (Gnp) is estimated by a linear relation to the solvent accessible surface area (SASA). 

To improve the accuracy of the binding free energy calculations, snapshots (frames) in which 

the ligand display the highest stability during the MD simulation time, according to RMSD 

analysis, were selected (Figure 7). 
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Figure 7. Example of RMSD plot in which we computationally performed the MM-GBSA analysis (highlighted in 
red) when the peptide ligand is more stable during the simulation time (range 200-500 ns). 

 
In the majority of the case studies reported in this PhD thesis, we used the AMBER20 package 

and the Prime (Maestro Schrödinger suite) tool to compute the ligand binding free energy 

(∆G) values, through the MM-GBSA approach. 

 
Root-Mean-Square Fluctuation (RMSF) 

In bioinformatics, the RMSF of a structure is the time average of the RMSD. It is calculated 

according to the below equation, where xi is the coordinates of particle i, and ⟨xi⟩ is the 

ensemble average position of i. 

  (eq.VIII) 

 
Where the RMSD quantifies how much a structure diverges from a reference over the time, 

the RSMF can reveal which areas of the simulating system display the highest conformational 

mobility. An area of the structure displaying high RMSF values frequently diverges from the 

average, indicating high instability. RMSF analysis is typically performed considering the Cα 

atoms, in fact, these are more characteristic of conformational changes compared to 

sidechains, which are more flexible. In this PhD work, RMSF analysis was done only in the case 

study involving the GABARAP protein (case study 3) in order to demonstrate how the cyclic 

peptides, that we have computationally designed by establishing an intramolecular disulfide 

bond, are endowed with lower conformational flexibility compared to the initial linear 

peptides (see Chapter 4.3). 
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Cluster analysis 

Cluster analysis represents the task of grouping a set of similar objects in the same group 

(named cluster), while those which are significantly different are grouped into other clusters. 

In bioinformatics, clustering methods have been widely used to group together similar 

conformational states of biomolecules in solution, over MD simulations. Two main clustering 

protocols were adopted in the case studies considered in this PhD thesis. In the first, the MD 

trajectory frames were analyzed by clustering the conformations adopted by the peptide 

backbone atoms in complex with the protein target, using the cpptraj module [66] of 

AMBER20 [55]. This clustering method was applied in the design of ligands targeting PCSK9 

(case study 2) and GABARAP (case study 3). By this algorithm, the MD frames were divided 

into clusters by the complete average linkage algorithm, however, this method automatically 

selects the RMSD cut-off threshold value used to divide the frames into the different clusters. 

For this reason, in the other case studies, in which we wanted to manually control the 

clustering procedure, we applied the gromos algorithm developed by Daura et al. [67], 

available in the GROMACS software package (version 5.0.7) [68]. In fact, by gromos, after 

several attempts and accurate visual inspection of the outputs, an appropriate RMSD cut-off 

value was used to obtain the optimal threshold to discriminate between the different peptide 

conformations sampled by MD. 

 
Alanine scanning protocol 

Alanine scanning is a site-directed mutagenesis technique used to determine the impact of 

single amino acids contribution to the interaction with a given protein or peptide to another 

[69]. Alanine residue is used because of its chemical properties (non-bulky, chemically inert, 

methyl functional group that nevertheless mimics the secondary structure preferences that 

many of the other amino acids possess).  

Practically, we performed in silico alanine scanning calculation by mutating each residue of 

the native peptide sequence, one by one, by an alanine (Figure 8) in order to identify the “hot” 

and “non-hot” spots of the peptide/target interaction using the AMBER software package. 

Then, long-time scale MD simulations were performed on each mutated peptide in complex 

with the protein target. Finally, MM-GBSA calculations was carried out to estimate the binding 

affinity (∆G) of the mutated peptides. This procedure highlights which residues can be 
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considered as hotspots (i.e., the residues fundamental for the interaction) and which are the 

ones poorly contributing to the binding energy (non-hotspots).  

 
Figure 8. Example of mutated peptides generated by alanine substitution of each residue composing the native 
peptide.  

Accordingly with these results, the non-hotspots residues can be systematically and suitably 

replaced by new amino acids (natural or non-natural) to improve the complementarity 

between the new peptides and the protein target by the application of the “affinity 

maturation protocol”. 

 
Affinity Maturation protocol 

By these simulations, the non-hot spots were mutated into all possible combinations of natural 

amino acids by using the “Residue Scanning Calculation” tool, implemented in the 

BioLuminate module of Maestro (Schrödinger, LLC, New York, NY, 2021) [70].  This tool is able 

to sample the side-chain rotamers of the mutated residue, also optimizing the geometry of 

the resulting peptides. The mutant peptides are then ranked by ΔAffinity and/or ΔStability 

(values calculated by Prime MM-GBSA in implicit solvent). In particular, ΔAffinity is defined by 

the change in binding affinity of the mutated peptide, treated as the ligand, to the rest of the 

system, treated as the receptor, while ΔStability is defined as the difference in free energy 

between the folded state and the unfolded state of the peptide, due to the mutation. In both 

cases, negative values mean that the mutant peptides bind better than the native protein, or 

they are more stable, respectively. 

The affinity maturation tool, together with the in silico alanine scanning, was applied in all 

the case studies and allowed us to successfully fine-tune the peptide/target docking model 

thus identifying mutated peptides with improved theoretical binding affinity compared to 

the native peptide. 
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Machine learning 

Artificial Intelligence (AI) is an area of computer science capable of simulating the structures 

and operating principles of the human brain. AI methods had shown tremendous potential in 

different areas such as computer vision, speech recognition, natural language processing and 

others. Recently, they had also been successfully applied in drug discovery, they are able to 

accelerate the drug development pipeline, both in preclinical and clinical stages [71,72].  

Machine learning is a subfield of AI, which aims to develop and utilize algorithms that learn 

from raw data. Machine learning tasks are referred to as supervised learning tasks where a 

set of input-output paired data is provided for training. When the task is to predict from a set 

of potential outcomes, it is a classification task, and when the task is to predict a numeric 

value, it is a regression task. This prediction method had been successfully applied and 

reported in several scientific works published in literature. In fact, examples of classification 

tasks are virtual screening predictions [73] and disease diagnosis [74], while examples of 

regression tasks are drug efficacy [75] and absorption, distribution, metabolism, excretion, 

and toxicity (ADMET) predictions [76]. 

Deep learning is a subset of machine learning that uses artificial neural networks algorithms 

which mimic how the brain work, learning high-level abstractions for data [77]. Briefly, deep 

learning architectures are based on layers which train on a distinct set of features based on 

the previous layer’s output. The further you advance into the neural net, the more complex 

the features your nodes can recognize, since they aggregate and recombine features from the 

previous layer. As a consequence, deep learning networks are potentially capable of handling 

very large data sets, and they have found an important place in drug discovery processes 

obtaining stunning results [78,79,80]. 

In this research activity, a machine learning approach was successfully applied to identify 

tetrapeptides potentially capable of inhibiting WWP1 (case study 4), using the Peptide QSAR 

and DeepChem/AutoQSAR (DC/AQ) tools, both implemented in BioLuminate (Schrödinger, 

LLC, New York, NY, 2021). Typically, QSAR is employed to measure the association between 

the structures of small drug-like compounds with experimental properties, like activity or 

cytotoxicity. If a predictive relationship exists, it is possible to apply the QSAR model to identify 

new molecules, within the same series, with improved biological activity.  
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A very similar approach can be applied to peptides. To this aim, the Peptide QSAR tool is able 

to predict a property of a peptide (e.g., binding affinity or solubility) relying only on amino acid 

sequences, as a function of given experimental data used to generate a prediction model. Two 

statistical method could be used to generate the QSAR model: Partial Least Squares (PLS) and 

Kernel-based PLS, with the number of factors user-defined depending on the size of the data. 

DC/AQ tool employs cutting edge deep learning methods, enabling non-expert users to easily 

create high-performance QSAR models from large datasets containing even hundreds of 

thousands data points. It is based on an automated approach to neural-networks, by 

implementing the Graph-Convolutional Neural Networks (GCNN), similar to those involved in 

image and video processing. In fact, DC/AQ treats compounds as a graph, where nodes are 

atoms and edges are bonds, and the chemical features (such as valence, atom type, charge, 

etc.) are attached to each node in the graph. The convolution, in this case, is to apply filters to 

contiguous atoms, instead of neighboring pixels (in the case of image and video software). 

Both methods were used to predict the docking score (Gscore) of a previously generated 

28,000 tetrapeptide sequences library. In particular, we performed the docking calculation of 

only 500 random sequences, generating a prediction model which allowed us to dramatically 

reduce the computational time cost (for details, see Chapter 4.4). 

 
2.2. Affinity assessment using biophysical methods 

Biophysical methods, which can include a wide range of techniques aimed at acquiring 

information on the structure, properties, dynamics or function of biomolecules, have been 

extensively employed in the drug discovery process since their first introduction, in the early 

1990s [81]. In the drug discovery process, the biophysical methods are applied for the 

quantification of the drug-target interaction, extremely useful to accomplish structure-activity 

relationship studies. The equilibrium dissociation constant (Kd) is the principal parameter used 

to evaluate the binding potency of a putative drug [82]. Therefore, the experimental 

measurement of the ligands Kd values is fundamental for the study of the drug-target 

complexes [83,84] and the lead optimization process. Currently, the most widely applied 

biophysical methods are the Isothermal Titration Calorimetry (ITC) [85], the Surface Plasmon 

Resonance (SPR) [86], the Fluorescence Energy Resonance Transfer (FRET) [87], and the 

relatively new Microscale Thermophoresis (MST) [88].  
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Isothermal Titration Calorimetry (ITC). Over the past decade ITC has been identified as one of 

the gold standard methods to directly measure the ligand binding affinity and 

thermodynamics equilibrium between the interacting species (see the Freyer and Lewis 

review [85]). ITC is a technique based on the reaction heat to quantify the interactions of 

various biomolecules (for the complete explained protocol see Holdgate review [89]). The 

experiments are conducted at (almost) constant temperature. A ligand solution, contained 

within the calorimeter cell, is titrated by the solution of the target by means of an injection 

syringe. Therefore, the ITC detector can measure any heat changes resulting from any 

biochemical reaction process. A schematic representation of the ITC machine and an example 

of ITC plot data is shown in Figure 9. Depending on the binding affinity and the amounts of 

available reagents, it is also possible to arrange the experimental conditions in order to obtain 

the affinity (Kd), the enthalpy (∆H), entropy (ΔS) and the stoichiometry (n) of the binding 

interaction, performing only a single experiment [90]. 
 

 
Figure 9. Basic principle of isothermal titration calorimetry. Schematic representation of the isothermal titration 
calorimeter (left) and a characteristic titration experiment (upper right) with its evaluation (lower right) [85]. 

 
ITC is widely used in molecular biology research, drug design, and mechanistic studies. 

However, the most useful application of ITC relies on the characterization of compounds 

produced by medicinal chemists during the lead optimization phase of the drug discovery 

process. Understanding the thermodynamics of a molecular interaction is fundamental in drug 

discovery, as it can confirm the expected binding target, it can permit to understand the 

structure-activity relationships, and provide the guidance for the selection of the candidate 

compounds [91]. 
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Surface Plasmon Resonance (SPR). During the last two decades SPR biosensor technology has 

seen a rapid evolution starting with the launch of the first commercial BIAcore instrument by 

Pharmacia Biosensor in 1990 [92]. SPR is based on the principle that the incident light can 

resonate with the plasma on the metal surface during the total reflection. This enables the 

determination of the kinetic parameters and the equilibrium constants for a given system, i.e. 

on-rate, off-rate and apparent dissociation constants. SPR can measure changes in the mass 

of a dissolved material in the aqueous layer (biosensor surface) close to the metal film, which 

allows the interaction of proteins with other ligands to be monitored in real-time [93].  

 
Figure 10. (Up) This figure shows the configuration of an SPR chip. The metal chip (silver or gold) is prepared with 
a dextran surface which can bind the amino end of protein to conjugate them to the metal surface. At the bottom 
a single wavelength laser beam enters a prism which results in many light angles striking the metal surface, all of 
them are reflected except for the angle in which the metal will absorb and turn its energy into a plasmon wave 
onto its outer surface, at this angle no light is reflected and thus appears with very little intensity on the detector. 
Since the plasmon wave propagates on the outer side of the metal, any interaction with the conjugated protein 
will change the SPR angle. (Bottom) Example of an SPR binding affinity plot using a Biacore S51 machine [97]. 

 
The most common approach is represented by the random-oriented immobilization through 

accessible primary amines on the protein surface by activating the carboxymethylated 

dextran-matrix (a complex and branched glucose polymer) with a mixture of EDC and NHS, to 

create NHS-esters that can react with amino-containing molecules.  

SPR technique represents a sensitive and specific technique for the analysis of biomolecular 

interactions, and it is used to detect whether biological molecules interact with each other, 
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and to further explore the specificity of the interaction, kinetic parameters and ligand affinity 

(Kd) [94]. In the last decades, because of the high-throughput screening characteristic, SPR has 

been widely used in the identification of drug targets and the optimization of the lead 

compounds [95,96]. A schematic representation of the SPR method and an example of binding 

affinity plot data generated is shown in Figure 10. 

 
 

Fluorescence Energy Resonance Transfer (FRET). Fluorescence spectroscopy is one of the most 

popular techniques both in biology and medicine research fields. The principle of FRET is 

represented by a nonradiative energy transfer between two fluorescent molecules that are 

located close to each other (less than 10 nm) [98]. Briefly, FRET occurs between a donor 

fluorophore and an acceptor fluorophore, which can be carried either by the ligand or by the 

target. In particular, two parameters affect FRET efficacy [99] (Figure 11A). FRET can be used 

to study receptor-ligand interactions, affinity constants, and receptor dimerization. Therefore, 

it is widely used in drug-target affinity studies under equilibrium condition, with no need to 

separate the free and combinative ligands [100]. FRET is a high sensitivity technique used to 

selectively study specific intermolecular interactions under physiological conditions (e.g., 

living cell states) [101].  
 

 
Figure 11. Principles of FRET. (Left) Two conditions are necessary for FRET: i) the overlapping of the donor 
emission and the acceptor excitation, and ii) the alignment of the fluorophores' dipoles [102]. (Right) Example of 
a binding affinity plot determined by FRET microscopy [103]. 

 
Microscale Thermophoresis (MST). it is a relatively new biophysical analysis which is based on 

the fluorescence change induced by temperature on a target as a function of different 

concentrations of a non-florescent ligand. In detail, it is possible to measure the movement of 

molecules within a temperature gradient which induces changes in molecular properties of 

the studied molecules in terms of charge, size, hydration shell or conformation [104].  
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The MST technique is based on the directional movement of molecules along a temperature 

gradient. Practically, the MST instrument records fluorescence of the sample with a focal 

infrared (IR) laser during and after the laser is turned on. Affinity is quantified by monitoring 

the change in normalized fluorescence called Fnorm as a function of the concentration of the 

binding partner. The Kd model used by MST describes a 1:1 stoichiometry interaction 

according to the law of mass action and allows to derive a formula for the fraction bound in 

case of a binding event. The fraction bound is defined by the Kd and the concentration of the 

target molecule depends on the ligand concentration [105]. Since MST is a solution-based 

method, it avoids surface artifacts and immobilization protocols. An illustration of the MST 

method is shown in Figure 12 [105]. 
 

 
Figure 12. (A) Schematic representation of the optical system. Fluorescent molecules in the 16 capillaries are 
excited and the fluorescence detected. An IR laser heats up the middle part of each capillary, and thermophoresis 
of the fluorescent molecules across the temperature gradient is detected. (B) Example of MST binding affinity 
curves. 

 
In this PhD research activity, the binding affinity (measuring the Kd) of a series of 

computationally designed peptides was determined by using MST and SPR biophysical 

methods. In fact, the very large amount of protein sample needed to perform ITC experiments 

makes this technique not feasible when the amount of available protein is limited. On the 

other hand, the FRET method is characterized by several disadvantages, among them the size 

of probes can introduce problems during the binding assay.  

Conversely, MST and SPR experiments are relatively easy and fast, they are endowed with a 

good accuracy, even if a very small quantity of both ligand and protein is available. However, 

our preferred biophysical method is the MST, since we have conducted experiments on 

peptides, performing assays directly in solution also avoiding surface or immobilization 

artifacts. 
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3. AIMS OF THE PhD RESEARCH ACTIVITY 

In this research project, I have applied advanced computational approaches, in combination 

with biochemical and biophysical studies, to discover, design, and optimize the structure of 

peptides and peptidomimetics capable of interacting with biological targets critically involved 

in several pathologies. Accordingly, the objective of this project is to discover novel promising 

peptide-based ligands which could represent potential drug candidates, paving the way to the 

identification of new innovative therapies against multiple disabling pathologies. 

In particular, the peptides or peptidomimetics showing the most promising theoretical profile, 

as resulted by computational studies, have been synthesized (or acquired) and experimentally 

tested through in vitro biophysical experiments. Then, the ligands endowed with the most 

promising profile have been investigated by in cell experiments.  

In this research activity, several computational approaches have been applied to different case 

studies with the objective at identifying potential inhibitors of HMGB1 protein, an emerging 

target for the development of anti-inflammatory drugs (case study 1).  My attention was also 

focused on the design of innovative potential drugs endowed with a dual inhibitory activity 

against PCSK9 and HMG-CoAR protein targets, both crucial for the treatment of 

hypercholesterolemia (case study 2). In this case, I was also able to identify new promising 

peptidomimetics. In the case study 3, I used some computational weaponry in order to 

discover ligands capable of interfering with the autophagy machinery in which GABARAP 

protein is involved. Similarly, in this case peptides with potential anticancer activity were 

designed and biologically assayed. Finally, many efforts have been dedicated to the 

identification of ligands able to inhibit WWP1, a new promising target of anticancer drugs 

(case study 4) for which no drug candidates have been till now reported in literature. In this 

case study, machine learning algorithms were applied to achieve the goals.  

In conclusion, if the pharmacological investigations will confirm the predicted activity profile, 

the structure of the most promising ligands will be optimized (by additional steps of 

computational studies) to improve their pharmacokinetic properties, using the most suitable 

medicinal chemistry strategies developed to this aim (see introduction chapter).  
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4. CASE STUDIES 

4.1. HMGB1 

High-mobility Group Box 1 (HMGB1) is an abundant chromatin-associated protein present in 

all mammalian cells. It is formed by 215 amino acids, divided into two structurally similar 

domains, called BoxA (Gly2-Ile79) and BoxB (Phe89-Arg163), connected by a nine amino acid 

loop, and a highly disordered negatively charged C-terminal tail. BoxA contains a pair of 

cysteines (Cys23 and Cys45) that can form a disulfide bond under oxidative conditions. In 

contrast, only one unpaired cysteine is present in BoxB (Cys106, Figure 13) [106]. 

Depending on its cellular localization, HMGB1 performs different functions. As a nuclear 

protein, it is involved in DNA repair, transcription, telomere maintenance, and genome 

stability [107,108,109], while during cellular death or inflammation, HMGB1 is released in the 

extracellular space where it functions as an alarmin [110,111]. 

 
Figure 13. Structure of HMGB1 (PDB ID code 2YRQ) solved by NMR. Protein domains are presented in different 
colors: BoxA (red), BoxB (blue). The three cysteines (Cys23, Cys45 of BoxA and Cys106 of BoxB) are displayed as 
van der Waals balls. 

 
According to several studies, the HMGB1 functions depend on its redox states [106,112]. In 

fact, the nuclear and cytosolic environments are characterized by a negative redox potential 

that maintains HMGB1 in the reduced form (fr-HMGB1). During the inflammatory process, the 

extracellular space, enriched in reactive oxygen species, leads to the formation of a disulfide 

bond between cysteines at positions 23 and 45 of BoxA (ds-HMGB1) [113]. The ds-HMGB1 is 

able to activate Toll-like Receptor 2 (TLR2) and 4 (TLR4) inducing the release of 

proinflammatory chemokines and cytokines activating innate and adaptive immune 

responses, while fr-HMGB1 is able to form an heterocomplex with the CXC ligand 12 (CXCL12) 

[114]. 
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CXCL12 is a chemokine expressed in many tissues both under homeostatic and inflammatory 

conditions and that can stimulate the recruitment of inflammatory cells by activating the CXC 

chemokine receptor type 4 (CXCR4) [115]. While a structure of the heterocomplex is currently 

unavailable, NMR chemical shift mapping clearly showed an interaction between CXCL12 and 

the two domains of HMGB1 (BoxA and BoxB), separately [116]. Furthermore, the same 

experiments showed that the binding of CXCL12 to HMGB1 induces conformational changes 

in the N-terminal domain of CXCL12 which is required to trigger the activation of the CXCR4 

receptor. Based on these data, it was hypothesized that the heterocomplex is formed by two 

CXCL12 molecules bound to HMGB1 (one to BoxA and one to BoxB), and that it would bind 

CXCR4 dimers [116]. 

A particular feature of the CXCL12/HMGB1 heterocomplex is that only fr-HMGB1 can form a 

complex with CXCL12, promoting CXCR4-induced response [114] as confirmed also by 

Microscale Thermophoresis (MST) experiments recently published [117]. 

 
4.1.1. HBP08 discovery 

Despite the importance of this target, to date only few inhibitors (Salicylic Acid [118], Diflunisal 

[119] and 5,5ʹ-Methylenedi-2,3-Cresotic Acid [120]) have been reported in literature, however 

showing a millimolar Kd on HMGB1. Only glycyrrhizin exerts its inhibitory activity in the high 

micromolar range binding to HMGB1-BoxA [121]. Starting from these data, we designed a 

novel nonapeptide (namely HBP08) directed on HMGB1-BoxA, aiming at inhibiting the 

formation of the CXCL12/HMGB1 heterocomplex and to abolish the synergistic effect on cell 

migration in CXCR4 transfected cells and in human monocytes [106].  

Design of HBP08. Utilizing the nuclear magnetic resonance (NMR) chemical shift perturbation 

(CSP) studies [121], a model of the glycyrrhizin in complex with the BoxA of HMGB1, was 

generated. In this model, glycyrrhizin interacted with Gln20 and Arg23 and occupies the region 

at the junction between the two arms of the “L-shape” characterizing HMGB1. Then, a library 

of 40,000 nonapeptides with a random sequence was generated and docked in the binding 

site identified by the presence of glycyrrhizin in the HMGB1-BoxA. In particular, all the 

residues of BoxA having a distance smaller than 7.5 Å from glycyrrhizin carbon atoms were 

selected, obtaining a total of 17 amino acids. Then, the whole peptide library was docked to 

BoxA, guided by the set of 17 amino acids selected before. In the next step, only the structure 
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of each peptide (among the 25 generated) endowed with the smallest distance restraint 

violations has been selected and minimized, then ranked by binding energy. The best 100 

ranking peptides were then selected, and, aiming at reducing the number of potential false 

positives, they were docked again in the BoxA using the “peptide docking” protocol of GLIDE 

software, leaving the algorithm free to search for the best binding site on the protein surface.  

Finally, the peptides resulting at the end of these calculations were visually inspected and only 

the best pose of the highest scored peptides (by Gscore), also mimicking the glycyrrhizin 

binding mode, was retained for further analysis. Several studies have shown that the free-

energy methods, such as MM-GBSA [122,123], can be valuable tools in the selection of active 

peptides in the virtual screening investigations. Therefore, a 500 ns long MD simulation was 

performed on each of the 57 peptides resulted from the previous steps of docking 

calculations. Finally, based on the MM-GBSA predicted values, 13 different peptides were 

selected and then tested by in vitro assays (Table 2 and Annex 1, Chapter 7). 

 

Table 2. Peptides ranked accordingly with the calculated binding free energy (ΔG) values. 

Peptide  Sequence ΔG ± SE (kcal/mol) 
HBP01 HEMYWEDEW -52.8 ± 0.3 
HBP02 IDLRFFMRQ -52.0 ± 0.3 
HBP03 FAFELIQTD -51.7 ± 0.4 
HBP04 CIPMMMHAW -50.0 ± 0.3 
HBP05 WISNWILMW -45.8 ± 0.3 
HBP06 TWNIHFADH -45.6 ± 0.4 
HBP07 HWTLANWCR -45.2 ± 0.4 
HBP08 GYHYERWIH -45.1 ± 0.5 
HBP09 QFMKNCEEM -44.8 ± 0.4 
HBP10 SINWHMYVN -44.8 ± 0.3 
HBP11 MYRENQPTR -42.9 ± 0.4 
HBP12 YHICWYGDY -42.5 ± 0.5 
HBP13 WLWYEWGWQ -41.9 ± 0.3 

 
Biological evaluation. The 13 peptides showing the lowest ΔG values (namely, HBP01-13) were 

synthesized and tested by in vitro chemotaxis assay on a murine cell line expressing the human 

CXCR4, to evaluate their efficacy as inhibitors of the CXCL12/HMGB1-induced migration. Our 

experiments showed that 4 out of 13 peptides efficaciously inhibited the enhanced migration 

induced by the formation of the CXCL12/HMGB1 heterocomplex (i.e., HBP05, HBP07, HBP08 

and HBP12) (Figure 14A). Further experiments, performed using CXCL12 alone, showed that 

HBP07 and HBP08 did not affect the CXCL12-induced cell migration, for this reason they were 
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furtherly tested on primary human monocytes. Conversely, HBP05 and HBP12 inhibited also 

the migration induced by the chemokine alone, so they were discarded. On primary human 

monocytes, only HBP08 significantly blocked the activity of the heterocomplex, without 

altering the migration induced by CXCL12 alone, do not exhibiting any toxicity on both cell 

types. A dose-response curve of the migration induced by the heterocomplex in the presence 

of descending concentrations of the HBP08 peptide revealed that the 50% of inhibition (IC50) 

was observed at the HBP08 concentration of 50 μM (Figure 14B).  

 
Figure 14. In vitro activity of the identified peptides. (A) Inhibition of cell migration in response to the 
CXCL12/HMGB1 heterocomplex was assessed on 300-19 Pre-B cells transfected with human CXCR4 using the 
identified peptides or glycyrrhizin. The numbers in the last horizontal row correspond to the different peptides. 
(B) Inhibition of cell migration in response to the CXCL12/HMGB1 heterocomplex was assessed on 300-19 Pre-B 
cells transfected with CXCR4 using scaling concentrations of HBP08. 

 
In the extracellular space, the oxidized form of HMGB1, through the binding to TLR4, activates 

the NF-kB pathway inducing the transcription of several pro-inflammatory cytokines 

[114,124]. Thus, in order to establish if HBP08 was effective also on this pathway, the cytokine 

release assay on monocytes treated with HMGB1 alone or in the presence of HBP08, was 

performed. In these experiments, a significant release of IL-6 and TNF, which could be blocked 

by the treatment with a neutralizing antibody against TLR4 was observed. This suggested that 

HBP08 did not induce IL-6 or TNF release and did not block the HMGB1-mediated release of 

these cytokines. This clearly indicated that HBP08 inhibits selectively the CXCL12/HMGB1 

heterocomplex activity, leaving HMGB1 able to trigger the TLR4 inflammatory pathway. 

Biophysical evaluations. MST experiments were performed to measure the affinity of HBP08 

to the recombinant HMGB1, attaining a Kd of 0.8 ± 0.4 μM (Figure 15). The affinity for HMGB1 

of the identified peptide was, therefore, several orders of magnitude higher than the ones of  
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other HMGB1 inhibitors reported in the literature so far. In fact, it is known that glycyrrhizin 

has a Kd of ∼ 150 μM [121], diflunisal ∼ 1.6 mM [119], and 5,5-methylenedi-2,3-cresotic acid 

∼ 0.9 mM [120]. Overall, these results indicate that HBP08 is the most potent inhibitor of the 

CXCL12/HMGB1 heterocomplex formation.   

 
Figure 15. MST analysis of the interaction between HBP08 and HMGB1 (Kd = 0.8 ± 0.4 μM). 

 
Additional MST experiments were conducted to measure the Kd values on two constructs 

containing only BoxA and BoxB of HMGB1. These experiments showed that HBP08 binds on 

HMGB1-BoxA with the same affinity as for the full-length protein (Kd = 0.8 ± 0.3 μM), while 

the affinity for HMGB1-BoxB was slightly lower (Kd = 17 ± 3.8 μM). Finally, NMR CSP 

experiments were accomplished to acquire atomistic details on the interaction between 

HBP08 and both HMGB1-BoxA and -BoxB. 

Furthermore, to identify the HBP08 residues crucial for the binding with HMGB1, alanine 

scanning experiments were accomplished, and the affinity (Kd) of each mutant peptide to the 

full-length HMGB1 protein was measured through MST experiments (Table 3). The results of 

these experiments indicated that HBP08-Ala3, HBP08-Ala7, and HBP08-Ala9 are fundamental 

for the binding. The affinity of two peptides formed by the first (pentapept-1) or the last 

(pentapept-2) five residues of HBP08 were tested and, in agreement with the Ala-scan results, 

no binding was observed for pentapept-1 in the range of concentrations applied to the 

analysis of the other peptides. Otherwise, a Kd of 160 ± 80 μM was observed for pentapept-2, 

confirming the importance of the C-term  in the binding. 
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Table 3. Kd observed the complexes between HMGB1 and the HBP08 mutated peptides, measured by MST. 

Peptide  Sequence Kd (μM) 
HBP08 GYHYERWIH 0.8 ± 0.4 

HBP08-Ala1 AYHYERWIH 8.6 ± 3.5 
HBP08-Ala2 GAHYERWIH 5.8 ± 1.1 
HBP08-Ala3 GYAYERWIH 26.2 ± 4.8 
HBP08-Ala4 GYHAERWIH 9.9 ± 1.3 
HBP08-Ala5 GYHYARWIH 0.8 ± 0.2 
HBP08-Ala6 GYHYEAWIH N.D. 1 
HBP08-Ala7 GYHYERAIH 22.0 ± 4.5 
HBP08-Ala8 GYHYERWAH 1.9 ± 0.6 
HBP08-Ala9 GYHYERWIA >80 
pentapept-1 GYHYE no binding 2 
pentapept-2 ERWIH 160 ± 80 

HBP08-RI d-HIWREYHYG 14.0 ± 4.5 
1 Not determined due to poor solubility in PBS. 
2 No binding was detected in the explored concentration range. 

 
As it is known, L-peptides are susceptible to the action of proteolytic enzymes such as 

peptidases, hindering their application in vivo. Conversely, D-peptides are less prone to the 

action of peptidases and to the acidic hydrolysis that occurs in the stomach, and these increase 

their oral bioavailability and the half-life in the blood circulation. Moreover, D-peptides have 

a low immunogenicity [125]. All these features make D-peptides suitable for drug 

development [126]. Consequently, we investigated the binding of the retro-inverso analogue 

of HBP08 (HBP08-RI), made by D-amino acids in the reversed order. The results of the binding 

experiments indicated that HBP08-RI has a lower but still good affinity for HMGB1 (Kd = 14.0 

± 4.5 μM, Table 3), therefore representing a good candidate for future drug development 

studies.  

NMR CSP experiments. In analogy with previous investigations on the binding of proteins [116] 

or small molecules to HMGB1 [119,120], we performed NMR CSP experiments (Figure 16BD) 

to experimental characterize the interaction between HBP08 and both boxes of HMGB1 (BoxA 

and BoxB). This analysis enabled us to identify the protein residues involved in the peptide 

binding (Table 4). These data were then used to guide the docking calculations, by using 

HADDOCK v2.4 program in the webserver implementation [127], aiming at generating a 

reliable model of the HBP08/HMGB1-BoxA and HBP08/HMGB1-BoxB complexes (Figure 

16AC). Finally, the poses acquiring the best HADDOCK score were selected and visually 

inspected, providing interesting information on the specific interactions displayed by the 

nonapeptide. 
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Table 4. Residues showing significant chemical-shift difference upon the HBP08 binding. 

HMGB1 domain Residues 

BoxA Y15, F17, V19, Q20, E25, K27, K28, K29, H30, S34, V35, E46 

BoxB D90, K95, A100, K113, G114, E115, G118, L119, D123, A125, 
G129, E130, M131, W132, N133 

 
In fact, regarding the interaction with BoxA, the HBP08-His3 interacts with Asp66; HBP08-Trp7 

is in contact with Arg23, Ser34, and Val35; and HBP08-His9, that MST experiments indicated 

as the more important residue for the formation of the complex, occupies a small cavity 

delimited by Tyr15, Phe17, and Gln20 (Figure 16A). 

 
Figure 16. (A) Molecular model of the (A) HBP08-BoxA and (C) HBP08-BoxB complexes, obtained with HADDOCK. 
NMR spectra of (B) BoxA alone (blue) and in complex with HBP08 (orange) and (D) BoxB alone (blue) and in 
complex with HBP08 (orange). 

 
At variance, regarding the interactions with BoxB, HBP08-Tyr4 forms a H-bond with the 

backbone of Arg96, HPB08-Trp7 was in contact with the aromatic rings of Phe101 and Trp132, 

and HBP08-His9 interacted with Ser106 by a H-bond (Figure 16C). 
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Finally, comparing the structure of the HBP08/BoxA complex with the one of the 

CXCL12/BoxA, obtained by previous NMR investigations (Figure 17) [116,117], it was noted 

that the binding site of HBP08 is in common with CXCL12, confirming the capability of the 

peptide to interfere with the creation of the CXCL12/HMGB1 heterocomplex. 

 
Figure 17. Comparison between the HBP08 binding mode and the structure of the CXCL12–BoxA complex 
obtained by docking in our previous study [128]. 

 
4.1.2. Design of HBP08 analogs with improved affinity on HMGB1-BoxB 

So far, we have focused our attention on the pro-inflammatory effect induced by the 

formation of the fr-HMGB1/(CXCL12)2 heterocomplex (Figure 18B), identifying a promising 

peptide named HBP08.  

 
Figure 18. Representation of the pro-inflammatory pathways in which HMGB1 is involved. (A) the BoxB of the 
oxidized form of HMGB1 (ds-HMGB1) is able to interact with TLR4 receptor mediated by Cys106 of ds-HMGB1  
[129]. This interaction induces the release of proinflammatory chemokines and cytokines able to activate innate 
and adaptive immune responses. (B) the reduced form of HMGB1 (fr-HMGB1) is able to form an heterocomplex 
with two CXCL12 chemokines whose N-terminals interact with the dimerized CXCR4 receptor. This interaction 
increases the leukocyte recruitment to the inflammatory site, triggering the inflammation. 
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Nevertheless, we showed that HBP08 selectively inhibits the CXCL12/HMGB1 heterocomplex 

activity, leaving HMGB1 able to trigger the TLR4 inflammatory pathway [128]. Consequently, 

in the second part of this project, the optimization of the HBP08 peptide sequence was 

planned, aiming at identifying new peptides with improved affinity on HMGB1-BoxB (Figure 

18A). 

 

Computational studies. Taking into account the NMR Chemical Shift data of the 

HBP08/HMGB1-BoxB complex [128], NMR-guided docking calculations of HBP08 on ds-

HMGB1-BoxB, were accomplished. The structure representative of the most populated cluster 

of ds-HMGB1 conformations (which accounts the 54% of the total geometries) [117] has been 

selected as target for these calculations. The docking pose acquiring the highest Gscore was 

selected (Figure 19A) and the resulting complex was subjected to three independent 500 ns-

long MD simulations. Then, considering the Cα-RMSD/time plot and the cluster analysis 

results, MM-GBSA calculations were performed on the snapshots extracted from the last 300 

ns of each replica (Table 5 and Figure 19B). 

 
Table 5. Binding free energy (ΔG) values of each independent replica of the HBP08/HMGB1-BoxB complexes. 

HBP08  ΔG ± SE (kcal/mol) 
MD replica1 -31.9 ± 0.4 
MD replica2 -31.2 ± 0.3 
MD replica3 -36.4 ± 0.5 

 

 
Figure 19. (A) The best docking pose (magenta), the most representative cluster conformations (black, green and 
red cartoons) found in each MD replica, and the NMR key residues (yellow sticks) are represented. (B) HBP08 
RMSD analysis of replica1 (black), replica2 (red) and replica3 (green), the blue broken line highlighted the 
simulation time considered in the MM-GBSA analysis. 
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The attained results suggested that HBP08 tends to slightly shift from the initial docking pose 

to a more stable conformation, which is then retained for the remaining MD simulations. MM-

GBSA calculations on HBP08 showed an average ΔG value of -33.2 kcal/mol. The 

conformational stability of the HMGB1/HBP08 complex was additionally ascertained by 

performing three independent 500 ns-long MD simulations on the third replica, the one in 

which HBP08 showed the lowest ΔG value (-36.4 kcal/mol). MM-GBSA calculations were 

performed on the snapshots extracted from about 300 ns of each replica and the results of 

the analysis is showed in Figure 19B.  

The Cα-RMSD of HBP08 confirmed again the high stability of the obtained complex, in 

fact, the peptide remained stable over the whole simulation time. Only the replica3-3 

displayed visible a slight variation of the binding mode after 400 ns of MD simulations, but it 

was noted that a binding mode close to the starting one was again adopted after only 50 ns 

of MD simulations (Figure 20B). The HBP08 calculated ΔG values over the three replicas 

confirmed the good quality of the replica3. In fact, the average value obtained considering all 

the three independent replica was -36.5 kcal/mol (Figure 20B), which is very similar to the 

reference structure (-36.4 kcal/mol). 

 

 
Figure 20. (A) The most representative cluster conformation of HBP08 replica3 (green), and the NMR key residues 
(yellow sticks) are represented. (B) RMSD analysis of replica3-1 (black), replica3-2 (red) and replica3-3 (green), in 
broken lines are highlighted the snapshots considered in the MM-GBSA analysis. The HBP08 ΔG values calculated 
by MM-GBSA for each replica and the average value are also reported. 

 
Subsequently, in order to design new HBP08 analogs with improved affinity on HMGB1-BoxB, 

alanine scanning calculations were performed. Long-time scale MD simulations (500 ns) were 
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performed on each mutant peptide in complex with HMGB1-BoxB. Then, MM-GBSA 

calculations were again carried out to estimate the binding affinity of each mutant (Table 6).  

 
Table 6. Binding free energy (ΔG) of the mutated peptides derived from the alanine scanning calculations. 

Peptide  Sequence ΔG ± SE (kcal/mol) 

HBP08-rep3 GYHYERWIH -36.4 ± 0.5 
HBP08-Ala1 AYHYERWIH -39.2 ± 0.3 
HBP08-Ala2 GAHYERWIH -35.9 ± 0.5 
HBP08-Ala3 GYAYERWIH -37.6 ± 0.4 
HBP08-Ala4 GYHAERWIH -33.8 ± 0.4 
HBP08-Ala5 GYHYARWIH -36.9 ± 0.3 
HBP08-Ala6 GYHYEAWIH -38.8 ± 0.4 
HBP08-Ala7 GYHYERAIH -26.5 ± 0.3 
HBP08-Ala8 GYHYERWAH -37.2 ± 0.5 
HBP08-Ala9 GYHYERWIA -32.6 ± 0.3 

 

The attained results suggested that the Trp7 could be fundamental for the interaction of 

HBP08 to HMGB1-BoxB. In fact, a loss of about 10 kcal/mol in the theoretical binding free 

energy was observed if compared to the parent peptide. In addition, also Tyr4 and His9 

appeared to be critical for the interaction, in fact it was observable a small loss of affinity for 

HMGB1-BoxB of 2.6 and 3.8 kcal/mol, respectively. Therefore, Tyr4, Trp7 and His9 were 

considered hot spots and were retained in the sequence of the new designed peptides. 

Conversely, the remaining residues that poorly contribute to the binding energy (non-hot 

spots) were systematically replaced by different amino acids capable of improving the 

complementarity between the new peptides and HMGB1-BoxB, through the “affinity 

maturation protocol”. In particular, we decided to perform the affinity maturation on the Tyr2 

and Arg6 residues, obtaining a total of 202 (i.e., 400) mutant peptides, finally ranked by the 

algorithm depending on the ΔAffinity and ΔStability values. The best three peptides by 

ΔAffinity, ΔStability, and both parameters (Mixed group) were subjected to 500 ns-long MD 

simulations (total = 9 peptides), also calculating the peptides ΔG values by MM-GBSA method 

(Table 7). Accordingly, the mutated peptide containing Arg2 and Met6 was the most promising 

one, since it showed a predicted ΔG value more than 3 kcal/mol lower than the parent peptide 

HBP08. 
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Table 7. Binding free energy (ΔG) of the mutated peptides derived from the affinity maturation protocol. 

Group Mutation Sequence ΔAffinity 1 ΔStability 1 ΔG ± SE 1 

HBP08-rep3 / GYHYERWIH / / -36.4 ± 0.5 
 Y2P + R6F GPHYEFWIH -5.07 +93 -36.1 ± 0.4 

Affinity Y2N + R6Y GNHYEYWIH -5.04 +13 -33.9 ± 0.3 
 Y2P + R6Y GPHYEYWIH -4.98 +93 -31.8 ± 0.4 
 Y2R + R6L GRHYELWIH -1.61 -2.91 -36.9 ± 0.5 

Stability Y2M + R6L GMHYELWIH -1.72 -1.71 -37.3 ± 0.3 
 Y2F + R6L GFHYELWIH -1.53 -1.53 -35.9 ± 0.3 
 Y2R + R6M GRHYEMWIH -2.97 -1.47 -39.5 ± 0.3 

Mixed Y2R + R6I GRHYEIWIH -2.93 -0.94 -38.3 ± 0.5 
 Y2R + R6V GRHYEVWIH -2.62 -0.26 -35.0 ± 0.5 

1 (kcal/mol). 

 
For this reason, the peptide Y2R+R6M was additionally subjected to two independent 500 ns-

long MD simulations replica, in order to better sample the conformational spaces of the 

complex and to acquire a more accurate prediction of the peptide ΔG value (Table 8). 

 
Table 8. Binding free energy (ΔG) of the mutated peptide Y2R+R6M compared to the parent peptide HBP08. 

Peptide Sequence ΔG Rep1 1 ΔG Rep2 1 ΔG Rep3 1 Average ΔG 1 

HBP08-rep3 GYHYERWIH -40.0 -35.0 -34.5 -36.5 

Y2R+R6M GRHYEMWIH -39.5 -39.5 -34.9 -38.0 
          1 (kcal/mol). 

 
The MD simulations replicas further confirmed that the peptide Y2R+R6M shows a slightly 

lower ΔG value. Thus, the representative structure of the most populated cluster of Y2R+R6M 

peptide (that accounts for 83% of conformational ensembles explored, Figure 21) was 

selected for an additional step of affinity maturation.  

In this attempt, the remaining 4 non-hotspot residues of the Y2R+R6M peptide sequence 

(namely, Gly1, His3, Glu5 and Ile8) were mutated applying two runs of affinity maturation. 

Firstly (run 1), His3 and Ile8 were simultaneously mutated to all the possible natural amino 

acids, but we did not find any peptide showing improved theoretical binding affinity to 

HMGB1-BoxB (data not shown). 
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Figure 21. The representative structure of the most populated cluster of Y2R+R6M peptide considering 1.5 µs of 
MD simulations (that accounts for 83% of conformational ensembles explored) which was used as starting 
complex structure for the following affinity maturation steps.  

 
As a consequence, both His3 and Ile8 were retained in the final sequence since they appeared 

to be fundamental for the interaction. Then (run 2), Gly1 and Glu5 were simultaneously 

mutated, and the best three mutant peptides ranked by ΔAffinity, ΔStability, and considering 

both parameters (Mixed group), were subjected to 500 ns-long MD simulations, and the 

peptides binding free energy vales were computationally estimated (Table 9). 

 
Table 9. Binding free energy (ΔG) of the mutated peptides derived from the affinity maturation protocol. 

Group Mutation Sequence ΔAffinity 1 ΔStability 1 ΔG ± SE 1 

Y2R+R6M / GRHYEMWIH / / -38.0 

 G1K + E5M KRHYMMWIH -10.46 +9.61 -40.6 ± 0.3 
Affinity G1K + E5F KRHYFMWIH -7.70 +10.98 -39.5 ± 0.2 

 G1K + E5I KRHYIMWIH -7.67 +12.97 -39.9 ± 0.2 
 G1P + E5W PRHYWMWIH -2.31 -18.14 -39.8 ± 0.3 

Stability G1P + E5Q PRHYQMWIH -3.40 -17.82 -41.0 ± 0.2 
 G1P + E5R PRHYRMWIH -1.25 -16.33 -40.2 ± 0.2 
 G1P + E5M PRHYMMWIH -6.41 -16.08 -41.3 ± 0.2 

Mixed G1N + E5M NRHYMMWIH -5.89 -4.35 unbound 
 G1P + E5I PRHYIMWIH -3.61 -11.71 -40.3 ± 0.2 

      1 (kcal/mol). 

 

Interestingly, all mutant peptides displayed ΔG values lower that the parent peptide 

(Y2R+R6M). The peptides showing ΔG values more than 2 kcal/lower were selected for further 

computational studies. In particular, they were subjected to two additional, and independent, 
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500 ns-long MD simulations, in order to increase the statistical significance of the results. The 

results are resumed in Table 10. 

 
Table 10. Binding free energy (ΔG) of the mutant peptides compared to the parent peptide Y2R+R6M. 

Peptide Sequence ΔG Rep1 1 ΔG Rep2 1 ΔG Rep3 1 Average ΔG 1 

Y2R + R6M GRHYEMWIH -39.5 -39.5 -34.9 -38.0 

G1K + E5M KRHYMMWIH -40.6 -39.7 -38.3 -39.5 
G1P + E5Q PRHYQMWIH -41.0 -42.2 -40.7 -41.3 
G1P + E5R PRHYRMWIH -40.2 -43.0 -40.3 -41.1 
G1P + E5I PRHYIMWIH -40.3 -39.7 -40.6 -40.2 

G1P + E5M PRHYMMWIH -41.3 -41.2 -43.3 -41.9 
          1 (kcal/mol). 

 
The MD results highlighted that the mutated peptides G1P+E5M (named HBP08pep1) and 

G1P+E5Q (named HBP08pep2), which differs by only one amino acid from the template 

peptide, were endowed with the lowest predicted ΔG values. Thus, considering these data, 

both peptides were purchased and tested by MST experiments using recombinant HMGB1.  

 

MST experiments. Performing experiments following the protocol previously described, 

HBP08pep2 displayed a Kd on HMGB1-BoxB of 13.7 ± 2.2 nM, which is more than 1000-fold 

lower than HBP08 (17 µM) as shown in Figure 22A. 
 

 
Figure 22. MST experiment of HBP08pep2 to (A) HMGB1-BoxB and (B) full sequence HMGB1 protein in three 
independent replicas. On the left it is observable the MST traces, while on the right the Kd curve. 
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This value was further confirmed by repeating the experiment using the full version of HMGB1 

(Kd = 15.8 ± 7.4 nM) as represented in Figure 22B. Conversely, a Kd of 3.85 ± 0.41 µM was 

measured for HMGB1-BoxA, a value about 5 times higher than the one reported for HBP08 

(0.8 µM). MST experiments on HBP08pep1 showed similar results to the one reported for 

HBP08pep2 but since it displayed a lower solubility in the PBS buffer, the further in vitro 

chemotaxis assays were performed only on HBP08pep2, in order to evaluate the peptide 

efficacy as inhibitor of the CXCL12/HMGB1-induced migration. 

 
Biological evaluation. Biological assays were accomplished by the research group of Prof. M.G. 

Uguccioni (Institute for Research in Biomedicine, IRB, Bellinzona, Switzerland). The attained 

results revealed that HBP08pep2 efficiently inhibited the enhanced migration induced by the 

CXCL12/HMGB1 heterocomplex, showing an IC50 of about 2.5 µM, which is 20-fold lower than 

the value observed for the template peptide HBP08 (50 µM) [128] (Figure 23). 

Further in vitro experiments are still ongoing, with the aim at clarifying if HBP08pep2 is also 

able to block the interaction between HMGB1 and TLR4, i.e. interrupting the pro-

inflammatory cascade determined by this pathway. Finally, NMR CSP experiments are also 

currently ongoing to acquire atomistic details of the interaction between HBP08pep2 and 

HMGB1-BoxB. 

 

 
Figure 23. Inhibition of cell migration in response to the CXCL12/HMGB1 heterocomplex was assessed on 300-
19 Pre-B cells transfected with CXCR4 using scaling concentrations of HBP08pep2. 
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4.2. PCSK9 and HMG-CoAR 

Proprotein convertase subtilisin/kexin 9 (PCSK9) regulates the plasma low-density lipoprotein 

cholesterol (LDL-c) levels by the direct interaction with the LDL receptor (LDLR) [130]. Their 

protein-protein interaction (PPI) on the surface of the hepatocytes directs the LDLR to 

degradation via the lysosome pathway. As a consequence, the physiological activity of PCSK9 

leads to an increment in the circulating cholesterol levels by decreasing the LDLR population 

on liver cell membranes. For this reason, the PCSK9 inhibition represents a valuable 

therapeutic strategy for the treatment of hypercholesterolemia and consequent coronary 

heart disease [131].  

The most common drugs for hypercholesterolemia treatment are statins, which inhibit 3-

hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), the rate-limiting enzyme in 

cholesterol biosynthesis. This enzyme lowers intracellular cholesterol levels, leading to an 

increased expression of LDL receptors (LDLR) on cell surfaces and a reduction of serum LDL-

cholesterol (LDL-C) via the activation of the sterol-regulatory element-binding protein 

(SREBP)-2 transcription factor pathway. Although this approach is considered an efficient way 

to reduce circulating LDL-C, cardiovascular events still occur in some patients. Moreover, 

statins induce known and serious side effects, such as headache, muscle and joint pain, and a 

higher risk of developing diabetes. For this reason, PCSK9 (discovered in 2003) has been 

recognized as one of the most promising targets for counteracting hypercholesterolemia and 

atherosclerotic cardiovascular diseases [131]. 

The expression of PCSK9 is also controlled by the activity of SREBP-2 as well as a specific 

transcriptional activator hepatocyte nuclear factor-1α (HNF-1α) [132], which is a liver-

enriched transcription factor regulating many target [133] genes in the liver and intestine. In 

contrast, the ability of SREBP-2 to co-stimulate the PCSK9 and LDLR expression limits the 

therapeutic efficacy of statins which are known to produce their effects via SREBP-2 activation. 

Indeed, it is well documented that statins improve the PCSK9 protein level production through 

the augmentation of the intracellular HNF-1α levels [134]. 

Hence, in the last two decades, academia and pharmaceutical companies have financed 

considerable research studies on the development of compounds capable of target PCSK9 

developing different strategies including siRNA, anti-sense oligonucleotides (ASOs), and 

monoclonal antibodies (mAbs). 
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In fact, Evolocumab [135] and Alirocumab [136], two mAbs endowed with PCSK9 inhibitory 

activity, have been released on the market to treat statin-resistant hypercholesterolemia. 

However, these therapeutic tools are characterized by high cost and low patient compliance. 

Therefore, both industry and academic research activities are focused on the development of 

alternative therapeutic strategies like the usage of small molecules [137], but also peptides 

[138], or peptidomimetics [139], capable of impairing the PCSK9/LDLR PPI. 

 

In this field, Lammi et al. sorted out the most potent natural peptide (LILPKHSDAD, P5) derived 

from the peptic lupin (Lupinus A.) protein hydrolysate, which impairs the PCSK9-LDLR 

interaction endowed with an IC50 of 1.6 µM [140]. In parallel, P5 reduces the catalytic activity 

of HMG-CoAR with an IC50 value of 147.2 µM, through the inhibition of the enzyme activity 

[140]. The computational PCSK9/P5 model was obtained by performing a molecular docking 

of the most favorable conformation of peptide P5, selected after 40 ns of MD simulations, into 

the binding site of PCSK9, which was recognized by the presence of the EGF-A domain of LDLR 

in the PCSK9 crystal structure (PDB accession code 4NE9) [141]. Finally, the system was 

simulated by MD for 50 ns, to optimize the small peptide geometries. 

 

Moreover, P5 increases the LDLR protein level in HepG2 cells through the activation of 

SREBP-2 and, through a downregulation of HNF-1α, it reduces the PCSK9 protein levels and 

secretion in the extracellular environment. This unique synergistic multi-target inhibitory 

behaviour of P5 determines the improved ability of HepG2 cells to uptake extracellular LDL, 

with a final hypocholesterolemic effect. P5 was successfully transported by differentiated 

human intestinal Caco-2 cells through transcytosis, and, during transport, it was partially 

metabolized in a breakdown fragment (LPKHSDAD, P5-met), which retained the biological 

activity of the parent peptide [142]. In facts, we have demonstrated that P5-met reduces 

PCSK9-LDLR binding with a dose-response trend and an IC50 of 1.7 μM and inhibits the HMG-

CoAR with an IC50 of 175.3 µM [142].  

At a cellular level, such as P5, P5-met improves the LDLR and reduces PCSK9 levels, 

through the modulation of both SREBP-2 and HNF-1α, respectively [142]. Therefore, since P5-

met displayed the same activity and behaviour of the parent peptide, P5, our results indicated 

that the first two amino acid residues (LI) do not play a key role in the interaction with both 

PCSK9 and HMG-CoAR target. 
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These data clearly indicate that P5, with its dual-inhibitory activity, represents a new 

alternative strategy to the use of single classical PCSK9 and HMG-CoAR inhibitors. Notably, the 

strategy in which dual-inhibitors are employed may be more effective in overcoming the 

deficits attributed to the classical use of statins (adverse effects and co-stimulation of PCSK-9 

and LDLR via a common transcriptional activator, i.e., SREBP-2, in statin-treated patients 

limited the efficacy of these classical HMG-CoAR inhibitors) or PCSK9 inhibitors (including 

expensiveness, low compliance of the patients, repeated administrations, and injection site 

irritations) on health and to meet the desired health goals and public priorities in terms of 

safety and cost-related issues. 

 
4.2.1. Design of P5 analogs with improved hypocholesterolemic activity 

Considering all the previous observations, the overall aim of the present study is the 

identification of new P5 analogs able to target both PCSK9 and HMG-CoAR, therefore 

displaying an improved and dual hypocholesterolemic activity. Hence, the theoretical study 

was validated and confirmed by performing a detailed biological investigation on the most 

promising P5 analogs. 

 
Computational studies. To obtain a robust hypothesis on the peptide P5 binding mode, the 

PCSK9/P5 complex model was optimized by performing 1 µs-long MD simulations. At the end 

of these simulations, the MD trajectory frames were grouped using a cluster analysis 

algorithm to determine which was the most preferred P5 conformation in complex with 

PCSK9. The PCSK9/P5 complex conformation representative of the most populated cluster 

(78%) suggested that peptide P5 could bind to PCSK9, as illustrated in Figure 24A.  

 
Figure 24. (A) The expected P5 (cyan sticks) binding mode on the PCSK9 surface after 1 µs-long MD simulations. 
Yellow dotted lines highlight the H-bond network. The enzyme solvent-accessible surface is depicted accordingly 
by the partial charge of the residues: blue for positive areas and red for negative areas. (B) 2D representation of 
the predicted P5 binding mode in complex with PCSK9. H-bonds and salt bridges are showed in purple and 
blue/red lines, respectively. Hydrophobic residues interacting with P5 are colored in green. 



46 
 

In particular, P5 could bind to PCSK9 through (1) a salt bridge between the charged NH term 

of P5-Leu1 and the side chain of Asp238, (2) an H-bond between the imidazole ring of the P5-

His6 and the NH group of Ser381, (3) an H-bond network between the side chain of P5-Ser7, 

the NH of P5-Asp8, and the side chain of Asp367, and (4) an H-bond shaped by the side chain 

of P5-Asp8 and the side chain of Ser383. The side chain of P5-Leu3 was deeply inserted into a 

hydrophobic basin sized by the PCSK9 residues Phe379, Pro155, and Ile369, creating van der 

Waals interactions (Figure 24B). 

 

Then, to identify new P5 analogs endowed with improved PCSK9 affinity, we designed new 

peptides by performing a computational alanine-scanning mutagenesis analysis (widely 

described in Chapter 2.1). Specifically, nine 3D models, in which PCSK9 was in complex with 

each alanine-mutated peptide P5, were simulated by 200 ns-long MD simulations, and the 

estimation of the binding free energy values (ΔG, Table 11) were achieved using MM-GBSA 

approach. 

 
Table 11. Estimated ΔG values of the peptides under investigation, as calculated using the MM-GBSA approach. 

Peptide/Mutation Sequence ΔG value ± SE 1 ΔΔG value 1 

P5 LILPKHSDAD -18.9 ± 0.5 0 
L1A AILPKHSDAD -13.5 ± 0.5 +5.4 
I2A LALPKHSDAD -20.9 ± 0.5 -1.0 
L3A LIAPKHSDAD -6.6 ± 0.7 +12.3 
P4A LILAKHSDAD -23.0 ± 0.7 -4.1 
K5A LILPAHSDAD -14.1 ± 0.6 +4.8 

H6A (P5-H6A) LILPKASDAD -1.2 ± 0.5 +17.7 
S7A (P5-S7A) LILPKHADAD -19.3 ± 0.3 -0.4 

D8A LILPKHSAAD -21.9 ± 0.3 -3.0 
D10A LILPKHSDAA -19.6 ± 0.5 -0.7 

        1 (kcal/mol). 

 
The attained results suggest that positions 3 and 6 can be considered hotspots, as their 

mutation into alanine led to P5 analogs endowed with a considerable reduction of the 

predicted binding affinity (ΔΔG higher than 10 kcal/mol). Specifically, P5-His6 seemed crucial 

for peptide binding because its substitution led to a dramatic drop in the peptide binding 

interaction energy. MD simulations suggested that the substitution of the alkaline side chain 

of His6 with a methyl group led to a change in the peptide binding mode due to a lack of an 

H-bond between the PCSK9-Ser282 amide group and the imidazole ring of P5-His6. For this 

reason, the [H6A] peptide P5 was unbound from the PCSK9 surface after the initial steps of 
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the MD simulations. Similarly, the removal of the side chain of P5-Leu3 led to a peptide 

incapable of maintaining the P5 initial binding mode, as the hydrophobic contacts engaged by 

the Leu3 isobutyl group with the hydrophobic crevice sized by the PCSK9 residues Leu159, 

Pro156, Ala240, and Ile370 were missing. 

The alanine mutation of Leu1 and Lys5 led to peptides with a calculated binding affinity that 

was slightly lower than that of P5 (ΔΔG close +5 kcal/mol). However, given the inaccuracy of 

the MM-GBSA calculations and the observation that the side chains of Leu1 and Lys5 

fluctuating in a solvent environment do not stably bind to PCSK9 during the MD simulations, 

positions 1 and 5 cannot be considered strong hotspots similar to positions 3 and 6. 

Conversely, the substitution with alanine of Ile2, Ser7, and Asp10 of P5 led to peptides with a 

predicted binding affinity close to that predicted for the template peptide. Therefore, they 

can be considered non-hotspots and can potentially be substituted with different amino acids. 

However, the predicted data on Leu1 and Ile2 are in accordance with our recent experimental 

data, which show that a metabolite of peptide P5 that does not contain the first two residues 

(P5-met, LPKHSDAD) displays an IC50 value close to the parent peptide P5 [142]. 

Conversely, the P4A and D8A mutant peptides showed a higher affinity to PCSK9 than P5. 

However, as the gain in the ΔG value was not extremely high, the synthesis and biological 

evaluation of these peptides was not considered suitable. 

 

The alanine-scanning study showed that the positions 1, 2, 7, and 10 on the P5 sequence could 

be considered non-hotspots. Moreover, the alanine in position 9 should be considered a non-

hotspot, as alanine is already present in the natural P5 sequence. Nevertheless, the P5-Ser7 

OH group could create an H-bond with PCSK9-Asp367, and the P5-Asp10 side chain could be 

involved in the fold of the peptide, as an internal H-bond could be shaped with the side chain 

of P5-Ser7. Thus, we decided to mutate the residues in positions 2 and 9 to develop novel P5 

analogs with improved PCSK9 binding affinity. 

Accordingly, with this assumption, 202 peptide P5 analogs were computationally designed 

through the systematic substitution of positions 2 and 9 with all natural amino acids. Their 

theoretical affinity for PCSK9 was preliminary evaluated by the Prime algorithm, which can 

estimate the peptide binding free energy using the MM-GBSA approach. PCSK9 in complex 

with the 10 top-ranking P5 analogs (i.e., those with the lowest ΔAffinity values, Table 12) again 

underwent MD simulations. The ΔG values were estimated using the MM-GBSA protocol, 
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which allowed for the acquisition of ΔG values comparable with those previously attained for 

P5 and other P5 alanine mutants. 

 
Table 12. Estimated binding affinity values of newly designed P5 analogs (columns 1-2), calculated by Prime 

software (ΔAffinity, column 3) and standard MD/MM-GBSA calculations (ΔG values, column 4). 

Peptide Sequence ΔAffinity 1 ΔG ± SE 1 
P5 LILPKHSDAD / -18.9 ± 0.5 

[I2P-A9R] P5 LPLPKHSDRD -23.9 -26.3 ± 0.6 
[I2M-A9R] P5 LMLPKHSDRD -23.5 -26.3 ± 0.6 
[I2R-A9R] P5 LRLPKHSDRD -21.5 -30.3 ± 0.7 
[I2Q-A9R] P5 LQLPKHSDRD -21.0 -24.8 ± 0.8 
[I2L-A9R] P5 LLLPKHSDRD -20.7 -25.4 ± 0.6 

[I2Y-A9R] P5 (P5-Best) LYLPKHSDRD -20.4 -41.7 ± 0.7 
[I2H-A9R] P5 LHLPKHSDRD -20.4 -24.6 ± 0.8 
[I2T-A9R] P5 LTLPKHSDRD -19.5 -28.0 ± 0.5 
[I2F-A9R] P5 LFLPKHSDRD -19.4 -19.2 ± 0.3 
[I2E-A9R] P5 LELPKHSDRD -19.1 -24.5 ± 0.6 

         1 (kcal/mol). 
 
The Prime calculations (third column of Table 12) suggested that the peptides acquiring an 

improved predicted binding energy were the ones containing arginine in position 9. At 

variance, the substitutions in position 2 did not considerably affect the affinity of the resulting 

peptides (differences in the ΔAffinity values followed in the range of 5 kcal/mol). 

Subsequently, using the AMBER20/MM-GBSA calculations, the resulting ΔG values spanned 

from -19 to -42 kcal/mol. This allowed us to assess that the peptide [I2Y-A9R]P5 (i.e., P5-Best) 

was endowed with the highest predicted PCSK9 binding affinity. In fact, the ΔG value of P5-

Best was two times the value predicted for the template peptide P5, suggesting that P5-Best 

could show an affinity to PCSK9 appreciably lower than P5. Our simulations showed that, as 

indicated in the conformation representative of the most populated cluster (Figure 25A), P5-

Best could acquire an ameliorated PCSK9 complementarity because of the possibility of 

creating two salt bridges: the first between the new arginine in position 9 and the side chains 

of Glu366 and Asp367, and the second between the side chain of P5-Best-Asp10 and the side 

chain of Lys222. These interactions were also enforced by the presence of an H-bond between 

the P5-Best-Asp10 and the OH group of Ser225. Moreover, the P5-Best-Ile3 side chain was in 

contact with the hydrophobic pocket sized by Phe379, while the phenol ring of the new 

residue P5-Best-Tyr2 was located close to Arg194. The NH groups of P5-Best-Tyr2 and -Ile3 

created two H-bonds with the side chain of Asp238. 
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Figure 25. (A) Expected binding mode of [I2Y-A9R]P5 (i.e., P5-Best) on the PCSK9 surface resulting from the MD 
simulations and cluster analysis. Yellow dotted lines depict the H-bond network. The enzyme solvent-accessible 
surface is colored according to the partial charge of the residues: blue for positive areas and red for negative 
areas. P5-Best is represented as yellow sticks. (B) Superimposition of P5-Best and Rim13, both bound on the 
PCSK9 surface. 

 
These results were also compared to the computational data attained designing the poly-

imidazole derivatives capable of inhibiting PCSK9 [143]. In fact, in our previous paper, by 

applying a computational approach such as the one here applied, we designed and biologically 

evaluated two poly-imidazole derivatives endowed with PCSK9 inhibiting activity. The 

biological evaluation of the most interesting poly-imidazoles, named Rim13 and Rim14, 

allowed us to report on their ability to modulate the LDLR expression on the human hepatic 

HepG2 cell surface, and their capacity to increase the extracellular uptake of LDL by the same 

cells. Here, structurally aligning the P5-Best and the Rim13 hypothetical binding modes, we 

noted that the backbone atoms of the peptide residues Pro4 and Lys5 were mimicked by the 

first two imidazole rings of Rim13 (Figure 25B). Moreover, the benzyl chain of the second 

imidazole ring of Rim13 was projected in the same hydrophobic cleft shaped by Phe379 and 

occupied by the side chain of P5-Best-Leu3, creating van der Waals interactions. Furthermore, 

the negatively charged area created by the PCSK9 residues Asp367 and Glu366 were in contact 

with the side chain of the P5-Best-Arg9 and the amino-methyl chain of Rim13. Since they bind 

similarly, creating contacts with the same PCSK9 residues, this alignment could help in the 

design of new poly-imidazole derivatives. In fact, aiming at designing more potent poly-

imidazoles derivatives, the benzyl moiety of Rim13 could be substituted by alkyl chains (linear 

or not), to reproduce the interactions played by the P5-Best-Leu3 residue. Conversely, 

regarding the design of new P5 analogs, the Pro4 of P5-Best could be replaced by aromatic 

residues such as Phe, Tyr or Trp, in order to reproduce the interactions played by the p-
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methoxyphenyl ring of Rim13. However, the oral pharmacokinetic (PK) properties of peptides 

remain strongly limited by the presence of degrading enzymes in the gastrointestinal tract. 

Nevertheless, the research efforts are still devoted to solving this limitation. In fact, active 

peptides could be orally administered together with penetration enhancers, within hydrogels 

or in combination with digestive enzyme inhibitors. As alternative, they can be suitably coated 

by acid-stable polymers or administered through intestinal patches [145]. By means of one of 

these innovative delivery strategies, even peptides active in the high micromolar range could 

be successfully employed for the treatment of several pathologies. Actually, numerous 

peptides are in phase III of clinical trials but, until now, only desmopressin is available in the 

market, and used in the clinic [145]. 

 

In light of these theoretical studies, empirical assays were performed on the [H6A] peptide P5 

(i.e., P5-H6A) because position 6 was recognized as a hotspot (Table 11), on P5-Best because 

of its lowest predicted binding free energy value, and on [S7A]P5 (i.e., P5-S7A) because it 

represents one of the peptides for which the alanine mutation did not remarkably alter the 

predicted binding free energy value. Conversely, the mutation of P5-Asp10 into alanine 

affected peptide folding (as shown by MD simulations) and the water solubility of the peptide, 

as the negatively charged side chain of Asp10 should be substituted with the aliphatic methyl 

group of alanine. Thus, the peptides P5-H6A, P5-S7A, and P5-Best were purchased by 

GenScript and biochemically evaluated by in vitro experiments. 

 

Biological experiments. In order to verify whether P5 derivatives impair the PPI between 

PCSK9 and LDLR, dedicated biochemical experiments were accomplished in the group of Prof. 

C. Lammi (University of Milan). The results showed that P5-Best, P5-H6A and P5-S7A reduced 

the PCSK9-LDLR binding with a dose-response trend and IC50 values of 0.7, 9.0, and 1.45 μM, 

respectively (Figure 26A). The results confirmed that the new P5 derivatives were more active 

than P5 (1.6 μM). These data are in line with the computational predictions. In fact, P5-Best 

peptide showed the lowest ∆G value calculations (∆G= -41.7 kcal/mol) indicating it as the most 

active peptide, while P5-S7A displayed binding affinity in the same range of P5 (∆G values of -

19.3 and -18.9 kcal/mol, respectively). However, by our computational studies, P5-H6A should 

be do not active since the side chain of H6 plays a crucial role in the stabilization of the peptide 

on the PCSK9 surface. In our view, the lack of linearly between the binding affinity 
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experimental data (IC50 values) and the computational predictions, could be due to the 

omitted calculation of the entropic contribution to binding free energy value. In fact, the 

calculation of this contribution is highly computationally demanding, and the error associated 

with the estimation is very often greater than the value itself. Moreover, the data attained by 

the further biological investigations on these peptides cannot be compared with the 

computational predictions, since it is very difficult to discuss the in silico results in comparison 

with the biological data obtained from the HepG2 cells. In fact, the molecular modeling studies 

have been performed on a PCSK9 model immersed in a box of water molecules and the 

biological experiment capable of reproducing these conditions is only the one in which the 

recombinant PCSK9 is in contact with the LDLR (e.g., the binding assays displayed in Figure 

26). Conversely, when the biological properties of peptides are assessed in complex 

experimental conditions, such as the one in which cells are involved, the molecular modeling 

results cannot be linearly compared with the experimental data. In fact, the effects of 

membranes, extracellular or intracellular enzymes cannot be considered by our calculations. 

 

 
Figure 26. Inhibition of the PPI between PCSK9 and LDLR. (A) Impairment of the protein-protein interaction 
between PCSK9 and LDLR. (B) The treatment of HepG2 cells with PCSK9 (K9 in the graphs, 4 µg/mL) reduced the 
active LDLR protein levels localized on the surface of the cells, which were restored by P5 and P5 analogs (50 
µM). (C) The decreased functional ability of HepG2 cells to absorb LDL from the extracellular space observed 
after incubation with PCSK9 (4 µg/mL) improved after treatment with P5 and P5 analogs (50 µM). The data points 
represent the average ± SD of four independent experiments performed in duplicate. 

 
Furthermore, the ability of these P5 analogs to modulate the levels of LDLR localized on HepG2 

surfaces was investigated in the presence of PCSK9 (4 μg/mL) using an in-cell western (ICW) 

assay. The results showed that the LDLR levels decreased in the presence of PCSK9 alone by 
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25.4 ± 1.6% compared with the untreated control cells, and that P5-Best, P5-H6A, and P5-S7A 

could significantly restore the LDLR levels to 96.9 ± 10.4%, 93.4 ± 5.2%, and 104.4 ± 0.4%, 

respectively, when co-incubated with PCSK9 (Figure 26B). Finally, functional cell-based assays 

were performed to investigate the ability of HepG2 cells to uptake extracellular LDL in the 

presence of PCSK9. HepG2 cells incubated with PCSK9 alone showed a 43.6 ± 9.6% reduction 

in the uptake of fluorescent LDL compared with the untreated control cells. This result is in 

agreement with the reduction of active LDLR population on the cell surface, which was 

observed by ICW. After co-incubation with PCSK9, P5-Best, P5-H6A, and P5-S7A completely 

restored the LDLR function, increasing the LDL uptake to 129.2 ± 21.9%, 107.4 ± 23.0%, and 

125.4 ± 19.0% (Figure 26C), respectively. 

P5 analogs demonstrated to be more active than peptide Pep2-8 (TVFTSWEEYLDWV) [145] 

and its analogs [Y9A]Pep2-8 and [T4R,W12Y]Pep2-8 [146] as PPI inhibitors of PCSK9. In details, 

at the fixed concentration of 100 µM, Pep2-8 impaired the PCSK9-LDLR binding by -36.5% vs. 

the control, whereas [Y9A]Pep2-8 and [T4R,W12Y]Pep2-8 by -69.8% and -93.0%, respectively 

[146]. Indeed, the IC50 value of [Y9A]Pep2-8 was equal to 27.12 ± 1.2 µM and that of 

[T4R,W12Y]Pep2-8 equal to 14.50 ± 1.3 µM [146], clearly indicating that P5-Best is about 30- 

and 20-fold more potent than the Pep2-8 mutant peptides. In addition, at cellular levels, Pep2-

8 and both Pep2-8 analogs were less efficient than P5 analogs to restore the LDLR protein 

levels and the functional ability of hepatocytes to absorb LDL from the extracellular 

environment [146]. On the contrary, P9-38, a cyclized Pep2-8 analogue, demonstrated to be 

35-fold more potent than P5-Best in impairing the PPI between PCSK9/LDLR displaying and 

IC50 equals to 20 nM, and it was 1000-fold more potent to restore the LDLR level and 

functionality in HepG2 cells [147]. 

Finally, P5-Best is slightly more potent than the poly-imidazole Rim13 which inhibit the 

interaction between PCSK9 and LDLR by an IC50 equals to 1.4 µM, a value similar to the 

reference peptide P5. In the same range of concentration of Rim13, P5 analogs successes in 

the restoring the functional activity of LDLRs on the surface of hepatocytes preventing their 

degradation [147]. 

Although all P5 analogs successfully restored the level of LDLR protein similar to peptide P5, 

statistical analysis revealed that from a functional point of view, both P5-Best and P5-S7A not 

only restored the ability of hepatic cells to uptake LDL from the extracellular environment but 

also improved this capability against untreated cells. These results suggest that the 
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hypocholesterolemic effect occurs with a dual mechanism of action involving the modulation 

of HMG-CoAR activity and protein levels. To assess this aspect and deepen this behaviour, 

further HMG-CoAR activity assay and western blot experiments were performed. 

 

P5 Analogs Modulate the Hepatic LDLR Pathway by Inhibiting HMG-CoAR Activity. To better 

characterize the dual inhibitory activity of all P5 analogs, a biochemical investigation was 

conducted to assess their effect on the modulation of HMG-CoAR activity. The results 

suggested that P5-Best, P5-H6A, and P5-S7A inhibited enzyme activity with an IC50 of 88.9, 

74.4, and 73.8 µM, respectively, showing more effective inhibitory activity than P5 (147.2 µM) 

(Figure 27A), but they are still less active than statins. In facts, the IC50 values for the inhibition 

of HMG-CoAR activity for pravastatin simvastatin, atorvastatin, and rosuvastatin are equals to 

44.1, 11.2, 8.2, and 5.4 nM, respectively [148,149]. 

 

Even though, P5 and P5 analogs are less active than statins as HMG-CoAR inhibitors 

and their clinical implication is still too far, they display the unique feature to inhibit both 

HMG-CoAR and PCSK9 targets, making them lead compounds for developing new 

peptidomimetic and/or small molecules endorsed by improved activity on both targets 

involved in the control of the circulating cholesterol level. 

 

Further experiments were performed to verify the ability of these P5 analogs to 

modulate the LDLR pathway in HepG2 cells. Similar to P5, P5-Best and P5-H6A induced an 

upregulation of the SREBP-2 transcription factor level up to 118.6 ± 17.7% and 115.6 ± 10.1% 

(Figure 27B), respectively, resulting in an augmentation of the LDLR protein levels up to 148.4 

± 23.4% and 143.5 ± 24.0%, respectively (Figure 27C). Interestingly, although P5-S7A caused a 

slight reduction of the SREBP-2 protein level to 96.9 ± 16.1% (Figure 27B), it led to an increase 

in the LDLR protein level up to 126.5 ± 13.6% (Figure 27C). 

 

Thus, in contrast to P5, P5-Best, and P5-H6A, the upregulation of the LDLR protein level 

and activity induced by P5-S7A was not through SREBP-2 pathway activation. 
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Figure 27. Modulation of the LDLR pathway in HepG2 cells treated with P5 and P5 analogs. (A) In vitro inhibition 
of HMG-CoAR activity. (B) The effect on SREBP-2 protein levels, (C) LDLR protein levels, and (D) HMG-CoAR 
protein levels after the treatment of HepG2 cells with P5 and P5 analogs, respectively. Data points represent the 
average ± SD of four independent experiments performed in duplicate. 

 
Notably, P3 (YDFYPSSTKDQQS), a peptide from lupin protein that inhibits HMG-CoAR activity, 

leads to an increase in the LDLR protein levels without SREBP-2 activation but through the 

compensatory upregulation of the SREBP-1 [150]. Therefore, it was hypothesized that P5-S7A 

could possess the same effect as P3 on LDLR protein production through the regulation of the 

SREBP-1 pathway. However, unlike P5, P5-Best, P5-H6A, and P5-S7A decreased the HMG-

CoAR levels up to 86.5 ± 22.8%, 94.1 ± 12.2%, and 71.6 ± 15.5%, respectively (Figure 27D), 

indicating that the P5 analogs were more active as HMG-CoAR inhibitors than P5. 

Interestingly, P5-Best, P5-H6A, and P5-S7A which are about two-fold more potent than P5 as 

both HMG-CoAR and PCSK9/LDLR PPI inhibitors, respectively, are also more efficient in the 

reduction of the HMG-CoAR protein levels with a direct effect in the intracellular cholesterol 

homeostasis. Indeed, overall P5-Best and P5-S7A can improve the functional ability of hepatic 

cells to absorb extracellular LDL (Figure 27D). 
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P5 Analogs Modulate the Hepatic PCSK9 Pathway. P5-Best, P5-H6A, and P5-S7A decreased the 

PCSK9 protein levels by 21.8 ± 11.8%, 28.2 ± 17.5%, and 25.8 ± 17.9%, respectively (Figure 

28A). Moreover, also the HNF1-α protein levels were decreased by 1.2 ± 15.4%, 10.3 ± 2.4%, 

and 18.7 ± 7.6% (Figure 28B), respectively. 

Although the ability to reduce the secretion of mature PCSK9 was weaker than that of 

P5, P5-Best, P5-H6A, and P5-S7A could also induce a slight reduction by 2.7 ± 1.9%, 7.4 ± 2.6%, 

and 5.1 ± 1.7%, respectively (Figure 28C).  

 

 
Figure 28. Modulation of the PCSK9 pathway in HepG2 cells. (A) Effects on the PCSK9 protein levels, (B) effects 
on the HNF1-α protein level, and (C) effects on mature PCSK9 secretion. Data points represent the average ± SD 
of six independent experiments performed in duplicate. 

 
P5 Analogs Increase the Expression of LDLR Localized in the Cellular Membranes and Modulate 

LDL Uptake in HepG2 Cells. In accordance with the above results, P5-Best, P5-H6A, and P5-S7A 

increased the LDLR levels localized in the cellular membranes of HepG2 cells by 156.3 ± 12.1%, 

158.9 ± 12.0%, and 140.2 ± 15.1% at 50 µM, respectively (Figure 29A). Experiments were also 

performed in parallel, with P5 as the reference compound, which increased the membrane 

LDLR protein levels by 153.6 ± 16.4% at the same concentration of 50 µM. Consequently, the 

functional capability of HepG2 cells to uptake extracellular LDL after treatments with P5, P5-

Best, P5-H6A, and P5-S7A was observed, leading to an increased ability of 203.8 ± 40.67%, 

254.3 ± 16.4%, 229.8 ± 27.9%, and 211.1 ± 40.1%, respectively (Figure 29B). 

 



56 
 

 
Figure 29. Modulation of the LDLR pathway in HepG2 cells. (A) The effect on the LDLR localized on the surface of 
HepG2 cells after the treatment of HepG2 cells with P5 and P5 analogs, respectively. (B) Enhancement of the 
functional ability of HepG2 cells to uptake LDL from the extracellular environment. Data points represent the 
average ± SD of four independent experiments performed in duplicate. 

 
Docking of P5-S7A and MD Simulations on HMG-CoAR. The experimental assays on the 

purchased peptides highlighted the improvement in the dual inhibitory activity of the P5 

mutant peptides. Specifically, P5-S7A showed the lowest IC50 value for HMG-CoAR. Thus, 

docking and MD simulations were conducted to acquire atomistic details on the putative 

binding mode of P5-S7A in complex with HMG-CoAR. This study can pave the way for the 

design of more dual-active peptides. P5-S7A was docked to the statin binding site of HMG-

CoAR using the GLIDE software, and the best docking pose (Gscore = −9.88 kcal/mol) was 

selected for further 500 ns-long MD simulations in explicit water solvent. As the enzyme was 

in the dimeric state, the statin present in the other binding sites was not deleted to preserve 

the overall folding of the simulating system. At the end of the MD simulations, RMSD/time 

plot of the peptide was analyzed, and the peptide conformations sampled during the MD 

production run were clustered. The results showed that only one cluster was mainly 

populated, representing 73.1% of the peptide conformations. The structure representative of 

this cluster is depicted in Figure 30. 
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Figure 30. The representative structure of the most populated cluster of P5-S7A (green sticks) bound to HMG-
CoAR (electrostatic surface). The small hydrophobic pocket (Leu853, Ala856, and Leu857) interacting with P5-
S7A-Leu3 is highlighted. The H-bonds are represented by yellow dashed lines. Only polar hydrogens are shown 
in the figure. 

 
This HMGCoAR/P5-S7A complex showed the presence of a H-bond network between the P5-

S7A-Ala7 and -Ala9 backbone atoms, with a side chain of HMG-CoAR-Asn658. P5-S7A-Leu3 

projected its side chain in a small hydrophobic pocket sized by HMGCoAR-Leu853, -Ala856, 

and -Leu857. Interestingly, the presence of an intramolecular H-bond between the side chains 

of P5-S7A-Lys5 and -Asp10 improved the overall peptide conformational stability. Moreover, 

the supposed binding mode of P5-S7A was consistent with the binding affinity data, indicating 

that the IC50 of P5-H6A on HMG-CoAR was close to that of P5-S7A. Both residues could point 

their side chains to an effectively empty pocket sized by HMG-CoAR-Leu853, -Ala856, and -

Leu857, which did not create any interactions with the HMG-CoAR counterpart. Thus, the 

substitution of positions 6 and 7 with alanine did not elicit any strong variation in the 

experimental binding affinity. This hypothesis paves the way for the design of new P5 analogs 

in which positions 6 and 7 can be mutated by unnatural amino acids capable of creating 

stronger interactions with HMG-CoAR. 

The binding mode supposed for P5-S7A was then compared to the one of P5 in complex with 

HMG-CoAR, to understand the possible reasons on the base of the improved binding affinity 

displayed by the mutant peptide. In our previous article [141] we have reported on the results 

of docking calculations of P5. Here, performing MD simulations starting from the P5 docking 

pose, we noted that, in the complex conformation representative of the most populated 

cluster (70%), P5 adopted a binding mode in which the side chain of P5-S7 created two 

intramolecular H-bonds with the NH groups of P5-A9 and P5-D10 (Figure 31).  
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Figure 31. The representative structure of the most populated cluster of P5 (cyan sticks) bound to HMG-CoAR 
(electrostatic surface). H-bonds are represented by yellow dashed lines. 

 
In the mutant peptide P5-S7A, these internal bonds cannot be created for the absence of the 

OH group in position 7. This, in our opinion, led to a peptide endowed with an increased 

conformational freedom, leaving the C-terminal residues to adopt a cyclic conformation in 

which an internal salt bridge can be shaped between the side chains of P5-K5 and P5-D10. This 

conformation could be more prone to create remodeled and ameliorated interactions with 

the enzyme. 

Finally, the binding mode supposed for P5-S7A was also compared to that of 

atorvastatin in complex with HMG-CoAR (as reported in the PDB, accession code 1HWK [151]). 

The structural alignment of both complexes (Figure 32A) permitted to us suppose that the 

first four residues of P5-S7A essentially reproduce the contact played by the three aromatic 

substituents of the atorvastatin pyrrole ring.  

In particular, the aniline is mimicked by the P5-S7A-Ile2 side chain, the P5-S7A-Leu3 

was overlapped to the phenyl ring of the statin, and the p-F-phenyl ring of atorvastatin was 

spatially close to the P5-S7A-Pro4 (Figure 32). Unfortunately, the remaining moiety of the 

peptide pointed to an enzyme area different from the one in which the 3,5-dihydroxyl-

heptanoic acid moiety was bound in the HMG-CoAR/atorvastatin complex. 

This portion is considered essential for the biological activity of the statins and could 

explain the reason on the base of the low affinity displayed by the mutant peptide. More 

efforts should be made to design peptides capable of mimicking such interactions and 

occupying the HMG-CoAR pocket sized by Lys735, Ser684, Arg590, Lys 691, Asn755, and 

Glu559 residues (Figure 32B). 
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Figure 32. (A) Crystallographic pose of atorvastatin (yellow sticks), as was found in the X-ray structure available 
in the PDB (accession code 1HWK [151]), superimposed on the representative structure of the most populated 
cluster of P5-S7A (green sticks) in complex with HMG-CoAR. (B) 2D representation of the protein-ligand contacts 
displayed by atorvastatin (cut-off = 3.00 Å) in complex with HMG-CoA, as in the X-ray structure. H-bonds are 
highlighted by purple arrows and the hydrophobic residues involved in the protein-ligand interactions are 
colored in green. 

 
4.2.2. Optimization of the β-sheet peptidomimetic Rim13 

In these years, considerable resources have been dedicated by academia and pharmaceutical 

companies to the identification of compounds capable of inhibiting PCSK9. Few years ago, the 

release on the market of two monoclonal antibodies (mAbs), Evolocumab (Repatha® by 

Amgen) [135], and Alirocumab (Praulent® by Sanofi) [136], proved that the PCSK9 inhibition 

is a successful therapeutic approach for the treatment of statin-resistant 

hypercholesterolemia. Additionally, Novartis developed the first siRNA drug (Inclisiran) [152] 

capable of interrupting the liver transcription of PCSK9, leading to a persistent 

hypocholesterolemic effects on the treated patients. Nevertheless, these drugs are expensive 

and do not certainly meet the patient compliance since they are subcutaneously administered.  

For these reasons, both pharmaceutical companies and academia are greatly 

interested in the clinical development of orally bioavailable small molecules, as it was 

demonstrated by the high number of patents applications in this field [137]. Among the most 

known PCSK9-LDLR interaction inhibitors, peptides have also their high value since numerous 

research studies have been reported in literature [153,154]. In fact, peptides, or 

peptidomimetics, constitutes useful starting point for the identification of new drugs [155]. 

On the other hand, numerous small molecules have been reported in literature, for example 

Cpd13 [156], CB36 [157], 3f [158], and Rim13 [143], or in patents (Figure 33). Remarkably, 

some of them are in advanced clinical stages. 
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Figure 33. Structure of selected PCSK9 inhibitors reported in literature and patents. 

 
In our previous studies, taking inspiration from the β-strand of the LDLR EGF-A domain in 

complex with PCSK9 in the X-ray structure [159], we supposed that minimalist peptidomimetic 

poly-imidazoles could represent promising PCSK9-LDLR interaction inhibitors [160]. As a prove 

of this, the simplest tetra-imidazole MeIm displayed IC50 value in the low micromolar range 

[160]. Then, optimizing the substitution pattern of the imidazole rings by computational 

studies, a tri-imidazole derivative (Rim13, Figure 33), displayed PCSK9 IC50 value close to 1 µM 

[143]. 

In this attempt, the MeIm poly-imidazole structure has been further refined by 

designing novel di-imidazole derivatives considering the high synthetic feasibility and a higher 

affinity expected on PCSK9. Indeed, by applying computational techniques, new PCSK9 

inhibitors were designed, and a selected library of compounds was synthesized. Then, their 

biological activity was fully investigated by performing assays ranging from cell viability tests 

to the study of the modulation of the cholesterol pathway on HepG2 cells, highly influenced 

by the dual inhibitory activity of some compounds. Finally, the pharmacokinetic properties of 

the most promising compounds were also determined, and their antiplatelet activity was also 

investigated. 

 

Computational studies. Based on the PCSK9 computational model previously developed [143], 

new poly-imidazole analogs were designed estimating their binding free energy after docking 

calculations, pose selection by metadynamics simulations (to improve the accuracy of the 

binding pose selection), MD simulations, and MM-GBSA calculations. In particular, all 

compounds were docked in the PCSK9 area depicted by the presence of EGF-A in the X-ray 
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crystal structure. Then, the most probable docking poses attained by GLIDE software were 

additionally investigated by BPMD simulations, permitting to choose the most accurate 

binding pose (widely described in the Chapter 2.2). Only the data of the 6 molecules 

synthesized is shown in the Figure 34. As it is observable, the BPMD method allowed us to 

discriminate the most plausible pose (endowed with the lowest PoseScore) between the two 

best docking poses of each molecule (as it can be clearly seen in the case of CS179 and CS188), 

significantly reducing the MD simulations runs to be performed. 

 

 
Figure 34. Binding Pose Metadynamics (BPMD) simulations of the two best docking poses of the 6 molecules 
synthesized and assayed. 

 
Consequently, only the best ligand binding pose resulting from BPMD simulations, for each 

designed compound, were chosen to build the final PCSK9/ligand complexes, then optimized 

by MD simulations. The attained trajectory frames were deeply examined by visual inspection 

and by plotting the ligand not-hydrogen atom RMSD vs the simulations time. Subsequently, 

the frames corresponding to 50 ns of MD simulation length, in which the ligands displayed the 

lowest conformational freedom in the bonding site, were exploited for the estimation of the 

ligand binding free energy values (ΔG), by the application of the MM-GBSA approach. Finally, 

a selected list of compounds endowed with the lowest ΔG values, together with the best 

synthetic feasibility and the lowest cost of the reactants, were selected for the synthesis and 

the further biological assays. 
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Design of new poli-imidazole analogs. In the previous paper of Lammi et al. [143], we have 

scored 13 compounds, aiming at optimizing the substituents capable of interacting with the 

negative charged areas shaped by the PCSK9 residue Asp367. In this attempt, starting from 

the general tetra-imidazolyl structure of MeIm and aiming at refining the substituent capable 

of occupying the PCSK9 hydrophobic pocket shaped by to Ile369, Pro155, Ala239, Phe379, and 

Ala371, 13 new poli-imidazoles were designed (Table 13). Then, calculating their ΔG values, 

the attained results suggested that compound Tetra10, bearing the -(CH2)3 t-Bu group as R1 

displayed the highest estimated affinity on PCSK9. 

 
Table 13. Chemical structure and ΔG estimation of the new series of compound derived from Rim13 β-sheet 

peptidomimetic. 

 
Compound R1 ΔG ± SE 1 

Tetra1 -CH2C5H9 -30.4 ± 0.4 
Tetra2 -(CH2)4CH3 -24.4 ± 0.4 
Tetra3 -CH2C4H7 -25.5 ± 0.4 
Tetra4 -CH2C3H5 -26.0 ± 0.3 
Tetra5 -(CH2)3CH3 -26.1 ± 0.4 
Tetra6 -CH2-CH(CH3)2 -22.7 ± 0.5 
Tetra7 -CH2-CH(Et)(CH3) -23.2 ± 0.4 
Tetra8 -CH2(t-Bu) -24.1 ± 0.5 
Tetra9 -(CH2)2 t-Bu -26.5 ± 0.4 

Tetra10 -(CH2)3 t-Bu -36.6 ± 0.6 
Tetra11 -(CH2)3CH(CH3)2 -27.4 ± 0.5 
Tetra12 -(CH2)2Cy -30.2 ± 0.4 
Tetra13 -CH2Cy -30.8 ± 0.5 

                                             1 (kcal/mol) 

 
Furthermore, aiming at simplifying the chemical structure of the compounds, improving the 

synthetic feasibility of the compounds as well, we tried to fuse the benzene and the first 

imidazole ring into a naphthalene ring capable of mimicking the π electrons conjugation 

between both rings. The resulting compounds (Dim1, Table 14) displayed an increased 
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predicted binding affinity on PCSK9, since the calculated ∆G was about 5 kcal/mol lower than 

Tetra10 although, unfortunately, the ligand unbound from the enzyme surface within the 

initial 100 ns of MD simulations. Thus, to overcome this issue and to evaluate the influence of 

the third imidazole ring on the predicted ∆G of the compounds, we additionally simplified the 

chemical structure of Dim1 by displacing the R2 group by a H atom (Dim2) and by electron rich 

groups among the classical or non-classical bioisosteres [161,162] of the imidazole ring.  

 

In particular, the presence of alkynes, alkenes, trifluoromethyl, or halogens (Dim3-

Dim20, Table 14) in the chemical structure of the compounds was investigated. Interestingly, 

Dim2 was stably bound on PCSK9 over 200 ns of MD simulations and displayed a ∆G value of 

-35.9 kcal/mol, a value similar to the one of Tetra10 (-36.6 kcal/mol), indicating that the 

structural simplification did not greatly impact on the binding affinity of the resulting 

compound. 

 

In the case of the alkynyl series of compounds (Dim3-Dim8), the calculated ΔG values 

suggested that the applied change was nearly successful, since a gain in the ΔG close to 2 

kcal/mol was attained for Dim3, in the respect of Dim2. Compounds Dim4-Dim8 were 

designed aiming at additional obtaining an advantage in the predicted affinity by decorating 

the naphthalene ring. Among them, Dim8, bearing the 6-Br-Napht-2-yl as R1, displayed the 

lowest predicted ∆G value. Then, compounds Dim9-Dim12 were designed to prove the effect 

of the R2 moiety on Dim8, but the attained results suggested that the R2 substituent must not 

be greater than the ethynyl. 

 

 

Table 14. Chemical structure and ΔG estimation of the new series of Dim peptidomimetics derived from 
Tetra10. 

 



64 
 

Compound R1 R2 ΔG ± SE 1 

Tetra10 for comparison for comparison -36.6 ± 0.6 

Dim1 Napht-2-yl -N1-Me-imidazol-5-yl -41.0 ± 0.3 
Dim2 Napht-2-yl -H -35.9 ± 0.4 
Dim3 Napht-2-yl -CºC-H -38.0 ± 0.4 
Dim4 6-Me-Napht-2-yl -CºC-H -40.8 ± 0.5 
Dim5 1-OH,6-Me-Napht-2-yl -CºC-H -39.4 ± 0.3 
Dim6 6-Me,8-OH-Napht-2-yl -CºC-H -38.6 ± 0.5 
Dim7 6,8-diMe-Napht-2-yl -CºC-H -40.0 ± 0.4 
Dim8 6-Br-Napht-2-yl -CºC-H -41.9 ± 0.4 
Dim9 6-Br-Napht-2-yl -CºC-CH3 -42.6 ± 0.5 

Dim10 6-Br-Napht-2-yl -CºC-CH2CH3 -39.2 ± 0.3* 
Dim11 6-Br-Napht-2-yl -CºC-CH(CH3)2 -40.6 ± 0.4 
Dim12 6-Br-Napht-2-yl -t(CH=CH)-CH3 -38.6 ± 0.5 
Dim13 6-Br-Napht-2-yl -CF3 -38.7 ± 0.3 
Dim14 6-Br-Napht-2-yl -Cl -38.8 ± 0.3 
Dim15 6-Br-Napht-2-yl -I -41.0 ± 0.4 
Dim16 Napht-2-yl -I -39.6 ± 0.2 
Dim17 Ph -I -34.6 ± 0.4 
Dim18 -CH3 -I -36.5 ± 0.4 
Dim19 -CH2CH3 -I -27.9± 0.5 
Dim20 -(CH2)2CH3 -I -31.1± 0.5 

     * unbound within 150 ns. 

 
In fact, although Dim9 showed the lowest predicted ΔG value it also showed a high ligand 

RMSD fluctuation along the MD simulation time (Figure 35A). Similarly, Dim10, bearing a -C2Et 

as R2, unbound from the PCSK9 surface within the initial 150 ns of MD simulations. Conversely, 

alkenes Dim11 and Dim12 displayed a high stability on PCSK9 binding site although their ΔG 

values were not lower than the one of Dim8. 

 

 
Figure 35. RMSD vs simulation time plot of Dim9 (A) and Dim16 (B). 
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Compounds Dim13-Dim15 were designed to test the effect of the presence of halogens as R2 

group on Dim8. Remarkably, Dim15 displayed a ΔG value very close to the one of Dim8, 

together with a great stability on the PCSK9 surface. Finally, compounds Dim16-Dim20 were 

designed to investigate the effect of the presence of the 6Br-napht-2yl on Dim15. The attained 

results suggested that removal of the bromine atom, as in the compound Dim16, was not 

extremely detrimental, since a ΔG value similar to the one of Dim15 was attained. For this 

compound, MD simulations were extended to 1300 ns, to better sample the conformational 

space of the complex (the backbone RMSD vs. simulation time plot is reported in Figure 35B), 

and the attained results confirmed the high stability of the compound on the PCSK9 surface 

(average RMSD = 1.84 Å, standard deviation = 0.62). Conversely, the ΔG values calculated for 

compounds Dim17-Dim20 suggested that a benzene ring or linear alkyl chains as R1 in this 

series of compounds did not lead to compounds more promising than Dim15 or Dim16, 

although they retained a residual predicted affinity on PCSK9 (Table 14). 

 

Compounds selection for synthesis and biologically evaluation. Considering the results on 

Table 14, compounds Dim8 and Dim15 could be considered the most promising ones, since 

they displayed the lowest predicted ∆G values. Nevertheless, pondering on the synthetic 

feasibility and the cost of the reactants, Dim3 and Dim16 (do not containing the bromine) 

were chosen for the synthesis and the biological evaluation. In addition to them, to 

experimentally prove the effect of the R2 substituent on the biological activity of the 

compounds, Dim2, the simplest derivative containing the H atom as R2, was also selected for 

the synthesis. Moreover, since the -CH2-Cy resulted second ranked as R2 moiety in the Tetra 

series (Table 13), we designed the di-imidazoles Dim21, Dim22, and Dim23 (Table 15), in which 

the -CH2-Cy replaces the -(CH2)3 tBu moiety of compounds Dim2, Dim3 and Dim16. These 

compounds, which are not more promising than Dim15, considering their predicted ∆G values 

(Table 14), were synthesized as negative control for the validation of the applied 

computational design protocol. 
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Table 15. Chemical structure and predicted ∆G values of the compounds chosen for synthesis and biological 
evaluation. 

 
Compound R1 R2 ΔG ± SE (kcal/mol) 

Dim2 -(CH2)3 t-Bu -H -35.9 ± 0.4 
Dim3 -(CH2)3 t-Bu -CºC-H -38.0 ± 0.4 

Dim16 -(CH2)3 t-Bu -I -39.6 ± 0.2 
Dim21 -CH2Cy -H -29.8 ± 0.4 
Dim22 -CH2Cy -I -32.6 ± 0.5 
Dim23 -CH2Cy -CºC-H -33.8 ± 0.5 

 
Chemical synthesis. The six target compounds were synthesized in the group Prof. A. Silvani 

(University of Milan). The synthesis consisted in the twice repeated van Leusen three-

component reaction (vL-3CRs) as key reaction process (Scheme 1). 
  

Scheme 1. Synthesis of target compounds a. 

 
a Reagents and conditions: a) amine, DMF, 70 oC, 2h; then TosMIC, K2CO3, overnight (95% for 1, 84% for 2). b) n-
BuLi, THF, from -78 oC to -30 oC, 2h; then DMF, rt, overnight (76% for 3, 77% for 4). c) Amine 11, DMF, 70 oC, 2h; 
then TosMIC, K2CO3, overnight (66% for 5, 83% for 6). d) 4N HCl in AcOEt, from 0 oC to rt, 2h; then NaHCO3/CH2Cl2 
(quant. yield for both Dim2 and Dim21). e) n-BuLi, THF, from -78 oC to -30 oC, 2h; then I2, rt, overnight (62% for 
7, 75% for 8). f) see d) (quant. yield for both Dim16 and Dim22). g) trimethylsilylacetylene, Pd(PPh3)2Cl2, CuI, 
THF/Et3N,  60 °C, 3h (32% for 9, 44% for 10). h) K2CO3, MeOH/THF, 2h, rt; then BF3

.OEt2, CH2Cl2, 4 Ǻ molecular 
sieves, -40 °C, 2h (quant. yield for both Dim3 and Dim23). 

N

N

N

N
(CH2)5NHCH3

R1

R2
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Di-imidazole Analogs Impair the PCSK9-LDLR PPI and the HMG-CoAR activity. To evaluate the 

inhibitory ability of Dim analogs, dedicated experiments were carried out in the group of Prof. 

C. Lammi (University of Milan), with the aim at verifying whether they are able to impair the 

PPI between PCSK9 and LDLR and to drop the HMG-CoAR activity. The attained results 

indicated that Dim2, Dim3, Dim16, Dim22, and Dim23 reduced the PCSK9-LDLR binding with a 

dose response trend and an IC50 values of 1.99 ± 1.65 μM, 0.009 ± 0.01 μM, 0.0008 ± 0.001 

μM, 1.99 ± 2.86 μM and 1.18 ± 1.06 μM, respectively (Table 16). Results indicated that Dim3 

and Dim16 are more active than the other analogs (Figure 36A). Additionally, biochemical 

investigation was carried out for assessing the ability of Di-imidazole analogs to modulate the 

in vitro HMGCoAR activity. Results suggested that Dim2, Dim16, Dim21 and Dim22 inhibited 

the enzyme with a dose-response trend and an IC50 of 40.48 ± 15.24 µM, 146.8 ± 75.09 µM, 

38.4 ± 12.71 µM, and 36.21 ± 5.98 µM, respectively. Specially, Dim2, Dim21, and Dim22 

displayed activity in the micromolar range (Figure 36B), whereas Dim3 and Dim23 were not 

active, as reported in the Table 16. 

 
Table 16. Results of the biological experiments. 

 1 (kcal/mol); 2 (µM). 

 

 
Figure 36. A) Inhibition of the protein–protein interaction between PCSK9 and LDLR. B) Inhibition of HMGCoAR 
activity. The data points represent the mean ± s.d. of three independent experiments. 

Compound R1 R2 ΔG ± SE 1 PCSK9/LDLR  
binding IC50

 2 
HMGCoAR  

activity IC50
 2 

Dim2 -(CH2)3 t-Bu -H -35.9 ± 0.4 1.99 ± 1.65 40.48 ± 15.24 
Dim3 -(CH2)3 t-Bu -CºC-H -38.0 ± 0.4 0.009 ± 0.01 N/A 

Dim16 -(CH2)3 t-Bu -I -39.6 ± 0.2 0.0008 ± 0.001 146.8 ± 75.09 
Dim21 -CH2Cy -H -29.8 ± 0.4 4.50 ± 0.50 38.4 ± 12.71 
Dim22 -CH2Cy -I -32.6 ± 0.5 1.99 ± 2.86 36.21 ± 5.98 
Dim23 -CH2Cy -CºC-H -33.8 ± 0.5 1.18 ± 1.06 N/A 
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Effect of Dim3 and Dim16 on the HepG2 Cell Vitality. Considering that Dim3 and Dim16 were 

the most active compounds inhibiting the PCSK9 ability to bind the LDLR in the biochemical 

system and that Dim16 also showed the capability to modulate the HMG-CoAR activity, cell-

based experiments were realized with the aim at characterizing the molecular and functional 

behavior of both Dim analogs, using human hepatic HepG2 cells. Hence, preliminary cellular 

viability experiments were carried out for excluding any potential effects of the treatment 

with Dim3 and Dim16 on the HepG2 cell’s vitality. After the 48-h treatment, any reduction of 

hepatic cell vitality was observed up to 10 µM versus control cells, indicating that Dim3 and 

Dim16 were safe for HepG2 cells in this dose range (data not shown). 

 

Di-imidazole Analogs Increase the Expression of the LDLR Localized on the Cellular Membranes. 

In addition, the ability of these Di-imidazole analogs to modulate the levels of LDLR localized 

on HepG2 surfaces was investigated in the presence of PCSK9 (4 μg/mL). Results indicated that 

LDLR levels decreased in the presence of PCSK9 alone by 39.71 ± 2.05% compared to untreated 

control cells, whereas Dim3 and Dim16 can significantly restore LDLR levels to 77.87 ± 3.04% 

and 101.1 ± 15.06% (Figure 37A), 91.1 ± 2.22% and 87.17 ± 7.42% when co-incubated with 

PCSK9 (Figure 37B) at 1 nM and 10 nM, respectively. 

 

 
Figure 37. The treatment of HepG2 cells with PCSK9 (4 µg/mL) reduced active LDLR protein levels localized on 
the surface of cells, which were restored by Dim3 (A) and Dim16 (B), inducing an increase of LDLR protein level 
on HepG2 cell surface at 1 nM and 10 nM, respectively. The data points represent the mean ± s.d. of three 
independent experiments. 
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Di-imidazole Analogs Modulate the LDL-uptake in HepG2 cells. Finally, functional cell assays 

were performed to verify the capacity of HepG2 cells to uptake extracellular LDL in the 

presence of PCSK9 (4 μg/mL). HepG2 cells incubated with PCSK9 alone displayed a 51.69 ± 

15.30% reduction in the uptake of fluorescent LDL compared to untreated control cells, 

indicating reduced LDLR function. After co-incubation with PCSK9 at 1 or 10 nM, Dim3 and 

Dim16 restored LDLR function, increasing LDL uptake up to 94.12 ± 10.95% and 103.47 ± 7.34% 

(Figure 38A), 81.87 ± 7.45% and 136.47 ± 8.81% (Figure 38B), respectively. 

 

 
Figure 38. The decreased ability to uptake LDL from the extracellular space by HepG2 cells induced by PCSK9 is 
prevented by Dim3 (A) and Dim16 (B), inducing an improved ability of HepG2 cells to absorb LDL at 1 nM and 10 
nM, respectively. The data points represent the mean ± s.d. of three independent experiments. 

 
To conclude, in this study, starting from our studies on the simplest tetraimidazole (MeIm), 

we have designed new PCSK9 inhibitors endowed with a di-imidazole scaffold, which had 

shown the lowest PCSK9 IC50 value (0.8 nM) reported in literature by us [143]. Considering the 

theoretical and the experimental studies on the series of tetra-imidazoles (Table 13), tri-

imidazoles, di-imidazoles (Table 14), we can advance the hypothesis that potent PCSK9 

inhibitors, endowed with poli-imidazole general structure reported in Figure 39B, must need 

at least four substituents: 

- R1: a planar aromatic group capable of interacting with the zone of PCSK9 created by the 

residues close to the disulphide bridge Cys375-Cys378; 

- R2: a branched alkyl chain capable of filling the hydrophobic pocket sized by Ile369, Pro155, 

Ala239, Phe379, and Ala371 of PCSK9; 

- R3: a basic chain with the optimal length to reach the PCSK9 area close to Asp367; 
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- R4: an electron rich group, like a halogen or an alkyne. These features are required to interact 

with the positively charged amino term of Ser153, resulting from the autocatalytic maturation 

of the enzyme. 

 

These structural features can be found in the structure of Dim16, whose supposed binding 

mode on PCSK9 is reported on Figure 39A. 
 

 
Figure 39. (A) Supposed binding mode of Dim16, as resulted by docking, metadynamics, and MD simulations. 
PCSK9 is represented by ribbons revealing the secondary structure. The solvent-accessible surface of PCSK9 is 
colored depending on the partial charge of the atoms: positive areas are depicted as blue, while red areas suggest 
the presence of positively charged residues. The carbon atoms of Dim16 are represented as green sticks. (B) 
General structure of the Dim series reported in this paper. (C) Molecular formula of Dim16. (D) molecular formula 
of Cpd27, as resulted from the Nyrada patent WO2018165718A1. The red, green, and cyan areas depicted in 
panels C and D highlight the common structural features of Dim16 and Cpd27. 

 
The lack of one of these structural requirements leads to compounds less active on PCSK9. In 

fact, Dim2, which contains H as R4, displayed a IC50 value 220 times higher than Dim3, holding 

the ethyne, and about 2500 times higher than Dim16, which contains the iodine as R4. The 

importance of the proper alkyl chain as R2 substituent is demonstrated by the data of Dim21-

23. In fact, in all cases high IC50 values were obtained when compared to their analogs Dim2, 

Dim3, and Dim16. The importance of the alkaline chain such as R3 had been discussed in a 



71 
 

previous paper published by our research group [143] while an aromatic ring as R1 seems 

essential to obtain theoretically active compounds, as demonstrated by the ∆G values 

calculated for compounds Dim17-20. 

 

Interestingly, some of the structural features of Dim16 can be also found in the Cpd27 

(Figure 33, patent deposited by Nyrada). In fact, comparing the Dim16/Cpd27 chemical 

structures (Figure 39CD) can be easily noted that both contain: 

- a planar skeleton bearing some substituents: the di-imidazole scaffold of Dim16 and the 

carboxamido-phenyl moiety in Cpd27; 

- the presence of an area rich in aromatic substituents: the naphthyl scaffold of Dim16 and the 

isoquinoline moiety of Cpd27 (green area in the Figure 39CD); 

- electron-rich substituents: the iodine atom of Dim16 (or the ethyne of Dim2) and the 3-

methyl-imidazole of Cpd27 (red area in the Figure 39CD); 

- a positively charged moiety: the N-methylpentan-1-amine of the Dim series and the N4-

methyl-piperazine of Cpd27 (blue area in the Figure 39CD), both protonated at physiologic pH. 

Finally, we can suppose that Dim16, bearing also an additional branched alkyl chain as R2, may 

have all the structural features that justify the low-nanomolar affinity (IC50 = 0.8 nM, Table 

16). 

 

Docking and MD simulations on HMG-CoAR. In order to predict the binding mode of Dim2, 

Dim3, and Dim16 on HMG-CoAR, rationalizing their structure-activity relationships (Table 16), 

docking calculations and MD simulations were performed (Figure 40A). The best docking 

poses of the compounds explained how the substitution, in the R2 position, by hydrogen 

(Dim2) or iodine (Dim16) atoms to a huge bulky group, such as the alkyne of Dim3 (Figure 

40A), strongly influence the predicted binding mode of the compounds. In fact, the -H and -I 

groups of Dim2 and Dim16, respectively, are positioned in a small hydrophobic pocket and 

their substitution inevitably causes steric hindrance. 
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Figure 40. (A) The best docking pose of Dim2 (yellow sticks), Dim16 (salmon sticks) and Dim3 (green sticks) 
compounds. The R2 position for each compound is highlighted by the arrow. (B) Cα-RMSD plot of Dim2 (green) 
and Dim16 (red) during a 250 ns-long MD simulation. 

 
The predicted binding modes were further inspected by 250 ns-long MD simulations, and the 

binding free energy (∆G) were estimated only for Dim2 and Dim16. In fact, Dim3 unbound 

from the active site of the target after few nanoseconds of MD simulations (data not shown). 

At variance, both Dim2 and Dim16 remained well anchored on the HMG-CoAR binding site for 

the whole simulation length, showing an average Cα RMSD value of 2.0 Å (std. dev. = 0.3 Å) 

and 2.8 Å (std. dev. = 0.9 Å), respectively (Figure 40B). Dim2 and Dim16 displayed a ∆G value 

of -42.6 ± 0.5 kcal/mol and -37.9 ± 0.6 kcal/mol, respectively, further confirming the 

experimental data obtained. 

 
4.3. GABARAP 

Autophagy plays a fundamental role in cellular, tissue, and cellular homeostasis. Metabolic 

stress (induced by starvation or hypoxia) or the presence of dangerous cellular components, 

including dysfunctional organelles, intracellular microbes, and pathogenic proteins, can 

activate this pathway. Briefly, a multistep process, starting with the assembly of the 

phagophore, mediates the sequestration of organelles and proteins into the autophagosome. 

Its subsequent fusion with a lysosome leads to the formation of the autolysosome, in which 

the autophagosome content is degraded by lysosomal hydrolases [163]. 

More than 50 proteins (called mAtgs) are involved in the mammalian autophagy machinery, 

but those responsible for the formation of the autophagosome and for cellular trafficking are 

members of the mAtg8 family. In mammals, the mAtg8 proteins are further divided into two 
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subfamilies: GABARAP (GABA-A receptor-associated protein) and MAP1LC3 (microtubule-

associated protein 1 light chain 3), or simply LC3. The former comprises GABARAP, GARAPL1, 

and GABARAPL2, while the latter includes LC3A (with the two splicing variants LC3Aα and 

LC3Aβ), LC3B, LC3B2, and LC3C [164]. Members belonging to the same subfamily share a high-

sequence homology and play similar physiological roles at the intracellular level. The 

GABARAP subfamily seems fundamental for the closure of the autophagosome and for the 

recruitment of the autophagy players, while LC3 proteins appear to be mainly involved in the 

cargo recruitment process. A resume scheme of the LC3/GABARAP family proteins roles in 

autophagy-related processes is represented in Figure 41 [165]. 

In detail, the autophagy initiation involves the formation of a phagophore. The 

nucleation step (Figure 41A) starts with the formation of ULK1 heterocomplex, by binding 

GABARAP/GABARAPL1. The phagophore can swallow the content selectively by the 

LC3/GABARAP family members which are able to bind specific linker proteins (Figure 41B). 

LC3B is the main family protein involved in the elongation step (Figure 41C), which requires 

the delivery of membrane components (orange) to the growing phagophore (purple). In the 

phagophore closure step (Figure 41D), both LC3B and GABARAPL2 are the protein family 

members mainly involved to obtain a closed double-membraned vesicle. The subsequent 

fusion of the autophagosome with a lysosome (Figure 41E) is necessary to acquire the 

degradative enzymes and the lumen acidification needed for the subsequent cargo 

degradation. This last step requires GABARAP and GABARAPL2. Aside autophagy, GABARAP 

family proteins are also involved in the receptor trafficking (Figure 41F). 

Disfunctions in the autophagy machinery have been identified in various pathological 

conditions, including neurodegenerative diseases, cancer, and inflammation; however, the 

role of each mAtg8 component in cancer is still undetermined and controversial. In the early 

stage of tumorigenesis, a high level of autophagy proteins is considered a good prognosis 

factor, since GABARAP is downregulated in renal and breast cancers, and hepatocarcinoma 

[164]. Conversely, high levels of GABARAP have been detected in colorectal and thyroid 

cancers. Moreover, cancer cells use autophagy to survive to several antitumor drugs. Some 

reports indicate that the efficacy of radio- and chemo-therapy is strongly influenced by the 

effective modulation of the autophagy process [166,167]. Additionally, it has been 

demonstrated that the expression level of mAtg8 proteins is strictly related to the tumor 

development, stage, and type [164]. 
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Figure 41. Resume scheme of the LC3/GABARAP family proteins roles in autophagy-related processes [165]. 

 
Furthermore, it has been shown that the autophagy machinery is often inefficient in prostate 

cancer cells, due to a reduction in catabolic pathways [168]. In 2012, He et al. [169] suggested 

that the apoptotic effects of some agents, such as the TNF-related apoptosis-inducing ligand 

(TRAIL), was enhanced by pharmacologically inhibiting autophagy [170]. Therefore, these 

processes seem to play a pivotal role in the regulation of the death/survival balance in 

prostate cancer cells. In 2016, Engedal et al. proved that GABARAP-subfamily proteins are 

strongly involved in autophagy mechanisms in prostate cancer [171], supporting the idea that 

GABARAP inhibitors could be valuable tools to fight the progression of this disease. 



75 
 

To the best of our knowledge, the known GABARAP inhibitors are essentially proteins or 

peptides of various sizes. Among them, the small synthetic peptide K1 (DATYTWEHLAWP) is 

one of the most active candidates, showing a Kd value close to 390 nM (data measured by SPR) 

[172]. Additionally, an interesting natural GABARAP binder is AnkirinB (AnkB), a 440 kDa 

neural-specific protein expressed in unmyelinated axons. Similar to other proteins involved in 

the autophagy machinery, AnkB has an LC3 interacting region (LIR), a small area containing 

four conserved amino acids. These residues can be briefly represented as a sequence of “X0–

X1–X2–X3”, in which X0 is an aromatic residue (Trp/Phe/Tyr), X1 and X2 can be any amino acids 

(often acidic or hydrophobic residues), and X3 is a large hydrophobic residue like Leu, Val, or 

Ile [173]. The main target of AnkB-LIR is GABARAP, since it was demonstrated that the peptide 

EEWVIVSDEEIEEARQKA binds to it with a Kd value of 0.27 nM. However, despite its potency, 

AnkB cannot be considered a selective mAtg8-binding peptide, because it interacts with all 

members of the Atg8 family, displaying a high affinity [174]. The atomic details of the AnkB-

LIR/GABARAP interaction were disclosed through X-ray studies by Li et al., who demonstrated 

that GABARAP inhibitors successfully block autophagy in cultured cells [174].  

The results of this investigation paved the way to the design of GABARAP binders as 

potential tools for the development of anticancer drugs. While it is known that peptides are 

endowed with poor PK properties (because of their low resistance to intestinal degradation), 

they can still be valuable tools for the study of the physio-pathological pathway in which their 

biological counterparts are involved. Moreover, they constitute valuable templates for the 

design of novel small molecules or peptidomimetics. 

 
4.3.1. Design of novel cyclic peptides (WC8 e WC10) 

In this case study, with the aim at identifying new peptides endowed with inhibitory activity 

against GABARAP, we start from the AnkB-LIR/GABARAP X-ray complex and, by applying a 

computational approach, we identify new peptides with low micromolar affinity for the target. 

Experimental assays were carried out to measure the peptide Kd values by MST and SPR, and 

to evaluate their activity on prostate cancer cells. Remarkably, two of them displayed 

anticancer effects on PC-3 cells. Considering that prostate cancer is the second most 

diagnosed malignancy in men worldwide, we are confident that this study will open new 

avenues to identify the chemical entities endowed with significant therapeutic effects on this 

widespread disease. 
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Computational studies. Initially, the GABARAP/AnkB-LIR computational model was generated, 

starting from the three-dimensional data of the complex, available in the PDB. Computational 

studies were then accomplished to design new peptides endowed with high affinity for 

GABARAP. The following procedure was adopted: 

1) Identification of the minimal AnkB-LIR sequence (core) responsible for the interaction 

with GABARAP;  

2) Mutation of the core sequence aimed at improving the theoretical affinity of the 

resulting peptides; 

3) Rigidification of the most promising peptides by disulphide bonds 

4) Optimization of the peptide sequence by the addition of residues potentially occupying 

supplementary GABARAP binding pockets; 

5) Assessment of the binding affinity of the peptides by biophysical experiments; 

6) Evaluation of the killing effect on prostate cancer cells, exerted by the most promising 

candidates. 

 

Setup of the GABARAP computational model and identification of the AnkB-LIR core sequence. 

Firstly, the GABARAP/AnkB-LIR complex model (Figure 42A) was retrieved from the PDB 

(accession code 5YIR) [174] and then refined by energy minimization and MD simulations. The 

AnkB-LIR peptide rapidly reached the geometrical stability over the 500 ns-long MD 

simulations, as demonstrated by the protein Cα RMSD plot (Figure 42B).  

 

 
Figure 42. (A) 3D representation of the GABARAP/AnkB-LIR complex, as derived from the X-ray structure (PDB 
accession code 5YIR). The protein surface is colored depending on the atomic partial charges of the protein 
residues: blue for positive and red for negative charges. The AnkB-LIR peptide is represented as cyan sticks. (B) 
Plot of the protein and ligand (AnkB-LIR) Cα atoms RMSD over the simulation time. 
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As expected, and verified by inspecting the MD trajectory frames, the LIR domain (sequence 

WVIV of AnkB-LIR) created numerous contacts with GABARAP (Figure 43). Moreover, also the  

SDEE residues were involved in productive contacts, including the electrostatic interactions 

between the side chains of the peptide glutamates and the positively charged area of 

GABARAP close to K46 and R47. Conversely, the remaining C-terminal residues were mainly 

involved in internal contacts, stabilizing the α helix shaped by the DEEIEEARQKA sequence. 

 

Then, to exactly define the minimal portion of AnkB-LIR with the highest affinity for 

GABARAP, the peptides AnkB-LIR and AnkB-core (sequence WVIVSDEE) were subjected to MD 

simulations and MM-GBSA calculations for the estimation of their binding free energy. 

Desmond and Prime tools of Maestro were employed for these computations, which 

predicted ΔG values of -135.1 and -107.9 kcal/mol for AnkB-LIR and AnkB-core, respectively 

(Table 17). These results indicates that the 8 amino acids belonging to the AnkB-core 

contribute 75% of the overall interaction energy of the full AnkB-LIR peptide (composed of 20 

residues). Thus, to further define the contact area, MD simulations and MM-GBSA calculations 

were performed on the GABARAP/WVIV complex model, in which only the LIR motif (AnkB-

wviv peptide) was simulated. 

 
Figure 43. GABARAP H-bond interactions with AnkB-LIR ligand (EEWVIVSDEEIEEARQKA) monitored throughout 
the simulation. The key residues of AnkB-LIR (WVIV) interacting with GABARAP protein are highlighted. Only the 
interactions that occur more than 30% of the simulation time are shown. 
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As reported in Table 17, residues WVIV contribute 65% of the overall binding free energy. This 

outcome confirms that the LIR motif, shared by all proteins involved in the autophagy 

machinery, displays the highest complementarity with the GABARAP-binding site and is 

responsible for the most significant protein-protein contacts. Subsequently, the same 

computational protocol (MD simulations and MM-GBSA calculations) was applied to study the 

interaction of peptide K1. Considering that its experimentally determined Kd lies in the 

nanomolar range (390 nM), this peptide could be considered as a reference inhibitor of 

GABARAP, together with AnkB-LIR.  

 
We also predicted the ΔG of the peptide K1, attaining a value of-118.9 kcal/mol (Table 17), a 

value slightly higher than that of AnkB-LIR (-135.1 kcal/mol). This result is in line with the Kd 

values reported for the two peptides (0.27 and 390 nM, respectively). 

 
Table 17. Sequence and calculated ΔG values of AnkB analogs and K1 peptide. 

Peptide Sequence ΔG Prime 1 SD 2 

AnkB-LIR EEWVIVSDEEIEEARQKA −135.1 10.3 
AnkB-core WVIVSDEE −101.4 5.9 
AnkB-wviv WVIV −88.5 3.9 
Peptide K1 DATYTWEHLAWP −118.9 10.2 

                     1 (kcal/mol); 2 Standard deviation (kcal/mol). 

 
Computational Design of AnkB-Core Analogs. Considering that the WVIVSDEE (AnkB-core) 

sequence accounts for 75% of the GABARAP/AnkB-LIR contacts, we proceeded to the design 

of small peptides endowed with high affinity for GABARAP using AnkB-core as a template. In 

this attempt, only the residues of the LIR domain (WVIV, positions 2-5 of AnkB-LIR) of AnkB-

core (WVIVSDEE) were mutated, because of their direct involvement in the interaction with 

GABARAP. In this challenging effort, we tried to optimize the peptide sequence, also shared 

by other GABARAP binders, to improve the ligand/protein complementarity and selectivity. 

To this end, the affinity maturation protocol was utilized to mutate the VIVS residues into all 

possible natural amino acid combinations. To avoid the combinatorial explosion, the Monte 

Carlo optimization option was selected. By this option, 2000 peptides were randomly 

generated by Monte Carlo algorithm and the peptides with a maximum of three simultaneous 

mutations were accepted to create the output file containing 100 solutions. Then, the Prime 

module was also employed to establish whether the mutations led to a more favourable 
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interaction with the biological counterpart, by calculating the mutant peptides binding free-

energy (ΔAffinity) values. 

 

At the end of these calculations, we visually inspected the results for the first 100 peptides 

with the highest predicted affinity. Among the predicted peptides, we noted that 7 of them 

displayed ΔAffinity values lower than 2 kcal/mol with respect to the initial template (AnkB-

core). In these peptides, position 2 was substituted by Arg, Glu, or Ile; positions 3 and 4 

contained only Ile; while position 5 included only alkaline residues, such as His and Arg. Among 

them, only one candidate, WEIIHDEE, named Pep-sol4, was further investigated by MD 

simulations and MM-GBSA calculations, because it presented an interesting Glu in position 2. 

Through this acidic amino acid, the peptide could potentially interact with the positive area 

shaped by GABARAP-K46 and GABARAP-R67 (two conserved residues among Atg8 proteins). 

Moreover, GABARAP-K46 is considered to be a universal gate-keeper, regulating the entrance 

of ligands interacting through the LIR motif [175]. The structural alignment of the 

GABARAP/Pep-sol4 complex to the GABARAPL2/UBA5 NMR structure (PDB accession code 

6H8C) [176] confirmed that the glutamate in position 2 of Pep-sol4 could reproduce the 

interaction displayed by E15 (GAMEIIHEDNEWGIELVSE) of the “ubiquitin-like modifier 

activating enzyme 5” (UBA5) with GABARAP-K46. 

By applying the computational protocol previously adopted for the reference inhibitors, the 

binding free-energy value of Pep-sol4 was calculated to be slightly lower than that of AnkB-

core (-103.3 vs. -101.4 kcal/mol), suggesting that the new peptide could bind GABARAP with 

a similar binding affinity (Table 18). 

 
Table 18. Sequence and calculated ΔG values of AnkB-core analogs. 

Peptide MW 1 Sequence ΔG Prime 2 SD 3 

AnkB-core 976.1 WVIVSDEE -101.4 5.9 

Pep-sol4 1070.1 WEIIHDEE -103.3 7.9 
Pep-sol4cc 1032.1 WEC*IHDEC* -103.7 4.4 

WC8 1042.1 WEC*IFDEC* -115.7 4.3 
YC10 1262.4 YGWEC*IFDEC* -100.4 5.9 
WC10 1285.4 WGWEC*IFDEC* -122.0 5.7 

1 Molecular weight (g/mol); 2 (kcal/mol); 3 Standard deviation (kcal/mol); * Cys involved in disulfide bonds. 
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Moreover, the visual inspection of the GABARAP/Pep-sol4 MD trajectory and the RMSF plot 

of the ligand atoms over the simulation time suggested that the C-terminal portion of the 

peptide was not firmly bound to the GABARAP surface, thus preventing a stable and 

productive interaction with the target (Figure 44). Consequently, considering that the side 

chains of I3 and D8 were spatially close in the binding mode adopted by Pep-sol4, we designed 

a cyclic peptide in which I3 and D8 were mutated into two Cys residues bound by a disulphide 

bond. This modification aimed at reducing the conformational flexibility of the ligand, 

generating a more stable binding mode on the GABARAP surface. The resulting peptide 

(named Pep-sol4cc, WECIHDEC) was again analyzed in the complex with GABARAP by MD 

simulations and MM-GBSA calculations. At the end of these calculations, the estimated ΔG of 

Pep-sol4cc was -103.7 kcal/mol, a value comparable to that of Pep-sol4 (-103.3 kcal/mol). This 

information led us to conclude that the structural rigidification did not affect the affinity of 

the peptide; however, as demonstrated by the ligand RMSF plot (Figure 44), an improvement 

of the conformational stability was successfully achieved. 

 
Figure 44. RMSF plots of AnkB-core analogs. Backbone atoms were considered in these calculations. The residues 
shared by all peptides are highlighted by capital letters. 

 
Computational design of the WC8 and WC10 peptides. Then, with the aim of improving the 

theoretical binding affinity of Pep-sol4cc, H5 was mutated into a Phe, supposing that it could 

better fill the hydrophobic area sized by P52, L55, and Q59. The resulting peptide (WC8, 

sequence WECIFDEC) was analyzed by MD simulations and MM-GBSA calculations, which led 

to a ΔG value of 12 kcal/mol, lower than that of the originator (Table 18). The cluster analysis 

performed on the MD trajectory frames displayed that, in the structure representative of the 

most populated cluster of GABARAP/WC8 conformations (accounting for 79% of 
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conformational ensembles explored), the ligand was stably bound on the GABARAP surface 

(see Figure 44 for the RMSF plot), forming numerous interactions (Table 19 and Figure 45A). 

 

In detail, several H-bonds were established, and salt bridges formed between WC8-E2 and the 

side chains of GABARAP-K46 and -R67, and between the C-term of WC8-C8 and the side chain 

of GABARAP-R28. Regarding the hydrophobic contacts, the indole ring of WC8-W1 was 

positioned in a pocket formed by residues I23, I32, P30, K48, and F104, while the side chain of 

WC8-I4 pointed toward another pocket delimited by Y49, V51, F60, L63, and I64, establishing 

van der Waals interactions. Finally, similar hydrophobic contacts were also observed between 

WC8-F5 and the GABARAP area shaped by P52, L55, and L63.  

 
Table 19. List of the interactions established by the GABARAP/WC8 complex during MD simulations. 

WC8 GABARAP (H-Bonds) GABARAP (Hydrophobic) 

W1(NH) E17(COO−) I21, I32, P30, K48, F104 
E2(COO−)* K46(NH3+)*, R67(=NH2+)* none 

E2(C=O) L50(NH) none 
I4(NH) L50(C=O) Y49, V51, F60, L63, I64 

F5 none P52, L55, L63 
C8(COO−

ter)* R28(=NH2+)* none 
        * Salt bridges. 
 

 
Figure 45. Depiction of the representative structure of the most populated cluster of conformations assumed by 
WC8 (A) and WC10 (B) in the complex with GABARAP. The GABARAP solvent-accessible surface is shown 
accordingly by residue charges: blue for positive and red for negative residues, respectively. The interactions 
between complexes are represented in colored dashes: yellow for H-bonds, purple for salt bridges, and green for 
cation-π. 
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WC8 exhibited an estimated ΔG value close to that of K1; hence, with the aim of designing a 

more potent peptide, we included two additional N-terminal residues. This hypothesis was 

supported by the fact that the AnkB-LIR peptide (EEWVIVSDEEIEEARQKA), used as a template, 

contains two glutamate residues before the AnkB-core (WVIVSDEE). For this reason, we 

speculated that the homologation of WC8 on the N-term could lead to a more potent peptide, 

considering that the new atoms could create additional bonds. Our objective was to reach the 

region sized by I32, Y5, and K47, close to the W site, on the GABARAP surface (the yellow area 

in Figure 46A). Therefore, to find the optimal N-terminal sequence, two glycines were initially 

added to WC8 (GGWECIFDEC); then, the application of the “affinity maturation protocol” on 

the first Gly residue led to the identification of Tyr (YC10, Table 18) and Trp (WC10, Table 18) 

as the most suitable substitutions. In this attempt, the glycine in position 2 was not mutated 

to allow a certain conformational mobility on the N-terminal tail of the new peptide. 

Interestingly, the N-terminal residues (WG) and the Glu in position 4 (E4) of WC10 

(WGWECIFDEC) reproduced the interactions displayed by UBA5 (GAMEIIHEDNEWGIELVSE) in 

the complex with GABARAP and GABARAPL2 [176] (Figure 46B). 

 

 
Figure 46. (A) GABARAP/WC8 most representative structure. The yellow circle highlights the protein area in 
which the two N-terminal residues added on WC8 could be inserted to improve theoretical binding affinity. (B) 
GABARAPL2/UBA5 NMR structure (PDB accession code 6H8C). In pink sticks are highlighted the residues of UBA5 
(GAMEIIHEDNEWGIELVSE) in complex with GABARAP and GABARAPL2 whose interactions are reproduced by 
peptide WC10 (WGWECIFDEC). The GABARAP solvent-accessible surface is showed accordingly by residue 
charges: blue for positive and red for negative residues. 

 
MD simulations and MM-GBSA calculations on the GABARAP/YC10 and GABARAP/WC10 

complexes revealed that the latter possessed the highest affinity, with a predicted ΔG value 

almost 7 kcal/mol lower than that of WC8 (Table 18). Cluster analysis was then performed on 
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the GABARAP/WC10 MD trajectory frames; the representative structure of the most 

populated cluster of conformations (which accounts for the 88% of total conformational 

ensemble explored) is represented in Figure 45B. Notably, the visual inspection of the 

GABARAP/WC10 most representative structure highlighted that the side chain of the newly 

added residue (W1) formed a cation-π interaction with GABARAP-K46, while the carbonyl 

group of the same residue established an H-bond with the side chain of GABARAP-K48 (Figure 

45B). Surprisingly, the side chain of W1 did not occupy the expected region of GABARAP, but 

the new additional cation-π interaction greatly contributed to the calculated binding affinity 

of the peptide. In addition, WC10 (1) shares all the interaction networks established by the 

GABARAP/WC8 complex, (2) is able to orientate GABARAP-K48 in order to establish additional 

cation–π interactions with WC10-W3, and (3) is able to shape an additional H-bond interaction 

between the I6(C=O) and GABARAP-R67(=NH2
+) (Figure 45B). 

 

To conclude, we designed two new cyclic peptides (WC8 and WC10) endowed with a reduced 

conformational mobility and calculated binding free-energy values in a lower range than those 

estimated for the reference peptides, AnkB-core and K1. In light of these data, WC8 and WC10 

could exhibit higher experimental affinities compared to the reference peptides. 

Nevertheless, it must be considered that our computations did not account for the entropic 

contributions to the binding free energy; hence, they should be regarded as a starting point 

for further experimental studies. 

 

Biophysical experiments. Based on the results of the computational study, the K1, AnkB-core, 

WC8, and WC10 peptides were purchased by Proteogenix for the experimental investigations. 

In detail, MST and SPR assays were conducted on the peptides displaying a sufficient stability 

in water and PBS buffer. Then, the anticancer potential of the most promising candidates was 

investigated. Initially, we verified that the peptides were water soluble and stable in the buffer 

in which the recombinant GABARAP protein was solved. Unfortunately, AnkB-core was not 

soluble in water; thus, it was impossible to use  this peptide as reference. Conversely, K1, WC8, 

and WC10 displayed an excellent solubility and stability in water and PBS. In detail, MST and 

SPR experiments were carried out with the aim of measuring their Kd values on GABARAP. As 

a preliminary step, the Kd of the reference peptide K1 was determined in order to (1) check 

the experimental procedure and verify the result against data reported in the literature by 
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Weiergräber et al. (Kd = 390 nM) [172], and (2) obtain a reference value to compare the Kd 

measured for the new peptides. MST experiments were conducted on a Monolith NT.115 

instrument (Figure 47A), while SPR analyses were performed using a BIAcore 8K system, 

applying the protocol reported by Weiergräber et al. [172] (Figure 47B). 
 

 
Figure 47. Binding of K1 peptide on GABARAP. (A) MST curve and (B) steady-state analysis obtained by fitting the 
proper form of the Scatchard equation for the plot of the bound RU at equilibrium vs. the ligand concentration 
in solution during SPR experiments. 

 
Surprisingly, the Kd measured for K1 was close to 3 µM, a value 7 times higher than the one 

reported in the literature. However, all the techniques employed in this study agreed on this 

value. The data obtained for WC8 revealed a Kd of 22 µM (Figure 48AB), consistent among the 

different biophysical approaches. Remarkably, WC10 displayed a Kd in the same range of the 

reference peptide K1, with a value close to 4 µM, obtained by both MST and SPR (Figure 48CD). 
 

 
Figure 48. Binding of WC8 and WC10 to GABARAP. MST and SPR curves acquired by recombinant GABARAP 
incubated with different concentrations of WC8 (A,B) and WC10 (C,D) peptides. In the MST plot referred to WC10 
(C), the point corresponding to a concentration of 391 nM (evidenced in gray) appears to be a clear outlier, also 
considering the other experiments; hence, it was discarded and not included in the calculation of the Kd value. 
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Since the Kd value of peptide K1 proved to be higher than the one reported in the literature, 

we decided to validate our data by repeating the MST-binding affinity experiments using 

another Monolith instrument (Monolith NT.115Pico), located in a different laboratory. The 

new results confirmed our previous findings, with all the peptides displaying Kd values 

consistent with those determined earlier (Figure 49). 

 

 
Figure 49. MST curves acquired by GABARAP recombinant protein incubated with different concentrations of K1 
(A), WC8 (B) and WC10 (C) peptides using the Monolith NT.115Pico instrument. 

 
Accordingly with the theoretical predictions, WC10 should be more active than K1 (ΔG = -122.0 

vs. -118.9 kcal/mol, respectively), and WC8 less active than the others (ΔG = -115.7 kcal/mol), 

as shown in Table 18. Considering the confidence range of the experimental Kd and the 

omission of the entropic contribution to the estimated binding free-energy values, the 

computations predicted the affinity trend of the selected peptides well. 

 

Biological experiments. The assays were performed by Dr. M. Garofalo (University of Padova). 

Finally, K1, WC8, and WC10 were tested in vitro on PC-3 prostate cancer cells, to evaluate their 

potential antitumor effects (Figure 50). Prostate cancer represents the second most 

commonly diagnosed malignancy in men worldwide.  

 

 
Figure 50. Effect of K1, WC8, and WC10 on cell viability. Cell viability was determined by MTS assay on PNT2 (A) 
and PC-3 cell lines (B) 96 h post-treatment. The absorbance was measured with a 96-well-plate 
spectrophotometer (Varioskan Flash Multimode Reader) at 490 nm. 
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Considering that the probability of developing the disease during a man’s lifetime is 15% and 

that prostate tumor cells can also spread to the lungs and bones via angiogenesis [177], we 

decided to evaluate the biological activity of the peptides in vitro on a prostate cancer model. 

PC-3 cells were chosen for the screening due to their highly metastatic nature, effectively 

mimicking an aggressive form of the disease. Notably, it has recently been demonstrated that 

prostate cancer models show a significant upregulation of autophagy [169,171,178]. 

Therefore, the biological activity of different concentrations of K1, WC8, and WC10 

(from 0.5 to 10 µM) was evaluated with an MTS cell viability assay on PC-3 cells and non-

cancerous PNT2 prostate cells (Figure 50). The results reported in Figure 50A show that, 96 h 

post-treatment, none of the tested samples displayed a significant cytotoxicity (cell availability 

> 90%), confirming the excellent biocompatibility and potential pharmacological selectivity for 

tumor cells. Indeed, as shown in Figure 50B, a reduction in cell viability (expressed as 

percentage of viable cells) was observed in PC-3 cells treated with K1, WC8, and WC10 

compared to the untreated control.  

Interestingly, the treatments of PC-3 cells with WC8 and WC10 (from 1 to 10 µM) display 

high efficacy, when compared to Paclitaxel (Figure 50B). The in vitro data demonstrate that 

the compounds exhibited a considerable anticancer activity, especially at the highest tested 

concentration (cell viability 27.16% for K1, 24.06% for WC8, and 22.5% for WC10). The 

biological data on PC-3 cells indicate that all peptides possess IC50 values close to 5 µM, 

consistent with the Kd estimated by the biophysical experiments. Surprisingly, WC8 displayed 

a better activity profile than the reference peptide K1. Based on this finding, we may speculate 

that some other biochemical mechanism or additional activity on different mAtg8 subfamilies 

could improve the activity of the new peptides [171]. Nevertheless, since the work presented 

here is a proof-of-concept study, the peptides have been preliminary tested in a non-

cancerous and subsequently in a cancer cell line, to exclude possible off-target cytotoxicity 

and perform an initial pilot study to evaluate the in vitro anti-cancer efficacy. However, we are 

planning to extend the screening to other cancer cell lines in the upcoming further evaluation 

of the peptides and their antineoplastic mechanism of action. Furthermore, to shed light on 

the possible secondary targets, we have planned biological and biophysical experiments on 

LC3B to evaluate if our peptides could show any affinity to it. Further biological assays are 

needed to unveil the mechanism by which these peptides trigger cell death. 
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4.4. WWP1 

In the fourth case study, I aimed at applying different computational approaches for the 

rational design of peptides capable of efficiently inhibiting this new promising target, which is 

involved in the development of cancer. WWP1 is an E3 ubiquitin ligase which has been 

recently discovered to trigger nondegradative K27-linked polyubiquitination of PTEN to 

suppress its dimerization and therefore its tumor-suppressive functions. WWP1 is genetically 

amplified and overexpressed in multiple cancers, including breast, prostate and liver which 

may lead to the inactivation of the PTEN tumor-suppressor [179].  

Drug candidates capable to inhibit WWP1 will pave the way toward a long-requested 

innovative “tumor suppression reactivation approach” against these kinds of cancer [179]. The 

unique ligand known for WWP1 is the Indole-3-Carbinol (I3C), a natural compound available 

in vegetables such as broccoli or cabbage. The literature reports on its high affinity to WWP1, 

in fact a Kd of 446 nM is known [179]. Interestingly, it derives from the degradation of 

tryptophan, as a consequence our goal was to design peptides (and then peptidomimetics) 

having the tryptophan in the primary structure (Figure 51 - Right). 

To achieve this goal, firstly the X-ray structure of the WWP1 have been retrieved from the 

protein data bank (PDB accession code 5HPS) [180] (Figure 51 - Left). Unfortunately, this 

structure is not complete, so the missing loops were completely built by homology modeling 

techniques, using as template the structure of another E3 ligase protein (NEDD4 HECT, PDB 

code 5C91) [181].  

 
Figure 51. (Left) X-ray crystal structure of WWP1, PDB ID code: 5HPS [180]. (Right) Model for WWP1-mediated 
PTEN K27-linked polyubiquitination in tumor development and progression [179]. 
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4.4.1. Design of random peptides targeting WWP1 

In order to find new potential peptide-based WWP1 inhibitors, we decided to apply the same 

protocol previously applied for the discovery of the HBP08 peptide for HMGB1-BoxA. At 

variance, in this case, we wanted to produce random 4-aa peptides containing at least a 

tryptophan, because its side chain mimics the I3C chemical structure. To this aim, I have 

developed a python script enclosing features capable to reduce the number of possible 

generated peptides. In particular, the script is able to generate sequences with at least a Trp 

(but no more than two and do not consecutive) and three different amino acids those cannot 

be repetitive and consecutive. These rules allowed us to dramatically reduce the number of 

generated peptides from 160,000 to 28,481 peptides. For each peptide, both N- and C-

terminals were protected by acetylation and amidation, respectively. This was needed to 

avoid intramolecular bonds, reducing the possibility of self-cyclization too. 

 

Computational studies. The whole peptide library was docked into the WWP1 putative binding 

site, by means of the “peptide docking protocol” of GLIDE software. The best 100 peptides 

ranked by docking score have been selected and subjected to 250 ns-long MD simulations. 

Then, MM-GBSA calculations were performed to estimate the ΔG values, considering the MD 

frames in which the peptides displayed the highest stability, according to the RMSD/time plot 

(for the complete list, see Annex 2, Chapter 7). The 11 most promising peptides showing the 

lowest ΔG values were then selected, and their MD simulations were extended to 250 ns. 

Next, the peptides showing ΔG values < -40 kcal/mol were selected (five peptides) and 

subjected to additional independent 500 ns-long MD simulations, in order to increase the 

statistical significance of the computational studies (Table 20). However, only two peptides 

(namely, 014 and 043) showed a noticeable stability during the additional simulations, in 

which the atoms velocities were reassigned. These two peptides were then purchased and 

experimentally tested by in vitro experiments. 

 

On parallel to this classical computational pipeline, we decided to apply three different design 

protocols, characterized by a significant lower computational time cost. In these approaches, 

the initial docking of a low number of sequences (randomly selected from the list of 28,481 

peptides previously generated by our python script) were accomplished. 
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Table 20. Binding free energy (ΔG) of the 11 most promising peptides out of all the 100 peptides simulated.  

Peptide ΔG 250 ns 1 ΔG 500 ns 1 ΔG Rep2 1 Average ΔG 1 

011 -32.0 ± 0.2 -30.7 ± 0.3 / / 
012 -30.3 ± 0.1 -30.6 ± 0.2 / / 
014 -37.7 ± 0.3 -41.2 ± 0.2 -36.8 ± 0.3 -39.0 
019 -34.9 ± 0.3 -42.1 ± 0.1 unbound / 
037 -39.3 ± 0.3 -31.3 ± 0.3 / / 
043 -40.3 ± 0.2 -40.2 ± 0.2 -41.1 ± 0.3 -40.7 
064 -30.5 ± 0.2 unbound  / / 
072 -39.2 ± 0.4 -44.3 ± 0.4 unbound / 
087 -30.3 ± 0.3 unbound  / / 
098 -32.4 ± 0.4 -34.2 ± 0.3 unbound / 
099 -38.4 ± 0.2 -43.2 ± 0.2 unbound / 

                                      1 (kcal/mol) 

 
The results attained for these peptides were then used to generate a model for the prediction 

of the activity of the whole peptide library (composed of 28,481 peptides). 

 

Protocol 1: application of a deep learning algorithm, implemented in the DEEPCHEM 

tool of Maestro Schrödinger Suite. In this case, the training set used to generate the prediction 

model was made by the best and worst 150 peptides (ranked by docking score) of 500 

peptides randomly selected and docked on WWP1. This set was trained for 4 hours using the 

random split method (correlation: r2=0.54) and the Gscore of the whole peptide library of 

28,481 was predicted. Then, 200 peptides acquiring the highest predicted Gscore were docked 

in the WWP1 target protein using GLIDE. Finally, 10 of the most promising peptides were 

simulated in complex with the target by 500 ns-long MD simulations, and the ligand ΔG values 

were calculated using MM-GBSA approach (Table 21).  

 

Applying this deep learning algorithm, we were able to identify two promising peptides 

which showed ΔG values of -35.8 and -42.2 kcal/mol, respectively. These peptides (namely 

DC3 and DC4) were then acquired and experimentally tested in vitro. 
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Table 21. Binding free energy (ΔG) of the 10 most promising peptides using the DeepChem-based approach.  

Peptide Docking Gscore 1 ΔG ± SE 1 

DC1 -8.571 unbound 
DC2 -8.550 unbound 
DC3 -8.547 -35.8 ± 0.3 
DC4 -8.450 -42.2 ± 0.4 
DC5 -8.450 unbound 
DC6 -8.436 unbound 
DC7 -8.434 -19.9 ± 0.1 
DC8 -8.416 unbound 
DC9 -8.389 -21.4 ± 0.2 

DC10 -8.372 unbound 
                                                                                   1 (kcal/mol) 
 

Protocol 2: generation of a predictive model by the application of the Peptide QSAR 

tool on 500 random peptides, having at least a Trp residue in their sequence (out of the 28,481 

peptides generated before). In this protocol, two different set of peptides were used to 

generate the prediction model: 

1) The best and worst 50 peptides by docking score (r2=0.44 and q2=0.60). 

2) The best and worst 25 peptides selected by docking score, MD simulations and binding 

free energy estimation (r2=0.633 and q2=0.697). 
 

 Table 22. ΔG values of the 10 most promising Trp-peptides using the Peptide QSAR approach.  

Peptide Pred.Gscore 1 ΔG Rep1 ± SE 1 ΔG Rep2 ± SE 1 Average ΔG 1 

aPQ1 -8.08 unbound unbound / 
aPQ2 -7.95 unbound unbound / 
aPQ3 -7.90 -28.0 ± 0.3 -30.7 ± 0.3 -29.3 
aPQ4 -7.89 unbound unbound / 
aPQ5 -7.87 -25.5 ± 0.3 -23.2 ± 0.4 -24.2 

bPQ1 -8.51 -38.7 ± 0.3 -41.9 ± 0.3 -40.3 
bPQ2 -8.24 unbound unbound / 
bPQ3 -8.04 -31.3 ± 0.3 -24.7 ± 0.3 -28.0 
bPQ4 -7.96 -36.7 ± 0.3 -25.3 ± 0.3 -31.0 
bPQ5 -7.91 -19.0 ± 0.3 unbound / 

                              1 (kcal/mol) 
 

Using both sets, the best 5 peptides were selected to be further analyzed through two 

independent 500 ns-long MD simulations replicas, and the peptide ΔG values were calculated 

(Table 22). Two peptides for each method (namely, aPQ3, aPQ5, bPQ1 and bPQ5) were bought 

and experimentally tested in vitro. 
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Protocol 3: generation of a predictive model by the application of the Peptide QSAR tool on 

500 random peptides, having at least a Tyr residue in their sequence. In this protocol, the best 

and worst 50 peptides by docking score were used, attaining r2=0.70 and q2=0.74. The five 

peptides acquiring the highest predicted Gscore were simulated on complex with WWP1 

through 500 ns-long MD simulations (Table 23). The two most promising peptides (namely, 

yPQ1 and yPQ5) were synthesized and experimental assayed. 

 
Table 23. Binding free energy (ΔG) of the 10 most promising Tyr-peptides using the Peptide QSAR approach.  

Peptide Pred.Gscore 1 ΔG Rep1 ± SE 1 ΔG Rep2 ± SE 1 Average ΔG 1 

yPQ1 -8.99 -25.9 ± 0.2 -30.9 ± 0.4 -28.4 
yPQ2 -8.65 -23.8 ± 0.3 -23.6 ± 0.3 -23.7 
yPQ3 -8.47 unbound unbound / 
yPQ4 -8.27 unbound unbound / 
yPQ5 -8.08 -39.8 ± 0.4 -17.6 ± 0.2 -28.7 

                              1 (kcal/mol) 

 

To resume, applying the 3 protocols described before, 10 peptides were purchased for the 

further biophysical experiments. In particular, DSF, MST and SPR experiments were carried 

out using the recombinant WWP1-HECT domain. 

 

Biophysical experiments. Firstly, DSF experiments showed that peptide bPQ1 was able to 

significantly reduce the temperature of melting (Tm) of WWP1 (Figure 52A), meaning that this 

peptide could be (probably) able to establish a covalent bond with the target, while for the 

other peptides, no significant differences in the WWP1 Tm were observed. Then, by 

performing “binding check” MST experiments, all peptides were tested at a fixed 

concentration and, interestingly, all of them showed fluorescence signals different from the 

one observed for WWP1 alone, indicating that at the fixed concentration of 100 µM, they can 

create meaningful interactions with the target. Consequently, SPR experiments were 

conducted to estimate the Kd values, and the attained results confirmed the MST outcomes. 

In fact, the SPR data highlighted that all peptides were able to bind WWP1 with Kd values 

falling in the low micromolar range. However, a more accurate observation of the SPR curves 

showed a nonspecific binding for all the peptides, except for the peptide 043, which showed 

a perfect SPR curve exhibiting a Kd value of 6.4 µM (Figure 52B).  
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Figure 52. (A) DSF experiment showing only bPQ1 and WWP1 melting curves, (B) SPR plot of peptide 043 by 
affinity (Kd = 6.4 µM), (C) MST experiment performed in three independent replicas of the peptide aPQ3. 

 
Interestingly, also the SPR data of peptide bPQ1 confirmed the covalent binding suggested by 

DSF experiments. Finally, MST experiments were carried out on all the peptide library in order 

determine their exact Kd values. These experiments highlighted that only the peptide aPQ3 

possessed a significant Kd curve, revealing a value of 5.4 ± 1.9 µM (Figure 52C). 

 

Design of new analogs endowed with improved affinity on WWP1. Considering the promising 

affinity displayed by aPQ3 and 043 peptides, additional computational investigations were 

performed to identify new mutant peptides with improved affinity on WWP1. In particular, 

the sequence of both aPQ3 and 043 peptides were extended by two Gly residues in the C-

terminal region. Subsequently, both Gly residues were systematically replaced by all the 

natural amino acids applying the affinity maturation protocol, and ranked by the ΔAffinity 

values. The most promising hexapeptides were then simulated through two independent 500 

ns-long MD simulations, and their ΔG values were estimated by MM-GBSA method (Table 24). 

The attained results suggested that the peptide 043-B showed a ΔG value 10 kcal/mol 

lower than its parent peptide 043, while the ΔG values of the new aPQ3 analogs aPQ3-B and 

-E were  11.7 and 15.5 kcal/mol lower than the one of aPQ3, respectively. Consequently, 043-

B, aPQ3-B and aPQ3-E were synthesized and biophysically examined through MST and SPR 

experiments.  
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Table 24. ΔG of the mutated 043 and aPQ3 hexapeptides derived from the affinity maturation protocol. 

Peptide ΔAffinity 1 ΔStability 1 ΔG Rep1 ± SE 1 ΔG Rep2 ± SE 1 Average ΔG 1 

043 / / -40.2 ± 0.2 -41.1 ± 0.3 -40.7 
043-A -9.58 +0.43 unbound unbound / 
043-B -4.36 +1.58 -52.0 ± 0.5 -49.5 ± 0.3 -50.7 
043-C -2.86 +0.38 -30.6 ± 0.2 unbound / 
aPQ3 / / -28.0 ± 0.3 -30.7 ± 0.3 -29.3 

aPQ3-A -32.33 -10.16 unbound -33.2 ± 0.4 / 
aPQ3-B -27.81 -6.38 -49.5 ± 0.3 -32.5 ± 0.2 -41.0 
aPQ3-C -27.47 -0.87 -40.8 ± 0.2 -28.6 ± 0.3 -34.7 
aPQ3-D -11.56 -6.57 unbound unbound / 
aPQ3-E -10.03 +5.49 -42.7 ± 0.2 -46.9 ± 0.2 -44.8 
aPQ3-F -4.60 +1.52 unbound unbound / 
aPQ3-G -2.01 -3.22 unbound unbound / 

  1 (kcal/mol). 

 
Biophysical experiments, run 2. SPR experiments showed clear affinity curves by for both 

aPQ3-B (Kd = 920 nM, Figure 53A) and aPQ3-E (Kd = 625 nM, Figure 53C). However, only for 

aPQ3-B it is observable a clear kinetic plot (Kd = 1300 nM, Figure 53B). Conversely, no binding 

curve was detected for 043-B. Further MST experiments confirmed the SPR results, showing a 

similar Kd for both aPQ3-B (reported in Figure 53D) and aPQ3-E (data not shown), while no 

binding was again detected for 043-B.  

 

 
Figure 53. (A) SPR affinity plot of aPQ3-B. (B) SPR kinetic plot of aPQ3-B. (C) SPR affinity plot of aPQ3-E. (D) MST 
experiment of aPQ3-B on WWP1-HECT domain in two independent replicas, the grey points were discarded since 
they could be considered as outliers. 
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Accordingly with these data, aPQ3-B and bPQ1 peptides were selected for the further 

evaluation of their potential inhibitory activity of the WWP1 mediated poly-ubiquitination. In 

fact, even if aPQ3-E showed a higher binding affinity compared to aPQ3-B, its relative response 

in the SPR affinity curve (Figure 53C) is significantly lower than the one reported for aPQ3-B 

(Figure 53A), suggesting a lower reliability of the obtained results. In addition, aPQ3-E did not 

show a kinetic curve and the MST curve was not significant. 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

Since HMGB1 has been identified as one of the main mediators in both acute and chronic 

inflammation, playing a significant role in several pathological conditions [113] including 

rheumatoid arthritis [182,183], systemic lupus erythematosus [184], ankylosing spondylitis 

[185] and other autoimmune diseases [186,187], we believe that our research activity could 

give a significant contribution to the pharmacological treatment of these chronic 

inflammatory diseases, and in particular to rheumatoid arthritis (RA). In fact, in the past 

decade, it has been demonstrated that the CXCL12/HMGB1 heterocomplex perpetuates the 

chronic inflammation observed in RA [183]. The lack of full remission in a portion of RA 

patients, and the evidence that the composition of the synovial tissue correlates with the 

response to the available treatments, calls for the identification of novel drug targets and the 

development of selective therapies [188,189]. In fact, to date, the currently available drugs 

for the treatment of RA can only slightly reduce the symptoms and the progression of the 

disease, producing several side effects for their non-specific mechanism of action. Therefore, 

small molecules or peptides able to hinder the formation of the CXCL12/HMGB1 

heterocomplex could be useful as novel therapeutic strategies.  

Applying several computational approaches we were able to discover the HBP08 

peptide, which represents the first potent peptide inhibitor of the CXCL12/HMGB1 PPI. In 

particular, HBP08 is able to selectively block the activity of the HMGB1/CXCL12 heterocomplex 

(IC50 ≃ 50 µM), without altering the migration induced by CXCL12 alone, and leaving HMGB1 

capable of interacting with TLR4. In addition, HBP08 is able to bind on HMGB1 in the low 

micromolar range (Kd = 0.8 ± 0.4 μM), representing the ligand with the highest affinity 

reported in literature so far. The results of this work have been recently published in the 

Journal of Medicinal Chemistry [128]. Then, with the aim to improve the affinity of HBP08 to 

HMGB1-BoxB, we optimized the peptide structure by the application of additional 

computational approaches, such as alanine scanning and affinity maturation protocols. In this 

way, we identified the HBP08-pep2 peptide, which selectively binds on HMGB1-BoxB in the 

low nanomolar range (Kd = 13.7 ± 2.2 nM), confirmed also by repeating the experiment to full-

HMGB1 (Kd = 15.8 ± 7.4 nM), while it is able to bind HMGB1-BoxA showing a Kd of 3.85 ± 0.41 

µM.  
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In addition, preliminary chemotaxis assays showed that HBP08-pep2 is able block the activity 

of the HMGB1/CXCL12 heterocomplex (IC50 ≃ 2.5 µM), which it means it is about 20-fold more 

active than HBP08. Further biological experiments are currently ongoing in order to better 

clarify the action mechanism of the peptide. 

While the use of peptides as therapeutics remains challenging, we believe that these 

peptides can be exploited for therapeutic intervention while being immediately useful as a 

tool for cell biologists to further dissect the inflammatory pathways triggered by the 

CXCL12/HMGB1 heterocomplex. Moreover, our biophysical and structural biology studies 

indicated that the C-terminal moiety of the peptide is crucial for the interaction with both 

BoxA and BoxB of HMGB1, providing important information for the design of novel 

peptidomimetic anti-inflammatory drugs. Peptidomimetics are characterized by less 

pharmacokinetic troubles being, they are more suitable for further in vivo studies and could 

represent a new class of anti-inflammatory drugs with an innovative mechanism of action, 

potentially free of the typical side-effects displayed by the currently anti-inflammatory drugs. 

This new class of drugs could significantly determine a strong impact on the quality of life for 

all people affected by these disabling pathological ailments in which HMGB1 protein is greatly 

involved. 

 

In the second case study, based on the promising data regarding the dual hypocholesterolemic 

activity of the lupin peptide P5 [141], we computationally designed new analogs endowed 

with improved PCSK9 and HMG-CoAR inhibitory activities. The attained experimental data 

confirmed the theoretical studies, revealing that the mutant peptide P5-Best showed the 

lowest PCSK9 IC50 value of 0.7 µM. Further biological assays demonstrated that all mutant 

peptides that maintained the dual PCSK9/HMG-CoAR inhibitory activity also improving the 

ability of HepG2 cells to absorb extracellular LDL by up to 254% (P5-Best data). The results of 

this study were recently published on Pharmaceutics journal [154]. Doubtless, peptide P5 and 

its analogs displayed activity in the micromolar range suggesting that still their exploitation in 

the clinical application is challenging. Therefore, more efforts have to be pursued in order to 

improve their dual-inhibitory activity. However, evidence support the fact that P5 and its 

analogs can be considered as promising lead compounds for the development of a new class 

of hypocholesterolemic drugs endowed with dual-inhibitory activity of both PCSK9 and HMG-

CoAR targets. Indeed, the dual and synergistic activity may be useful for better achieving the 
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biological effect than compound actives on one of those targets. This study confirms that a 

multidisciplinary approach in the design of new peptides is successful in identifying peptides 

endowed with hypocholesterolemic effects, offering a promising starting point for the design 

of peptidomimetics that lack the bioavailability problems of peptides. In fact, in the second 

part of this research project, based on the published data regarding the β-sheet 

peptidomimetic RIm13, which exhibits an inhibitory activity on the PCSK9/LDLR PPI (IC50 ≃ 1.0 

µM), we computationally designed new poly-imidazole derivatives endowed with improved 

PCSK9 and HMG-CoAR inhibitory activities. In particular, we refined the chemical structure of 

RIm13 in order to fully occupy a hydrophobic pocket found on the PCSK9 surface. Then, aiming 

at further simplifying the chemical structure of the compounds, and improving their synthetic 

feasibility as well, we tried to fuse the benzene and the first imidazole ring into different 

aromatic rings, capable of mimicking the π electrons conjugation between both rings. Finally, 

aiming at improving the stability of the compound on the PCSK9 surface and to evaluate the 

influence of the third imidazole ring on the predicted ∆G of the compounds, we additionally 

modified the chemical structure by displacing the R group on the third imidazole ring to others. 

In this way, we identified a di-imidazole derivate (namely, Dim16) able to inhibit the PCSK9-

LDLR binding with a dose response trend in the high picomolar range (IC50 = 0.8 ± 1.0 nM), and 

to inhibit the HMG-CoAR activity with an IC50 of 146.8 ± 75.09 µM. The identified β-sheet 

peptidomimetic Dim16 could represent a new class of drugs for the treatment of 

hypercholesterolemia, potentially free of the typical side-effects displayed by the currently 

statins targeting HMG-CoAR. Further experiments will be performed to evaluate the intestinal 

stability and propensity of Dim16 to be trans-epithelial transported by mature Caco-2 cells. 

 

In the third case study, we were able to create an affordable GABARAP/AnkB-LIR complex 

computational model, starting from the GABARAP/AnkB-LIR X-ray crystal structure. This was 

utilized to investigate the role played by different regions of the AnkB-LIR sequence. Then, by 

applying integrated computational techniques we designed two cyclic peptides (namely, WC8 

and WC10) endowed with theoretical affinities in line with the ones predicted for the 

reference peptides AnkB-core and K1. The experimental measurement of the Kd values led us 

to prove that WC10 (2 residues shorter and more rigid than K1) displays a biological activity 

like that of K1. MST, SPR, and in vitro assays on PC-3 cells confirmed this observation. This 

work has been recently published on the International Journal of Molecular Sciences [190]. 
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Further biological assays are needed to unveil the mechanism by which these peptides 

trigger cell death, however, we believe this study has the potential to open new avenues of 

research towards the design of novel anticancer compounds, employing WC10 as a structural 

template. Additionally, our results confirm that a suitable interference with the autophagy 

process of cancer cells can represent an innovative and viable therapeutic strategy. 

Consequently, we are confident that the discovery of new potent and specific autophagy 

modulators will become increasingly important in the treatment of cancer [191]. 

 

Finally, in the last case study, we applied both classical and machine learning-based 

computational approaches in order to predict the theoretical binding affinity of more than 

28,000 tetrapeptides to WWP1, a promising anticancer target. In fact, it is shown that WWP1 

is overexpressed in several type of cancers, such as breast, prostate and liver. In this way we 

were able to identify a promising hexapeptide (namely, aPQ3-B) able to bind the WWP1 

protein in the high nanomolar range, as confirmed by both SPR and MST biophysical 

experiments. Further biological experiments are currently ongoing in order to clarify if this 

peptide also possess an inhibitory activity on WWP1. 

In conclusion, since it is known that the structure of active peptides can be used as  

template for the discovery of new peptidomimetics, we are going to perform a virtual 

screening of peptidomimetics library with the application of machine learning algorithms. In 

fact, machine learning techniques have shown tremendous potential in areas such as 

computer vision, speech recognition, and natural language processing. Very recently, machine 

learning algorithms have also been successfully applied in drug discovery programs obtaining 

stunning results. In fact, novel promising compounds endowed with strong binding affinity to 

targeted proteins have been identified. In addition, machine learning approaches will also be 

used to predict key property values of these new compounds, to prioritize them for the follow-

up screening, and to gain insight into their structure-activity studies (SARs) [192]. 
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7. ANNEXES 

Annex 1. Results of the affinity prediction for the 57 nonapeptides of HMGB1 selected after docking calculations. 
The unbound states indicate that the peptide did not conserve its original binding mode over the simulation time. 
The peptides are ranked by ∆G. 
 

Code Sequence ΔG ± SE 
(kcal/mol)  Code Sequence ΔG ± SE 

(kcal/mol) 
HBP01 HEMYWEDEW -52.8 ± 0.3  44 FVGMRWKFL unbound 
HBP02 IDLRFFMRQ -52.0 ± 0.3  45 WQIPDHRDH unbound 
HBP03 FAFELIQTD -51.7 ± 0.4  46 QCFHPSFED unbound 
HBP04 CIPMMMHAW -50.0 ± 0.3  47 VPSSAKNRD unbound 
HBP05 WISNWILMW -45.8 ± 0.3  48 KHMTKCEQW unbound 
HBP06 TWNIHFADH -45.6 ± 0.4  49 ETYQFRPNK unbound 
HBP07 HWTLANWCR -45.2 ± 0.4  50 WNCHRDRPK unbound 
HBP08 GYHYERWIH -45.1 ± 0.5  51 KHMTKCEQW unbound 
HBP09 QFMKNCEEM -44.8 ± 0.4  52 KCVVFHYDP unbound 
HBP10 SINWHMYVN -44.8 ± 0.3  53 PTFEEFAAF unbound 
HBP11 MYRENQPTR -42.9 ± 0.4  54 QCFHPSFED unbound 
HBP12 YHICWYGDY -42.5 ± 0.5  55 EWLYRQEYH unbound 
HBP13 WLWYEWGWQ -41.9 ± 0.3  56 QDYAPRASN unbound 

14 DYCWKIMTQ -41.9 ± 0.3  57 KDKAFKNVS unbound 
15 WCHFFFPHW -41.6 ± 0.4     
16 MKSSDCCLE -39.7 ± 0.5     
17 EWFVMKHLN -39.0 ± 0.4     
18 MIRDQILHN -38.9 ± 0.4     
19 WHQLTEHWI -38.2 ± 0.5     
20 HDHDFWAWY -37.5 ± 0.2     
21 WQWHQFQGR -35.9 ± 0.3     
22 VMASWQHGL -34.9 ± 0.5     
23 LDNFLGDHW -34.7 ± 0.4     
24 PRMGWEKPE -34.1 ± 0.4     
25 WICVWHHAS -33.9 ± 0.3     
26 IRWCVDARY -30.0 ± 0.6     
27 WNAMSFCCS -28.9 ± 0.4     
28 IFHIMTEMW -28.7 ± 0.2     
29 FDRPRYRTT -28.6 ± 0.4     
30 QIEDMPTSK -28.3 ± 0.4     
31 FDCMMDMTK -28.0 ± 0.3     
32 NTVALKLRD -27.8 ± 0.4     
33 YHYHMLMQS -27.7 ± 0.3     
34 NITHNVWHR -27.6 ± 0.3     
35 DRNLEVEQI -26.7 ± 0.3     
36 HYNKWKHQE -25.6 ± 0.4     
37 ICMPPNTKN -24.6 ± 0.3     
38 SMIPVQEAS -24.5 ± 0.3     
39 YQRNELEYL -24.4 ± 0.2     
40 HYFDMLHFH -21.0 ± 0.4     
41 SHYFKHSNF -19.8 ± 0.4     
42 FIKQMEEST -18.5 ± 0.3     
43 KYQWMHYTP -16.9 ± 0.6     
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Annex 2. Results of the affinity prediction for the 100 tetrapeptides of WWP1 selected after docking calculations. 
The unbound states indicate that the peptide did not conserve its original binding mode over the simulation time. 
 

Peptide ΔG ± SE 
(kcal/mol)  Peptide ΔG ± SE 

(kcal/mol) 
 Peptide ΔG ± SE 

(kcal/mol) 
01 -27.5 ± 0.3  46 -24.5 ± 0.2  91 unbound 
02 -20.5 ± 0.2  47 -23.5 ± 0.2  92 unbound 
03 unbound  48 unbound  93 -23.3 ± 0.3 
04 -15.4 ± 0.5  49 unbound  94 -22.9 ± 0.4 
05 unbound  50 unbound  95 unbound 
06 -23.9 ± 0.3  51 unbound  96 unbound 
07 -28.0 ± 0.2  52 -20.1 ± 0.2  97 -22.5 ± 0.2 
08 -17.6 ± 0.2  53 -24.2 ± 0.3  98 -32.4 ± 0.4 
09 -26.4 ± 0.3  54 -19.9 ± 0.4  99 -38.4 ± 0.2 
10 unbound  55 unbound  100 -21.2 ± 0.2 
11 -32.0 ± 0.2  56 -20.3 ± 0.3    
12 -30.3 ± 0.1  57 unbound    
13 -22.0 ± 0.3  58 -17.4 ± 0.4    
14 -37.7 ± 0.3  59 -18.2 ± 0.3    
15 -21.0 ± 0.2  60 -22.0 ± 0.5    
16 unbound  61 -22.2 ± 0.2    
17 unbound  62 unbound    
18 -29.3 ± 0.4  63 unbound    
19 -34.9 ± 0.3  64 -30.5 ± 0.2    
20 -8.3 ± 0.2  65 unbound    
21 -17.6 ± 0.2  66 unbound    
22 -26.3 ± 0.3  67 -13.3 ± 0.3    
23 -17.3 ± 0.2  68 -20.2 ± 0.3    
24 unbound  69 unbound    
25 -17.7 ± 0.2  70 -25.2 ± 0.3    
26 unbound  71 -21.3 ± 0.4    
27 -18.5 ± 0.3  72 -39.2 ± 0.4    
28 unbound  73 -23.2 ± 0.3    
29 -15.9 ± 0.2  74 -20.7 ± 0.5    
30 unbound  75 -23.2 ± 0.2    
31 unbound  76 -24.3 ± 0.4    
32 -17.8 ± 0.2  77 -26.2 ± 0.3    
33 unbound  78 unbound    
34 -22.4 ± 0.2  79 -24.5 ± 0.2    
35 unbound  80 unbound    
36 unbound  81 -26.5 ± 0.3    
37 -39.3 ± 0.3  82 -15.2 ± 0.3    
38 unbound  83 -20.3 ± 0.2    
39 -19.9 ± 0.3  84 unbound    
40 -23.9 ± 0.2  85 unbound    
41 -27.7 ± 0.3  86 -23.6 ± 0.3    
42 unbound  87 -30.3 ± 0.3    
43 -40.3 ± 0.2  88 -22.6 ± 0.3    
44 -19.4 ± 0.1  89 -17.6 ± 0.3    
45 -21.4 ± 0.2  90 unbound    

 


