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Abstract
According to the European Drug Report (2016), the use of synthetic cathinones, such as mephedrone, among young people has
rapidly increased in the last years. Studies in humans indicate that psychostimulant drug use in adolescence increases risk of drug
abuse in adulthood. Mephedrone by its interaction with transporters for dopamine (DAT) and serotonin (SERT) stimulates their
release to the synaptic cleft. In animal studies, high repeated doses of mephedrone given to adolescent but not adult mice or rats
induced toxic changes in 5-hydroxytryptamine (5-HT) neurons. The aim of our study was to investigate the effects of mephedrone
given in adolescence on brain neurotransmission and possible neuronal injury in adult rats. Adolescent male rats were given
mephedrone (5 mg/kg) for 8 days. In vivo microdialysis in adult rats showed an increase in dopamine (DA), 5-HT, and glutamate
release in the nucleus accumbens and frontal cortex but not in the striatum in response to challenge dose in animals pretreated with
mephedrone in adolescence. The 5-HTand 5-hydroxyindoleacetic acid contents decreased in the striatum and nucleus accumbens
while DA turnover rates were decreased in the striatum and nucleus accumbens. The oxidative damage of DNA assessed with the
alkaline comet assay was found in the cortex of adult rats. Therefore, the administration of repeated low doses of mephedrone
during adolescence does not seem to induce injury to 5-HT and DA neurons. The oxidative stress seems to be responsible for
possible damage of cortical cell bodies which causes maladaptive changes in serotonergic and dopaminergic neurons.

Keywords Mephedrone . Adolescence . Neurotransmitters . Microdialysis . Neurotoxicity

Introduction

New substances, in particular stimulants, such as mephedrone,
alpha-PVP, MDPV, and pentedrone, have been associated
with a range of serious harms in Europe including acute poi-
sonings and deaths (EMCDDA 2016; Eur Drug Rep 2016). In

2014, synthetic cathinones accounted for more than 15% of all
seizures of new psychoactive substances (NPSs). Estimated
17.8 million young adults in Europe used psychoactive drugs
in the last year. In the most recent survey (2014/2015), last
year use of mephedrone among young people aged 16 to 24
was estimated at 1.9% (Eur Drug Rep 2016).

Mephedrone (4-methylmethcathinone) is a synthetic deriv-
ative of cathinone, an ingredient found in khat (Catha edulis,
Forsk), a shrub, the leaves of which are chewed as a recrea-
tional drug in Africa and the Arabian Peninsula (Feyissa and
Kelly 2008). Mephedrone, a β-ketoamphetamine with struc-
tural analogy to substituted amphetamines, is a powerful
psychostimulant similar to methamphetamine and entactogen
3,4-methylenedioxymethamphetamine (MDMA; ecstasy)
(Schifano et al. 2011). The study of Aarde et al. (2013) pro-
vides evidence of stimulant and abuse liability of mephedrone
in rats. Like amphetamines, mephedrone causes locomotor ac-
tivation in rats (Motbey et al. 2011) and other psychomimetic
effects, such as euphoria, elevated mood, and sexual stimula-
tion (Kehr et al. 2011). Mephedrone interacts with plasma
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membrane transporters for dopamine (DAT) and 5-
hydroxytryptamine (5-HT, SERT), blocks the neuro-
transmitter reuptake (Baumann et al. 2012; Hadlock
et al. 2011; Simmler et al. 2014), and stimulates their
release to the synaptic cleft (Kehr et al. 2011). We
(Gołembiowska et al. 2016) and others (Baumann
et al. 2012; Kehr et al . 2011) have shown that
mephedrone stimulates dopamine (DA) and 5-HT re-
lease in vivo in rats. The issue of whether mephedrone
causes neurotoxicity, like methamphetamine and
MDMA, remains controversial. PET imaging studies in
methcathinone users revealed reduced DAT density,
suggesting a loss of DA terminals (McCann et al.
1998). However, in animal studies, mephedrone alone
given in a binge-like regimen (4 × 40 mg/kg every
2 h) was not toxic for DA nerve endings in the mouse
striatum, but it significantly enhanced the neurotoxic
effects of methamphetamine and MDMA (Angoa-Pérez
et al. 2013; Anneken et al. 2015). Mephedrone admin-
istered in the same way also did not cause toxicity to 5-
HT nerve endings of the mouse hippocampus and did
not influence methamphetamine and MDMA toxic ef-
fects (Angoa-Pérez et al. 2014). Moreover, den
Hollander et al. (2013) demonstrated that mephedrone
exposure twice daily for 4 days at a dose of 30 mg/kg
to rats and mice produced no significant changes in
brain monoamine levels. Conversely, Hadlock et al.
(2011) reported a rapid decrease in DA and 5-HT trans-
porter function after four doses of 10 and 25 mg/kg to
rats at an ambient temperature of 27 °C. Motbey et al.
(2012) failed to find changes in DA and 5-HT tissue
levels 7 weeks after a 10-day treatment with 30 mg/kg
of mephedrone in spite of acute increases in 5-HT and
reductions in DA metabolism in adolescent rats that had
been exposed to mephedrone. However, the impairment
of recognition memory observed 1 month after cessation
of treatment suggests possible neurotoxic and neuropsy-
chiatric effects of mephedrone. Martinez-Clemente et al.
(2014) and López-Arnau et al. (2015) evidenced
mephedrone neurotoxicity in adolescent mice and rats
by using a dosing schedule which better matched
mephedrone pharmacokinetics and by exploring brain
areas other than the striatum. A multiple-dose-per-day
administration schedule (3 × 25 mg/kg/day in adolescent
rats or mice) which mimicked the widespread use of
mephedrone in dance clubs induced a DA and 5-HT
transporter loss accompanied by a decrease in tyrosine
hydroxylase and tryptophan hydroxylase 2 in the frontal
cortex and hippocampus but not in the striatum of mice
and rats (Martinez-Clemente et al. 2014; López-Arnau
et al. 2015). The decrease in transporter level and en-
zyme markers points to an injury of the nerve endings
(Escubedo et al. 2005). It is postulated that mephedrone

exerts its neurotoxic actions through oxidative stress
which damages components of the cell membrane, nu-
cleus, and mitochondria, leading to complete cell deg-
radation (Ciudad-Roberts et al. 2016).

Recreational use of psychostimulants during adoles-
cence has been associated with alterations in brain
structure and function (Squeglia et al. 2009). As shown
in human studies, psychostimulant drug use during ad-
olescence increases risk of drug abuse in adulthood
(Izenwasser 2005). The changes occurring in neuro-
transmitter systems during childhood/young adulthood
could affect subject’s response in a way that is different
from a normal response in adults (Izenwasser 2005).
For instance, in animals, the levels of DA and other
markers of transmitter activity in the striatum increase
until puberty (Noisin and Thomas 1988). It is important
to examine psychoactive drug effects in the adolescent
population since there may be an increased vulnerability
to the effects of drugs during this period. Specifically,
transformations in the prefrontal cortical regions and
limbic pathways may contribute to increased novelty-
seeking behaviors (Spear 2000). Furthermore, it has to
be considered whether psychoactive drug use in adoles-
cence has impact on drug response in adulthood. So far,
this issue has not been explored.

The aim of this study was to investigate the effects
of mephedrone administered to rats during adolescence
in a pattern that mimicked taking multiple doses over
time to maintain the drug effect. We studied the effect
of mephedrone on DA, 5-HT, and glutamate extracellu-
lar level in the frontal cortex, striatum, and nucleus
accumbens after animals reached adulthood. Due to
similarity of mephedrone to amphetamines, we investi-
gated the risk of oxidative stress by measuring oxida-
tive DNA damage. Changes in monoamine levels were
also assessed in order to assess neuronal injury.

Materials and Methods

Animals

The study was carried out on male Wistar-Han rats
(Charles Rivers, Sulzfeld, Germany) weighing 90–100 g.
The animals arrived to our facility on the 21st day of age
(postnatal day, PND) and were allowed to acclimate; then,
they were randomly assigned to control and drug-treated
groups. The animals were housed in temperature- and
humidity-controlled rooms on a 12-h light/12-h dark cycle
and had free access to tap water and standard laboratory
food. The experiments were conducted in strict accordance
with European legal regulations concerning experiments
on an ima l s (D i r ec t i ve 2010 /63 /EU fo r an ima l
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experiments). The experimental protocols were approved
by the Local Ethics Commission for Experimentation on
Animals (permit number: 1274/2015).

Drugs and Reagents

Mephedrone was purchased from Toronto Research Chemicals,
Inc. (Canada). The chemicals used for high-performance liquid
chromatography (HPLC) were obtained from Merck (Warsaw,
Poland), while ketamine hydrochloride and xylazine hydrochlo-
ride came from Biowet (Puławy, Poland). The chemicals used
for comet assay were purchased from Trevigen (Gaithersburg,
MD). Sucrose was from Merck (Warsaw, Poland), while Triton
from SERVA Electrophoresis (Heidelberg, Germany).

Treatment

Administration ofmephedrone started when rats attained PND
30. Rats were injected with mephedrone at room temperature
in a dose of 5 mg/kg for 4 days from 30 to 33 PNDs which
represent an early adolescence period (Cox et al. 2014), and
after a 3-day break, another 4-day administration started from
37 to 40 PNDs representing a middle adolescence period (Cox
et al. 2014). The pattern of drug injections is displayed in
Scheme 1. Microdialysis experiments (1), determination of
tissue contents (2), and comet assays (3) were conducted on
separate groups of animals. All biochemical experiments were
performed when rats reached adulthood at 90 PNDs.
Mephedrone was dissolved in 0.9% NaCl and was adminis-
tered intraperitoneally (ip). The control groups received the
corresponding volume of 0.9% NaCl according to the same
administration schedule as in the mephedrone-treated animals.

Brain Microdialysis

Animals were anesthetized with ketamine (75 mg/kg) and
xylazine (10 mg/kg), and vertical microdialysis probes MAB
4.15.4.Cu, MAB 4.15.2.Cu, and MAB 4.15.3.Cu (AgnTho’s,
Sweden) were implanted into the striatum, nucleus accumbens,

and frontal cortex using the following coordinates: AP + 1.8, L
± 3.0, V − 7.0; AP + 1.6, L ± 1.1, V − 8.0; andAP + 2.8, L ± 0.8,
V − 6.0 from the dura, respectively (Paxinos andWatson 1998).
On the next day, probe inlets were connected to a syringe pump
(BAS, IN, USA) which delivered artificial cerebrospinal fluid
(aCSF) composed of the following [mM]: NaCl 147, KCl 2.7,
MgCl2 1.0, and CaCl2 1.2 (pH 7.4) at a flow rate of 2 μl/min.
After 2 h of the washout period, three basal dialysate samples
were collected every 20 min; then, animals were injected sub-
cutaneouslywithmephedrone as indicated in figure captions and
fraction collection continued for 180 min, respectively. At the
end of the experiment, the rats were sacrificed and their brains
were histologically examined and verified for probe placement.

The Measurement of Extracellular Concentration of DA, 5-HT,
and Glutamate

The DA and 5-HT concentrations in dialysate fractions were
analyzed by HPLC with coulochemical detection.
Chromatography was performed using an UltiMate 3000 sys-
tem (Dionex, USA), Coulochem III coulochemical detector
(model 5300, ESA, USA) with 5020 guard cell, 5014B micro-
dialysis cell, and Hypersil Gold C18 analytical column (3 μm,
3 × 100 mm; Thermo Scientific, USA). The mobile phase was
composed of 0.1 M potassium phosphate buffer adjusted to
pH 3.6, 0.5 mM Na2EDTA, 16 mg/l 1-octanesulfonic acid so-
dium salt, and 2% methanol. The flow rate during analysis was
set at 0.7 ml/min. The applied potential of a guard cell was
600 mV, while those of microdialysis cells were E1 = −
50 mV and E2 = 300 mV with a sensitivity set at 50 nA/V.
The chromatographic data were processed by Chromeleon v.
6.80 (Dionex, USA) software run on a personal computer.

Glutamate in extracellular fluid was measured by HPLC
with electrochemical detection after derivatization with
OPA/sulfite reagent to form isoindole-sulfonate derivative.
Chromatography was performed using an UltiMate 3000
pump (Dionex, USA), an LC-4B amperometric detector with
a cross-flow detector cell (BAS, IN, USA), and a HR-80 col-
umn (80 × 4.6 mm, 3 μm; ESA, Inc., USA). The mobile phase
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Scheme 1 A schematic presentation of chronic mephedrone (8 × 5mg/kg) administration during adolescence. Gray bars indicate days of administration;
PND postnatal day

Neurotox Res (2018) 34:525–537 527

http://4.15.4.cu
http://4.15.2.cu
http://4.15.3.cu


consisted of 100 mM monosodium orthophosphate at pH 4.6
and 4% methanol. The flow rate was 0.9 ml/min, and the
applied potential of a 3-mm glassy carbon electrode was set
at + 600 mV at a sensitivity of 5 nA/V. Glutamate derivative
peak was compared with the respective standard, and the data
were processed using Chromax 2005 (Pol-Lab, Warszawa,
Poland) software on a personal computer.

The Measurement of the Tissue Content of DA, 5-HT,
and Their Metabolites

Animals were sacrificed by decapitation at 90 PNDs. Brains
were removed, and several brain regions including the frontal
cortex, striatum, and nucleus accumbens were dissected in ana-
tomical borders. The tissue levels of DA, 5-HT, 3,4-
dihydroxyphenylacetic acid (DOPAC), homovanillic acid
(HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were mea-
sured using a HPLC system with electrochemical detection.
Tissue samples of brain structures were homogenized in ice-
cold 0.1 M HClO4 and were centrifuged at 10,000×g for
10 min at 4 °C. The supernatant (3–5 μl) was injected into a
HPLC system. The chromatographic system consisted of an LC-
4C amperometric detector with a cross-flow detector cell (BAS,
IN, USA), an UltiMate 3000 pump (Thermo Scientific, USA)
and aHR-80 column (80 × 4.6mm, 3μm;ESA, Inc., USA). The
mobile phase consisted of 0.1 M KH2PO4, 0.5 mM Na2EDTA,
80mg/l sodium 1-octanesulfonate, and 4%methanol, adjusted to
pH 3.7 with 85% H3PO4. The flow rate was 1 ml/min. The
potential of a 3-mm glassy carbon electrode was set at 700 mV
with sensitivity of 5 nA/V. The temperature of the column was
maintained at 30 °C. The Chromax 2007 program (Pol-Lab,
Warszawa, Poland) was used for data collection and analysis.

Comet Assay

Preparation of Nuclear Suspension

Animals were killed 3 or 60 days after termination of drug
treatments. The whole cortex was separated in anatomical
borders. Next, the brain tissue was minced with a surgical
scalpel and homogenized in a manual homogenizer with
homogenizing solution containing 0.25% Triton. The ho-
mogenate was filtered and centrifuged at 850×g for 10 min.
Thereafter, the supernatant was discarded, while the pellet
was resuspended in the same volume of homogenization
medium without Triton and centrifuged for 10 min at
850×g. The sediment was washed once more in the same
way and centrifuged at 600×g for 8 min. The pellet was
resuspended in 0.8 ml of homogenization solution without
Triton, mixed with 4.2 ml of purification medium, and
centrifuged at 19,000×g for 45 min. The nuclei were ob-
tained as a transparent sediment at the bottom. The pellet
was resuspended in 0.5 ml of 2.0 M sucrose and was

layered over a sucrose gradient (2.6, 2.4 M bottom to
top). The gradient was allowed to stand for 3 h at 0 °C
before use. Fractionation of the nuclei was achieved by
centrifugation at 19,000×g for 45 min.

Alkaline Comet Assay

The nuclei were added to a tube with 200 μl of PBS (without
Ca2+ and Mg2+) and mixed gently. The suspension was mixed
with LMA agarose and transferred immediately onto comet
slides. The slides were placed at 4 °C in the dark for 10 min.
Then, the slides were immersed in prechilled lysis solution
and left at 4 °C in the dark for 30 min. The buffer was drained,
and the slides were immersed in alkaline unwinding solution
and left for 45min in the dark. In the next step, electrophoresis
was run at 21 V for 30 min. After electrophoresis, the slides
were washed first with H2O and next with 70% ethanol and
dried at 45 °C for 10 min. The slides were then covered with a
dye and allowed to dry completely at room temperature in the
dark. On the next day, the slides were examined under a fluo-
rescent microscope. DNA damage was presented as an olive
tail moment. Olive tail moment is defined as the product of the
tail length and the fraction of total DNA in the tail. Tail mo-
ment incorporates a measure of both the smallest detectable
size of migrating DNA (reflected in the comet tail length) and
the number of damaged pieces (represented by the intensity of
DNA in the tail). The olive tail moment is calculated accord-
ing to the following formula: Olive tail moment = (Tail
mean − Head mean) × Tail %DNA / 100.

Data Analysis

Repeated measures ANOVA followed by Tukey’s post hoc
test were performed to analyze drug effect on DA, 5-HT,
and glutamate release in the rat brain regions. All obtained
data were presented as a percent of the basal level assumed
to be 100%. DNA damage in comet assay and tissue content
of DA, 5-HT, and their metabolites were tested using one-way
ANOVA followed by Tukey’s multiple comparison test.

Results

The Effect of Repeated Administration
of Mephedrone During Adolescence on Extracellular
Level of DA, 5-HT, and Glutamate Measured
in Adulthood (90 PNDs) in the Rat Striatum, Nucleus
Accumbens, and Frontal Cortex

Striatum

Mephedrone given repeatedly (8 × 5 mg/kg) during adoles-
cence period significantly increased extracellular DA level in
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the rat striatum as measured on 90 PNDs in response to the
challenge dose of 5 mg/kg (Fig. 1a). The same mephedrone
dose also markedly increased extracellular DA level in saline-
treated animals (Fig. 1a). Repeated measures ANOVA
showed a significant effect of treatment groups [F2,11 = 114,
P < 0.0001], sampling period [F8,88 = 343, P < 0.0001], and
the interaction between treatment groups and sampling period
[F16,88 = 92, P < 0.0002].

The extracellular 5-HT level in the rat striatum was in-
creased to a similar extent by the challenge mephedrone dose
of 5 mg/kg both in saline- and mephedrone-treated groups
during adolescence period (Fig. 1b). Repeated measures

ANOVA showed a significant effect of treatment groups
[F2,12 = 1776, P < 0.0001], sampling period [F8,88 = 653,
P < 0.0001], and the interaction between treatment groups
and sampling period [F16,88 = 189, P < 0.0001].

The extracellular glutamate level was increased to a similar
extent by the challenge mephedrone dose of 5 mg/kg both in
saline- and mephedrone-treated groups during adolescence
period (Fig. 1c). Repeated measures ANOVA showed a sig-
nificant effect of treatment groups [F2,11 = 913, P < 0.0001],
sampling period [F8,88 = 236, P < 0.0001], and the interaction
between treatment groups and sampling period [F16,88 = 62,
P < 0.0001].
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Fig. 1 The effect of repeated
administration of mephedrone
(MEPH, 8 × 5 mg/kg) during
adolescence on extracellular level
of DA, 5-HT, and glutamate
(GLU) measured in adulthood (90
PNDs) in the rat striatum. a–c The
time course. Values are the
mean ± SEM (n = 4–6 animals per
group). Time of drug injection is
indicated with an arrow.
*P < 0.001, vs. saline/saline
group (repeated measures
ANOVA and Tukey’s post hoc
test)
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Nucleus Accumbens

The extracellular DA level in response to a challenge dose of
mephedrone (5 mg/kg) was lower in saline- than in
mephedrone-treated animals during adolescence period
(Fig. 2a). Repeated measures ANOVA showed a significant
effect of treatment groups [F2,11 = 604, P < 0.0001], sampling
period [F8,88 = 123, P < 0.0001], and the interaction between
treatment groups and sampling period [F16,88 = 109,
P < 0.0001].

The challenge dose of mephedrone (5 mg/kg) increased the
extracellular 5-HT level in the rat nucleus accumbens to a
lesser extent in saline- than mephedrone-treated animals dur-
ing adolescence period (Fig. 2b). Repeated measures ANOVA
showed a significant effect of treatment groups [F2,11 = 1342,
P < 0.0001], sampling period [F8,88 = 523, P < 0.0001], and
the interaction between treatment groups and sampling period
[F16,88 = 671, P < 0.0001].

The extracellular glutamate level in the nucleus accumbens
was more potently increased by a challenge dose of
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Fig. 2 The effect of repeated
administration of mephedrone
(MEPH, 8 × 5 mg/kg) during
adolescence on extracellular level
of DA, 5-HT, and glutamate
(GLU) measured in adulthood (90
PNDs) in the rat nucleus accum-
bens. a–c The time course. Values
are the mean ± SEM (n = 4–6 an-
imals per group). Time of drug
injection is indicated with an ar-
row. *P < 0.001, vs. saline/saline
group; ^P < 0.001, vs. saline/
MEPH group (repeated measures
ANOVA and Tukey’s post hoc
test)
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mephedrone (2.5 mg/kg) in mephedrone- than in saline-
treated animals during adolescence period (Fig. 2c).
Repeated measures ANOVA showed a significant effect of
treatment groups [F2,12 = 242, P < 0.0001], sampling period
[F8,96 = 34, P < 0.0001], and the interaction between treatment
groups and sampling period [F16,96 = 26, P < 0.0001].

Frontal Cortex

The challenge dose of mephedrone (5 mg/kg) increased extra-
cellular DA level in the rat frontal cortex more potently in
mephedrone- than in saline-treated animals (Fig. 3a).

Repeated measures ANOVA showed a significant effect of
treatment groups [F2,11 = 309, P < 0.0001], sampling period
[F8,88 = 266, P < 0.0001], and the interaction between treat-
ment groups and sampling period [F16,88 = 182, P < 0.0001].

The increase in extracellular 5-HT level in the rat frontal
cortex induced by the challenge dose of mephedrone (5 mg/
kg) was weaker in saline- than mephedrone-treated animals
during adolescence period (Fig. 3b). Repeated measures
ANOVA showed a significant effect of treatment groups
[F2,11 = 474, P < 0.0001], sampling period [F8,88 = 158,
P < 0.0001], and the interaction between treatment groups
and sampling period [F16,88 = 61, P < 0.0001].
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Fig. 3 The effect of repeated
administration of mephedrone
(MEPH, 8 × 5 mg/kg) during
adolescence on extracellular level
of DA, 5-HT, and glutamate
(GLU) measured in adulthood (90
PNDs) in the rat frontal cortex. a–
c The time course. Values are the
mean ± SEM (n = 4–6 animals per
group). Time of drug injection is
indicated with an arrow.
*P < 0.001, vs. saline/saline
group; ^P < 0.001, vs. saline/
MEPH group (repeated measures
ANOVA and Tukey’s post hoc
test)
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The extracellular glutamate level was increased by the chal-
lenge dose of mephedrone (5 mg/kg), but the increase was
weaker in saline- than mephedrone-treated animals during ad-
olescence period (Fig. 3c). Repeated measures ANOVA
showed a significant effect of treatment groups [F2,11 =
1030, P < 0.0001], sampling period [F8,88 = 45, P < 0.0001],
and the interaction between treatment groups and sampling
period [F16,88 = 15, P < 0.0001].

The Effect of Repeated Administration
of Mephedrone During Adolescence on the Basal
Extracellular Level of DA, 5-HT, and Glutamate
Measured in Adulthood (90 PNDs) in the Rat Striatum,
Nucleus Accumbens, and Frontal Cortex

The basal extracellular level of DA in the rat striatum and
nucleus accumbens at 90 PNDs was significantly (P < 0.05)
decreased after chronic mephedrone administration during ad-
olescence (Table 1). In contrast, the basal extracellular 5-HT
level was significantly (P < 0.001) increased in the nucleus
accumbens and the frontal cortex (Table 1). Similarly, the
basal extracellular level of glutamate was significantly
(P < 0.001) increased in the rat nucleus accumbens (Table 1).

The Effect of Repeated Administration
of Mephedrone During Adolescence on the DA
and 5-HT Turnover Rates Measured in Adulthood (90
PNDs) in the Rat Striatum, Nucleus Accumbens,
and Frontal Cortex

Mephedrone given chronically during adolescence enhanced
DA content in the striatum (P < 0.05) and DOPAC level in the
striatum and frontal cortex (P < 0.05 and P < 0.001, respec-
tively) to 161, 121, and 158% of control values, respectively
(Fig. 4a). The DA turnover rate expressed as (DOPAC +
HVA)/DA ratio was significantly decreased in the striatum
and nucleus accumbens (P < 0. 05 and P < 0.01, respectively)

and was unchanged in the frontal cortex (Fig. 4b). 5-HTand 5-
HIAA tissue level was decreased to ca. 54 and 55% of control
level in the striatum and 62 and 67% of control level in the
nucleus accumbens (P < 0.001 and P < 0.05, respectively,
Fig. 5a). The 5-HT turnover rate expressed as 5-HIAA/5-HT
ratio was not changed in all brain regions studied (Fig. 5b).
The absolute values of DA, DOPAC, HVA, and 5-HT and the
5-HIAA levels are given in the attached supplementary mate-
rial to this paper (Table 2).

The Effect of Repeated Administration
of Mephedrone During Adolescence on Oxidative
DNA Damage in the Rat Cortex

Mephedrone given repeatedly (8 × 5 mg/kg) during adoles-
cence period produced DNA damage shown as a percent of
olive tail moment in the rat cortex at 90 PNDs (Fig. 6). The
damage was more potent in animals treated chronically with
mephedrone than in animals which received a single dose
(5 mg/kg) of mephedrone. The lack of difference in DNA
damage between the rat whole cortex and the frontal cortex
after administration of mephedrone single dose of 5 mg/kg is
presented in supplementary material to this paper (Fig. 7).

Discussion

The findings from this study show that mephedrone exposure
during adolescence period facilitates DA, 5-HT, and glutamate
outflow in response to the challenge dose, in the frontal cortex
and nucleus accumbens but not in the striatum. The decreased
tissue content of 5-HT and 5-HIAA in the striatum and nucle-
us accumbens suggests a possible injury of serotonin nerve
terminals. The oxidative damage of cortical DNA indicates a
risk of neurotoxic changes in the cortical brain region.

As shown previously by us, mephedrone at a single dose of
5 mg/kg more potently increased 5-HT than DA extracellular

Table 1 Basal levels of DA, 5-
HT, and glutamate (GLU) in the
rat striatum, nucleus accumbens,
and frontal cortex after chronic
administration of mephedrone
(MEPH, 8 × 5 mg/kg) during the
adolescence period and as mea-
sured on 90 PNDs

Treatment (mg/kg) DA (pg/10 μl) 5-HT (pg/10 μl) GLU (ng/10 μl)
Mean ± SEM (n)

Striatum

Saline 18.7 ± 1.6 (5) 0.35 ± 0.06 (5) 0.68 ± 0.11 (5)

MEPH (8 × 5) 10.13 ± 1.34 (5)* 0.38 ± 0.03 (5) 0.48 ± 0.06 (5)

Nucleus accumbens

Saline 0.79 ± 0.06 (5) 0.12 ± 0.01 (5) 0.48 ± 0.05 (5)

MEPH (8 × 5) 0.43 ± 0.04 (5)* 1.04 ± 0.18 (5)** 1.32 ± 0.16* (5)

Frontal cortex

Saline 0.57 ± 0.06 (5) 0.14 ± 0.01 (5) 1.02 ± 0.18 (5)

MEPH (8 × 5) 0.71 ± 0.08 (5) 2.49 ± 0.27 (5)** 0.72 ± 0.12 (5)

Data are shown as the mean ± SEM (n)

*P < 0.05; **P < 0.001 vs. respective control (one-way ANOVA and Tukey’s post hoc test)
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level in rat brain regions similar to our present work
(Gołembiowska et al. 2016). Other authors studied
mephedrone effect in the rat nucleus accumbens. Depending
on the dose or route of administration, mephedrone increased
extracellular DA and 5-HT levels with a distinct strength. The
mephedrone dose of 3.2 mg/kg ip enhanced DA but not 5-HT
level to ca. 400% of baseline in Sprague Dawley rats (Suyama
et al. 2016). Kehr et al. (2011) showed in the same animal
strain that similar mephedrone dose injected sc increased

extracellular DA and 5-HT levels to a maximum of 450 and
900% of baseline, respectively. The 10 mg/kg sc dose evoked
a greater increase in extracellular 5-HT, compared to DA level
(maximum ca. 2000 and 1000% of baseline, respectively) in
the nucleus accumbens of Sprague Dawley rats (Wright et al.
2012). Mephedrone (iv, 1–3 mg/kg) elevated DA and 5-HT
levels in the nucleus accumbens of Sprague Dawley rats with
the magnitude of effect stronger on 5-HT than DA (to ca.
1000–2500 and 300–400% of baseline, respectively)
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(Baumann et al. 2012; Mayer et al. 2016). Thus, mephedrone
is a more preferential releaser of 5-HT than DAwhich may be
a consequence of lower DAT/SERT ratio (Rickli et al. 2015).
The differences in potency of the drug effect may be related
with the rat strain and the route of administration. The rela-
tively small increase in neurotransmitter levels in the nucleus
accumbens after a single ip mephedrone dose observed in our
study suggests that Wistar rats are less sensitive to this drug in
comparison to Sprague Dawley rats. However, other brain
regions, such as the striatum and frontal cortex, were affected
markedly with a relatively greater increase in extracellular 5-
HT than DA level.

Neurobiological processes occurring in adolescence influ-
ence behavior and general skills in adulthood. The use of NPS
during this developmental period has been found to be a pre-
dictive factor of the drug addiction or mood disorders in adult-
hood (Chen et al. 2009; Spear 2000). In our study, rechallenge
with mephedrone at adulthood after a previous exposure to the
drug during adolescence promoted the increased response of
DA, 5-HT, and glutamate systems in the rat nucleus accum-
bens and frontal cortex as compared to saline pretreatment.
These data suggest that early exposure to mephedrone may
sensitize monoaminergic and glutamatergic neurons to chal-
lengemephedrone dose administered in adulthood andmay be
a predictive factor of the development of addiction.
Surprisingly, the response of striatal DA, 5-HT, and glutamate
neurons to the challenge dose of mephedrone was similar in
control and mephedrone-pretreated animals which suggests
recovery of the striatal circuits from mephedrone treatment
in adolescence period. The recovery of 5-HT terminals after
repeated administration of MDMAwas observed in some re-
gions of non-human primate brains (Scheffel et al. 1998).

Mephedrone administration in adolescent animals pro-
duced changes in the basal neurotransmitter levels in all stud-
ied brain regions. Accordingly, extracellular 5-HT level was

increased in the frontal cortex and nucleus accumbens. The
increase in 5-HTwas accompanied with enhanced extracellu-
lar glutamate level in the nucleus accumbens. The higher ex-
tracellular 5-HT level might result from mephedrone-induced
disturbance in SERT function in the mesocortical and
mesolimbic 5-HT systems. This points to the possibility that
the activation of 5-HT2A receptors located on cortical pyra-
midal cells by endogenous 5-HT may elicit the increased re-
sponse of DA, 5-HT, and glutamate neurons to the challenge
dose of mephedrone in mesocortical and mesolimbic brain
regions (Alex and Pehek 2007). This mechanism may be also
responsible for the observed increase in the basal glutamate
level in the nucleus accumbens but not in the striatum and
frontal cortex, where mephedrone did not affect this level.

To assess the potential neurotoxic effect of mephedrone
treatment in adolescence period, we studied 5-HT and DA
contents as markers of neuronal injury in adulthood. The 5-
HT and 5-HIAA deficit (expressed as % of control level) in-
duced by the administration of mephedrone was found in the
striatum and nucleus accumbens but not in the frontal cortex.
The observed nearly the same decrease in 5-HT and 5-HIAA
content in the striatum and nucleus accumbens was not
reflected by the turnover rate in these neurons since the 5-
HIAA/5-HT ratio was unchanged. These results indicate the
possible injury of 5-HT nerve endings and are in agreement
with reports of other authors who found the loss of 5-HT nerve
terminals after repeated high doses of mephedrone given at
elevated ambient temperature to adolescent mice and rats
(Hadlock et al. 2011; Martinez-Clemente et al. 2014). On
the other hand, the release data did not indicate neurotoxicity
to the serotonergic terminals since these terminals seemed to
be functional in all studied brain regions. An alternative ex-
planation of this discrepancy between the decreased 5-HTand
5-HIAA tissue content and the increased 5-HT release in re-
sponse to challenge dose may be based on the weaker
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stimulation of 5-HTcell bodies in the raphe nuclei by descend-
ing glutamatergic pathways from the cortex. Therefore, 5-HT
terminals may respond more strongly to the challenge dose to
overcome the deficit in neurotransmitter synthesis as shown
by our microdialysis experiments. Thus, imbalance in gluta-
matergic neurotransmission could contribute to adaptive
changes in 5-HTcells which receive glutamatergic innervation
from cortical regions (Soiza-Reilly and Commons 2011).

Mephedrone pretreatment during adolescence does not ap-
pear to cause dopaminergic neurotoxicity in rats as we did not
observe DA deficit in adult animals. In contrast, we observed
the increase in striatal DA and DOPAC cortical levels and no
change in the levels of both compounds in the nucleus accum-
bens, expressed as percent of respective control groups. The
turnover rates expressed as (DOPAC + HVA)/DA ratio indi-
cate inhibition of DA metabolism in dopaminergic nerve ter-
minals in the striatum and nucleus accumbens and no change
in the frontal cortex. These results match the data on the low
basal extracellular level of DA in the striatum and nucleus
accumbens. The lower DA turnover rate and basal extracellu-
lar level in the striatum and nucleus accumbens might be
caused by a weaker stimulation of postsynaptic pathways
projecting to the nigral or ventral tegmental area (VTA) re-
gions (Di Mateo et al. 2008). Thus, mephedrone pretreatment
during adolescence period causes long-lasting changes in
nigrostriatal and mesolimbic DA pathways but it does not
produce injury of DA neurons. Our data are in agreement with
results of other authors who did not observe injury of DA
nerve endings even after administration into adolescent mice
and rats of higher repeated doses of mephedrone than those
used in the present study (Hadlock et al. 2011; Motbey et al.
2012; López-Arnau et al. 2015). The lack of damage of DA
and 5-HT terminals in the frontal cortex of adult animals
might be caused by neuronal recovery. Such lack of neuronal
damage as the result of recovery was observed in baboons
after administration of MDMA in adolescence period
(Scheffel et al. 1998).

It is well known that administration of psychostimulants to
rodents results in damage of monoaminergic neurons through
the production of reactive oxygen species (ROS) (Cadet and
Brannock 1998; Wrona and Dryhurst 2001). Due to similarity
of mephedrone to amphetamines, we investigated oxidative
DNA damage by ROS with the use of the comet assay. It
was shown that mephedrone given repeatedly during adoles-
cence period produced DNA single- and double-strand breaks
in the rat cortex of adult animals. The effect of repeated
mephedrone administration was stronger than the effect of a
single dose of the drug. The means of DNA oxidation by
psychostimulants, such as amphetamines or mephedrone, is
related to the development of the oxidative stress. Excessive
release of 5-HT by mephedrone leads to the formation of
highly reactive free radicals, which can damage nuclear
DNA (Halliwell and Whiteman 2004) in non-dopaminergic

and non-serotonergic cells. Excitatory neurons in the cortex
are primarily glutamatergic pyramidal neurons. Subtypes of
pyramidal neurons forming excitatory pathways within the
cortex also target subcortical structures (Brown and Hestrin
2009). In addition, cortical regions contain inhibitory
GABAergic neurons which are forming connections with py-
ramidal neurons (Gupta et al. 2000). 5-HT release across the
forebrain structures can modulate inhibitory and excitatory
synaptic activity via 5-HT1A or 5-HT2A receptors, expressed
on both excitatory neurons and inhibitory interneurons. The
neuromodulatory action of 5-HT depends on the local 5-HT
concentration and location of the receptor subtype. The dam-
age of neuronal glutamatergic cell bodies in the cortex
projecting to the substantia nigra and VTAmay be responsible
for the decrease in DA turnover rates in these regions as well
as in lower DA basal extracellular levels. The same mecha-
nism may underlie lower 5-HT and 5-HIAA contents in sero-
tonergic neurons projecting from the raphe nuclei to the stria-
tum and nucleus accumbens in animals pretreated with
mephedrone in adolescence. The fact that neuronal terminals
respond to rechallenge with mephedrone suggests the absence
of cellular deaths in studied brain regions. Our findings are in
accordance with results of López-Arnau et al. (2015) who
found a rise in antioxidant enzymes in the striatum in response
to multiple doses of mephedrone. Those authors postulate that
striatal tissue is capable of buffering ROS which may explain
the absence of dopaminergic injury in this area. In contrast, the
frontal cortex was most affected by mephedrone since antiox-
idant defense was not sufficient in this tissue. In addition,
oxidation of polyunsaturated fatty acids was significantly aug-
mented in this brain area (López-Arnau et al. 2015). These
data are in accordance with our findings as we observed oxi-
dative damage of DNA in cortical cells in this region. The
induction of oxidative stress evidenced by decreased total an-
tioxidant status, increase in malondialdehyde concentration,
and increase in catalase activity was also found in the mouse
frontal cortex (Budzynska et al. 2015). These data confirm our
findings on possible oxidative injury of subpopulation of cor-
tical cells.

Overall, the findings of our study indicate that the admin-
istration of repeated low doses of mephedrone during adoles-
cence period affects monoaminergic and glutamatergic neuro-
transmission, and long-lasting changes in the release of DA, 5-
HT, and glutamate in the frontal cortex and nucleus accum-
bens are apparent in adulthood. Furthermore, mephedrone
treatment in adolescent rats does not seem to induce injury
of 5-HT and DA neuronal endings. The oxidative stress gen-
erated by mephedrone treatment during adolescence period
seems to be responsible for the neuronal damage of cortical
cells and dysregulation of cortical inputs to subcortical struc-
tures and may lead to cognitive deficits that can have long-
term consequences. In addition, it may suggest the risk of drug
abuse in adulthood.
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