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A B S T R A C T   

Bisphenol A (BPA) is a plastic additive with endocrine disruptive activity, classified in 2017 by EU ECHA as 
substance of very high concern. A correlation between environmental exposure to BPA and congenital defects has 
been described in humans and in experimental species, including the amphibian Xenopus laevis. Among BPA 
analogues, bisphenol B (BPB) is used as alternative in different not-EU countries, including US, but seems to share 
with BPA its endocrine disruptor properties. Aim of the present work is the evaluation of the effects of BPB versus 
BPA exposure in a X. laevis developmental model. A windowed exposure (R-FETAX method) was applied 
covering the developmental phylotypic period (teratogenicity window), or the late tailbud stages (neuro- 
behavioural toxicity window, corresponding to the spontaneous swimming acquisition period). Samples were 
monitored for lethal effects during the full test period. External morphology evaluation and deglutition func-
tional test were applied in any group. Abnormal tadpoles were also processed for cartilage staining. In groups 
exposed during neuro-behavioural toxicity window the swimming test was also applied. Lethality and malfor-
mations were obtained only in samples exposed during the teratogenicity window; these data were modelled 
using PROAST software and BPB relative potency resulted about 3 times higher than BPA. The day-by-day 
evaluation revealed that lethality was correlated to embryonic abnormal development of gills and apoptosis in 
gill primordia. Teratogenicity was never detected in groups exposed during the neuro-behavioural toxicity 
window, where some significant neuro-behavioural deficits were detected in tadpoles exposed to the highest 
tested concentrations of BPA and BPB.   

1. Introduction 

Bisphenol A (BPA) is a diphenylmethane derivative, used from de-
cades in the production of polycarbonate plastics, epoxy resins and 
various other plastic-based consumer products; some, but not all, recy-
cled plastics may contain BPA too [1]. 

Due to its ability to mimic oestrogen binding [2–4] and to exhibit 
anti-androgenic activity [5–7], BPA is classified among endocrine dis-
ruptors and is considered by ECHA a “substance of very high concern” 
[8]. Moreover, BPA passes through the blood-brain barrier and its 
exposure was linked with multiple neuropsychological dysfunctions, 
neurobehavioral disorders and neurodegenerative diseases [9]. A direct 
or indirect release of BPA into the environment has been demonstrated 
at any level of plastic product life cycle (production, consumption, 

disposal) [10]. Humans are directly or indirectly exposed to BPA, 
through ingestion, inhalation and dermal, and vertical 
maternal-to-embryofoetal exposure [11]. In light of that, EU authorities 
updated the specific migration limit for BPA at 0.05 mg/kg of food [12] 
while many EU member countries completely banned BPA in baby 
feeding bottle, food contact material and thermal paper production. In 
addition, recently the European Food Safety Agency (EFSA) updated the 
tolerable intake limit, setting it at 0.04 ng/kg body weight/ day [13]. 

As far as materno-embryofoetal health is concerned, vertical trans-
mission has been demonstrated: BPA is able to cross the placental barrier 
and has been detected in human maternal/foetal serum and in placental 
tissues [14]. A correlation between environmental exposure to BPA and 
congenital defects has been described both in humans [15–17] and in 
different vertebrate experimental species [18–26]. In the amphibian 
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Xenopus laevis developmental model, lethal and teratogenic effects of 
BPA were documented by Iwamuro et al., [27], with the reported esti-
mated lethal concentration for 50% samples (LC50) 21 μM. Ge and col-
leagues described, side to extremely severe teratogenic effects (stunted 
body, bent notochord, short or bent tail axis, deformed brain and/or 
eyes, cardiac or abdominal oedema, miscoiled gut, and lengthened 
abdomen), concentration-related behavioural deficits evaluated by 
touch response at 48, 60, and 72 h and by autonomous swimming 
tracking at 96 h. Effects were correlated to the observed apoptosis 
detected at 96 h by acridine orange staining and TUNEL techniques in 
groups exposed to 10 and 20 μM BPA: in malformed samples, muscle 
tissue and notochord were the main targets, with concentration-related 
signs of apoptosis [23]. Relatively to teratogenesis, no data are available 
on molecular mechanisms and a precise structure characterisation is 
lacking. Literature on mammals and humans shows a BPA-related in-
crease in hyperactivity in mice, rats and children exposed in utero to BPA 
[28]; anxiety-related behaviour and impairment in aversive and spatial 
memory in rats [29]; a correlation between BPA maternal plasmatic 
levels and central and peripheral nervous system malformations [15] or 
abnormal behaviour [30] in humans. Till now, however, independent 
teratogenicity and neurotoxicity protocols, necessary in order to avoid 
confounding overlapping data, were never applied. 

Due to the regulatory restrictions in BPA use, several BPA analogues 
were synthesised but their safety is under debate. Among BPA ana-
logues, bisphenol B (BPB) is used as BPA alternative in plastic produc-
tion in different not-EU countries, including US. Although BPB is not 
manufactured or used as a chemical in Europe (it is not registered under 
the European Registration-Evaluation-Authorization and Restriction of 
Chemicals (REACh) Regulation), it has been detected also in several 
European food products, such as various canned foods, [31–34] and in 
commercial milk samples [35]; by consequence it is not surprising that 
detectable BPB plasma levels were found also in EU population [36,37]. 
BPB shares a strong structural similarity with BPA (Fig. 1) and this seems 
to drive their common endocrine disruption activity [38]. In spite of the 
evidence that BPB meets the WHO definition currently used in a regu-
latory context of endocrine disrupting chemical [38], at the moment 
studies on developmental effects of this molecule are lacking. Moreover, 
studies on BPB-related teratogenic or neuro-behavioural effects are few 
and limited to the zebrafish model, and a comparison with the parental 
compound (BPA) was till now never performed [39]. 

Aim of the present work is the characterisation of teratogenic and 
neuro-behavioural effects of BPB and a comparison of BPB to BPA ef-
fects, using the developmental X. laevis model (R-FETAX methodology). 
A windowed exposure protocol was applied covering: i) the teratoge-
nicity window, corresponding to the developmental stages common to 
all vertebrate embryos (phylotypic period); ii) the neuro-behavioural 
toxicity window, corresponding to late tailbud stages (spontaneous 
swimming acquisition period). 

The “teratogenicity window” covers NF stage 10–26, considered in X. 
laevis the period common to any vertebrate at both morphological and 
molecular point of view [40–42]. The “neuro-behavioural toxicity 
window” covers the spontaneous swimming acquisition period (tadpole 
model, NF 38–46), reported indicative to evaluate neuro-developmental 
disorders [43]. As reported by literature, till time of hatching (NF stage 
37/38), tadpole locomotion is still inflexible, with a stereotyped orga-
nisation; while by larval stage 42, approximately 1 day later, a gradually 
acquisition of motor versatility enables animals to move efficiently and 
coordinately through thy environment [44]. 

2. Materials and methods 

2.1. R-FETAX 

R-FETAX methodology was applied according to Battistoni et al. 
[45]. Briefly, amphibian X. laevis adults (Nasco, USA), maintained under 
controlled conditions in an automatic breeding system (TecnoPlus, 
Techniplast, Italy), were naturally mated overnight. Collected embryos 
were cleaned by gentle swirling in a 2.25% L-cysteine solution with an 
arranged pH of 8.0 and rinsed several times in FETAX solution 
(625 mg/L NaCl, 96 mg/L NaHCO3, 30 mg/L KCl, 15 mg/L CaCl2, 
60 mg/L CaSO4 ⋅ 2 H2O, and 70 mg/L MgSO4). Normally cleaved em-
bryos at the mid-blastula stage (stage 8, according to Nieuwkoop and 
Faber [NF] stadiation [46]) were selected and maintained at 23 ◦C 
during the whole testing time (6 days, corresponding to final NF stage 
46, reached in historical not exposed tadpoles). Different exposure 
groups were set to cover specific developmental windows: i) teratoge-
nicity window (NF stage 10–26, from day 0.5 to day 1.5), corresponding 
to the developmental stages common to all vertebrate embryos (gas-
trula-early morphogenesis, also known as phylotypic period, repre-
senting the window for species-agnostic teratogenesis purposes); ii) 
neuro-behavioural toxicity window (late tailbud stages corresponding 
to NF 38–46, from day 2 to day 6), covering spontaneous swimming 
acquisition period (Fig. 2). Stage identification was performed referring 
to Nieuwkoop and Faber and Zhan stadiation tables (www.xenbase. 
com). 

2.2. Range-finding test 

Test chemicals (Sigma, Italy) were dissolved in DMSO (Sigma, Italy). 
Stock solutions were added to FETAX medium (4 μL/mL) in order to 
reach the final concentration of BPA 0–10–20–25–30–35 μM or BPB 
0–5–7.5–10–15–20 μM. 

Samples (at least a triplicate of 5 embryos/group) were exposed 
during the teratogenicity window (NF 10–26). During the full six-day 
test period, samples were monitored using a cold-light stereomicro-
scope (Zeiss) to check lethal effects. 

2.3. Main tests 

A total of nine concentration levels ranging from 0 to 35 μM for BPA, 
and from 0 to 15 μM for BPB were tested in samples (at least a triplicate 
of 5 embryos/group) exposed during the teratogenicity window (NF 
10–26). BPA 0–10–20–25 μM and BPB 0–5–7.5–10 μM were tested 
during the neuro-behavioural toxicity window (NF 38–46) (at least a 

Fig. 1. BPA and BPB chemical structures. Note the extreme similarity between 
the two molecules. 

Fig. 2. R-FETAX protocol: grey boxes represent the exposure windows, white 
boxes the maintenance in FETAX solution, the red cross the timing of observed 
BP-related lethality (approximately at NF 42/44 stages) after exposure during 
the phylotypic period (NF 10–26). PH= phylotypic period; LTB= late tailbud 
stages; TP= tadpole. 
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triplicate of 3 embryos/group) (Fig. 2). Embryo-lethality was evaluated 
throughout the test monitoring samples daily using a cold-light stereo-
microscope (Zeiss). At the end of the test (day 6) the functional deglu-
tition test was applied according to Battistoni et al., 2022b: maintaining 
larvae for 2 h at 23 ± 0.5 ◦C in FETAX solution containing 25 μg/mL red 
polystyrene microparticles (1 µm diameter, Sigma). Tadpoles, anaes-
thetised with MS-222 (Sigma, Italy; 0.01% in FETAX solution), were 
evaluated for gross morphology and for presence/absence of red stain-
ing at the level of the intestine (deglutition test positive/negative) under 
a camera-equipped cold-light illuminated dissecting microscope (Leica). 
At the end of the evaluation, samples were photographed, euthanized by 
anaesthetic overdose (MS-222 0.1% in FETAX solution at 4 ◦C), fixed in 
ethanol 50% (Sigma, Italy) and dehydrated in ethanol 70%. Cartilage 
staining was performed on abnormal tadpoles according to Di Renzo 
et al. [48], applying flat mount technique for a detailed cartilage eval-
uation [48]. 

Neuro-behavioural evaluation was performed according to Battistoni 
et al. [47] on tadpoles from groups exposed during the spontaneous 
swimming acquisition period (neuro-behavioural toxicity window, NF 
stages 38 − 46, representing the transition from dormant life to pro-
gressive free-swimming locomotion at the onset of active feeding) [49]. 
Briefly, before deglutition test, single tadpoles were transferred into a 
27 mm arena, on a cold-light under-illuminated stereomicroscope 
(Zeiss). After 30 s acclimation time, 60 s videos were taken from above 
using a 1080p HD 30 fps digital camera and subsequently analysed using 
the AnimalTracker plugin [50]. Free images were processed using pro-
gramme ImageJ [51]. Activities in the inner circle (with a diameter 0.75 
of the arena diameter fixed as 1) and in the outer ring (0.25 of the arena) 
were analysed to obtain immobility time (sec), total distance (mm), 
distance (mm) in the outer ring and the inner circle, swimming speed 
(total distance (mm)/ [test time - immobility time] (sec)). 

2.4. Additional tests (evaluation of fine morphology and apoptosis) using 
a new superfast-R-FETAX procedure 

As in groups exposed to BPA or BPB during the teratogenicity win-
dow lethal effects mainly occurred at day 4 (approximately NF stage 
42–44), extra groups were processed to evaluate the cause of the 
observed lethality. 15 embryos/group were exposed during the terato-
genicity window (NF 10–26) to concentration levels of BPs effective in 
40% cases or more (BPA 25 μM and BPB 7.5–10 μM) or to the solvent 
alone (DMSO). At the end of exposure (day 1.5, NF stage 26) or at 
developmental day 2.5 (NF 40 stage, 24 h after the end of exposure and 
2 days before the compound-induced lethality) samples were evaluated 
for viability using a cold-light stereomicroscope (Zeiss) and processed to 
visualise apoptotic cells and fine morphology. To detect apoptosis, the 
acridine orange vital staining [52], partially modified, was applied. 
Embryos were maintained for 5 min in 5 μg/mL acridine orange (Sigma, 
Italy) in FETAX, washed 3 × 5 min in FETAX solution, and viewed under 
a fluorescence stereomicroscope (EX=450–490 nm; LP=520 nm) 
(Leica). Apoptotic cells appeared green fluorescent. Samples were fixed 
in a mixture of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M 
sodium cacodylate buffered solution at pH 7.4 and processed for the 
ultrastructural analyses. After washes in cacodylate buffer, tadpoles 
were post-fixed in 1% Os04 for 2 h in dark condition at 4 ◦C, dehydrated 
with an ascending ethanol series, and critical-point dried in a Balzers 
Unions CPD 020 apparatus (Balzers Unions, Lichtenstein). Under a ste-
reomicroscope, the whole samples were mounted onto standard 
aluminium stubs, gold-sputtered, and observed under a FE-SEM Sigma 
(Zeiss, Jena, Germany) at 7 kV, WD 20–10 cm. 

2.5. Statistical analysis and mathematical modelling 

Quantal data were analysed using the Chi- square for trend. 
Continuous data, expressed as mean and standard deviation, were 
analysed using ANOVA followed by Tukey’s post hoc test. The level of 

significance was set at p < 0.05. The benchmark dose (BMD) approach 
was applied using PROAST (70.3 version), a software package devel-
oped by the Dutch National Institute for Public Health and the Envi-
ronment (RIVM) (www. proast.nl) for the statistical analysis of dose- 
response toxicological data. Data on teratogenicity and lethality were 
pooled and modelled to characterise the single dose-response curves, 
setting the benchmark dose (BMD) at 50% benchmark response. After 
modelling the results obtained for each molecule, the log-likelihood 
ratio test was applied to assess the equal steepness assumption and the 
relative potency factor (RPF) derived, showing the relative potency of 
BPB versus BPA. The exponential model family equations were selected 
to describe the dose-response curves and obtain the RPFs. Swimming 
data were not modelled due to large standard deviation of the obtained 
data points. 

3. Results 

3.1. Range-finding test 

Concentration-related lethal effects were evident in groups exposed 
to BPA or BPB (Table 1). BP-related lethality mainly occurred far from 
exposure, typically at day 4 (approximatively NF 42–44, at the last 
tailbud stages) (Table 1). 

3.2. Main developmental toxicity test: exposure during the teratogenicity 
window (NF stage 10–26) 

3.2.1. R-FETAX: evaluation at day 6 (NF stage 46) 
Dose-related lethal and teratogenic effects were evident in groups 

exposed to BPA or BPB (Table 2). Teratogenic effects detected in living 
tadpoles were classified as anterior defects (round head, shortened and 
reduced gill basket, ventral oedema), only in few cases associated to 
bent or wavy tail (Fig. 3a-c). Deglutition test was positive for all tad-
poles, showing no differences among groups and indicating functionally 
normal facial articulation. After alcyan blue cartilage staining, in com-
parison to unaffected tadpoles, abnormal external samples showed facial 
skeletal elements reduced in size (without any fusion) and smaller and 
shorter gill basket (Fig. 3d-e). The main experiment confirmed obser-
vations described in the range-finding test: BP-related lethality typically 
occurred two days after the end of exposure (day 4, NF 42–44, the last 
tailbud stages). To explain this delayed effect, an indirect cause of 
lethality (involving severe defects at primordia of organs later becoming 
essential for survival) was hypothesised. This hypothesis was further 
tested applying the new superfast-R-FETAX approach. 

Table 1 
Range-finding test: lethal effects observed in groups exposed to BPA or BPB 
during teratogenicity window (phylotypic period, NF 10–26). Statistics (Chi- 
square for trend, calculated on frequencies) shows dose-relationship in both BPA 
and BPB tested series.  

Concentration (μM) Dead (%)  Concentration (μM) Dead (%)      

DMSO (BPA 0) 8.1  DMSO (BPB 0) 8.1 
(N = 74)   (N = 74)  
BPA 10 0.0  BPB 5 0.0 
(N = 15)   (N = 30)  
BPA 20 13.3  BPB 7.5 33.3 
(N = 15)   (N = 15)  
BPA 25 26.7  BPB 10 50.0 
(N = 30)   (N = 30)  
BPA 30 86.7  BPB 15 100.0 
(N = 15)   (N = 15)  
BPA 35 100.0  BPB 20 100.0 
(N = 15)   (N = 15)       

p¼ < 0.0000001  p¼ < 0.0000001  
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3.2.2. Superfast-R-FETAX: evaluation at the end of exposure (day 1.5, NF 
26) and at day 2.5 (NF stage 40) 

At the end of exposure (day 1.5, NF 26) morphological evaluation 
and acridine orange vital staining did not show any differences in em-
bryos exposed to BPs when compared to unexposed samples. By 
contrast, at day 2.5 (24 h after the end of exposure and 1.5 days before 
lethality), acridine orange staining revealed apoptotic areas at the level 
of underdeveloped gill primordia (Fig. 4), suggesting the branchial 
apparatus as the main target of BPA and BPB; SEM detailed evaluation 
showed mild to severe branchial bud hypoplasia, with the most severe 
branchial defect being gill primordia agenesis (Fig. 5). This evidence 
seemed to confirm the hypothesis of lethality as a secondary event due to 
severe abnormalities at structures (gills) becoming essential for survival 
at the end of late tailbud period (NF 42–44). Considering these results, 
lethal effects were reclassified as teratogenicity-related lethal effects and 
combined data on lethality and teratogenicity (Table 2, dead +
abnormal) were used for modelling. 

3.2.3. Data modelling 
Data on total affected tadpoles (dead at day 4 plus malformed at day 

6) obtained in groups exposed during the “teratogenicity window” were 
modelled by PROAST software. Single dose-response curves (Fig. 6a-b) 
were obtained applying exponential models. Log-likelihood ratio test 
showed the equal steepness assumption not rejected (p = 0.58) and RPF 
of BPB versus BPA was derived by dose-response curve comparison: BPB 
resulted 3.42 times (CI 3.20–3.68) more potent than BPA in inducing 
teratogenic effects (Fig. 6c). 

3.3. Main developmental toxicity test: exposure during the neuro- 
behavioural toxicity window (NF 38–46) 

3.3.1. R-FETAX: evaluation at day 6 (NF stage 46) 
Groups exposed at tadpole stages (NF 38–46) did not differ in terms 

of lethality and teratogenicity from DMSO-group (Table 3). Deglutition 
test was positive for all tadpoles, showing, also for this parameter, no 
differences among groups. By contrast, the statistical analysis of data 
obtained by functional swimming test suggested significant altered 
tracking profiles in tadpoles exposed to BPA 25 μM and BPB 10 μM 
(increased distance in the inner circle) (Table 4, Fig. 7). Due to the poor 
sample size and the high variability, these data were excluded from 
modelling and should be considered just preliminary, needing an ad hoc 

refined evaluation including increasing the sample size and investi-
gating eventual involved pathogenic pathways. 

4. Discussion 

BPA is one of the best characterised endocrine-disrupting chemicals, 
exhibiting both oestrogen-like and anti-androgenic activity [2–7]. Xen-
opus embryo model is widely used in embryotoxicity research fields 
[53–56], and has been also selected to test BPA developmental toxic 
effects. BPA exposure induced lethal and teratogenic effects with the 
reported estimated lethal concentration for 50% samples (LC50) 21 μM 
[23,27]. Ge and colleagues described, side to extremely severe terato-
genic effects (stunted body, bent notochord, short or bent tail axis, 
deformed brain and/or eyes, cardiac or abdominal oedema, miscoiled 
gut, and lengthened abdomen), concentration-related behavioural def-
icits evaluated by touch response at 48, 60, and 72 h and by autonomous 
swimming tracking at 96 h. Effects were correlated to the observed 
apoptosis detected at 96 h by acridine orange staining and TUNEL 
techniques in groups exposed to 10 and 20 μM BPA [23]. 

Recent restriction on the use of BPA stressed the need for entry of its 
analogues, including BPB, in the market. BPB-related teratogenic and 
neuro-behavioural effects in the zebrafish model are described by Yang 
et al. [39] exposing embryos during the whole test period: pericardial 
and yolk oedema, curvature and fin defects, decreased swimming ability 
were detected. In this work the relative potency of BPB versus its 
parental compound, BPA, was not evaluated. 

Aim of our work was the comparison of effects induced by BPA and 
its analogue BPB. Teratogenic effects were evaluated in samples exposed 
during the “teratogenicity window”, covering NF stage 10–26 consid-
ered in X.laevis the phylotypic period (pharyngula). By definition, 
pharyngula is common to any vertebrate at both morphological and 
molecular point of view [40–42]. Anuran-specific morphogenetic phases 
(NF stage 27–37) were not considered, because these events are difficult 
to compare with mammal morphogenesis. Neurocognitive behavioural 
effects were evaluated exposing samples during the “neuro-behavioural 
toxicity window”, covering the spontaneous swimming acquisition 
period (tadpole model, NF 38–46), reported indicative to evaluate 
neuro-developmental disorders [43]. As reported by literature, till time 
of hatching (NF stage 37/38), tadpole locomotion is still inflexible, with 
a stereotyped organisation; while by larval stage 42, approximately 
1 day later, a gradually acquisition of motor versatility enables animals 

Table 2 
Main test: lethal, teratogenic (abnormal) and total (dead + abnormal) effects observed in groups exposed to BPA or BPB during the teratogenicity window (phylotypic 
period, NF 10–26). Statistics (Chi-square for trend, calculated on frequencies) are shown.  

Concentration 
(μM) 

Dead 
(% of exposed) 

Abnormal (% of living 
tadpoles) 

Total 
(% of exposed)  

Concentration 
(μM) 

Dead 
(% of exposed) 

Abnormal (% of living 
tadpoles) 

Total 
(% of exposed)          

DMSO (BPA 0) 3.6 0.0 3.6  DMSO (BPB 0) 3.6 0.0 3.6 
(N = 111)     (N = 111)    
BPA 10 0.0 0.0 0.0  BPB 3.25 0.0 17.6 17.6 
(N = 15)     (N = 17)    
BPA 12.5 12.5 6.7 18.8  BPB 5 6.2 0.0 6.2 
(N = 16)     (N = 65)    
BPA 20 4.0 27.1 30.0  BPB 6.5 17.9 18.8 33.3 
(N = 50)     (N = 39)    
BPA 24 13.3 23.1 33.3  BPB 7.5 27.1 2.9 29.2 
(N = 15)     (N = 48)    
BPA 25 13.8 16.1 27.8  BPB 8 42.9 37.5 64.3 
(N = 36)     (N = 14)    
BPA 27 25.0 8.3 31.3  BPB 9.5 96.3 100 100 
(N = 16)     (N = 27)    
BPA 30 39.5 21.7 52.6  BPB 10 66.7 20.0 73.3 
(N = 38)     (N = 45)    
BPA 35 100 - 100  BPB 15 100 - 100 
(N = 15)     (N = 15)             

p¼ < 0.0000001 0.000000976 < 0.0000001  p¼ < 0.0000001 0.00005125 < 0.0000001  
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to move efficiently and coordinately through thy environment: in a brief 
24-h period, motoneurons differentiate, both in firing properties and 
peripheral innervation fields, in a manner that promotes the control of 
movement direction and speed during 3D navigation through the envi-
ronment [44]. 

Our results confirm BPA and BPB as teratogenic agent, reclassifying 
lethal effects as a consequence of teratogenicity itself: lethality resulted 
secondarily induced by specific severe malformations at the branchial 
apparatus, visible one day after the end of exposure. Relationship be-
tween branchial arch derivatives in amphibians and mammals is shown 
in Table 5 and suggest that early pregnancy exposure to BPA or BPB 
could elicit foetal effects with craniofacial and neck elements involved. 
In an in vivo rat study, BPA maternal treatment during organogenetic 
period was correlated to cleft palate [57]; in humans, a correlation be-
tween maternal environmental exposure to BPA and foetal severe mul-
tiple malformations [15] has been reported. No data are available on 
BPB. 

The specific BP-related teratogenic mechanism of action is not fully 
understood. According to previous works on BPA effects [23,58,59], we 
showed a correlation between BP-reated teratogenic effects and 

apoptosis. Considering that BPA induces apoptosis via oxidative stress in 
different cellular models [60,61], a complex teratogenic adverse 
outcome pathway can be hypothesised and needs further detailed ad hoc 
experiments investigating the linked molecular events. 

As far as the relative potency of BPB versus BPA is concerned, the 
present work clearly shows BPB sharing the same teratogenic activity 
than BPA, with a marked higher potency (BPB approximately three folds 
more potent than BPA for both endpoints). Structurally, BPB has an 
ethyl group on the central carbon atom instead of a methyl group found 
in BPA and shows more hydrophobic nature (a more hydrophobic nature 

Fig. 3. Main experiment: phenotypes observed at the end of R-FETAX in groups 
exposed at phylotypic stages (NF 10–26, teratogenicity window). 
External morphology: a-a’) normal phenotype of NF 46 tadpole. Note the linear 
encephalon (dotted line), the eye (*) representing the limit border between the 
anterior craniofacial region (#) and the branchial basket (+), the coiled in-
testine (>, index of NF 46 developmental stage reached) and the tail (ç). b) 
abnormal phenotype showing round head (dotted line) and ventral oedema (E). 
Normal coiling intestine (>). c) severe abnormal phenotypes with multiple 
defects, including round head, oedema and bent (B) or wavy (w) tail. Normal 
intestine coiling (>) confirms NF 46 stage reached. a-a’) DMSO-exposed 
tadpole; b) BPB 7.5 μM-exposed tadpole; c) BPB 7.5 μM-exposed tadpole. Red 
stain in the intestine= deglutition test positive. a-c) Magnification 8x; a’-b) 
Magnification 20x. 
Cartilage evaluation d-e (flat-mount technique, magnification 40x): structure of 
facial and branchial skeletal elements in a DMSO-exposed tadpole (d) and in a 
BPB 7.5 μM-exposed tadpole classified as abnormal at the external evaluation 
(e). In e facial elements are reduced but not fused (= maxilla, ◦ mandible, ce 
ceratohyal cartilage); gill basket (gb) is shorter and smaller than normal. 

Fig. 4. Superfast- R-FETAX. Morphology of tailbud exposed during the tera-
togenicity window (NF 10–26) and evaluated 1.5 days later (at NF 40) using a 
cold-light stereomicroscope (a, b). By definition, NF 40 stage is characterised by 
“mouth broken through, length of gills about twice their breadth, the anterior 
branched and posterior one sometimes also showing a branch, blood circulation 
in gills beginning, outlines of proctodeum and tail myotomes forming angles of 
90 degrees (>)”. A strict correlation between abnormal gill primordia and 
apoptosis was evident: acridine orange staining shows fluorescent bright green 
apoptotic areas in atypical gill primordia (b’). Unspecific yolk auto-fluorescence 
was visible at the ventral region (*, where the yolk mass (a-b, #) is abundant in 
intestines) in all samples. a-a’, DMSO normal sample, b-b’ BPA 25 μM sample 
with reduced gill primordia, characterised by marked fluorescence. Dotted 
boxes indicate the branchial region. Magnification: a-b 20x; a’-b’ 80x. 
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increases its oestrogenic activity) [62]. Finally, literature demonstrated 
that, in comparison to BPA, BPB shows slow aerobic and anaerobic 
biodegradation, possesses more acute toxicity and it is slightly more 
cytotoxic than BPA and that it can possess genotoxic potential too [62]. 
These considerations and our data support that the use of BPB as BPA 
substitute should require further focused assessments. 

Finally, our present work shows BP-related neuro-behaviour defects 
in tadpoles exposed during neuro-cognitive sensitive stages. The present 
work excludes indirect effects on swimming performances (samples 
were not affected by developmental delays, tail defects or other abnor-
malities), therefore a direct effect of BPA and BPB on swimming per-
formances was demonstrated. The involved specific pathogenic 
pathways for neuro-behavioural toxicity were not investigated by our 
present work and ad hoc experiments to explain this interesting point 
are needed. These data must be considered only preliminar and need an 
ad hoc refined evaluation including increasing the sample size and 
investigating eventual involved pathogenic pathways. 

In conclusion, R-FETAX methodology resulted sensitive to detect 
teratogenic and neuro-behavioural effects related to BP-exposure. We 
suggest R-FETAX as a rapid, unexpensive and sensitive method as 
elective for screening known or suspected endocrine-disrupting chem-
icals or their mixtures, potentially detrimental to aquatic and terrestrial 

systems and to human development. 
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Fig. 6. Exponential models showing teratogenicity dose-response curves of BPA (a) and BPB (b) and curves modelled fixing c= 0 to derive the relative potency factor 
(RPF, c), indicating BPB (red line, cross) nearly three times more potent than BPA (black line, triangles). X axis= log10 dose; Y axis= % total effect (dead 
+ malformed). 

Table 3 
Main test: lethal, teratogenic (abnormal) and total (dead + abnormal) effects observed in groups exposed to BPA or BPB during neuro-behavioural toxicity window 
(tadpole period, NF 38–46). Statistics (Chi-square for trend, calculated on frequencies) are shown.  

Concentration 
(μM) 

Dead (% of 
exposed) 

Abnormal (% of living 
tadpoles) 

Total 
(% of 
exposed)  

Concentration 
(μM) 

Dead (% of 
exposed) 

Abnormal (% of living 
tadpoles) 

Total 
(% of 
exposed)              

DMSO (BPA 
0) 

4.2 0.0  4.2   DMSO (BPB 0) 4.2  0.0  4.2 

(N = 24)       (N = 24)      
BPA 10 0.0 0.0  0.0   BPB 5 0.0  0.0  0.0 
(N = 15)       (N = 9)      
BPA 20 0.0 0.0  0.0   BPB 7.5 11.1  0.0  11.1 
(N = 15)       (N = 9)      
BPA 25 0.0 0.0  0.0   BPB 10 11.1  0.0  11.1 
(N = 18)       (N = 9)                   

p¼ 0.2032   0.2031   p¼ 0.4566    0.4566  
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