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ABSTRACT: Botulinum toxin injections ameliorate
dystonic symptoms by blocking the neuromuscular
junction and weakening dystonic contractions. We
asked if botulinum toxin injections in dystonia patients
might also affect the integrity of sensorimotor cortical
plasticity, one of the key pathophysiological features of
dystonia. We applied a paired associative stimulation
protocol, known to induce long-term potentiation–like
changes in the primary motor cortex hand area to 12
patients with cervical dystonia before and 1 and 3
months after botulinum toxin injections to the neck
muscles. Primary motor cortex excitability was probed
by measuring transcranial magnetic stimulation-evoked
motor evoked potentials before and after paired asso-
ciative stimulation. We also measured the input–output
curve, short-interval intracortical inhibition, intracortical
facilitation, short afferent inhibition, and long afferent
inhibition in hand muscles and the clinical severity of

dystonia. Before botulinum toxin injections, paired asso-
ciative stimulation significantly facilitated motor evoked
potentials in hand muscles. One month after injections,
this effect was abolished, with partial recovery after 3
months. There were significant positive correlations
between the facilitation produced by paired associative
stimulation and (1) the time elapsed since botulinum
toxin injections and (2) the clinical dystonia score. One
effect of botulinum toxin injection treatment is to modu-
late afferent input from the neck. We propose that sub-
sequent reorganization of the motor cortex
representation of hand muscles may explain the effect
of botulinum toxin on motor cortical plasticity. VC 2011
Movement Disorder Society
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Primary dystonia is a movement disorder character-
ized by sustained muscle contractions that cause
abnormal postures of affected body parts.1 Lack of in-
hibition at multiple central nervous system levels2–4

and abnormal senorimotor cortical plasticity both con-
tribute to the pathophysiology of dystonia.5,6 In dysto-
nia, enhanced cortical plasticity extends beyond the
clinically affected region and may be detected in unaf-
fected upper limbs of patients with cervical dystonia.7

Botulinum toxin (BT) inhibits acetylcholine release
from a-motoneurons and is used as an effective treat-
ment for different forms of dystonia. Although clinical
improvement roughly parallels weakness caused by
injections, it is commonly observed that clinical benefit
seems out of the proportion to the weakness, suggest-
ing an additional, possibly central effect of BT.8,9 The
effects of BT in dystonia have been addressed in sev-
eral studies.8–13 For example, the tonic vibration reflex
in patients with writer’s cramp is suppressed to a
greater extent than maximal voluntary contraction
(MVC) and maximum M wave amplitude (M-max) af-
ter BT injections, and this effect persists even when
MVC and M-max return to baseline, but while
patients are still experiencing some benefit from injec-
tions.9 BT treatment normalizes reduced spinal
reciprocal inhibition8 and reduced intracortical inhibi-
tion.10 Abnormal cortical hand representations revert
to normal in patients with focal limb or cervical dys-
tonia after BT injections.11,12 BT has also been shown
to reduce abnormally enhanced plasticity of the tri-
geminal blink reflex in patients with blepharospasm.13

These effects have been explained in part by a change
in Ia afferent input from muscle spindles caused by
BT.14,15

In the present study, we hypothesized that BT injec-
tions might affect abnormally enhanced sensorimotor
cortical plasticity, a key feature of primary dystonia.5,6

We studied the response to the paired associative stim-
ulation (PAS) protocol in patients with cervical dysto-
nia (CD), with or without arm involvement, before
and 1 and 3 months after BT injections into the neck
muscles.

Patients and Methods

Subjects

We studied 12 patients (8 women; mean age, 53
years; range, 30–72 years) with clinically definite pri-
mary CD. Six patients had pure focal CD, and 6
patients had CD with mild arm involvement (4 writing
dystonia and 2 dystonic arm tremor) that did not
require treatment. For clinical assessment of dystonia,
we used the Burke-Fahn-Marsden (BFM) scale rather
than a specific CD scale in order to capture the addi-
tional arm involvement in CD and any possible
change with BT injections to the neck muscles. All but

1 patient were chronically treated with BT type A
(Dysport, Ipsen, Slough, UK). BT was injected solely
into cervical muscles, and none of the patients had
ever had injections into arm muscles. At the time of
the study, no patient was receiving medication that
could affect the measures performed. Patients’ clinical
and demographic data are given in Table 1. Written
informed consent was obtained from patients, and the
study was approved by the local ethics committee and
conducted in accordance with the Declaration of
Helsinki.

Electromyographic Recordings

Electromyographic (EMG) recordings were made
from the abductor pollicis brevis (APB) and first dorsal
interossei (FDI) muscles of the right side with Ag-
AgCl surface electrodes using a belly-tendon montage.
EMG signals were amplified (1000�) and band-pass
filtered (bandwidth from 20 Hz to 2 kHz) with a Digi-
timer D360 amplifier (Digitimer, Hertfordshire, UK),
acquired at a sampling rate of 5 kHz through a 1401
laboratory interface (Cambridge Electronic Design,
Cambridge, UK). The EMG traces were analyzed
using customized Signal version 4.00. The level of
background EMG activity was carefully monitored,
and trials with background EMG activity were
rejected.

Transcranial Magnetic Stimulation

Single- and paired-pulse transcranial magnetic stim-
ulation (TMS) of the left primary motor cortex was
applied through Magstim 2002 magnetic stimulators
with a monophasic current waveform (Magstim Com-
pany, Carmarthenshire, Wales, UK). Repetitive TMS
of the left primary motor cortex (M1) was delivered
through a Rapid-Stim stimulator (Magstim Company,
Dwyfed, UK). The magnetic stimulators were con-
nected to a figure-of-eight coil with a mean loop diam-
eter of 7 cm. The coil was held tangentially to the
skull with the handle pointing backward and laterally
at an angle of about 45 degrees to the sagittal plane.
The ‘‘hot spot’’ was marked on the participant’s head
over the optimal scalp position for eliciting motor
evoked potentials (MEPs) of maximal amplitudes in
the contralateral APB muscle. Resting and active
motor thresholds (RMT and AMT) were calculated
using standard methods.16

Short-latency intracortical inhibition (SICI) and
intracortical facilitation (ICF) were determined accord-
ing to the paired-pulse paradigm described by Kujirai
et al.17 The intensity of the conditioning stimulus was
80% of active motor threshold, whereas the intensity
of the test stimulus was set to evoke MEPs with peak-
to-peak amplitudes of approximately 1 mV. SICI and
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ICF were assessed at an interstimulus interval (ISI) of
2 and 12 ms, respectively.
Short-latency afferent inhibition (SAI) and long-la-

tency afferent inhibition (LAI) were assessed according
to the protocol by Tokimura et al,18 at an ISI of 25
and 200 ms, respectively.
After rapid paired associative stimulation (rPAS), for

assessments of SICI, ICF, SAI, and LAI, the intensity
of the test stimulus was readjusted to evoke MEPs of
approximately 1 mV.
Repetitive TMS was delivered according to the rapid

PAS (rPAS) protocol.19 The intensity for the median
nerve stimulation was 200% of the perceptual thresh-
old. The intensity of TMS was individually adjusted to
90% AMT.

Experimental Design

Subjects were studied in 3 sessions: before BT injec-
tions and 1 and 3 months after BT injections (Fig.
1A). In all subjects, at least 3 months elapsed between
previous injections and the first experimental session
(Table 1). In each session TMS parameters were meas-
ured at 4 time points: before rPAS, immediately after
rPAS (0 minutes), and 30 and 60 minutes after rPAS
(Fig. 1B). Before rPAS, in each patient we set the TMS
intensity required to evoke MEPs in the APB muscle
of approximately 1-mV peak-to-peak amplitude (1-
mV MEP threshold). At each time point, 20 MEPs
were collected, using TMS intensity of 1-mV MEP
threshold. Before rPAS in each session, we also meas-
ured the MEP input–output (IO) curve in 7 steps,
using the TMS intensity from 70% to 130% of the 1-
mV MEP thresholds.

Statistical Analysis

To test if the subjects with arm involvement had dif-
ferent responses to rPAS than did the patients with
isolated CD, we first used a preliminary 3-way analy-
sis of variance (ANOVA)—arm involvement � BT
injections � rPAS. Similarly, to look if the response to
rPAS depended on the main direction of head rotation,
we used 3-way ANOVA (head rotation [left or right]
� BT injections � rPAS). Then we used repeated-
measures ANOVA to determine the interaction
between BT injections and our measures of interest:
baseline measures of cortical excitability (including IO
curves), response to rPAS, SICI, ICF, SAI, and LAI.
Where significant effects or interactions were found,
post hoc tests with Bonferroni corrections were used.
The clinical effect of BT injections was assessed by
nonparametric Friedman’s ANOVA. We also corre-
lated the rPAS response at 30 minutes (as a percentage
of the pre rPAS MEP amplitude) in the first session
with patients’ demographic characteristics, using
Spearman’s correlation analysis. In addition, a correla-
tion analysis was performed between normalized rPAS
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response at 30 minutes (as the response peaked at 30
minutes) in the first, second, and third sessions and
the time elapsed since the previous BT injections (in
weeks) and BFM score. Because in this analysis
within-subjects repeated measures are combined, the
correlation coefficient was calculated according to the
Bland and Altman correction.20 In all tests, the level
of statistical significance was P < .05. Data were
expressed as means 6 1 standard error of the mean
(SEM).

Results

Clinical Effect of BT Injections

As expected, there was clinical improvement in dys-
tonia after BT injections (Friedman’s v2(2) ¼ 10.8, P <
.01). Post hoc analysis showed that the BFM score
was significantly lower (indicating less severe dystonia)
1 month after injections than before and 3 months af-
ter BT injections (P < .01), whereas no significant dif-
ference was found in BFM score before and 3 months
after BT injections.

BT Injections into Neck Muscles Do Not
Modify Baseline Cortical-Spinal Excitability

BT did not change the RMT or AMT of the APB
muscle. A 2-way ANOVA comparing the MEP IO
curve before rPAS in each of the 3 sessions showed a
significant effect of stimulus intensity (F2,4 ¼ 41.15, P
< .01), but no effect of BT injections and no stimulus
intensity � BT injections interaction. Further analysis
of the IO curve in the range of intensities from 90%
to 110% of 1-mV MEP, which corresponds to the
range of MEP amplitudes before and after rPAS in all

3 sessions, confirmed that there was a main effect of
stimulus intensity, but no effect of BT injections or
interaction.

BT Injections Reduce rPAS Response in APB
and FDI Muscles

Patients with additional arm involvement (6 of 12)
did not differ from patients with isolated CD (6 of 12)
in response to rPAS in any of the 3 sessions. With
regard to the main direction of head rotation, no sig-
nificant 2-way—head rotation � rPAS—or 3-way—
head rotation � rPAS � BT injections—interactions
were found. Therefore, all subsequent analyses were
done on the group of patients as a whole.
For APB muscle, a 2-way ANOVA revealed a signif-

icant effect of BT injections (3 levels: before BT and 1
and 3 months after BT; F2,22 ¼ 6.46, P < .01) and
rPAS (4 levels: before rPAS and 0, 30, and 60 minutes
after rPAS; F3,33 ¼ 3.66, P < .05), as well as a signifi-
cant interaction (F6,66 ¼ 3.06, P < .01); see Figure 2.
Post hoc analysis for the factor BT injections showed
that the mean MEP amplitude was lower 1 month af-
ter BT injections compared with the values before BT
injections and 3 months after injections (P < .01).
Post hoc analysis for the factor rPAS showed that the
mean MEP amplitude was significantly higher 30
minutes after rPAS, compared with at the other time
points (P < .05). The BT injections � rPAS interaction
was further explored by examining the main effect of
rPAS separately within each experimental session. This
showed a significant effect of rPAS before BT injec-
tions (F3,33 ¼ 4.86, P < .01) but not after 1 month
(F3,33 ¼ 0.18, P > .05) or after 3 months (F3,33 ¼
1.85, P > .05). There was a nonsignificant trend for
rPAS response to be greater at 3 months post-BT com-
pared with 1 month post-BT.
In the FDI muscle ANOVA revealed a significant

effect of BT injections (F2,22 ¼ 7.60, P < .01),
whereas rPAS or the interaction BT injections � rPAS
was nonsignificant. Similarly to the APB muscle, the
mean FDI MEP amplitude after rPAS was lower 1
month after BT (P < .01) compared with the values
before BT, but not different from the value at 3
months.
To compare whether the APB and the FDI behaved

similarly in response to rPAS and BT,5,7 for each indi-
vidual we expressed the average facilitation 0, 30, and
60 minutes after rPAS as a percentage of the corre-
sponding baseline values. A 2-way ANOVA with the
main factors muscle (APB and FDI) and BT injections
revealed a significant effect of BT injections (F2,22 ¼
4.04; P < .05) but not of muscle or the interaction
muscle � BT injections. We concluded that rPAS
response in relation to BT injections was similar in
APB and FDI muscles.

FIG. 1. Experimental design. A: The experiment was designed to
study the response to rapid paired associative stimulation (rPAS)
before, 1 month, and 3 months after BT injections. B: In each session
we measured: (1) M1 excitability (AMT, RMT, 1-mV MEP, and I/O
curve), (2) intracortical excitability (SICI and ICF), and (3) sensorimotor
integration (SAI and LAI). All measurements were repeated before
rPAS and 0, 30, and 60 minutes after rPAS, except for the AMT and IO
curve, which were measured only before rPAS.
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rPAS and BT Do Not Modify
Intracortical Excitability and

Cortical Sensorimotor Integration

There was no effect of rPAS or BT injections on SICI
and ICF or on SAI and LAI (Fig. 3).

rPAS Induced Plasticity Correlates with
Dystonia Severity and the Time after

Previous BT Treatment

There was a significant positive correlation between
the normalized MEP amplitude 30 minutes after rPAS

and (1) the time elapsed after BT injections (R2 ¼
0.37, P < .01) and (2) the severity of dystonia
assessed by BFM score (R2 ¼ 0.30, P < .01); see Fig-
ure 4.
There were no significant correlations between

patient age, disease duration, duration of BT treat-
ment, or dose of the last BT injections and rPAS
response.

FIG. 2. Botulinum toxin injections in dystonic neck muscles abolished rPAS-induced plasticity of the primary motor cortex hand area. Before botuli-
num toxin (BT) injections (A), rPAS induced powerful plastic changes of hand cortical-spinal excitability: MEPs in abductor pollicis brevis (APB) and
first dorsal interossei (FDI) muscles increased in amplitude immediately after rPAS (0 minutes), reaching a peak after 30 minutes. One month after
BT injections (B), rPAS response was completely abolished and partially recovered 3 months after (C).

FIG. 3. SAI and LAI in response to rPAS and BT injections. Patients
with CD showed no short afferent inhibition (SAI) at an ISI of 25 ms
(A), whereas long afferent inhibition (LAI) was present (B). Transmission
in both SAI and LAI circuits was not modulated by BT injections or by
rPAS.

FIG. 4. Correlation between rPAS-induced plasticity of the primary
motor cortex and clinical symptoms of dystonia. Peak-to-peak ampli-
tude of the normalized APB MEPs recorded 30 minutes after rPAS
positively correlated with the time elapsed since the previous BT injec-
tions in weeks (A) and with the Burke-Fahn-Marsden dystonia severity
score (B). Each patient with its corresponding values of rPAS response
(A) or BFM score (B) is plotted 3 times—before BT injections and 1
and 3 months after BT injections.
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Discussion

Here we report that BT transiently abolished the
response to an experimental sensorimotor plasticity
protocol in CD patients. Before BT injections, rPAS
significantly facilitated MEP amplitude in the hand
muscles. One month after injections this facilitation
was suppressed, whereas after 3 months it partially
recovered. The response to rPAS correlated signifi-
cantly with the time elapsed after previous BT injec-
tions and with the clinical severity of dystonia as
measured by BFM total score. We saw no improve-
ment in the severity of arm dystonia in those patients
with CD and arm involvement after injections into the
neck muscles. This suggests that the effect of BT on
cortical plasticity alone may not be sufficient to clini-
cally affect dystonia of noninjected muscles, but may
contribute to the clinical benefit seen in the injected
muscles. However, when using kinematic assessment,
there is evidence that BT may improve kinematic
abnormalities in arm muscles,21 even when injections
are given elsewhere. This provides some support for
the hypothesis that central changes in noninjected
muscles such as we have revealed may have some
functional benefit.

Possible BT Action Mechanism on
Cortical Plasticity

BT can affect the release of neurotransmitters im-
portant in brain plasticity and is used in animal stud-
ies to block the connection between different brain
areas in order to study changes in brain plasticity.22–24

Although there is some evidence to support hematoge-
nous and axonal spread of large doses of BT in
animals,25,26 similar evidence in humans is lacking.
Therefore, a direct central effect of BT on plasticity in
our patients seems unlikely, particularly at the doses
used for treatment of dystonia.
Another explanation for our results is that the effect

of BT on cortical plasticity may be secondary to
changes in motor maps that occur after afferent input
from cervical muscles is altered by injections.11,12 A
considerable body of evidence demonstrates the im-
portance of afferent input in modulating cortical orga-
nization and excitability.27–30 In dystonia, changes in
‘‘motor maps’’ of hand muscles have been described
after BT injections.11,12 Thickbroom et al11 reported
that in patients with CD, motor maps of APB are dis-
placed in the hemisphere contralateral to the direction
of head rotation. After BT injections into cervical
muscles, APB motor maps reverted to a more normal
position, thus showing that changes in motor cortical
topography after injections may affect representations
of nontreated muscles. This may be relevant for the
experimental plasticity protocol we used. PAS relies
on the interaction between sensory afferents and

motor output of homologous muscle. If motor maps
change in location after BT, then there may be a
degree of disconnection between sensory afferents and
the altered location of the hand motor maps, leading
to a reduced PAS response measured in hand muscles.
In our study design, we studied the dominant hemi-
sphere in all patients, and a subgroup analysis com-
paring patients where the dominant hemisphere was
contralateral or ipsilateral to the main direction of
head turning did not reveal any significant differences
between groups. It is possible that our study was not
powered to detect such differences. However, most of
our patients had complex patterns of cervical dystonia
that did not easily segregate into simple left- or right-
head turning, and this might explain why no group
differences in BT effect on PAS response were found.

Measures of Intracortical Excitability and
Their Relation to BT Injections and rPAS

We did not find any interaction between our meas-
ures of cortical inhibition and facilitation and rPAS or
with BT injections. In particular, there was no effect
of BT injections on SICI, which is in contrast to the
findings of Gilio et al.10 This disparity may be a result
of methodological differences, as in their study Gilio
et al used different ISIs, of 3 and 5 ms, and studied
patients with more severe arm involvement (mainly
generalized dystonia), whereas we studied subjects
with CD with or without minor arm involvement.
Similar to our results, Boroojerdi et al31 did not report
any changes in SICI or ICF after BT injections in
patients with writer’s cramp. In patients with idio-
pathic rotational cervical dystonia who had never
been treated with BT, Kanovsky et al32 found signifi-
cantly decreased inhibition at 3 and 5 ms and signifi-
cantly increased facilitation at 15 and 20 ms in the
hemisphere contralateral to the direction of head devi-
ation when compared with the ipsilateral hemisphere.
In our patients, we always studied the dominant hemi-
sphere, and we did not find any differences in the
amount of SICI between patients where the dominant
hemisphere was contralateral or ipsilateral to the main
direction of head rotation. One explanation may be in
the more ‘‘complex" form of CD in our group, with
most patients having bilateral muscle involvement.

Measures of Sensorimotor Cortical Inhibition
and Their Relation to BT Injections and rPAS

LAI was present in our group of patients and was
not modified after rPAS or in relation to BT injections.
However, SAI at an ISI of 25 ms was absent and was
not modified after rPAS (Fig. 3). We measured SAI at
an ISI of 25 ms based on previous data on healthy
young subjects from Quartarone et al,19 who found
that at an ISI of 25 ms SAI is present and may be
modulated by rPAS. When Kessler et al33 studied SAI
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in patients with writer’s cramp at ISIs raging from 14
to 36 ms, the strongest inhibition was present at an
ISI of 20 ms. Therefore, it is possible that we may
have missed some subtle changes at shorter intervals.

Limitations of the Study

We did not record H reflex or F waves to monitor
possible changes in motoneuron excitability secondary
to BT. However, we did not find any effect of BT on
RMT, AMT, and IO curves, that is, in parameters
that test the excitability of the entire corticospinal
tract including the motoneuron. In line with our
observations, Priori et al8 found that 1 month after
BT injections to the arm, the Hmax:Mmax ratio was
unchanged, suggesting that BT does not affect moto-
neuron excitability. We found that BT injections
reduce cortical plasticity in chronically treated dysto-
nia patients, but we cannot comment if a similar effect
would be present in dystonia patients naive to BT.
Nevertheless, our single subject who was not previ-
ously treated with BT did not behave differently from
the whole group. One possible limitation of the study
is the lack of comparison with healthy controls. How-
ever, a number of previous studies on different forms
of dystonia, including CD, have demonstrated that
dystonia patients have an abnormally enhanced
response to PAS protocols compared with normal sub-
jects.5,7 Our primary interest was to see the change in
PAS response with BT injections rather than the abso-
lute level of PAS response at baseline. In the context
of this study, we consider that a comparison group of
CD patients treated with placebo injections or a
healthy participant group given botulinum toxin injec-
tions would not have been justified ethically. How-
ever, it should be noticed that in view of our study
design, we cannot comment if our patients at baseline
(before BT injections) differed in response to rPAS,
SICI, ICF, SAI, or LAI from normal subjects of a simi-
lar age.

Conclusions

BT injections into dystonic neck muscles decreased
sensorimotor associative plasticity in the hand area in
patients with CD. We propose that this central effect
is mediated by changes in motor maps caused by
reduced afferent input from neck muscles following
injections. Modulation of sensorimotor plasticity may
contribute to clinical benefit of BT injections in dysto-
nia over and above the effects of weakness of injected
muscles.
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