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Abstract: Consumers highly appreciate table grapes for their pleasant sensory attributes and as
good sources of nutritional and functional compounds. This explains the rising market and global
interest in this product. Along with other fruits and vegetables, table grapes are considerably
perishable post-harvest due to the growth of undesired microorganisms. Among the microbial
spoilers, Botrytis cinerea represents a model organism because of its degrading potential and the
huge economic losses caused by its infection. The present review provides an overview of the recent
primary physical, chemical, and biological control treatments adopted against the development of
B. cinerea in table grapes to extend shelf life. These treatments preserve product quality and safety.
This article also focuses on the compliance of different approaches with organic and sustainable
production processes. Tailored approaches include those that rely on controlled atmosphere and the
application of edible coating and packaging, as well as microbial-based activities. These strategies,
applied alone or in combination, are among the most promising solutions in order to prolong table
grape quality during cold storage. In general, the innovative design of applications dealing with
hurdle technologies holds great promise for future improvements.

Keywords: table grapes; Botrytis cinerea; grey mould; spoilage microbes; post-harvest; modified
atmosphere packaging (MAP); ozone (O3); antimicrobial compounds; preservatives; biocontrol

1. Introduction

Viticulture is one of the major forms of fruit crop cultivation worldwide, and its global
diffusion contributes considerably to human nutrition. The fruit has a non-climacteric character
with a quite low rate of physiological activity. Grapes (Vitis vinifera L.) are essential not only for
wine production but also for fresh consumption. Table grapes are highly appreciated by consumers,
primarily because of their sensory attributes, but also because of their vitamins and bioactive compounds
(e.g., flavonoids) [1]. More than 27 million tons of table grapes are produced worldwide annually
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(an increase of 71% since 2000), and about 4.2 million tons were exported among countries in
2014 [2]. Accordingly, increasing attention has been paid to lengthening the shelf-life of table grapes for
export. Prolonged storage time preserves marketability and adds value; however, it is often associated
with a decrease in overall product quality. In general, several factors, including bunch dehydration,
rachis browning, peel colour changes, lacerations and colonization by various spoilage fungi result in
significant economic losses.

Among other factors, fungal decay represents the principal factor responsible for post-harvest
deterioration in table grapes [3]. Botrytis cinerea is the main biological cause of post-harvest problems
since it is accountable for grey mould formation [4]. Indeed, this undesired fungus is ranked second in
the “world top 10 fungal pathogens in molecular plant pathology” in terms of economic and scientific
relevance, preceded only by Magnaporthe oryzae [5]. Fungal spores are generally present on the surface
of fruits, and, during post-harvest handling the berries can supply a suitable environment for spore
germination (mainly the damaged fruits) (Figure 1).
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Figure 1. Effect of grey mould on cold-stored cv. “Italia” table grape berries. Image from Ahmed et al. [3].

Moreover, the infection can occur during storage, marketing, and even after customer purchase.
In the vineyard, high relative air humidity and low environmental temperatures reduce the host’s
defences. This environment favours the rapid spread of contamination from a single berry to the
whole bunch [6,7]. During post-harvest treatments of fruits and vegetables, processing technologies
and biotechnologies provide physical, chemical, and biological hurdles to limit the development of
undesired microorganisms [8]. Changes in technical and technological solutions, consumer needs,
and regulatory framework lead to a continuous evolution of the handling procedures to limit decay
induced by spoilage fungi. All of these advances are generally tailored to reducing and averting spoilage
growth, but they are more broadly oriented towards optimization of global quality of production,
including safety, health properties, and sensory acceptability [9–12].

Among the economic and social trends, attention to sustainable viticulture and organic production
represents a field of high interest, as evidenced by the rising number of cultivated hectares worldwide
(Figure 2).

Nowadays, this kind of table grape cultivation is still increasing in diffusion and economic
importance [13]. The production of organic grapes necessitates compliance with specific regulations
that limit the chemicals allowed during production and distribution [14]. In general, organic-labelled
products are defined as those from plantations that respect and exploit biodiversity, organic turnovers,
and soil structure [14]. The European Union has led the cultivation of organic grapes globally,
followed by China, the United States of America, and Turkey [15]. Within Europe, the countries with
the most extensive acreages dedicated to organic farming are Spain and Italy (1.9 and 1.4 million
hectares, respectively; both contributing more than 100,000 hectares to the increase in organic land
observed in Europe) [15].

In recent years, different strategies have been proposed to control B. cinerea in order to improve the
management of post-harvest decay in table grapes and to prevent quality losses [16–18]. The present
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review aims to discuss the more recent investigations conceived to control B. cinerea decay in table
grapes, including the primary physical, chemical, and biological approaches.
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Figure 2. Global area for the cultivation of organic grapes in the period 2004–2015. Source:
Research Institute of Organic Agriculture (FiBL) and IFOAM—Organics International—SOEL magazine
(2006–2017).

2. Physical Methods to Control B. cinerea in Table Grapes

Physical technologies mainly include modification of several parameters such as temperature,
absolute and relative gas pressure, UV irradiation, and sonication. Table grapes for fresh consumption
often need a long period of storage for commercial purposes such as export and ready-to-eat.
They are usually stored in chambers with strictly controlled temperature and humidity. To this aim,
cold storage (~0 ◦C) is the primary method to avoid post-harvest infections without affecting the
main physicochemical features of the product [19]. However, B. cinerea survives at low temperatures,
and any variation of temperature can promote water condensation, thus favouring fungal growth
and sporulation [20]. In general, physical methods are often considered eco-friendly and residue-free
emerging technologies, widely accepted by consumers. Although these methods have been extensively
investigated in different fruit and vegetable products, only a few studies report their employment for
the reduction of grey mould in table grapes (Table 1).

Surface sanitation is the main strategy implemented to control microbial contamination of fruits
and it can be achieved by using different methods. Among these, dipping in hot water (about 50 ◦C)
is an interesting option to prolong the shelf-life of fruits and vegetables [33,34]. Treatments at 50 ◦C
for 10 min, or at 55 ◦C for 5 min, are sufficient to reduce the fungal growth, maintaining product
quality because it does not alter the grape’s organoleptic profile [21,22]. Accordingly, it allows for the
marketability of minimally-processed and ready-to-eat table grapes [21,22]. Nonetheless, more studies
are requested to improve the processing conditions, i.e., temperature and time of exposure against
B. cinerea contamination.
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Table 1. Main physical methods investigated in the last ten years against grey mould decay in table grapes.

Physical Methods Treatment Intensity Cultivar Effects Ref.

Hot Water Treatments
Dipping for 5 min at 55 ◦C Müşküle and Red Globe Low decay rate after three weeks of cold storage; sensory evaluation

results showed no alteration of flavor and taste [21]

Dipping for 10 min at 50 ◦C Crimson Seedless Inhibition the microbial growth during storage without significant
changes in texture, titratable acidity, and soluble solids content [22]

Ultrasound 32 kHz at 20 ◦C for 10 min Michele Palieri
Combined with putrescine, the treatment maintained high levels of
anthocyanins, total phenolic content, antioxidant capacity, sensory

acceptability and reduced decay incidence during storage
[23]

UV-C Irradiation Two times at 6.0 kJ/m2 for 1 min
at 60 cm

Crimson Combined with chitosan coating, the treatment increased the resveratrol
content, maintained sensorial quality, and reduced fungal decay [24]

High Pressure 0.15 MPa for 24 h at 20 ◦C Italia Reduction of lesion diameter and decay rate after three days of shelf-life [25]

Electrolyzed oxidizing
water

(250 ppm TRC; pH = 6.3–6.5;
ORP = 800–900 mV, 1% NaCl)

dipping and daily spray
Thompson seedless Prevention of infection until seven days; 1% of incidence and 2% of

severity were reported after 10 days of shelf-life at 25 ◦C [26]

CA

12% O2 + 12% CO2
Flame Seedless and
Crimson Seedless

Combined with CO2, the treatment limited decay incidence in both
naturally and artificially infected grapes [27]

0.3 µL/L O3 Sultanina Reduction of fungal decay during 40 days of cold storage; no significant
alteration of quality characteristics [28]

0.1 - 0.3 µL/L O3 Crimson Seedless Reduction of natural incidence of decay by approximately 65% after
five–eight weeks of storage. [29]

MAP

Passive modifications
packaging-induced Vittoria and Red Globe Reduction of weight losses, rachis and berry decay [30]

2% O2 + 5% CO2 Scarlotta

Combined with O3, the treatment was efficient in decay control but
caused sensorial quality losses (intense stem browning,

off-flavors perception)
Combined with CO2, the treatment controlled the concentration of
acetaldehyde, preserved rachis chlorophyll content and skin color;

also, cumulative decay incidence was reduced

[31]

Initial concentration of 10% CO2 Italia Decay control during 14 days of cold storage, and three days of shelf life,
low acetaldehyde, and ethanol accumulation [32]
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Ultraviolet irradiation (UV) (wavelengths between 10 to 400 nanometers (nm)) and sonication
by ultrasound are non-thermal treatments considered simple, reliable, and eco-friendly emerging
technologies for lengthening the shelf life of fresh fruits during storage. Ultraviolet irradiation C (UV-C,
10–280 nm) treatment induced a general stimulation of the phenylpropanoid pathway, associated with
plant defence mechanisms, leading to an increased resistance to the diseases in artificially inoculated
berries [24]. UV-C irradiation is effective, with dosages between 0.125 to 0.5 kJ/m2 at a fixed distance
of 25 cm [35]. In a recent study, harvested ‘Crimson’ red table grapes were exposed to an increased
UV-C intensity (6.0 kJ/m2), for two illumination periods of 1 min with a specific distance of 60 cm and
then maintained at 20 ◦C for 24 h, followed by cold storage [24]. Regarding ultrasound application,
Bal et al. [23] demonstrated the effectiveness of this treatment at 32 kHz, in a distilled water chamber at
20 ◦C for 10 min. Their study produced encouraging results in preserving grape quality throughout
storage for 60 days. A reduction of decay rate was shown and evaluated by scoring the number
of contaminated berries, from 2.8 (water-treated control) to 1.5 (ultrasound treated grapes), in an
acceptability scale from 1 to 5 points (1 = no decay; 5 = over 20 decayed berries per bunch in a box of
5 kg grapes). It is essential to underline that, in the last two studies, both UV irradiation and sonication
are also compared to treatments which combine physical methods with biological compounds, such as
chitosan (an antimicrobial linear polysaccharide derived from chitin) and putrescine (biogenic diamine,
a class of compound with relevant biological properties), respectively.

Few studies are reported on the use of high hydrostatic pressure and electrolyzed oxidizing water
(EOW), especially on table grapes. Romanazzi et al. [25] investigated the efficiency of hyperbaric
treatments at 0.15 MPa for 24 h, on artificially inoculated ‘Italia’ table grapes berries, during simulated
shelf-life for three days at 20 ◦C. A significant reduction of the infected berries (from 49.0 to 30.8 %)
and of their lesion diameter (from 8.7 to 7.2 mm) was reported for the treated grapes, when compared
to control fruits stored at ambient pressure [25]. Electrolyzed oxidizing water is produced through the
controlled electrolysis of sodium chloride solutions. Dipping in EOW [250 ppm total residual chlorine
(TRC); pH = 6.3–6.5; ORP = 800–900 mV, 1% NaCl] was adequate to prevent the infection of green
table grapes artificially contaminated with B. cinerea until one week, showing a decay rate of 2% after
ten days of storage at 25 ◦C [26]. Interestingly, a dipping treatment followed by a daily spray of grapes
with EOW prevented the infection until 24 days, showing a daily decay rate of 2% after 26 days of
storage at 25 ◦C [26].

The modification of absolute and relative gas pressure, in association with low temperatures
during storage, is an important strategy to enhance the shelf life of fruits and vegetables [36].
The main methods include controlled atmosphere (CA) and modified atmosphere packaging (MAP).
CA is defined as an atmosphere different than air, applied to commodities in the storage chamber.
MAP involves a change in gas environment in packaged commodities, as a result of respiration
(passive MAP) or by the different gas permeability of the packaging (active MAP) [37]. The latter
method has received considerable attention because of the possibility of maintaining modifications
up to consumption [38–40]. In both CA and MAP approaches, the use of different gas composition
(e.g., changes in ratio Oxygen (O2)/Carbon dioxide (CO2)) aims to minimize the metabolic activity
and oxidative phenomena, thus reducing the physiological decay caused by aerobic microorganisms
(e.g., B. cinerea) [36,39]. In table grapes, an atmosphere with different gas composition, including high
CO2/low O2 concentrations [41–43], and the addition of O3 [42], has the effect of reducing decay.
Furthermore, this strategy retards senescence, reduces stem and berry respiration, limits rachis
browning, and preserves berry firmness [41–43]. However, CO2 concentrations >10% reportedly
promote off-flavor development, rachis and berries’ browning [43]. CA with ozone (O3) at 0.3 µL/L
was assessed as the minimum concentration to significantly inhibit decay development, in artificially
contaminated berries, up to seven weeks in cold storage [28,44]. Recently, in similar storage conditions,
ozone-CA with 0.1 µL/L in the day and 0.3 µL/L at night, was found to effectively reduce grey mould,
even after 68 days, with a maximum disease incidence of 2.1%, comparable to weekly SO2-fumigated
grapes [29]. Passive MAP in micro-perforated polypropylene films, was found to have the highest
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performance in the decay management of ‘Vittoria’ and ‘Red Globe’ table grapes [30]. Cefola and
Pace [32] reported best results on ‘Italia’ table grapes, after 14 days of cold storage and three days of
shelf-life, by using MAP with an initial concentration of 10% CO2, both in terms of sensory quality
preservation and decay control. Considering that the use of massive doses of gas in a single pre-storage
application can be defined as a sanitation procedure, we refer the discussion to chemical methods
following section.

3. Chemical Methods to Control B. cinerea in Table Grapes

At present, sulphur dioxide (SO2) remains the main method that is used to control the microbial
spoilage of post-harvest fruit commodities. The employment of SO2 provides long term storage due to its
antioxidant, antibacterial, antifungal and anti-browning properties [19,45]. However, excessive residue
levels of SO2 in berry peels can result in quality deterioration, such as bleached berries, production of
off-flavour, or hairline disorder [46,47]. Significant health risks to consumers are also reported due to
the emergence of allergies, nausea, respiratory distress and skin rashes [48]. For this reason, the United
States Environmental Protection Agency (USEPA) categorized SO2 as a pesticide, with maximum
tolerance in final products of 10 ppm, and, more generally, sulphur dioxide residuals on table grapes
are internationally regulated, including in the European Union [49,50]. Its use is also excluded from
certified “organic” grapes [16]. Therefore, several chemical alternatives have been proposed to replace
SO2 in the restraint of B. cinerea in table grapes (Table 2).

The use of conventional synthetic fungicides is generating increasing concern among consumers
due to the potential negative effects on human health [61], soil microbiota [62], and on microorganisms
beneficial for food and beverage fermentations [63]. Even if the use of conventional synthetic fungicides
is forbidden for organic grapes [14], application is widespread to prevent spoilage mould formation
in conventional agriculture [64]. Despite the fact that some studies have focused on the positive
action of different combinations of synthetic fungicides or bioactive compounds [51], the occurrence of
resistant strains of B. cinerea has been reported [65]. The most recently introduced class of synthetic
fungicides belongs to the Succinate Dehydrogenase Inhibitors (SDHIs) [66]. In 2012, a novel SDHI,
named fluopyram, was registered against B. cinerea and it was able to control grey mould infections
in table grapes, with efficacy of inhibition in the range 80.1–94.4% [52]. However, high risks of rapid
occurrence of resistance without appropriate management has already been underlined in other
crops [67]. For this reason, alternative control methods are needed. Among these, resistance induced
by elicitors, molecules able to activate defence gene expression and enhance their antimicrobial-related
pathways [68], is an attractive alternative because it is associated with minor environmental risk.
Acibenzolar-S-methyl is a commercial elicitor able to activate the phenylpropanoid pathway, which leads
to the accumulation of lignin, phenolic compounds and flavonoids [68]. In table grapes, it can be
used as spray aspersion or dipping solution, both with a significant reduction in terms of decay
incidence [53].
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Table 2. Main chemical methods investigated in the last ten years against grey mould decay in table grapes.

Molecules Treatment Concentration Cultivar Effects Ref.

Liquid

Pyrimethanil Wound inoculation 50 mg/L Crimson Seedless Combined with resveratrol (1 g/L), the treatment reduced
disease incidence and lesion diameter [51]

Fluopyram Spraying 250 µg/mL Italia Efficacy against fungicide-resistant fungal strains [52]

Acibenzolar-S-methyl Dipping 1% w/v Italia and Benitaka
Reduction of grey mould development after one month

of cold storage and one week of shelf life,
without alteration of the physicochemical quality

[53]

Ethanol Dipping 32 % Scarlotta Seedless Reduction of berries decay until ten weeks of storage [54]

FeSO4, NH4HCO3,
Na2SiO3, NaHCO3

and Na2CO3

Dipping or spraying 1% w/v Benitaka
Decay incidence reduced, no impact on berries quality
parameters with minor exceptions which were at an

acceptable level
[55]

Gas

Ethanol Vapour-generating
bags - Red Globe

Comparable to SO2 treatments in decay control,
the treatment enhanced berry colour, but caused

stem browning
[56]

Chlorine dioxide
(ClO2) Injection in bag 2.5 mg/5 kg Kyoho Reduction of berry decay and rachis browning [57]

Nitrous oxide
(N2O) Fumigation 50 µL/L Munage Reduction of lesion diameter and decay incidence [58]

Carbon dioxide
(CO2)

Fumigation 20 % Cardinal The treatment avoided post-harvest losses in terms of
water loss, oxidative damage and disease prevention [59]

Fumigation 40% Flame Seedless and
Crimson Seedless

Combined with CA, the treatment limited decay
incidence in both naturally and artificially infected grapes [27]

Fumigation 50–70% Scarlotta
Combined with MAP (2% O2 + 5% CO2), the treatment

was efficient in decay control but caused sensorial quality
losses (intense stem browning, off-flavours perception)

[31]

Ozone (O3)

Fumigation 20 µL/L Scarlotta

Combined with MAP (2% O2 + 5% CO2), the treatment
controlled the concentration of acetaldehyde, preserved

rachis chlorophyll content and skin colour;
the cumulative decay incidence was also reduced

[31]

Periodic fumigation 2 µL/L
Superior Seedless,

Cardinal CL80,
and Regina Victoria

The treatment increased resveratrol content but led to
low scores in sensory evaluation; high weight loss was

also reported
[60]
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Other chemicals are widely used as dipping solutions to sanitize fruit surfaces. The treatment of
grapes by immersion or spraying with solutions of different generally recognized as safe (GRAS) salts
at 1% reduced the percentage of spoiled fruit. This was the case with iron sulphate (FeSO4) (92%),
ammonium bicarbonate (NH4HCO3) (91%), sodium silicate (Na2SiO3) (89%), sodium bicarbonate
(NaHCO3) (76%) and sodium carbonate (Na2CO3) (74%) (application in pre-harvest, decay measured
post-harvest) [55]. However, treatment with FeSO4 could cause small black spots on the grape
surface [55]. Disinfection by dipping in 32% ethanol, followed by six weeks of cold storage,
reduced natural decay incidence on ‘Scarlotta Seedless’ from about 60% to 4.1% [54]. Nevertheless,
the use of large quantities of ethanol is expensive and may be dangerous, due to its flammability.
A more practical method is the use of ethanol vapour-generating bags, that confer longer protection,
effectively reducing decay incidence in artificially inoculated grapes stored for one month, in a
comparable way to SO2 generating-pads in polyethylene bags [56]. In this case, significantly lower
weight loss and moderate stem browning were also observed [56]. Furthermore, it is relevant to
underline that active coatings associated with selected films represent a promising strategy to increase
table grape shelf life [69].

Recently, Gorrasi et al. [70] demonstrated the efficacy of active packaging based on a food
grade acrylic resin filled with Layered Double Hydroxide (LDH) nanofiller hosting antimicrobial
2-acetoxybenzoic anion (salicylate), on microbial control during table grape (cv Egnathia) storage.

In addition to ethanol vapours, other gas types have been used as fumigation treatment for the
sanitization of bunches. With this scope, chlorine dioxide (ClO2) is a gaseous disinfectant admitted
in the sanitization of uncut and unpeeled fruits and vegetables. In a recent study, Chen et al. [57]
reported a reduction of decay incidence and of rachis browning in table grapes treated with ClO2

during storage. The Food and Drug Administration (FDA) has approved ClO2, given that these
treatments might leave chlorite residues on food products at non-hazardous concentrations [71].
Nitrous oxide (N2O) is another gas tested to control post-harvest decay in fruit crops. In vitro tests
did not show inhibition against grey mould; however, in vivo experiments in table grapes fumigated
for 6 h showed a significant reduction in decay development during six days of cold storage [58].
Therefore, it was hypothesized that N2O was indirectly able to inhibit grey mould by increasing the
host′s disease resistance [58].

The use of pre-treatments with high concentrations of CO2 have been widely studied; these
showed great potential in decay control and prevention of water loss and oxidative damage [59].
In Cardinal table grapes, these effects seem to be related to the specific induction of defence
proteins, including dehydrins and proteins associated with pathogenesis, as well as endogenous
protective osmolytes [59]. In the last few years, different concentrations of CO2 were evaluated.
Pre-treatments with 20% of CO2 for three days [59], 40% CO2 for 48 h followed by CA storage [27],
and 50–70% for 24 h followed by MAP [31], were all effective against post-harvest decay of the cultivars
assayed. Although all the treatments guaranteed basic quality standards for commercial table grapes,
a concentration-dependent effect has been observed. However, as previously mentioned, the use of
pre-storage application of a high concentration of CO2 causes cultivar-dependent collateral effects such
as rachis, berries browning and off-flavours [43].

Ozone fumigation is one of the most prominent sanitation strategies for fruits and
vegetables [72,73]. Different approaches have been developed for ozone-based treatments on table
grapes [74,75]. Among these, continuous exposure in controlled atmosphere during cold storage
has been reported [28,29]. Decay reduction was confirmed only with pre-treatment at 20 µL/L for
30 min, followed by MAP storage [31]. Interestingly, intermittent ozone treatment (2 µL/L, 12 h for
day) induced higher resveratrol accumulation (in three different table grape cultivars) [60]. Moreover,
this could be responsible for decreases in the level of pesticide residues (phenomena reported for
grapes stored in ozone atmosphere) [75,76]. Nevertheless, ozone is corrosive and represents a worker
hazard [77], and, among the quality parameters, significant weight loss during storage was usually
highlighted [28,44,60].
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4. Biological Methods to Control B. cinerea in Table Grapes

Consumers widely accept the development of bio-based applications to exert microbial control in
agro-food chains because of the growing demand for eco-friendly approaches and products free of
synthetic chemicals [78–80]. For these purposes, several protective cultures [81–84] and compounds of
biological origin [80,85] have been assessed for their possible use as Biological Control Agents (BCAs)
against B. cinerea in table grapes.

4.1. Microbial Resources

Several yeast species are found in association with the surface of the grapes, in particular,
the genera Saccharomyces, Candida, Dekkera, Pichia, Hanseniaspora, Metschnikowia, Kluyveromyces,
Saccharomycodes, Schizosaccharomyces, Torulaspora, and Zygosaccharomyces [86,87]. Highly variable
in terms of relative proportion, often as a function of the sanitary condition of the grapes, these species
have different significances in oenology, i.e., pro-technological, spoilage, biocontrol, production of
toxic catabolites [88–92]. On the other hand, it is possible to find prokaryotic organisms present
on the grape surface that exert their biotechnological action in the last phases of the winemaking
process [93]. This broad microbial diversity justifies massive isolation of yeasts and bacteria to preserve
and characterize strains of biotechnological interest [94–96]. This isolation can be of microorganisms
from plants, grape bunches, musts or wines and selection is made of those capable of inhibiting
undesired microbe development on grapevines [97,98] up to the final steps of wine production [99].
This reservoir of microbial-based biocontrol solutions has also been exploited in fruits [100–103],
in several cases offering the option to inhibit B. cinerea in table grapes (Table 3).

Among yeast species, strains belonging to Saccharomyces are the most commonly studied because of
their pivotal function in alcoholic fermentation and their role as a biological model organism [117–119].
Recently, Nally et al. [108] used a fruit decay test on wounded table grape berries to screen the activity
of 65 yeasts, previously tested against B. cinerea by using in vitro approaches. They found that 15
S. cerevisiae strains and one strain of Sch. pombe, isolated from grape must, were able to reduce grey
mould decay [108]. Among these, the disease incidence of grapes treated with Sch. pombe BSchp67
reached 29.9%, while 9 strains of S. cerevisiae were able to fully inhibit decay development when added
at a concentration of 107 cells/mL [108].

Regarding the non-Saccharomyces yeasts, H. uvarum is a species of enological interest,
usually present on the grape surface [120,121]. In various studies, it has demonstrated an
antagonistic property, mainly based on competition for living space [122]. The addition of this
yeast has been implicated in the reduced incidence of grey mould disease in artificially inoculated
table grapes [111]. Moreover, this antagonistic activity was enhanced by the addition in the
formulation of salicylic acid or salts, such as sodium bicarbonate or ammonium molybdate [109,123].
Starmerella bacillaris (synonym Candida zemplinina) is another species of interest, commonly isolated
from grapevines/musts [124,125] and from wines fermented by using botrytized grapes [126,127].
Three Starm. bacillaris strains, recently isolated from these wines, denoted a significative antifungal
activity, probably addressable to the release of volatile organic compounds (VOCs) [110]. The production
of VOCs is widely diffused among yeasts. Mewa-Ngongang et al. [112] observed a fungicidal effect of
C. pyralidae Y1117 and P. kluyveri Y1125, mediated by VOC release in a closed environment, able to
inhibit fungal growth for five weeks of storage [112].
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Table 3. Main microbial strains investigated in the last ten years against grey mould decay in table grapes. Where possible, Inhibition Percentage (IP),
Disease Incidence (DI), and Disease Reduction (DR) were reported to quantify the activity of each strain.

Microbial Strain Source of Isolation Activity Cultivar Tested Ref.

Yeasts

Issatchenkia terricola 156a5 Thompson seedless IP = ~80% Flame seedless [104]
Wickerhamomyces anomalus BS91

Fermented olive and pomegranate
DI = ~50%

Not specified [105,106]Metschnikowia pulcherrima MPR3 DI = 6.7%
Aureobasidium pullulans PI1 DI = ~55%
Meyerozyma guilliermondii Ka21, Kh59 Thompson seedless IP = 47.6% Thompson seedless [107]
Candida membranifaciens Kh69 IP = ~42%
Saccharomyces cerevisiae spp. (9 strains) Grape must DI = 0% Red globe [108]
Schizosaccharomyces pombe BSchp67 DI = 29.92%
Hanseniaspora uvarum SEHMA61 Wild grape - Not specified [109]
Pichia kluyveri SEHMA6B -
Starmerella bacillaris PAS151 Ripe grape must DR = ~40% Not specified [110]
Hanseniaspora uvarum Strawberry DI = 51,8% Kyoho [111]
Candida pyralidae Y1117 Grape must DI = 0% Regal seedless [112,113]
Pichia kluyveri Y1125 Sclerocarya birrea juice DI = 0%

Bacteria

Bacillus sp. Kh26 Thompson seedless IP = 49.9% Thompson seedless [107]
Ralstonia sp. N1 IP = 54.7%
Bacillus amyloliquefaciens NCPSJ7 Ginger field DI = 36% Red globe [114]
Bacillus amyloliquefaciens RS-25 Jujube fruit DR = 86.6%

Red globe [115]Bacillus licheniformis MG-4 Strawberry DR = 84.7%
Bacillus subtilis Pnf-4 Wheat plant DR = 69.95%
Bacillus subtilis Z-14 Wheat soil DR = 42.43%
Paenibacillus pasadenensis R16 Barbera DR = 27.5% Black magic [116]
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In vivo studies demonstrated that grey mould can be efficiently controlled by various microbial
antagonists isolated from a large variety of vegetal matrices. Wickerhamomyces anomalus BS91,
M. pulcherrima MPR3, and Aureobasidium pullulans PI1 were isolated from spontaneous olive
fermentation and pomegranate, minimally processed. In detail, M. pulcherrima strain showed the
best antifungal activity (disease incidence (DI) = 6.7%, disease severity (DS) = 2.7%), followed by
W. anomalus BS91 and A. pullulans PI1, and all of these yeasts were capable of VOC production [106].
In particular, the antagonistic activity of W. anomalus seemed to be connected to a killer phenotype [106].
Enzyme secretion in the environment, such as b-1,3-glucanase, pectinase, and protease, was also
reported for W. anomalus and A. pullulans [106], whereas, the activity of M. pulcherrima was probably
associated with iron depletion [128]. In the patenting literature, two patents based on M. fructicola
strain’s biocontrol applications for viticultural applications have been reported [129].

Epiphytic Issatchenkia terricola yeasts isolated from ‘Thompson Seedless’ grapes’ surface have
shown the ability to reduce decay caused by B. cinerea up to 80% compared to the untreated control [104].
In another study, yeast and bacteria strains were isolated from fruits and leaves of the same cultivar
without any signs of infection, and tested for potential applications in biocontrol [107]. Yeasts were
identified as Candida membranifasciens Kh69 and Meyerozyma guilliermondii Ka21 and Kh59, while bacteria
were Bacillus spp. Kh26 and Ralstonia spp. N1. All tested microbes were able to increase B. cinerea
inhibition from 23.8% to 54.7%. Among these, the highest level was found for Ralstonia spp. N1(54.7%),
while Bacillus spp. Kh26 and M. guilliermondii Ka21 and Kh59 showed inhibition below 50% [107].

Still on the prokaryotic side, a bacterial strain, Paenibacillus pasadenensis R16, isolated from
grapevine cultivar ‘Barbera’, has shown a reduction in disease incidence of grey mould by 27.5% [116].
It was also supposed that the main metabolite responsible for antifungal activity was farnesol which was
never before reported to have biocontrol potential [116]. A large number of bacterial strains belonging to
Bacillus spp. are reported to have antimicrobial activity against several plant phytopathogens [130–132].
In fact, a lot of commercial bio-fungicides, such as B. subtilis QST713 (Serenade®, Bayer CropScience)
and B. amyloliquefaciens FZB24 (Taegro®, Novozymes), are now available and effective against grey
mould on grapes. Recently, Chen et al. [115] demonstrated the ability of four Bacillus strains,
isolated from various ecological niches, to control decay development in table grapes and other fruit
crops. The most vigorous antifungal activity was recorded in B. subtilis Z-14 [115]. VOC production,
enzyme, siderophores, and lipopeptide antibiotics were proposed as possible modes of action.

4.2. Antimicrobial Compounds of Biological Origin

Recently, there have been intense investigations conducted in the field of natural antimicrobials
and their effectiveness. Many biological compounds have been tested for the bio-control of table
grape spoilages. These compounds include classes of chemicals/matrices such as vegetal extracts,
essential oils, and defence inducers (Table 4).

Among the vegetal compounds, volatiles generated from cellulose soaked with garlic
hydro-alcoholic extract and its derived sulfur compounds have shown anti-grey mould activity
in packaged table grapes both at 4 and 25 ◦C, during the 14 days of experimental trials [133]. However,
organoleptic and sensorial adverse effects of this treatment have still not been investigated [133].
Cinnamic acid, extracted from cinnamon bark, is widely used as a food additive. Dipping the berries
in a solution of 10 mM cinnamic acid can significantly decrease the incidence of decay development up
to half of that in control after four days of storage at 25 ◦C [134]. Hinokitiol is a natural monoterpenoid
mainly extracted from the wood of Cupressaceae. In a recent study [135], no decay was visible after
60 h at 22 ◦C in artificially wounded/inoculated table grape berries treated with a 3 g/L hinokitiol
solution [135].
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Table 4. Main biological compounds investigated in the last ten years against grey mould decay on table grapes.

Biological Compounds Concentration Treatment Cultivar Effects Ref.

Vegetal extract

Hydro-alcoholic garlic extract
and derived sulfur compounds 2 mL and 20 µL Volatiles release Flame Seedless

The treatment efficiently controlled the
decay in packed grapes at 4 and 25 ◦C for

14 days
[133]

Cinnamic acid 10 mM Dipping Manai The treatment halved the decay incidence
after four days at 25 ◦C [134]

Hinokitiol 3 g/L Wound
inoculation Manai No visible decay was reported after 60 h

at 22 ◦C [135]

Essential Oil Mint EO 500 µL/L Volatiles release Not specified Reduction of decay in packed grapes [136]

Other compounds Methyl jasmonate 10 µmol/L Volatiles release Kyoho Reduction of the decay incidence [137]

Fulvic acid 20 mg/mL Dipping Mare’s milk Induction of resistance mainly through the
activation of phenylpropanoid pathway [138]

Pterostilbene and Piceatannol 50 mg/L Wound
inoculation Mare’s milk Reduction of disease incidence and severity [139]

Putrescine 1–2 mM Dipping Michele Palieri

Combined with ultrasound, the treatment
maintained high levels of anthocyanins,

total phenolic content, antioxidant capacity,
sensory acceptability and reduced decay

incidence during storage

[23]

Edible coating Chitosan - Coating Crimson

Combined with UV-C irradiation,
the treatment increased the resveratrol
content, maintained sensorial quality,

and reduced fungal decay

[24]

Chitosan/Silica polymer 0.5–1% Spraying Italia

The treatment reduced natural infection;
no adverse effect in terms of quality

(titratable acidity [TA], total soluble solids
[TSS], berry color, mass loss, stem browning

and shattered berries) was observed

[140]

Chitosan + Salvia fruticosa Extract 500 mg/L (SE) Dipping Thompson
Seedless

Control efficacy comparable to
thiabendazole, decreased the weight loss

during cold storage, preserved TSS and TA
[141]
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Table 4. Cont.

Biological Compounds Concentration Treatment Cultivar Effects Ref.

Chitosan + Mint Essential Oil 1.25–5 µL/mL
(MEO) Dipping Isabella

The treatment delayed the decay
development and reduced incidence;

color and firmness were enhanced, did not
negatively affect TSS and TA

[142]

Alginate + Vanillin 0.5–1.5% (V) Spraying Lavalleé and
Razaki

Reduction of natural yeasts and mould
growth, prevention of weight and firmness
losses. TSS, TA, and color showed minor

changes compared to control grapes.

[143]
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Essential oils (EOs) from many plants, such as thymus and lemongrass, have revealed great
potential in post-harvest disease control [144]. In addition, the effect of mint EOs was recently
investigated by using direct contact (e.g., dipping) and volatile methods (filter paper) [136]. In this
study, EO released by the paper was more effective than the direct contact and was capable of inhibiting
B. cinerea in artificially inoculated trials during nine days of shelf-life [136]. However, the effect on
product flavour and consumer acceptance was not investigated.

Another research field involves the use of vegetal hormones, plant activators, and inner signalling
molecules. These molecules act through a complex signalling network under the control of salicylic
acid, ethylene, jasmonic acid, and phenylpropanoid pathways, which leads to the increase of specific
secondary metabolites (e.g., flavonoids, soluble sugars, and phytoalexins). Methyl jasmonate is a
volatile compound that mediates stress responses in plants and has shown to promote fungal resistance
in various fruit crops. Recently, it was found to be effective in lessening the development of B. cinerea
in artificially infected table grapes [137]. In this study, the fruits were packed in the presence of a filter
paper soaked with a solution of methyl jasmonate at 10 µmol/L and stored at 25 ◦C [137]. The disease
incidence in the treated fruits after 24, 36, and 48 h was 41.7%, 60.6%, and 86.5% of that in the control
trial, respectively [137].

Fulvic acids (FA) are the soluble fraction of natural organic matter and are used in agriculture
as a plant growth promoter and to control several plant diseases. Xu et al. [138] assayed different
concentrations of FA as dipping solutions for wounded table grape fruits, subsequently sprinkled with
a conidia suspension of B. cinerea. After six days of incubation at 22 ◦C, the treatment with a solution at
20 mg/mL FA was found to be effective by reducing decay development [138]. The authors suggested
that secondary metabolites produced by the berry mediate antifungal activity. However, the formation
of necrotic spots was reported [138].

Among secondary metabolites, phytoalexins are synthesized by the plants as broad-spectrum
inhibitors. Stilbenoids, including pterostilbene and piceatannol, are phytoalexins commonly found in
vine leaves and wine [139]. “Mare’s milk” table grapes treated with 50 mg/L pterostilbene did not
show any sign of infection while piceatannol at the same concentration reduced grey mould disease by
75% after nine days storage at 22 ◦C [139]. These molecules seemed to be the most effective in a group
of seven phenolic compounds, including resveratrol and coumarin [139].

Edible coatings made with natural polymers like chitosan or alginate can act as a cover material able
to wrap the berry. Thus, these formulations can extend the shelf-life of fruit crops and maintain quality
reducing water losses [145,146]. Chitosan is a linear polysaccharide composed of D-glucosamine and
N-acetyl-D-glucosamine linked by a β-(1→4) bond obtained by treating the exoskeleton of arthropods
with alkaline solutions. Recently, it was found that chitosan-silica nanocomposite polymers can reduce
the incidence of decay in grape berries by 59% [140]. Moreover, this coating can be used to incorporate
bioactive compounds. An additive effect of chitosan combined with Salvia fruticosa Mill. extract [141]
and Mentha piperita or M. villosa essential oil [142] was reported. Alginate is another biocompatible
and biodegradable polymer extracted from brown algae and used as a food additive with the code
E401. It was demonstrated that the incorporation of vanillin, a phenolic compound, in a coating
formulation prolongs the shelf life of table grapes until 35 days of storage, by reducing total yeasts and
mould counts [143]. However, the retention of soluble solids, titratable acidity, firmness, and color was
also enhanced.

5. Conclusions and Future Directions

Post-harvest fungal decay of fruits and vegetables is responsible for huge levels of economic
loss and account consistently for large quantities of agro-food waste [147–150]. To improve economic,
social, and environmental sustainability in the sector of table grapes, this review paper provides an
overview of the wide plethora of physical, chemical, and bio-based solutions to improve the control
of fungal pathogens and spoilage fungi. Each treatment has peculiar benefits and limitations that
affect the concrete applications and shape different future perspectives [151]. For example, considering
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limitations, ozone does not always penetrate natural openings efficiently; condensation inside the
package (MAP) increases the chance of microbial decay of produce; the antagonistic target of a
biocontrol agent can have a strain-dependent spectrum. In some cases, the limitation is due to lack
of harmonization of regulations and consumer acceptance (e.g., irradiation), and investment needs
compared to the volume of production (e.g., CA storage) rather than of specific technological or
biological issues [151].

As in other fields of food technology, an integrated management program (combining two or
more different solutions) could be useful to minimize post-harvest losses caused by undesired fungal
development [147,152–155]. Synergistic approaches have also been developed to reduce B. cinerea
incidence in table grapes, adopting hurdles technology [23,24,27,31,51]. In other cases, one treatment
aimed to reduce microbial contamination, while another was applied to stabilize fruit quality and
the microbial population during cold storage and/or shelf-life [27,31,156]. Moreover, it is important
to underline that a consistent range of solutions has been developed and tested on other fruits
and vegetable [157–163] and, in several cases, could be tested/transferred for application on table
grapes. Among the other green solutions, poorly explored in grapes, is the exploitation of lactic acid
bacteria as biocontrol agents [164,165]: prokaryotic organisms that received interest also in the light
of additional positive side effects, e.g., probiotic activity and antagonistic activity against food-borne
pathogens [166–170].

Author Contributions: Investigation, N.D.S., B.P., F.G., V.C., G.C., G.S. and P.R.; Conceptualization, N.D.S., B.P.,
F.G., M.C., V.T., V.S., V.C., G.C., G.S. and P.R.; Literature Search, N.D.S., B.P., F.G., M.C., V.T., V.S., V.C., G.C.,
G.S. and P.R.; Writing—Original Draft Preparation, N.D.S., V.C. and P.R.; Writing—Review and Editing, B.P., F.G.,
M.C., V.T., V.S., G.C. and G.S. All authors have read and agreed to the published version of the manuscript.

Funding: ABA MEDITERRANEA SCA was funded through Piani Operativi 2020 REG UE N 1308/13, REG UE N
2017/891, REG UE N 2017/892.

Acknowledgments: Pasquale Russo is the beneficiary of a grant by MIUR in the framework of ‘AIM: Attraction and
International Mobility’ (PON R&I2014-2020) (practice code D74I18000190001). The authors acknowledge (i) the two
anonymous reviewers for their suggestions and comments, (ii) Massimo Franchi and Francesco De Marzo of the
Institute of Sciences of Food Production—CNR for the skilled technical support provided during the realization of
this work and (iii) Sergio Pelosi of the Institute of Sciences of Food Production—CNR for the critical reading.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pezzuto, J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [CrossRef]
[PubMed]

2. FAO OIV. Table and Dried Grapes: World Data Available. Available online: http://www.fao.org/documents/
card/en/c/709ef071-6082-4434-91bf-4bc5b01380c6/ (accessed on 12 August 2020).

3. Ahmed, S.; Roberto, S.; Domingues, A.; Shahab, M.; Junior, O.; Sumida, C.; de Souza, R. Effects of Different
Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae 2018, 4, 29.
[CrossRef]

4. Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould
disease. Mol. Plant Pathol. 2007, 8, 561–580. [CrossRef] [PubMed]

5. Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.;
Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 2012, 13, 414–430. [CrossRef] [PubMed]

6. Droby, S.; Lichter, A. Post-harvest Botrytis infection: Etiology, development and management. In Botrytis:
Biology, Pathology and Control; Springer: Berlin/Heidelberg, Germany, 2007; pp. 349–367.

7. Domingues, A.; Roberto, S.; Ahmed, S.; Shahab, M.; José Chaves Junior, O.; Sumida, C.; de Souza, R.
Postharvest Techniques to Prevent the Incidence of Botrytis Mold of ‘BRS Vitoria’ Seedless Grape under Cold
Storage. Horticulturae 2018, 4, 17. [CrossRef]

8. Capozzi, V.; Fiocco, D.; Amodio, M.L.; Gallone, A.; Spano, G. Bacterial Stressors in Minimally Processed
Food. Int. J. Mol. Sci. 2009, 10, 3076–3105. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/jf800898p
http://www.ncbi.nlm.nih.gov/pubmed/18662007
http://www.fao.org/documents/card/en/c/709ef071-6082-4434-91bf-4bc5b01380c6/
http://www.fao.org/documents/card/en/c/709ef071-6082-4434-91bf-4bc5b01380c6/
http://dx.doi.org/10.3390/horticulturae4040029
http://dx.doi.org/10.1111/j.1364-3703.2007.00417.x
http://www.ncbi.nlm.nih.gov/pubmed/20507522
http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x
http://www.ncbi.nlm.nih.gov/pubmed/22471698
http://dx.doi.org/10.3390/horticulturae4030017
http://dx.doi.org/10.3390/ijms10073076
http://www.ncbi.nlm.nih.gov/pubmed/19742126


Foods 2020, 9, 1138 16 of 24

9. Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors Affecting
Quality and Safety of Fresh-Cut Produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [CrossRef]

10. Cavallo, D.P.; Cefola, M.; Pace, B.; Logrieco, A.F.; Attolico, G. Non-destructive and contactless quality
evaluation of table grapes by a computer vision system. Comput. Electron. Agric. 2019, 156, 558–564.
[CrossRef]

11. Ferrara, G.; Gallotta, A.; Pacucci, C.; Matarrese, A.M.S.; Mazzeo, A.; Giancaspro, A.; Gadaleta, A.; Piazzolla, F.;
Colelli, G. The table grape ‘Victoria’ with a long shaped berry: A potential mutation with attractive
characteristics for consumers. J. Sci. Food Agric. 2017, 97, 5398–5405. [CrossRef]

12. Piazzolla, F.; Pati, S.; Amodio, M.L.; Colelli, G. Effect of harvest time on table grape quality during on-vine
storage. J. Sci. Food Agric. 2016, 96, 131–139. [CrossRef]

13. Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Aragonès, G.; Arola-Arnal, A.; Muguerza, B. A comparative
study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chem.
2019, 299, 125092. [CrossRef] [PubMed]

14. Council regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products
and repealing regulation (EEC) No 2092/1. Off. J. Eur. Union 2007, 1–23.

15. Willer, H.; Schaack, D.; Lernoud, J. Organic Farming and Market Development in Europe and the European
Union. In The World of Organic Agriculture—Statistics and Emerging Trends 2019; Willer, H., Lernoud, J.,
Eds.; Research Institute of Organic Agriculture FiBL and IFOAM—Organics International, Frick and Bonn:
Rheinbreitbach, Germany, 2019; pp. 217–254.

16. Romanazzi, G.; Lichter, A.; Gabler, F.M.; Smilanick, J.L. Recent advances on the use of natural
and safe alternatives to conventional methods to control postharvest gray mold of table grapes.
Postharvest Biol. Technol. 2012, 63, 141–147. [CrossRef]

17. Lichter, A.; Kaplunov, T.; Zutahy, Y.; Lurie, S. Unique techniques developed in Israel for short- and long-term
storage of table grapes. Isr. J. Plant Sci. 2016, 63, 2–6. [CrossRef]

18. Sonker, N.; Pandey, A.K.; Singh, P. Strategies to control post-harvest diseases of table grape: A review.
J. Wine Res. 2016, 27, 105–122. [CrossRef]

19. Youssef, K.; Roberto, S.R.; Chiarotti, F.; Koyama, R.; Hussain, I.; de Souza, R.T. Control of Botrytis mold of the
new seedless grape ‘BRS Vitoria’ during cold storage. Sci. Hortic. 2015, 193, 316–321. [CrossRef]

20. Crisosto, C.H.; Mitchell, F.G. Postharvest Handling Systems: Table grapes. In Postharvest Technology of
Horticultural Crops; Kader, A.A., Ed.; University of California Agricultural and Natural Resources Pub:
Davis, CA, USA, 2002; pp. 357–363.

21. Sabir, F.K.; Sabir, A. Quality response of table grapes (Vitis vinifera L.) during cold storage to postharvest cap
stem excision and hot water treatments. Int. J. Food Sci. Technol. 2013, 48, 999–1006. [CrossRef]

22. Chiabrando, V.; Giacalone, G. Efficacy of hot water treatment as sanitizer for minimally processed table
grape. J. Clean. Prod. 2020, 257, 120364. [CrossRef]

23. Bal, E.; Kok, D.; Torcuk, A.I. Postharvest putrescine and ultrasound treatments to improve quality and
postharvest life of table grapes (Vitis vinifera L.) cv. Michele Palieri. J. Cent. Eur. Agric. 2017, 18. [CrossRef]

24. Freitas, P.M.; López-Gálvez, F.; Tudela, J.A.; Gil, M.I.; Allende, A. Postharvest treatment of table grapes with
ultraviolet-C and chitosan coating preserves quality and increases stilbene content. Postharvest Biol. Technol.
2015, 105, 51–57. [CrossRef]

25. Romanazzi, G.; Nigro, F.; Ippolito, A. Effectiveness of a short hyperbaric treatment to control postharvest
decay of sweet cherries and table grapes. Postharvest Biol. Technol. 2008, 49, 440–442. [CrossRef]

26. Guentzel, J.L.; Lam, K.L.; Callan, M.A.; Emmons, S.A.; Dunham, V.L. Postharvest management of gray mold
and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water. Int. J. Food Microbiol.
2010, 143, 54–60. [CrossRef] [PubMed]

27. Teles, C.S.; Benedetti, B.C.; Gubler, W.D.; Crisosto, C.H. Prestorage application of high carbon dioxide
combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic
‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol. Technol. 2014, 89, 32–39. [CrossRef]

28. Vlassi, E.; Vlachos, P.; Kornaros, M. Effect of ozonation on table grapes preservation in cold storage. J. Food
Sci. Technol. 2018, 55, 2031–2038. [CrossRef] [PubMed]

29. Feliziani, E.; Romanazzi, G.; Smilanick, J.L. Application of low concentrations of ozone during the cold
storage of table grapes. Postharvest Biol. Technol. 2014, 93, 38–48. [CrossRef]

http://dx.doi.org/10.1080/10408398.2010.503685
http://dx.doi.org/10.1016/j.compag.2018.12.019
http://dx.doi.org/10.1002/jsfa.8429
http://dx.doi.org/10.1002/jsfa.7072
http://dx.doi.org/10.1016/j.foodchem.2019.125092
http://www.ncbi.nlm.nih.gov/pubmed/31280001
http://dx.doi.org/10.1016/j.postharvbio.2011.06.013
http://dx.doi.org/10.1080/07929978.2016.1151289
http://dx.doi.org/10.1080/09571264.2016.1151407
http://dx.doi.org/10.1016/j.scienta.2015.07.026
http://dx.doi.org/10.1111/ijfs.12052
http://dx.doi.org/10.1016/j.jclepro.2020.120364
http://dx.doi.org/10.5513/JCEA01/18.3.1934
http://dx.doi.org/10.1016/j.postharvbio.2015.03.011
http://dx.doi.org/10.1016/j.postharvbio.2008.01.021
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.028
http://www.ncbi.nlm.nih.gov/pubmed/20696490
http://dx.doi.org/10.1016/j.postharvbio.2013.11.001
http://dx.doi.org/10.1007/s13197-018-3117-y
http://www.ncbi.nlm.nih.gov/pubmed/29892103
http://dx.doi.org/10.1016/j.postharvbio.2014.02.006


Foods 2020, 9, 1138 17 of 24

30. Liguori, G.; Sortino, G.; De Pasquale, C.; Inglese, P. Effects of modified atmosphere packaging on quality
parameters of minimally processed table grapes during cold storage. Adv. Hortic. Sci. 2015, 29, 152–154.

31. Admane, N.; Genovese, F.; Altieri, G.; Tauriello, A.; Trani, A.; Gambacorta, G.; Verrastro, V.; Di Renzo, G.C.
Effect of ozone or carbon dioxide pre-treatment during long-term storage of organic table grapes with
modified atmosphere packaging. LWT 2018, 98, 170–178. [CrossRef]

32. Cefola, M.; Pace, B. High CO2-modified atmosphere to preserve sensory and nutritional quality of organic
table grape (cv. ‘Italia’) during storage and shelf-life. Eur. J. Hortic. Sci. 2016, 81, 197–203. [CrossRef]

33. Vilaplana, R.; Chicaiza, G.; Vaca, C.; Valencia-Chamorro, S. Combination of hot water treatment and chitosan
coating to control anthracnose in papaya (Carica papaya L.) during the postharvest period. Crop Prot. 2020,
128, 105007. [CrossRef]
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