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Abstract The stability of young planetary systems is strongly influenced by multiple factors, both internal and external. In this
paper, we investigate the link between the environment in which young stars form and the possibility of having stable planetary
systems around them. We analyze the robustness of such systems after an encounter with another star within the same stellar cluster.
We employ a model for the star cluster to extract the encounter properties, such as the mass of the perturber star and its velocity.
We perform numerical simulations on systems with a single planet perturbed by an external star, in order to calculate the emission
probabilities of the planet. We also calculate analytically the stellar encounter rates in the cluster. We find that such probabilities are
strongly dependent on the thermal velocity of the cluster. We also notice that these probabilities are generally quite small, below
3% for the systems tested by us.

1 Introduction

Star clusters are one of the possible birthplaces of stars, and dynamical interactions between young stars may significantly affect the
early life of its members. However, stars are not the only component of young star clusters: While in its earliest phases a large gas
reservoir is also present, we also expect young stars to host planetary systems. In this paper, we explore the behavior of the planetary
population which forms around the cluster members and its relation to the environment. The crowded nature of these structures
brings cluster stars to experience more or less close encounters between them (for a sample of existing literature, see [1–6]). Besides
the dynamical effects that encounters have in the evolution of the cluster itself, such as thermal equilibrium and relaxation, we are
interested in the consequences that a close encounter between stars may have on a bound planetary system. Such encounters, indeed,
can undermine the stability and even the very existence of a planetary system. Stellar encounters could occur while planets are still
forming: for a review on this topic, see [7]. A consistent theory for exoplanetary population in star clusters should also include the
effect of stellar fly-bys.

These phenomena are crucial for several reasons. Firstly, if a very low survival probability emerges from these kind of studies, this
would challenge the apparent ubiquity of planetary systems in the Galaxy (see, e.g., [8]). Also, planetary ejections though fly-bys
can be the origin of free floating planets and InterStellar Objects (ISOs). Up to now, only two ISOs were observed, I1/’Oumuamua
[9] and I2/Borisov [10] and their origin can be considered within the perspectives of stellar fly-bys on planetary systems [11].

In recent years, the Atacama Large Millimeter Array (ALMA) has revealed that young stars surrounded by a disk often display
significant substructure in the disk morphology at a distance of ≈ 100 au from the star, which are typically interpreted as the effect
of the presence of a planet [12]. The origin of these substructures is still under debate, and they can be due to several other factors,
such as stellar encounters or dead zones. In this paper, we assume that these structures are due to the presence of planets. Such
young planet population is thus relatively weakly bound to their host star and may thus be more susceptible to ejection due to stellar
fly-bys.

The aim of the present paper is to analyze the frequency of close stellar fly-bys inside star clusters and determine the survival
probability of a (weakly bound) planet after such an event. We also find a relation between the property of the cluster and the
planetary ejection rate, in order to provide a general guideline to describe the outcome of an encounter.

Focus Point on Environmental and Multiplicity Effects on Planet Formation
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The paper is organized as follows: in Sect. 2, we describe the statistical and dynamical methods used in this work; in Sect. 3, we
present and discuss our main results; in Sect. 4, we draw our conclusions.

2 Methods

Our methodology consists of the following steps. We consider a “target" young planetary system, composed of a host star and one
single planet in a relatively weakly bound orbit (consistent with the expected population of young planets from ALMA studies). Then,
we construct an ensemble of orbital properties for a second star (the "perturber"), by extracting them through Montecarlo sampling
from a thermal distribution of stars within a star cluster of known physical parameters. For each of the encounter parameters
considered, we evolve a three-body simulation involving the "target" star-planet system and the perturber. After the fly-by, we
compute the orbital elements of the planet with respect to its host star and thus determine ejection and retention rates.

2.1 Modeling the stellar cluster

We assume that the stellar cluster is described using the Plummer model [13], a simple and spherically symmetric model (see, e.g.,
[1, 6, 14]). The density profile is thus given by:

ρ(R) � 3Mcl

4πR3
0

1

[1 + (R/R0)2]5/2
, (1)

where R is the distance from the centre of the cluster, Mcl is the cluster mass and R0 is a scale radius connected to the half mass
radius as Rh ≈ 1.305R0 and to the cluster core radius as Rc � R0/

√
2. Considering the cluster in virial equilibrium, the thermal

velocity of the stars is given by [5]:

vT �
(

3πGMcl

32R0

)1/2

, (2)

which provides a typical scale for the speed of the stars in the cluster. The stellar masses are drawn from the initial mass function
of Kroupa [15], with a minimum mass of 0.015M�. We did not set an upper limit since the distribution rapidly decrease for higher
masses, so the probability to extract an extremely massive star is negligible. The initial velocity v∞ of the perturber at infinity, where
the gravitational interaction with the host system is negligible, is drawn from a Maxwell–Boltzmann distribution

f (v∞) :� dP(v∞)

dv∞
�

√
6

π

3v2∞
v3
T

exp

(
−3v2∞

2v2
T

)
. (3)

Here, to use the Maxwell–Boltzmann distribution, we assumed that the cluster is virialized but not relaxed, an hypothesis that needs
to be tested. To this effect, we calculate the relaxation and evaporation time of the cluster and assume that our model is valid for
times shorter than the cluster relaxation time. A rough estimate of the relaxation time τrelax is given by (see [5])

τrelax ≈ 0.1N

ln N
τcross, (4)

where N is the number of stars in the cluster and the crossing time τcross follows from

τcross ≈ 2Rc

vT
. (5)

The values of these times for the different clusters considered here are reported in Tables 3 and 4.
We have constructed several different realizations of the model, by varying the cluster properties (its mass and radius). The cluster

mass and the cluster core radius (and so the parameter R0) are not independent, but we chose them in order to qualitatively follow
a power-law fit that we have extrapolated from the observed cluster properties as reported in [16] (we excluded from the fit the
sub-cluster of the Trapezium, because it is an outlier and we chose to focus on more regular clusters). We have interpolated the data
using the formula

Mcl

M�
� α

(
Rc

1pc

)β

(6)

and the parameters of the fit are these:

α � 345 ± 17, (7)

β � 1.784 ± 0.080. (8)

The fit and the data from the article are reported in Fig. 1, where we plot also the simulated parameters for the clusters. We report
in Tables 3 and 4 the values of the different parameters used in the simulations.
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Fig. 1 Cluster mass as a function
of the cluster core radius. Black
points are observed clusters from
[16], red points indicate the model
clusters employed here. The
dashed line is a fit of the observed
points

2.2 Encounter rates and total number of encounters

In order to estimate the encounter rates and the total number of encounters in an open cluster, we use a cross-section argument. We
define the cross section σ for two stars having a relative velocity at infinity v∞ and pericenter Rp. The cross section can be written
as (see [1, 17, 18]):

σ � 2πR2
p

(
1 +

GMtot

Rpv2∞

)
, (9)

where Mtot is the total mass of the two stars and the second term in brackets expresses gravitational focussing.
We can now write the total number of encounters Nenc within a given time τ as

Nenc �
∫ τ

0
nσ v̄ d t ≈ nσ v̄τ, (10)

where in the last equality we have considered the terms in the integral to be independent on time (an assumption that will be discussed
below), n is the number density of the Plummer sphere at the core radius and v̄ is the mean velocity of the encounter, which will be
set to vT.

The encounter rate is thus given by (where we set also v∞ � vT)

f � Nenc

τ

≈ 3 · 10−3
(

N

103

)3/2( Rc

1pc

)−7/2(
1 + 2.152

(
Mtot

M�

)(
Rc

1pc

))(
N

103

)−1)
My−1.

(11)

The typical encounter timescale is T � 1/nσ v̄. In the limit where gravitational focussing dominates (GMtot/Rp � v2∞), we thus
obtain the following estimate for T :

T ≈ 37My

(
100pc−3

n

)(
v∞

1km/s

)(
103au

Rp

)(
M�
Mhost

)
. (12)

The result above is in good agreement with the result reported in [4, 19].
The result above is affected by many approximations, which will be discussed below, that limit the validity of the obtained

results to the early stages of life of the open clusters, before the relaxation. It is also interesting to note that, as reported in Table
6 in Appendix, in the various clusters almost no star experienced a close fly by (with pericenter smaller than 1000 au) before the
relaxation time. We will discuss all these results in the next sections.

2.3 Encounters in planetary systems

We choose a set of five model planetary systems composed by a star and a single orbiting planet, in order to investigate their
differences in terms of emission rates. We built a “Standard” system, with a host mass of 1M� a planet mass of 1MJup (Jupiter mass)
at a distance of 100 au, while the other four have parameters corresponding to existing stars with hints of having young planets at
large distances, based on dust morphologies observed with ALMA. Their fundamental characteristics are listed in Table 1.

123



  152 Page 4 of 12 Eur. Phys. J. Plus         (2023) 138:152 

Table 1 List of all planetary systems studied ([12, 20–22]).

System Mhost (M�) Mplanet (MJup) Distance (au) System energy (km/s)

Standard 1 1 100 2.10

RY Tau 2.04+0.3−0.26 0.077 43.41 ± 0.13 4.57

CIDA 1 ≈ 0.1 ≈ 0.5 ≈ 12 1.92

HD 143006 1.5+0.1−0.1 23 22 5.50

GO Tau 0.48+0.01−0.01 0.057 58.91 ± 0.66 1.90

We indicate the host mass as Mhost and the planet mass as Mplanet. The system energy is the binding energy per reduced mass unit of the respective two
body system

Fig. 2 Flowchart of the code

First of all, we choose to consider as encounters, according to the current literature too (see, e.g., [2]), events in which the perturber
reaches a pericentre distance below 1000 au. Consequently, we compute the distribution of the pericentres between 0 and 1000 au
from the cross-section argument. It reads

dP(rp)

drp
� 2rp + GMtot/v

2∞
(Rmax

p )2 + GRmax
p Mtot/v2∞

, (13)

where P(rp) � Nenc(rp, t)/Nenc(Rmax
p , t), rp is the pericentre distance and Rmax

p � 1000 au.
The orbital properties of the encounter, including the perturber mass and relative velocity, are instead randomly selected according

to the chosen cluster features (as described above). Then we extract the three angles that determine the relative inclination of the
perturber orbit with respect to the orbital plane of the planet. The distribution of inclination I is uniform in the varaiable cos I , with
I ∈ [0, π], while the distributions of the longitude of the ascending node � and the argument of pericentre ω are uniform in � and
ω, with � ∈ [0, 2π) and ω ∈ [0, π ). Finally, we draw the pericentre distance rp from the distribution (13) and v∞ from the velocity
distribution described in Sect. 2.1.

2.4 Numerical simulations

We tested our planetary systems with a wide variety of star clusters. We generated several different clusters, all of them through the
Plummer model described in Sect. 2.1, and we extracted 10,000 initial conditions for each of them. We report the characteristics of
these clusters and their details in Appendix A.

We define the beginning of the encounter by setting the initial distance of the perturber to 5000 au, since the planet-perturber
potential energy can be safely neglected with respect to the host-planet one at such a distance. The end of the encounter, and
consequently of the single numerical simulation, happens when the perturber reaches a distance of 5000 au from the host again. The
initial velocity of the perturber is set equal to v∞.

We solve the three-body problem via standard integration techniques. We developed a code which employs a leapfrog method of
integration [23], since it is a symplectic second-order algorithm. We report a flowchart of the code in Fig. 2. In order to numerically
determine the outcome of an encounter, we computed at the end of each simulation the host-planet binding energy and the perturber-
planet binding energy, assuming that these two couples were two independent two-body systems. We can safely make this hypotesis,
since the host and the perturber stand at a very large distance at the end of a simulation (5000 au). Hence if the host-planet energy
is negative, the planet is considered to be still bound to the host; if the host-planet energy is positive, the planet is considered to be
torn away from the host. This is what we call emission. If the planet-perturber system energy is negative, the planet is considered
to be captured by the perturber. We tested the stability and the precision of our code on particular two-body systems with very high
eccentricities. We adopt a softening parameter for all the three bodies, which is set to ε � 0.005 au.
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Table 2 Numerical values of fit
coefficients A, B with their errors
σA, σB

System A σA B σB

Standard 0.009 0.001 0.0235 0.0007

RY Tau 0.0012 0.0007 0.0052 0.0004

CIDA 1 0.0111 0.0008 0.0151 0.0005

HD 143006 0.0022 0.0005 0.0073 0.0003

GO Tau 0.014 0.002 0.027 0.001

3 Results and discussion

The main result we present in this paper is the direct connection between emission rates and cluster thermal velocities. We define the
emission probability Pem as Pem � Nem/Ntot, where Nem is the total number of emission found for a single set of initial conditions
and Ntot � 10, 000 is the total number of encounters simulated for each set of initial conditions. We found a linear power law
correlation between the emission probability and the cluster thermal velocities:

Pem(vT) � −A · vT

1 km/s
+ B. (14)

In Table 2, we list the fitted values for the coefficients A, B and their uncertainties σA, σB . As we can see in Fig. 3 too, the emission
probabilities are quite low: the highest of them is around 2.7% for theGOTau system. We obtain that the mean value of the pericentre
distribution is roughly 500 au. The pericentre distribution itself grows monothonically, leaving few perturbers within the 500 au
threshold. This is probably the main cause of the lack of emissions, since the tested planets orbit their star no further than 100 au.
Another relevant aspect that surely influenced this outcome is the mass distribution of the perturber. The Kroupa IMF [15] indeed
has a mean value of 0.46M�, generally lower than the host mass. The rareness of (sufficiently) high mass perturbers combined with
the lack of very close encounters hence leads to generally low emission probabilities for all the tested systems, independently from
their binding energy.

The dynamical argument standing behind the dependence on thermal velocity is the effective time scale during which linear
momentum can be transferred from the perturber to the planet. If we consider the planet as a test particle, then we can neglect the
momentum transferred from the planet to the perturber. We can justify this approximation by noticing that the ratio between the
planet mass and the perturber mass sits always below 10−2. From the definition of the momentum change � 	p, we can immediately
write the following inequalities:

0 ≤ |� 	p(t)|�
∣∣∣∣
∫ t

t0

	Fpp(	r ) dt ′
∣∣∣∣ ≤

∫ t

t0
| 	Fpp(	r )| dt ′. (15)

where 	Fpp(	r ) is the perturber gravitational pull acting on the planet and t is the time passed since the instant t0 in which the
encounter begins. Inequality (15) states that a longer fly-by time allows a larger interval for |� 	p(t)| to span during the encounter.
Hence rasing the momentum transferred |� 	p(t)| threshold could become crucial for a planet in order to overcome the host escape

Fig. 3 Emission probability as a
function of thermal velocity vT for
all planetary systems. The
coloured dots represent the data
points we obtained for each
planetary system, while the solid
lines are the respective best fit
lines for them
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Fig. 4 The effect of inclinations
on emission events. We named
“expulsion” an emission event in
which the planet, after the
encounter, is gravitationally
unbound from both the host and
the perturber. We named “capture”
an emission event in which the
planet leaves its host star and it is
captured by the perturber. The
amount of emissions is the sum of
expulsion and capture events
number. An inclination of 0◦
corresponds to a fully prograde
encounter, vice versa an
inclination of 180◦ stands for a
fully retrograde encounter
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velocity. Furthermore, the fly-by duration is directly related to the initial velocity v∞ and consequently to vT. A high vT indeed
allows encounters with a high v∞ (and a small interaction time) to happen more frequently. Vice versa, a low vT makes rare rapid
encounters, allowing more planets to escape their hosts.

We present in Fig. 4 a relation between emission rates and the inclination angle I . This relation is taken from the dataset of the
Standard system at low thermal velocity, where emissions are more abundant. Similar results are found for the other tested systems.
We can easily expect higher emission rates for prograde encounters, since the relative velocity between the planet and the perturber
is lower, and consequently, it is easier to transfer momentum to the planet. Unexpectedly, we find a rise of probabilities for retrograde
events. However, the available statistic for these events is still low to ensure that this is a real feature of encounters. We think that
this rise is caused by two (or more) consecutive encounters between the planet and the perturber, where the first encounter triggers
the second. This behavior of planetary systems on retrograde encounters can be an interesting topic for future papers.

The second main result we report is the calculation of the encounter rates in an open star cluster and the probability that an
encounter between a star from the star cluster, and an host system leads to an emission of the planet orbiting around the latter one.
This probability is simply calculated by multiplying the encounter rates by the emission rates presented before. For the encounter
rates, in Appendix B we report all the encounter rates f calculated for the parameters of the different simulations, while in Fig. 5
we plot the rates f as a function of the cluster core radius and of the different number of stars in the cluster.

Instead of reporting the results found for the simulation, which are strongly dependent on the chosen cluster parameters, we
focus on presenting the values that are compatible with the correlation between mass and core radius found in Sect. 2.1. As it can
be seen, there are not many differences and the encounter rates goes from ≈ 1 encounter every Myears, for very dense clusters, to
1 encounter every hundreds Myears, for the less dense clusters.

We finally notice the existence of a relation between emission rates and the mean eccentricity of the perturbers. We observe
decreasing emission rates as the mean eccentricity rises. This behavior is also related to the role of thermal velocity. In a two-body
hyperbolic orbit, the eccentricity e is related to the encounter velocity as

e � 1 +
rpv

2∞
G(M1 + M2)

. (16)

The quadratic dependence from v∞ explains, through its distribution, the role of thermal velocity in the emission-eccentricity
relation. A bit of information here is added by the contribution of the pericentre distance rp, which can occasionally balance the
v∞ term. We also find, unsurprisingly, that the emission probability grows with the perturber mass and it is decreasing with the
pericentre distance, as depicted in Fig. 6.

3.1 Discussion of results

Let us start discussing the approximations done, and how they influenced the results. First of all, we assumed the cluster to be in
virial equilibrium, this is a sensible approximation since the time it takes for the cluster to virialize is much shorter than the relaxation
time. For the distribution of the speed at infinity, we used a Maxwell–Boltzmann distribution, which would assume a high frequency
of encounters/interactions between the stars in the cluster with respect to the relaxation time. Now, this hypothesis, a posteriori, is
not verified so the only thing we can assume is that the distribution of the speeds is not very different from the Maxwell–Boltzmann
one. However, assuming a quasi-virialized velocity distribution does not affect our results heavily. Since we found a relation between
thermal velocities and emission rates, for a quasi-virialized cluster it will be sufficient to compute an “effective” thermal velocity
from the virial theorem (see [5]) in order to use such relation and obtain a corrected result.

Secondly, in order to describe the density profile of the cluster, we used the Plummer model, which does not contain a time
dependence and does not take in consideration relaxation effects.
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Fig. 5 Encounter rates for every host system, they are sorted from the left to the right and from the top to the bottom. N is the number of stars in the cluster,
the blue dashed line is the power law fit presented in eq. (6) and the red dot are the simulated clusters, which parameters are reported in Tables 3 and 4
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Fig. 6 On the left panel, we draw an example, taken from GO Tau dataset, of the dependence of emission probabilities on the mass of the perturber. On the
right panel, instead we report an example, taken from Standard system dataset, of the dependence of emission probabilities on the pericentre of the perturber.
Similar results are found for the other systems

Furthermore we can see that, since we have no time dependencies in eq. (10), the rate is constant and so the number of encounter
increases linearly with time, which can not be true due to cluster relaxation mechanisms and as shown trough N-body simulations
(see [1] for example). These are the main reasons for which we can assume that our results are valid only during the early stages
of life of the cluster and before the relaxation. Obviously, more accurate assumption should be done in order to predict the rates of
encounter valid also after the relaxation. For example, we could insert a time dependence in the mass density of the cluster following
the values found in [24]. Another way to consider the relaxation effects could be to consider a cross section dependent on the number
of encounters: This could be an interesting topic for further studies.

Another aspect that deserves to be discussed is the possibility of having more than a single planet (or star!) in the considered
planetary system. In our work, we do not consider these possibilities too, but we can make a comparison with the existing literature.
We refer to the work by Li et al. [25] for the effects of the presence of binaries in the considered clusters. It is shown how binary systems
are much more effective in triggering the emission of a planet from its host star. On the planetary side, the case of multiplanetary
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Fig. 7 Fraction of emitted planets
as a function of the time (the range
of the axes is chosen to ease the
comparison with Fig. 7, Model
w3-ld, of the work [6]). The blue
region represents the range of
possible values obtained from the
simulations. The red line is a
rough estimate of the average
values found in the simulations

systems has been explored by Davies et al. [1], who consider the behavior of four giant planets after a close stellar fly-by. Here
planet-planet scattering phenomena acquire great importance after the encounter, eventually leading the system to disruption. But
when these effects of mutual planet interaction are negligible, which happens when the encounter is grazing, they find a fraction
fion of immediately ejected planet of ≈ 1% − 3%, consistent with our results.

We can provide a check of our results through the work of Fujii and Hori [6]. We approached semi-analytically the encounter rate
problem, and we explored numerically the effective encounter dynamics. Vice versa, Fujii and Hori made numerical simulations for
the cluster dynamics and determined through semi-analytical methods the outcome of close star encounters. We found a range of
values for the rates of emission of a planet through the quantity fejected, defined as follows:

fejected � f Pemt, (17)

where t is the time passed since the birth of the cluster. The result is reported in Fig. 7, which has to be compared with Fig. 7, model
w3-ld, of Fujii and Hori [6]. There is a large variability in our results, because the host-planet distance varies for each planetary
system and we simulate clusters with different parameters. Anyway, our results describe low-density clusters (according to the
distinction made in [6]) and, remembering Table 1, we are interested in the fraction of emitted planets with distance from the star
between 10 and 100 au. Hence we obtained from Eq. 17 a range of values, in which we highlight the average fraction. Fujii and Hori
for this kind of planetary systems find fejected ≈ 10−3 at 10 Myr, and their emission rates for planets with distance from the star
between 10 and 100 au are well placed into our simulations range of Fig. 7. We can state that there is a significant overlap between
our results and the one reported in the article.

In summary, our results are consistent with the existing stellar cluster based planet formation studies and they add more quantitative
information to be compared with [1, 3, 4, 6].

4 Summary and conclusions

We have modeled a series of star clusters, according to the observed power law in [16], in order to obtain the encounter rates between
stars. For each cluster, we used the Plummer model [13] and the initial mass function (IMF) from Kroupa [15], while we varied
the core radius and the number of stars. Our models and approximations provided those values for a limited time interval over the
clusters lifetime. We indeed refer our results to the early times after the clusters formation, safely before that the relaxation time
occurs. From each cluster we inferred the distribution of velocities and the distribution of pericenters in order to perform numerical
simulations of the encounters. We employed a wide set of clusters for each tested system: we wanted indeed to sample as better as
we could a realistic interval of thermal velocities. This interval is once again derived from the data in [16], reported in Fig. 1, using
Eq. 2. We tested five different planetary systems, each one underwent 10,000 encounters with fellow cluster members.

1 We found encounter rates that span between 1 encounter/Myr, for high density clusters, to ≈ 10−2 encounters/Myr, for very low
density clusters. Our method led to a result that is in good agreement with the work by Pfalzner [4].

2 From the numerical simulations performed, we obtained the emission rates (or survival probabilities) for a sample of planetary
systems. The emission probability for a single encounter we found is generally small, below 3%, hence a single planet has
quite a high probability to survive after a close encounter. Planetary systems with more than a single planet involve further
complications than the single perturber pull: Davies et al. [1] investigated this branch of the problem. They also found a fraction
fion of immediately ejected planets that is in good agreement with our results, since in an immediate emission event we can
neglect the effects of planet-planet scattering.

3 We observed a direct relation between emission rates and the thermal velocity of the considered clusters. This relation can be
expressed as a linear power law for all the tested systems: Hence we saw how the environment can influence his own planetary
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population. Comparing emission rates with the mean eccentricity provides an indirect way to see this relation and adds the
contribution of the pericentre distance. We also checked that parameters such as the perturber mass, the pericentre distance or
the perturber inclination influence the encounter outcome in the usually expected way.

In summary, we studied the relation between a planetary system and its external environment by directly testing the environment
influence on the actual encounters. We saw how this environment affects the planetary populations hosted and the timescales
on which this process acts. Our numerical approach allows to compute the emission probabilities with an accuracy that is way
better than through the existing semianalytical methods. Further studies may enlighten some aspects we neglected or improve the
approximations we made. A worthy advance could be made by studying the behavior of emission rates after the cluster relaxation
and the differences with the early times here analyzed. Still on the early times of the cluster, it could be improved this study by
picking a non-equilibruim velocity distribution for the stars. It could also be interesting to investigate more thoroughly the dynamics
of the fully retrograde encounter, checking if it effectively leads to a rise of emissions.
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Appendix A: Further simulated clusters

Here we report all the clusters employed to fit the power law in Eq. (14). We managed to generate them in order to span properly
the range of thermal velocities between 0 and 1 km/s.

We produced eighteen clusters for the Standard system. Their characteristics are listed in Table 3.
Finally, for the other four systems (RY Tau, CIDA 1, HD143006, GO Tau) we generated twelve clusters, which are listed in Table

4.

Table 3 The eighteen clusters generated for the Standard system

ID N M (M�) Rc (pc) vT (km/s) τcross (Myr) τrelax (Myr)

1 20 9.2 0.15 0.262 1.12 0.75

2 200 92 0.35 0.561 1.22 4.61

3 250 115 0.5 0.530 1.85 8.36

4 250 115 1 0.356 5.50 24.89

5 1000 460 1 0.714 2.74 39.68

6 4000 1840 2 1.062 3.69 177.73

7 100 40.6 0.25 0.454 1.08 2.12

8 410 178.0 0.75 0.548 2.68 17.39

9 780 346.1 1.25 0.592 4.13 46.94

10 1500 601.1 1.5 0.713 4.12 74.98

11 2200 886.9 1.75 0.801 4.28 108.98

12 3200 1423.0 2.25 0.895 4.92 189.36

13 12 4.9 0.25 0.157 3.12 1.40

14 55 23.9 0.75 0.201 7.30 9.60

15 200 88.7 1.25 0.300 8.15 29.88

16 450 180.3 1.5 0.390 7.53 49.41

17 1250 503.9 1.75 0.604 5.67 88.74

18 2230 991.6 2.25 0.747 5.89 165.53

Here N is the number of stars in the cluster, M is the mass of the cluster, Rc is its core radius, vT is the thermal velocity, τcross and τrelax are, respectively,
the crossing time and the relaxation time
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Table 4 The twelve clusters generated

ID N M (M�) Rc (pc) vT (km/s) τcross (Myr) τrelax (Myr)

1 20 9.2 0.15 0.262 1.12 0.75

2 200 92 0.35 0.561 1.22 4.61

3 250 115 0.5 0.530 1.85 8.36

4 250 115 1 0.356 5.50 24.89

5 1000 460 1 0.714 2.74 39.68

6 4000 1840 2 1.062 3.69 177.73

7b 19 7.7 0.25 0.198 2.47 1.47

8b 125 54.3 0.75 0.303 4.84 11.99

9b 360 159.7 1.25 0.402 6.085 36.11

10b 600 240.4 1.5 0.451 6.51 54.35

11b 1450 584.5 1.75 0.651 5.26 93.52

12b 2900 1289.6 2.25 0.852 5.17 182.50

Simulations from this list were performed on all of the systems in Table 1, except for the Standard system. Here N is the number of stars in the cluster, M is
the mass of the cluster, Rc is its core radius, vT is the thermal velocity, τcross and τrelax are, respectively, the crossing time and the relaxation time

Appendix B: Encounter rates for the different clusters

Here we report the encounter rates for the different clusters parameters and for the different host systems in Table 5 and the total
number of encounters in a relaxation time in Table 6. We remind that the clusters named 7b, 8b, 9b, 10b, 11b, 12b were employed
for all our simulated systems except for the Standard system. Vice versa, clusters 7, 8, 9, 10, 11, 12 were employed only for the
Standard system.

Table 5 Encounter rates for the different simulations and host system

ID fStandard fRY Tau fCIDA 1 fHD 143006 fGO Tau

1 0.158 0.266 0.064 0.210 0.104

2 0.068 0.109 0.033 0.088 0.048

3 0.031 0.049 0.014 0.040 0.021

4 0.005 0.008 0.002 0.007 0.003

5 0.012 0.019 0.007 0.015 0.009

6 0.005 0.008 0.003 0.007 0.004

7/7b 0.099 0.067 0.016 0.053 0.026

8/8b 0.014 0.012 0.003 0.009 0.005

9/9b 0.006 0.006 0.001 0.005 0.002

10/10b 0.005 0.004 0.001 0.004 0.002

11/11b 0.004 0.005 0.002 0.004 0.002

12/12b 0.003 0.004 0.002 0.004 0.002

13 0.031

14 0.004

15 0.002

16 0.002

17 0.003

18 0.002

All values of the encounter rates f are expressed in Myr−1
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Table 6 Number of encounters Nenc within the relaxation time τrelax

ID Standard RY Tau CIDA 1 HD 143006 GO Tau

1 0 0 0 0 0

2 0 1 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 1 0 1 0

6 1 1 1 1 1

7/7b 0 0 0 0 0

8/8b 0 0 0 0 0

9/9b 0 0 0 0 0

10/10b 0 0 0 0 0

11/11b 0 0 0 0 0

12/12b 1 1 0 1 0

13 0

14 0

15 0

16 0

17 0

18 0

We approximated the number of encounters to the closest integer
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