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Abstract. Quantum Feedback Delay Networks are audio-
processing structures based on delay lines and scattering
matrices in a feedback loop, where audio is encoded in
qubits, and qubits or their representations evolve through
the network. In this exploration, different realizations with
different degrees of physical realizability are tried out,
starting from the quantum version of a recursive comb fil-
ter, up to higher order structures with several delay lines
and qubits.

1 Introduction
Feedback Delay Networks (FDN) are structures that found
extensive use in artificial reverberation and digital audio
effects [1, 2]. They can be seen as an extension of the re-
cursive comb filter, where the single delay line is replaced
by a battery of delay lines, and the feedback coefficient is
replaced by a feedback matrix, possibly accompanied by
per-line coefficients and filters. Audio samples are injected
into the FDN delay lines as input, and a weighted sum
of the outputs of delay lines is taken as an instantaneous
output audio sample. A geometric interpretation was pro-
posed of the FDN as a scattering object (the matrix) within
a box with reflecting walls [3]. FDNs are designed start-
ing from lossless prototypes, and then shaping their time-
frequency characteristics based on some desired proper-
ties, such as densities of echoes and resonances, through
tuning of delay lines and insertion of coefficients and fil-
ters. The feedback matrices that can be used for lossless
prototypes have been thoroughly studied [4, 5] and, among
these, unitary matrices have found large use. This simple
fact makes the FDN structure an attractive playground to
experiment with quantum computing tools, at the simula-
tion level as well as with physical realizations, whenever
these are possible.

Among the possible ways to encode audio
as quantum bits, Quantum Pulse Audio Modulation
(QPAM) [6] seems to be suitable for sample-by-sample au-
dio processing, as it encodes a discrete audio sample as
a probability amplitude of a quantum state. Although in
QPAM the set of 2n probability amplitudes of a n-qubit
quantum state refers to an amplitude-normalized segment
of 2n audio samples, for sample-by-sample audio process-
ing we may consider all of these numbers to refer to the
same time instant, as if they were samples of different au-
dio channels.

This paper explores1 the idea of applying the
FDN structure to audio-encoding qubits instead of

1The reported examples are available, as a jupyter notebook contain-
ing the full code, on https://github.com/d-rocchesso/QFDN

discrete-time audio signals. If unitary matrices are used,
the scattering operation can be read as a unitary evolution
of the quantum state found at the output of delay lines.

Our exploration of QFDNs starts from the sim-
plest structure, involving one-qubit feedback, that is the
quantum analog of the recursive comb filter. Then the ex-
ploration addresses multi-qubit states. Several implemen-
tation choices can be made, that make the QFDN realiza-
tion more or less amenable for direct implementation on
a quantum computer. Since measurement and entangle-
ment can be introduced in the structure, the behavior of
the QFDN turns out to be very different from the linear
response of the classical FDN.

2 The recursive Quantum Comb Filter

The recursive comb filter is a basic ingredient for funda-
mental sound synthesis (as in the Karplus-Strong algo-
rithm [7]) and artificial reverberation [8, 9]. Essentially,
the comb filter is a feedback loop containing a delay line,
a multiply/filter for in-loop attenuation, and an adder for
input signal. The name comb comes from the shape of
its magnitude frequency response, that emphasizes those
frequencies that are multiples of a fundamental, like the
teeth of a comb. With exploratory attitude, we try to un-
derstand what happens if we extend a similar structure to
digital audio encoded as qubits, being aware that the be-
havior may be highly different, and mostly nonlinear, es-
pecially when we deviate from physical realizability or we
introduce measurement in the loop.

2.1 One delay

Figure 1 shows the structure of the recursive Quantum
Comb Filter (QCF), relying on a single delay line and on
a feedback matrix, that we call the Combgate, as it can be
realized as a single-qubit gate.
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Figure 1: The recursive Quantum Comb Filter
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2.1.1 Amplitude encoding

As in QPAM, instantaneous audio input may be scaled
and shifted to stay between 0 and 1, and set to rep-
resent the first probability amplitude of a qubit. The
zero signal value is set at probability-amplitude value
1/
√
2, and the minus-one signal is set to 0. If we con-

sider a state [1, 0]
′, corresponding to signal value one,

and evolve it through a Hadamard gate, we get the state[
1/
√
2, 1/

√
2
]′

, that would correspond to a zero signal
value. Similarly, the state [0, 1]

′ would be Hadamard-
evolved to

[
1/

√
2,−1/

√
2
]′

, that would be another form
of zero signal.

2.1.2 Delay lines

In classical digital audio, delay lines are simply imple-
mented as circular buffers, and fractional time delays can
be achieved through some form of interpolation [10, 11].
In quantum digital audio, qubits are not easily delayed nor
managed in circular buffers. However, in a simulation en-
vironment, we can think of knowing and delaying one of
the two probability amplitudes defining the state of a qubit,
knowing that the other must be power-complementary. Ac-
tually, there are infinitely many possibilities for the power-
complementary probability amplitude, but we may choose
the one that is real and positive.

If delays carry probability amplitudes, we initial-
ize them in such a way that an identity feedback matrix
would produce a constant output identical to the zero in-
put. This requires initializing the delays with value 1/

√
2.

2.1.3 Summation nodes

The converging arrows of figure 1 represent summation
nodes, or points where two valid quantum states produce a
valid quantum state by some kind of summation.

Having a probability-encoding of the input that
produces a legitimate state vector

|ψ⟩ =
[√

input,
√
1− input

]′
= a0 |0⟩+ b0 |1⟩ ,

we can sum it to the state that results for matrix-evolution
of |sOut⟩, that is

|ϕ⟩ = a1 |0⟩+ b1 |1⟩ ,

as

|ψ⟩+ |ϕ⟩ =

√
|a0|2 + |a1|2

2
|0⟩+

√
|b0|2 + |b1|2

2
|1⟩ .

This operation forces the probability amplitudes at the en-
trance of delay lines to be real valued and positive, and to
form a valid quantum state.

2.1.4 Identity feedback matrix

If an identity matrix is used for matrix feedback, a con-
stant zero audio input produces a constant zero audio
output. On the other hand, a unit impulse in the in-
put produces a decaying impulse train, with amplitudes

0.75, 0.625, 0.5625, 0.53125, . . . . Subtracting the 0.5 off-
set we get a perfect division by two at every cycle, as in a
classical recursive comb filter with loop coefficient set at
0.5. The response to a damped sinusoid is a distorted and
delay-modulated damped sinusoid, as depicted in figure 2.
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Figure 2: Response (continuous line) of the 1-
qubit QCF with identity feedback matrix
to a damped sinusoid (dash-dotted line).
Time is measured in samples and delay
is set equal to 59 samples.

2.1.5 Hadamard feedback matrix

With a Hadamard feedback matrix the behavior is quite
far from that of classical recursive comb filters. A con-
stant zero input, with delay initialized at 1/

√
2, generates

a staircase oscillation with peak at 0.75, and converging to
0.7236. A unit impulse in the input produces decaying im-
pulses alternating their signs around the staircase oscilla-
tion. A damped sinusoid gets heavily distorted as an effect
of repeated circulation in the loop (see figure 3).

In the Bloch sphere, the Hadamard operator is
equivalent to a rotation by −π/2 around the y axis, fol-
lowed by a phase flip (Z gate). With rotations between 0
and −π/2 about the y axis, we can get behaviors that are
intermediate between identity and Hadamard, in terms of
decay time and asymptotic value. For example, for a rota-
tion of π/16, the response to a damped sinusoid is depicted
in figure 4, and can be compared to figures 2 and 3.

2.2 Two delays

In the realization of figure 1, the only part that is amenable
to quantum computation is the Combgate, that is a single-
qubit unitary operator. The states |sIn⟩ and |sOut⟩ must
indeed be constructed out of classical operations. If a
quantum delay line would be available, however, we may
think of having the state |sOut⟩ as a delayed version of
|sIn⟩. In simulation, a quantum delay line would be real-
ized with two equal-length lines that delay the two proba-
bility amplitudes. The circuit is almost equivalent to that
of the single delay, with the difference that the state phase
(and sign) can be maintained through the loop. The en-
coded input gets mixed in-phase with the feedback qubit.
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Figure 3: Response (continuous line) of the 1-
qubit QCF with Hadamard feedback ma-
trix to: (Top) a unit pulse and (Bottom)
a damped sinusoid. Time is measured
in samples and delay is set equal to 59
samples.

If we stick with simulation, the more general cir-
cuit of figure 5 is possible, where the two classical lines
may take different values of delay. For such a general (non-
physical) case, a state normalization stage has to be applied
at the exit of the delay lines.

With identity or Hadamard combgate the behav-
ior of the circuit with identical delay lengths is exactly as
that of the circuit with a single delayed probability ampli-
tude, described in sec. 2.1.

It is with rotations between 0 and −π/2 about the
y axis, between identity and Hadamard matrices, that we
get a peculiar oscillatory behavior, with a square wave ac-
tually modulating the response, as depicted in figure 6.

When excited by a vocal trill, the latter configura-
tion gives a modified trill, with the square wave that tends
to take over during silences, as depicted in figure 7.

2.3 Minimal QCF in state-space form

Consider the QCF with two equal-length delays, where the
delay length is reduced to two samples. Excluding input
and output, the feedback delay loop corresponds to re-
peated evolution of a two-qubit quantum state, which is
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Figure 4: Response (continuous line) of the 1-
qubit QCF with feedback matrix corre-
sponding to a −π/16 rotation around
the y axis, followed by a phase flip, to
a damped sinusoid. Time is measured
in samples and delay is set equal to 59
samples.
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Figure 5: The recursive Quantum Comb Filter,
with two delay lines, possibly of differ-
ent length.

specified by the four probability amplitudes stored in each
of the delay units, represented by variables p1, p2, s1, s2 in
figure 8.

The system state is

|w⟩ = [p1, p2, s1, s2]
′

and the state-space-evolution matrix is

Ass =


0 0 a1,1 a1,2
0 0 a2,1 a2,2
1 0 0 0
0 1 0 0

 (1)

The two-qubit quantum state can be initialized to
perfect superposition, with all probability amplitudes set
to 1/

√
4 = 1/2, which is different from the previous case

where the evolution is on a single qubit at a time.

To extract an output in QPAM according to the
realization of figure 8, we extract the probability of the
third element of vector |w⟩, corresponding to number s1,
or probability of qubits being in state [1, 0]′.

To include an input, a tensor product may be
formed between the state and the input, and the resulting



Figure 6: Response (continuous line) of the 2-
delays 1-qubit QCF with feedback ma-
trix corresponding to a −π/16 rotation
around the y axis, followed by a phase
flip, to a damped sinusoid. Time is mea-
sured in samples and delays are set
equal to 59 samples.

state can be evolved by a 3-qubit circuit. If one of the
qubits is traced-out, a new 2-qubit state is formed. In this
way, either the matrix or the input turn out to be irrele-
vant. However, if we entangle (input) qubit 2 with qubit
0, as depicted in figure 9.top, and we measure qubit 2 be-
fore letting the two other qubits evolve, we get an interest-
ing effect: with y-rotation and phase-flip we get a sort of
micro-reverberation, with stochastic spikes having ampli-
tude that can be controlled by the rotation phase. With the
Combgate of figure 8 set to the identity matrix, a damped
sinusoid gets transformed as in figure 9.bottom.

3 The Quantum Feedback Delay
Network

We can extend the QCF to handle multiple qubits. A no-
table case is that of two qubits, with a 4× 4 feedback ma-
trix.

3.1 One delay per qubit

Figure 10 shows the structure of the QFDN, relying on a
single delay line for each of the two qubits, and on a gen-
eral feedback matrix, that we call the FDNgate, as it can be
realized as a two-qubit gate. The delay lines carry proba-
bilities, and blocks to convert amplitudes to and from prob-
abilities are needed.

3.1.1 The feedback matrix

For the 4× 4 size there exists the specific matrix (2) that is
circulant, it is a Householder reflector, and has Hadamard
property (i.e., it is made of ±1 and has orthogonal rows).
The matrix, interpreted as a scattering object, is maximally
diffusive [12].

A =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (2)

Figure 7: Response (continuous line) of the 2-
delays 1-qubit QCF with feedback ma-
trix corresponding to a −π/16 rotation
around the y axis, followed by a phase
flip, to a vocal trill. Time is measured in
samples and delays are set equal to 59
samples.
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Figure 8: The recursive QCF with 2-sample delays

The matrix, as converted into a quantum circuit, evolves
the state |00⟩ into − 1

2 |00⟩ +
1
2 |01⟩ +

1
2 |10⟩ +

1
2 |11⟩. In

terms of rotations and c-nots, the matrix can be realized as
in figure 11.

3.1.2 Amplitude encoding

As in QPAM, instantaneous audio input may be scaled and
shifted to stay between 0 and 1, and set to represent the
first probability amplitude of a qubit. The other probability
amplitudes can be set equal and power complementary, i.e.,
the sum of the squares of all amplitude magnitudes gives
one.

3.1.3 Summation nodes

The summation nodes, given

|ψ >= a0|00 > +b0|01 > +c0|10 > +d0|11 >

and

|ϕ >= a1|00 > +b1|01 > +c1|10 > +d1|11 >,
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Figure 9: Top: Entangling the input (q2) with the
evolved state in state-space representa-
tion (the Unitary corresponds to Ass

of equation (1)); Bottom: Response
(continuous line) to a damped sinusoid
with identity feedback matrix, phase y-
rotation and phase flip.
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Figure 10: The QFDN for two qubits

compute

|ψ > +|ϕ >= as|00 > +bs|01 > +cs|10 > +ds|11 >=√
|a0|2 + |a1|2

2
|00 > +

√
|b0|2 + |b1|2

2
|01 > +√

|c0|2 + |c1|2

2
|10 > +

√
|d0|2 + |d1|2

2
|11 > (3)

This operation forces the probability amplitudes at the en-
trance of delay lines to be real valued and positive. Alter-
natively, we may use quantum summation (c-not gate).

3.1.4 Amplitudes to probabilities

The delays are fed with marginal probabilities of qubits,
i.e. the probability of a qubit being measured as 0 if noth-

Figure 11: The 4×4 feedback matrix (2) as a quan-
tum circuit.

ing is done on the other:

p00 = Pr(q0 = 0) =∑
b∈{0,1}

Pr
(
(q1, q0) = (b, 0)

)
= a2s + c2s;

p10 = Pr(q1 = 0) =∑
b∈{0,1}

Pr
(
(q1, q0) = (0, b)

)
= a2s + b2s.

This is equivalent, for each qubit, to tracing out the other
qubit from the density matrix and taking the top-left com-
ponent.

3.1.5 Probabilities to amplitudes
The underdetermined system

a2 + c2 = p00

a2 + b2 = p10,

constrained by the sum of squares of amplitudes being 1,
is solved by

a2 = min(p00, p10)

b2 = p10 − a2

c2 = p00 − a2

d2 = 1 + a2 − p10 − p00

3.1.6 Behavior
In response to a unit impulse, the QFDN of figure 10 pro-
duces an increasing density of echoes, as in a classical 2×2
FDN, but these appear to be superimposed to a fading-in
square wave, with a periodicity that corresponds to the sum
of the delay lengths (see figure 12).

If a measurement of one qubit is inserted after
evolution of state (i.e., after matrix multiplication), the re-
sulting sound is an irregularly-comb-filtered noise, as in
the spectrogram of figure 13.

Another possibility is to repeatedly measure the
state after matrix evolution, to transform frequencies of re-
sults to probabilities, and to derive a new state by taking
the square root of such probabilities. The number of sam-
ples controls how noisy the output is, as referred to the case
where probability amplitudes are used. The lower the num-
ber of samples, the higher the noisiness. With a very small
number of samples (e.g., 8) the noise and its quantization
become evident, as in figure 14, that should be compared
with figure 12.
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Figure 12: Response (continuous line) of the 2-
qubit QFDN with feedback matrix (2),
to a unit impulse. Time is measured in
samples and delays are set equal to 29
and 37 samples.

Figure 13: Spectrogram of the response of the 2-
qubit QFDN with feedback matrix (2), to
a unit impulse, under in-the-loop mea-
surement of one qubit.

4 2n delays and state-space realization

Similarly to how we did for the QCF in section 2.2, we can
start from a QFDN of n qubits and propagate the 2n proba-
bility amplitudes through 2n delay lines. If all delays have
the same length we are simply delaying a n-qubit quan-
tum state, an operation that may be physically realizable.
On the other hand, if the delays have different lengths,
at the exit of the delay lines we are indeed composing a
quantum state from probability amplitudes of differently-
delayed states, and this makes sense only in simulation,
where we know all the probability amplitudes.

In any case, however, a realization with 2n de-
lay lines can be transformed to state-space form and rep-
resented with a single large unitary matrix. How large it
is depends on the lengths of the delay lines. For example,
consider the case of n = 2 and 4 delay lines, and assume
these lines have lengths {2, 2, 5, 7}. Considering the state
as formed by the values at the exit of each delay unit, the
state space will have size 16 and the overall unitary matrix
will be 16× 16. One possible state-space feedback matrix,
embedding the circulant matrix A defined in (2), would be
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Figure 14: Response (continuous line) of the 2-
qubit QFDN with feedback matrix (2),
to a unit impulse. The state after ma-
trix evolution is measured 8 times, and
the results are converted to probabili-
ties. Time is measured in samples and
delays are set equal to 29 and 37 sam-
ples.

the unitary matrix

Ass =

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −.5 .5 .5 .5
0 0 0 0 0 0 0 0 0 0 0 0 .5 −.5 .5 .5
0 0 0 0 0 0 0 0 0 0 0 0 .5 .5 −.5 .5
0 0 0 0 0 0 0 0 0 0 0 0 .5 .5 .5 −.5
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


In state-space form, the QFDN can be represented by a
feedback system with unit delays and quantum evolution
on 4 qubits. Longer delays would require more qubits, and
a correspondingly larger matrix that, however, may be re-
alized as a quantum circuit.

5 Conclusion and further exploration

Starting from the observation that unitary matrices are
among the energy-preserving matrices that can be used as
scattering element in a feedback delay network, and driven
by sonic curiosity, we conducted an exploration of possible
quantum realizations of the FDN structure. We started with
possible realizations of the 1-qubit recursive comb filter,
with one or two delay lines. Propagating the probability
amplitudes through different-length delay lines may not be
physically feasible. However, the state-space realization of
such structure may be actually seen as a quantum evolution
of a larger number of qubits. These structures have been
generalized to higher-order FDNs, such as those that are
commonly used in artificial reverberation. In QFDNs, sev-
eral qubits and delay lines are considered and with state-
space realizations and long delays, the number of qubits
and the size of the unitary operator may become high.



We have shown some examples of responses to
impulse, damped sinusoid, or vocal signal, for different
configurations, with or without measurement. We have
seen how different the response may be from that of clas-
sical FDNs, although the behavior can be often interest-
ing and controllable. With in-the-loop quantum measure-
ment, the response is not deterministic and can produce
non-repeating textures.

More structure design and experimentation need
to be done, especially with state-space realizations that
are physically realizable as quantum computations on sev-
eral qubits. Exposing quantum operations, such as Bloch-
sphere rotations, together with their auditory manifesta-
tions may give rise to novel controllable audio effects.

Acknowledgment
The presentation of this work has been supported by
the project "Multiscale Analysis of Human and Artifi-
cial Trajectories: Models and Applications" funded by the
MUR Progetti di Ricerca di Rilevante Interesse Nazionale
(PRIN) Bando 2022 - grant 2022RB939W.

References
[1] Jean-Marc Jot and Antoine Chaigne. Digital delay net-

works for designing artificial reverberators. In Audio Engi-
neering Society Convention 90. Audio Engineering Society,
1991.

[2] Ville Pulkki, Tapio Lokki, and Davide Rocchesso. Spatial
effects. In Udo Zölzer, editor, Digital Audio Effects, pages
139–183. John Wiley and Sons, Ltd., Chichester Sussex,
UK, 2011. Second edition.

[3] Davide Rocchesso. The ball within the box: A sound-
processing metaphor. Computer Music Journal, 19(4):47–
57, 1995.

[4] Sebastian J. Schlecht and Emanuël A. P. Habets. On loss-
less feedback delay networks. IEEE Transactions on Signal
Processing, 65(6):1554–1564, 2017.

[5] Davide Rocchesso and Julius O. Smith. Circulant and
elliptic feedback delay networks for artificial reverbera-
tion. IEEE Transactions on Speech and Audio Processing,
5(1):51–63, 1997.

[6] Paulo Vitor Itaboraí and Eduardo Reck Miranda. Quan-
tum Representations of Sound: From Mechanical Waves to
Quantum Circuits, pages 223–274. Springer International
Publishing, Cham, 2022.

[7] Kevin Karplus and Alex Strong. Digital synthesis of
plucked-string and drum timbres. Computer Music Jour-
nal, 7(2):43–55, 1983.

[8] M.R. Schroeder and B.F. Logan. "colorless" artificial rever-
beration. IRE Transactions on Audio, AU-9(6):209–214,
1961.

[9] James A. Moorer. About this reverberation business. Com-
puter Music Journal, 3(2):13–28, 1979.

[10] Vesa Valimaki and Timo I. Laakso. Principles of frac-
tional delay filters. In 2000 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No.00CH37100), volume 6, pages 3870–3873 vol.6,
2000.

[11] Davide Rocchesso. Fractionally addressed delay lines.
IEEE Transactions on Speech and Audio Processing,
8(6):717–727, 2000.

[12] Davide Rocchesso. Maximally diffusive yet efficient feed-
back delay networks for artificial reverberation. IEEE Sig-
nal Processing Letters, 4(9):252–255, 1997.


	Introduction
	The recursive Quantum Comb Filter
	One delay
	Amplitude encoding
	Delay lines
	Summation nodes
	Identity feedback matrix
	Hadamard feedback matrix

	Two delays
	Minimal QCF in state-space form

	The Quantum Feedback Delay Network
	One delay per qubit
	The feedback matrix
	Amplitude encoding
	Summation nodes
	Amplitudes to probabilities
	Probabilities to amplitudes
	Behavior


	2n delays and state-space realization
	Conclusion and further exploration

