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A B S T R A C T

We proposed a two-step synthesis process to fabricate floating TiO2 and Ag-decorated TiO2 (Ag/TiO2) photo-
catalysts. In the first step, an ultrasound-assisted sol-gel method followed by spray drying was adopted to syn-
thesize powder photocatalysts. Next, the powder samples were immobilized onto a floating polyurethane foam 
(PUF) support with an ultrasound-assisted impregnation method. The photocatalytic activity of TiO2 and Ag/ 
TiO2 was evaluated to remove methyl orange (MO) as a dye pollutant in two suspended and floating photo-
catalytic systems. Ag decoration on TiO2 improved the optical and textural properties by narrowing the bandgap 
energy to 2.9 eV and increasing the surface area from 10 m2/g to 30 m2/g. Ag/TiO2 exhibited higher photo-
catalytic activity compared to TiO2 for MO removal, which was 98 % for suspended and 95 % for floating 
catalysts under simulated sunlight irradiation. In addition, floating photocatalysts exhibited higher photo-
catalytic activity over five cycles of reuse. Floating Ag/TiO2@PUF maintained 89 % of its initial photoactivity, 
while suspended Ag/TiO2 lost 50 % after the five cycles. Moreover, we investigated the effect of operating 
conditions on the photocatalytic performance of floating Ag/TiO2@PUF. Optimal conditions for the complete 
removal of MO below detection limits were obtained as follows: Ag/TiO2@PUF loading = 0.4:200 g/mL, initial 
MO concentration = 5 mg/L, time = 90 min, and pH = 4 under simulated sunlight irradiation. This study 
highlights the potential of floating photocatalyst systems as a sustainable, reusable, and scalable approach for 
wastewater treatment, addressing challenges in catalyst recovery and efficiency under real-world conditions.

1. Introduction

TiO2 as an n-type semiconductor photocatalyst has been investigated 
for wastewater treatment owing to its super-hydrophilicity, chemical 
and thermal stability, optical properties, and photocatalytic activity 
[1–4]. However, the wide bandgap of TiO2 (3.0–3.2 eV) confines its 
photoactivity to the UV region (λ ≤ 400 nm). The fast recombination of 
photogenerated electron-hole pairs in TiO2 also reduces its photo-
catalytic efficiency [5–8].

To cope with the restrictions mentioned above, TiO2 can be modified 
by metals, non-metals, and secondary semiconductors [9]. The incor-
poration of metals into TiO2 can narrow its bandgap energy and prevent 
the recombination of electron-hole pairs, thereby improving the 

photocatalytic activity of TiO2 for wastewater treatment applications 
[10]. This modification involves a variety of metals, including transition 
metals (e.g., Cr, Cu, Ni, Fe, V, W, Mn, Zn, and Ru), noble metals (e.g., Ag, 
Au, Pt, and Pd), and rare earth metals (e.g., Nd, Tb, Ce, Er, La, and Eu) 
[11]. Among these, composite Ag/TiO2 photocatalysts have drawn 
research interest in wastewater treatment [12,13]. The presence of Ag in 
TiO2 enhances its photocatalytic activity by reducing the recombination 
of photogenerated electron-hole pairs and improving visible light ab-
sorption [14–16].

Immobilizing photocatalysts on supports affects the stability and 
reusability of photoactive materials [10]. Porous polyurethane foam 
(PUF) is one of the floating supports, which has a low density (<1000 
kg/m3) [17,18]. PUF improves the adsorption of pollutants due to its 
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open-pore structure, which increases porosity and surface area [19]. In 
addition, photocatalysts deposited onto floating PUF tackle shortcom-
ings such as the recovery and reusability of suspended photocatalysts, 
which hinder practical applications [19]. Moreover, the floating cata-
lytic foam under sunlight irradiation benefits from access to the 
water-air interface [20]. This floating system causes a temperature 
gradient at the water-air interface, called the photothermal effect 
[21–23]. This attains the temperature-induced pumping effect and 
speeds up the mass transfer for photocatalysis [21]. The photothermal 
effect in the floating catalyst photoreactor also improves the absorption 
of oxygen from the air, enhancing photocatalytic reactions with 
increasing reactive oxygen species in the submerged part of floating 
photocatalysts in water [22].

Floating TiO2-based photocatalysts have been explored for waste-
water treatment. According to the literature, Zhang et al. [24] synthe-
sized mesoporous SiO2–TiO2 photocatalysts supported on a floating 
polyurethane foam. Phenol and 2,4,5-trichlorophenol were completely 
removed by floating SiO2–TiO2/PUF after 3h and 6h under UV irradia-
tion, respectively. TiO2–ZnO photocatalysts immobilized on a floating 
light-expanded clay aggregate support (TiO2–ZnO/LECA) were prepared 
by Mohammadi et al. [25], achieving 95.2 % of ammonia removal under 
UV light within 3h. Mohamad Idris et al. [26] fabricated floating pho-
tocatalysts, which were TiO2 nanoparticles immobilized on cork as a 
floating substrate. This resulted in 98.4 % of methylene blue degrada-
tion after 2h of visible light. Cai et al. [27] described immobilizing 
co-doped magnetic N–TiO2-x/rGO photocatalysts on floating cellulose 
nanofibrous. The floating N–TiO2-x/rGO@cellulose degraded 96.2 % of 
Bisphenol A after 60 min under visible light. In another study, carbon 
and nitrogen co-doped TiO2 nanoparticles supported on floating alginate 
beads were designed to remove diazinon [28]. The floating C, 
N–TiO2/alginate bead removed 80.6 % of diazinon after 8h of exposure 
to solar light.

In the synthesis process of photocatalysts, ultrasonication assists in 
providing a uniform particle size distribution in photocatalysts through 
acoustic cavitation and macro shear rates [29,30]. This phenomenon 
consists of the fast formation, expansion, and intense collapse of bubbles 
in the liquid, leading to a high temperature (up to 5000 K) and pressure 
(20 MPa) and quick cooling rate [31–33]. In addition, the 
ultrasound-assisted impregnation method leads to the uniform distri-
bution of photocatalysts onto their supports [34,35]. Besides ultra-
sonication, spray drying during the photocatalyst synthesis process 
provides a swift, continuous approach whereby lengthy drying steps are 
avoided. This technique is also advantageous when scaling up during the 
commercialization process [36,37]. Therefore, by applying ultra-
sonication and spray drying in subsequent steps during the synthesis of 
photoactive materials, we expect to enhance photocatalytic activity.

To the best of our knowledge, no study has been reported for the 
treatment of dye-containing wastewater using floating Ag/TiO2 photo-
catalyst immobilized on porous PUF (Ag/TiO2@PUF). We proposed a 
new synthesis process, i.e., an ultrasound-assisted sol-gel method fol-
lowed by spray drying to manufacture a floating photocatalytic device. 
We compared the photocatalytic activity of suspended TiO2 and Ag/ 
TiO2 with floating TiO2@PUF and Ag/TiO2@PUF to remove methyl 
orange (MO) as a model organic dye pollutant under simulated sunlight 
irradiation. In addition, we investigated the effects of operating pa-
rameters, including photocatalyst amount, MO concentration, and pH, 
on MO removal efficiency and kinetics study. Moreover, we examined 
the possible mechanism of MO removal by Ag/TiO2@PUF and the main 
reactive species involved in the photocatalytic reaction under optimal 
conditions.

We hypothesized that floating TiO2@PUF and Ag/TiO2@PUF pho-
tocatalysts, inspired by photosynthesis, offer key advantages such as 
enhanced sunlight and oxygen harnessing over conventional suspended 
systems to remove MO at lower cost.

2. Materials and methods

2.1. Materials

Ti(IV)-butoxide (C16H36O4Ti, 97 %) and methyl orange 
(C14H14N3NaO3S, 85 %) were analytical grade reagents purchased from 
Sigma-Aldrich. Ethanol (C2H6O, 95 %) was provided by Commercial 
Alcohols, and silver nitrate solution (AgNO3, 0.1 N) was supplied by 
Merck. A commercial polyurethane foam (PUF, Porosity: Medium, 20 
PPI) was obtained from Amtra (Italy). All solutions were prepared with 
deionized water, and the reagents were used as they were received 
without further purification.

2.2. Synthesis of photocatalysts

We synthesized pure TiO2 and 2 wt% Ag-decorated TiO2 by an 
ultrasound-assisted sol-gel method followed by spray drying. An ultra-
sonic processor (VCX500, Sonics and Materials) equipped with a solid 
probe with a diameter of 13 mm was employed (measured power: 40 W; 
duty cycle: 2 s on, 2 s off for 1 h; processing volume: 120 mL). The ul-
trasound power was calibrated through calorimetry [38]. The operating 
parameters of the spray dryer (TP-S15, TOPTION) included a feeding 
slurry concentration of 20 %, peristaltic pump feed rate of 30 rpm, 
temperature of 180 ◦C, and needle of 6 s. For the synthesis of Ag/TiO2, 
we added AgNO3 solution (5 mL) dropwise in deionized water (10 mL) 
to the mixture of C16H36O4Ti (25 mL) and ethanol (80 mL) under 
continuous ultrasonication [9,39]. After that, the resulting sol was fed to 
the spray dryer. The powder sample obtained from the spray dryer was 
then calcined in a furnace at 600 ◦C for 2 h at a temperature rate of 2 
◦C/min under static air, yielding Ag/TiO2. TiO2 was prepared using the 
same procedure without adding AgNO3 solution.

The next step of the synthesis was to immobilize TiO2 and Ag/TiO2 
onto a floating PUF by an ultrasound-assisted impregnation method. 
First, different amounts of TiO2 and Ag/TiO2 (0.5 g, 1 g, and 1.5 g) in 
deionized water were added to the PUF under continuous ultra-
sonication (40 W, 20 min). After that, ethanol (15 mL) was added to the 
solution, and the PUF was then immersed in the solution of deionized 
water and ethanol. Finally, the resulting solutions were dried at 80 ◦C for 
24 h in the oven to obtain floating TiO2@PUF and Ag/TiO2@PUF.

2.3. Characterization

The crystalline phase of the synthesized photocatalysts was analyzed 
by a powder X-ray diffractometer (XRD, D8 advance, Bruker). Weight 
fractions of anatase and rutile phases were calculated by the Spurr 
Equation (Equation (1)), where IR and IA are the intensity of the stron-
gest reflections for rutile and anatase phases [40]. 

fA %=
1

(

1 + 1.26 (IR)
(IA)

) (1) 

The crystallite size of the photocatalysts was calculated using the 
Scherrer Equation [41]. 

D=
Kλ

β cos θ
(2) 

In Equation (2), D is the crystallite size (nm), K is a constant (shape 
factor = 0.94), λ is the wavelength of the X-ray radiation source (Cu-Kα 
= 0.15406 nm), β is the full width at half maximum (FWHM) of the peak 
(in radian), and θ is half of the Bragg angle (in degrees).

The lattice parameters of the synthesized photocatalysts were 
determined with Bragg’s law by the following equations [42] using XRD 
diffraction peaks of tetragonal TiO2. 

d(hkl) =
λ

2 sin θ
(3) 
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1
(d(hkl))

2 =
h2

a2 +
k2

b2 +
l2

c2 (4) 

In Equations 3-4, h, k, l are the indices of crystal planes, d(hkl) is the 
distance between the crystal planes of (hkl), θ is the diffraction angle of 
the crystal planes of (hkl), and a, b, c are lattice parameters of the 
photocatalysts (a = b ∕= c).

Diffuse reflectance spectroscopy (DRS) analysis was performed by a 
UV–Vis spectrophotometer (Evolution™ 220, Thermo Fisher Scientific) 
to study the optical properties of the synthesized photocatalysts. The 
bandgap energy of the photocatalysts was calculated by plotting [F(R) ×
hʋ]0.5 vs. hʋ based on Equation (5) [41,43]. 

F(R)=
(1 − R)2

2R
(5) 

where F(R) is the Kubelka Munk function, and R is the reflectance.
The infrared photothermal images of floating samples were taken by 

forward looking infrared camera (FLIR-T621xx). Scanning electron mi-
croscopy (SEM) equipped with energy-dispersive X-ray spectroscopy 
(EDS) was employed to investigate the morphology and elemental 
compositions of the photocatalysts (JSM-7600TFE, JEOL). Transmission 
electron microscopy (TEM) (JEM-2100F, JEOL) was operated to further 
study their morphology. Also, the size of the synthesized samples was 
measured using Digimizer version 5.3.5 software. For the chemical 
compositions and valence states of the photoactive materials, X-ray 
photoelectron spectroscopy (XPS) analysis was performed by an X-ray 
photoelectron spectrometer microprobe (VG ESCALAB 250Xi, Thermo 
Scientific). Nitrogen adsorption-desorption isotherms using the 
Brunauer-Emmett-Teller (BET) method measured the specific surface 
area, total pore volume, and pore size of the photocatalysts by an 
Autosorb-1 device (Quantachrome Instruments).

2.4. Photocatalytic system

We evaluated the photocatalytic activity of the synthesized materials 

to remove MO in a batch photoreactor under simulated sunlight irra-
diation. In addition, the stability of TiO2, Ag/TiO2, TiO2@PUF, and Ag/ 
TiO2@PUF was assessed for five consecutive cycles. After each cycle, we 
removed the photocatalysts from the system, washed them with deion-
ized water, and then dried them in the oven at 80 ◦C before reusing them 
for the next cycle. Each cycle had the same conditions.

We investigated the effect of operating parameters on MO removal 
with floating Ag/TiO2@PUF under simulated sunlight irradiation as 
follows: Ag/TiO2@PUF amount (0.2:200 g/mL, 0.4:200 g/mL, 0.8:200 
g/mL), MO concentration (5 mg/L, 10 mg/L, 20 mg/L), and pH (4, 5.7, 
10). The total irradiation time was 180 min, and the initial MO volume 
was 200 mL. Note that the values expressed for the photocatalysts as 
0.2:200 g/mL, 0.4:200 g/mL, and 0.8:200 g/mL indicate the mass 
coated on PUF in the 200 mL of MO solution. The pH of MO solutions 
was adjusted by HCl (0.1 M) and NaOH (0.1 M), and the natural pH of 
the MO solution was measured at 5.7. In addition, the light source was a 
300 W commercial solar lamp (Ultra-Vitalux, Osram) with an intensity 
of 35 W/m2, located 20 cm above the reactor. Before being exposed to 
irradiation, each sample was kept in the dark for 60 min to reach 
absorption-desorption equilibrium. We repeated photocatalytic experi-
ments three times under simulated sunlight irradiation, and error bars 
show the standard deviation of these repetitions. MO concentration was 
monitored by a UV–Vis spectrophotometer (Evolution™ 220, Thermo 
Fisher Scientific) at λmax = 464 nm. The photocatalytic efficiency of MO 
removal (η) was calculated according to Equation (6): 

η=
(

1 −
C
C0

)

× 100% (6) 

where C0 is the initial concentration of MO and C is the concentration of 
MO at time t.

We identified intermediates generated during the photocatalytic 
degradation of MO with floating Ag/TiO2@PUF under optimal condi-
tions using liquid chromatography-mass spectrometry (LC-MS). LC-UV- 
MS analyses were performed on an LC-TOF 6224 instrument from Agi-
lent technologies with negative electrospray ionization.

Fig. 1. SEM images of (a) PUF, (b) TiO2@PUF, (c) Ag/TiO2@PUF, (d) TiO2, and (e) Ag/TiO2.
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We quantified the concentration of Ti and Ag elements leaching from 
Ag/TiO2@PUF using inductively coupled plasma-optical emission 
spectroscopy (ICP-OES, Agilent, 5110-SVDV).

2.5. Photocatalytic kinetic study

The impact of operating parameters mentioned in section 2.4 was 

also examined on the kinetic of MO photocatalysis with floating Ag/ 
TiO2@PUF under simulated sunlight irradiation. We followed the 
Langmuir-Hinshelwood kinetics model, as shown in Equation (7) [44]. 

r=
dC
dt

=
kKC

1 + KC
(7) 

r is the rate of MO removal (mg/L.min), C is MO concentration (mg/ 

Fig. 2. TEM images of (a) Ag/TiO2 and (b) Ag.

Fig. 3. EDS spectra of (a) TiO2 and (b) Ag/TiO2; EDS mappings of (c) TiO2 and (d) Ag/TiO2.
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L), t is irradiation time (min), k is reaction rate constant (mg/L.min), and 
K is MO adsorption constant (L/mg).

For low concentrations of MO, Equation (7) can be simplified to 
Equation (8), representing a first-order kinetics. 

ln
(

C0

C

)

= kKt = kappt (8) 

In Equation (8), kapp is the apparent first-order rate constant (min− 1).

2.6. Scavenging experiments

We investigated the main reactive species involved in MO photo-
catalysis by floating Ag/TiO2@PUF by adding the scavengers Ethyl-
enediaminetetraacetic acid (EDTA), isopropyl alcohol (IPA), and p- 
benzoquinone (BQ) for photogenerated holes (h+), hydroxyl radicals 
(•OH), and superoxide anions (•O2

− ), respectively. We added 1 mM of 
each scavenger to the floating catalyst photoreactor under simulated 
sunlight irradiation. We performed scavenging experiments for the 
optimized conditions of the photocatalysts in MO removal.

3. Results and discussion

3.1. Morphology and elemental compositions of TiO2@PUF and Ag/ 
TiO2@PUF

Fig. 1a presents the smooth surface of the pristine PUF before 
immobilizing the photocatalysts. Fig. 1b and c shows the SEM images of 
TiO2@PUF and Ag/TiO2@PUF after the deposition of the photo-
catalysts, confirming that TiO2 and Ag/TiO2 were uniformly immobi-
lized onto the PUF. This is due to ultrasonication in the impregnation 
synthesis method [35,45]. In addition, the synthesized TiO2 and 
Ag/TiO2 had spherical morphology, as depicted in Fig. 1d and e.

Fig. 2a shows the TEM image of Ag/TiO2. Ag was uniformly loaded 
onto TiO2, marked by highlighted circles. The size of spherical Ag was 
10 nm, as shown in Fig. 2b.

EDS detected Ti (64.5 %) and O (35.5 %) in TiO2 (Fig. 3a). Also, the 
presence of 2.1 % Ag in Ag/TiO2 was confirmed, along with 59.7 % of Ti 
and 38.2 % of O in the photocatalyst (Fig. 3b). Fig. 3c and d shows that 
the elements were evenly dispersed onto the synthesized photocatalysts.

3.2. Crystalline phase of TiO2 and Ag/TiO2

Fig. 4 shows the XRD patterns of TiO2 and Ag/TiO2. The lattice 
planes of the anatase phase (101), (103), (004), (112), (200), (105), 
(211), (204), and (220) were confirmed at 2θ values of 25.47◦, 37.15◦, 
37.97◦, 38.78◦, 48.21◦, 54.04◦, 55.22◦, 62.87◦, and 69.01◦, respectively 
(JCPDS Card Number: 01-071-1166). Moreover, peaks at 2θ values of 
27.60◦, 36.22◦, and 41.44◦ equivalent to the Miller indexes of (110), 
(101), and (111) were characteristic of the rutile phase in the synthe-
sized photocatalysts (JCPDS Card Number: 00-001-1292). TiO2-based 
photocatalysts having mixed phases (anatase/rutile) present higher 
photocatalytic activity compared to single-phase TiO2 [46,47].

As shown in Fig. 4, the peak associated with Ag was not detected due 
to either the highly fine dispersion on TiO2 or, more likely, the low 
concentration of Ag in Ag/TiO2 [9]. However, for Ag/TiO2, the position 
of TiO2 peaks shifted to a lower angle side, and the intensity of peaks 
decreased, indicating that Ag was decorated on TiO2 [48]. We calculated 
the crystalline phase, crystallite size, lattice parameters, and cell volume 
of TiO2 and Ag/TiO2 for both the anatase phase at A (101) and the rutile 
phase at R (110) (Table 1). Based on the Spurr Equation, TiO2 had 88 % 
of the anatase phase compared to 92 % for Ag/TiO2. According to the 
Scherrer Equation, the average crystallite size of anatase in TiO2 was 
32.8 nm and 26.5 nm for Ag/TiO2. On the other hand, for the rutile 
phase, the crystallite size of TiO2 and Ag/TiO2 was 74.4 nm and 26.6 
nm, respectively. The crystallite size of Ag/TiO2 was smaller than that of 
pure TiO2 due to the higher ionic radius of Ag+ (126 Å) compared to Ti4+

(68 Å). This hinders the growth of TiO2 crystallites [49]. As reported in 
Table 1, the lattice parameters of Ag/TiO2 were smaller than those of 
TiO2 in both anatase and rutile phases. Also, the anatase cell volume of 
Ag/TiO2 was 132.16 Å3 compared to 138.98 Å3 for TiO2. The reduction 
in lattice parameters and cell volume originates from Ag decoration on 
TiO2 [48,50].

3.3. Chemical compositions and valence states of TiO2 and Ag/TiO2

Fig. 5a depicts the XPS survey spectra of TiO2 and Ag/TiO2, which 
indicates the presence of Ti and O in TiO2 and Ti, O, and Ag elements for 
Ag/TiO2. Ag/TiO2 exhibited two peaks at binding energies of 458.8 eV 
for Ti 2p3/2 and 464.5 eV for Ti 2p1/2, indicating the existence of Ti4+ in 
Ag/TiO2 based on the peak separation of 5.7 eV (Fig. 5b) [51–53]. In 
addition, there was about 0.1 eV shift in the Ti 2p spectrum of Ag/TiO2 
towards higher binding energy compared with TiO2, which can result 
from the improved interaction between Ti and Ag [54]. Fig. 5c shows a 
peak at 530 eV attributed to the lattice oxygen in Ag/TiO2 (Ti–O) [55,
56]. In Fig. 5d, Ag 3d peaks were present at binding energies of 368.5 eV 
and 374.5 eV for Ag 3d5/2 and Ag 3d3/2, respectively. The binding en-
ergy difference between the two spin-orbit components was 6 eV, con-
firming the presence of metallic silver (Ag0) in Ag/TiO2 [51,53,57,58]. 

Fig. 4. XRD of TiO2 and Ag/TiO2.

Table 1 
Crystalline parameters of TiO2 and Ag/TiO2.

Photocatalyst Crystalline phase Crystalline phase percentage Crystallite size (nm) Lattice parameters (Å) Cell volume (Å3)

a = b c

TiO2 Anatase 88 32.8 3.7917 9.6672 138.98
Ag/TiO2 92 26.5 3.7746 9.2756 132.16
TiO2 Rutile 12 74.4 4.6113 2.9712 63.18
Ag/TiO2 8 26.6 4.5695 2.9528 61.65
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Fig. 5. XPS spectra of TiO2 and Ag/TiO2 (a) Full spectrum, (b–d) High-resolution spectra of Ti 2p, O 1s, and Ag 3d, respectively.

Fig. 6. DRS (a) absorption spectra and (b) Tauc plots of TiO2 and Ag/TiO2.

N. Davari et al.                                                                                                                                                                                                                                  Tetrahedron Green Chem 5 (2025) 100059 

6 



Additional binding energy peaks were observed at 367.9 eV for Ag 3d5/2 
and 373.9 eV for Ag 3d3/2, suggesting the presence of oxidized silver, 
either as Ag2O or AgO (Ag+1 or Ag+2) in the surface of TiO2 [29,53,55,
57,59,60]. The presence of oxidized silver is likely due to the oxidation 
of Ag during the calcination of Ag/TiO2 [29]. Our results confirmed that 
Ag existed in Ag/TiO2 as a mixture of metallic and oxidized silver.

3.4. Optical features and photothermal performance of TiO2 and Ag/TiO2

Fig. 6a presents the absorption spectra of TiO2 and Ag/TiO2. Pure 
TiO2 exhibited an intense absorption peak in the UV region below 400 
nm, which belongs to the electron excitation from the 2p of O2− to the 3d 
orbital of Ti4+ [42]. According to Fig. 6a, a redshift towards 470 nm was 
observed in the spectrum of Ag/TiO2 compared to bare TiO2. This 
redshift can be due to the effect of Ag decoration on TiO2, which im-
proves the visible light absorption of TiO2 [14,61].

Fig. 6b shows Tauc plots of TiO2 and Ag/TiO2. The bandgap energy 
of pure TiO2 was determined as 3 eV. Ag decreased the bandgap energy 

of TiO2 to 2.9 eV owing to decorating Ag on TiO2 [15]. A new energy 
level can be formed between the conduction band of TiO2 and the 
conduction band of Ag that decreases the bandgap energy of TiO2, 
reducing the recombination rate of photogenerated charge carriers and 
thus enhancing the photocatalytic activity of Ag/TiO2 [29,50].

Fig. 7 shows the infrared photothermal images of floating samples. 
The system reached the highest temperature at 26 ◦C, 32 ◦C and 40 ◦C 
for PUF, TiO2@PUF and Ag/TiO2@PUF, respectively, after 5 min of 
simulated sunlight irradiation. Ag/TiO2@PUF exhibited the highest 
temperature of all samples (40 ◦C), which can be due to the local surface 
plasmon resonance (LSPR) effect of Ag [23,61]. Ag can generate 
high-energy hot electrons, resulting in local heating around the particles 
under light irradiation [62].

3.5. Textural properties of TiO2 and Ag/TiO2

Table 2 presents BET results of TiO2 and Ag/TiO2. BET surface area 
of Ag/TiO2 (30 m2/g) was three times higher than that of TiO2 (10 m2/ 
g). In addition, Ag/TiO2 had a total pore volume of 0.12 cm3/g, four 
times greater than TiO2 (0.03 cm3/g).

Fig. 8a and b shows N2 adsorption-desorption isotherms of TiO2 and 
Ag/TiO2, respectively. Based on the IUPAC classification [63], TiO2 
presented a type IV(a) isotherm with an H3 hysteresis loop, indicating its 
mesoporous geometry with a mean pore size of 12 nm (see Table 2). In 
addition, Ag/TiO2 had a type IV(a) isotherm with an H1 hysteresis loop, 
suggesting a narrow range of uniform mesopores in Ag/TiO2 and a mean 

Fig. 7. Top-view infrared photothermal images of (a) PUF, (b) TiO2@PUF, and (c) Ag/TiO2@PUF in water under simulated sunlight irradiation.

Table 2 
BET of TiO2 and Ag/TiO2.

Photocatalyst BET surface area (m2/g) Pore volume (cm3/g) Pore size (nm)

TiO2 10 0.03 12
Ag/TiO2 30 0.12 10

Fig. 8. N2 adsorption-desorption isotherms of (a) TiO2 and (b) Ag/TiO2.
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pore size of 10 nm.

3.6. Photocatalytic activity of TiO2 and Ag/TiO2 in suspended and 
floating systems for MO removal

We investigated suspended and floating devices based on TiO2 and 
Ag/TiO2 to remove MO under simulated sunlight irradiation for five 
consecutive cycles. The experimental conditions for MO photocatalysis 
were 10 mg/L of MO concentration, 0.4 g of photocatalysts, and pH =
5.7 for 180 min irradiation time. In the first cycle, the MO removal was 
75 % and 70 % for TiO2 and TiO2@PUF, respectively (Fig. 9a). This 
slightly higher efficiency by suspended TiO2 (5 %) can be attributed to 
the larger surface in contact with the MO solution, which is typical of 
suspensions, improving the mass transfer rate between the surface of 
TiO2 nanoparticles and pollutant species [64–66]. On the other hand, in 
the second cycle, floating TiO2@PUF maintained 70 % of MO removal, 
while it decreased to 67 % for suspended TiO2. This reduction can be due 
to the loss of TiO2 in the suspended form during its reuse [64]. In 
addition, floating TiO2@PUF showed higher photocatalytic activity than 
suspended TiO2 in the fifth cycle, achieving 64 % MO removal compared 
to 39 %. Immobilizing powder photocatalysts onto floating supports not 
only addresses the challenges of reuse of suspended photocatalysts but 
also enhances solar light harnessing through access to the water-air 

interface [67,68].
Fig. 9b presents the MO removal with Ag/TiO2 and Ag/TiO2@PUF in 

suspension and floating systems, respectively. Fig. 9b followed the same 
trend as observed in Fig. 9a. In the first cycle, suspended Ag/TiO2 
removed 98 % of MO, while Ag/TiO2@PUF achieved 95 %. In the 
following cycles, floating Ag/TiO2@PUF exhibited higher photo-
catalytic activity than suspended Ag/TiO2. The MO removal was 89 % 
with floating Ag/TiO2@PUF and 50 % for suspended Ag/TiO2 in the 
final cycle. Comparing Fig. 9b with Fig. 9a, Ag in both suspended and 
floating photocatalysts increased the MO removal with respect to the 
pure photocatalysts. Our results indicated that floating Ag/TiO2@PUF 
was the most effective photocatalyst, with a MO removal efficiency of 
89 % after five consecutive cycles. Based on the results from Ag/ 
TiO2@PUF characterizations, Ag decoration on TiO2 decreased the 
bandgap energy to 2.9 eV and caused an increase in the visible light 
absorption of bare TiO2 [14,23]. Also, the surface area of Ag/TiO2 
increased to 30 m2/g, three times higher than that of TiO2, providing 
more active sites for the decomposition of MO. In addition, the mixed 
phase found for Ag/TiO2 exhibited higher photocatalytic activity than 
the single-phase one [46,47].

Floating photocatalysts (TiO2@PUF and Ag/TiO2@PUF) were 5–7% 
more effective than suspended ones (TiO2 and Ag/TiO2) in adsorbing 
MO in dark conditions. This is because the floating photocatalytic 

Fig. 9. MO removal efficiency with (a) TiO2 and TiO2@PUF, (b) Ag/TiO2 and Ag/TiO2@PUF after 180 min of irradiation time.

Fig. 10. Effect of Ag/TiO2@PUF amount (0.2:200 g/mL, 0.4:200 g/mL, 0.8:200 g/mL) on (a) MO removal efficiency and (b) apparent rate constant.
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systems benefit from the photothermal effect [21–23,61] that enhances 
the diffusion and adsorption of MO molecules on the surface of floating 
photocatalysts during the photocatalytic process.

3.7. Effects of operating parameters on MO removal by floating Ag/ 
TiO2@PUF

The effect of Ag/TiO2@PUF amount on MO removal efficiency under 
simulated sunlight irradiation was investigated by varying it to 0.2:200 
g/mL, 0.4:200 g/mL, and 0.8:200 g/mL. The rest of the experimental 
conditions were maintained constant (pH = 5.7, 10 mg/L MO, and 180 
min irradiation time). Fig. 10a shows that when the photocatalyst 
amount increased from 0.2:200 g/mL to 0.4:200 g/mL, the MO removal 
rose from 70 % to 95 %. This increase is because more active photo-
catalytic sites inside the PUF can be available to harness light irradiation 
and participate in the photocatalytic reaction [18]. On the other hand, 
the MO removal decreased by 10 % with increasing amount of the 
photocatalyst from 0.4:200 g/mL to 0.8:200 g/mL due to the agglom-
eration of Ag/TiO2 and blockage of PUF pores that hinder light pene-
tration [18,69–71]. Our results suggested that the optimal amount of 
Ag/TiO2@PUF for MO photocatalysis was 0.4:200 g/mL, achieving 95 % 

removal after 180 min.
Fig. 10b presents the effect of Ag/TiO2@PUF amount on the 

apparent rate constant. The correlation coefficients (R2) were higher 
than 0.98, confirming that the MO photocatalytic removal by Ag/ 
TiO2@PUF followed first-order kinetics. As shown in Fig. 10b, by 
increasing the amount of Ag/TiO2@PUF from 0.2:200 g/mL to 0.4:200 
g/mL, the apparent first-order rate constant (kapp) increased from 0.007 
min− 1 to 0.017 min− 1. However, as the amount of Ag/TiO2@PUF 
further raised to 0.8:200 g/mL, kapp diminished to 0.011 min− 1.

The effect of MO concentration (5 mg/L, 10 mg/L, and 20 mg/L) on 
the MO removal was examined with 0.4:200 g/mL Ag/TiO2@PUF at pH 
= 5.7. For Mo concentration of 5 mg/L, we observed a complete removal 
after 150 min of irradiation time (Fig. 11a). However, increasing the MO 
concentration to 10 mg/L decreased the efficiency to 95 % after 180 
min, and it was 93 % for 150 min. In addition, a further increase in MO 
concentration to 20 mg/L resulted in a 7 % reduction in the MO removal 
(see Fig. 11a). The results showed that the photocatalytic performance 
of Ag/TiO2@PUF decreased by increasing the MO concentration. This 
can be owing to the large adsorption of MO on the photocatalyst surface, 
decreasing the photodecomposition efficiency [72,73]. The MO photo-
catalytic removal was affected by the initial pollutant concentration in 

Fig. 11. Effect of MO concentration (5 mg/L, 10 mg/L, 20 mg/L) on (a) MO removal efficiency and (b) apparent rate constant.

Fig. 12. Effect of pH (4, 5.7, 10) on (a) MO removal efficiency and (b) apparent rate constant.
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which complete elimination was achieved for 5 mg/L MO after 150 min.
Fig. 11b shows how the concentration of MO impacts the apparent 

rate constant in the MO photocatalytic process. When applying Ag/ 
TiO2@PUF for MO removal, the system obeyed first-order kinetics, with 
R2 exceeding 0.99. Also, rising MO concentration from 5 mg/L to 20 mg/ 
L lowered kapp from 0.029 min− 1 to 0.011 min− 1.

The effect of pH on MO removal was also evaluated. We tested the pH 
of MO solution (4, 5.7, and 10) using 5 mg/L MO and 0.4:200 g/mL Ag/ 
TiO2@PUF. Fig. 12a shows that as the pH of the MO solution decreases, 
the removal efficiency increases. The lowest MO removal rate happened 
at pH = 10 (40 % after 180 min), which can be explained by the surface 
charge properties of Ag/TiO2@PUF. The point of zero charge for TiO2 is 

6 (pHPZC = 6) [15,44,74]. Thus, the surface of TiO2 in Ag/TiO2@PUF is 
negatively charged at pH = 10, as presented in Equation (9). 

TiOH+OH− ↔ TiO− + H2O (9) 

On the other hand, MO is an anionic dye with a pka of 3.4 [44], which 
is negatively charged at pH = 10. Consequently, electrostatic repulsion 
between the negatively charged MO and the negatively charged surface 
of Ag/TiO2@PUF [15,44] inhibits the adsorption of MO onto the pho-
tocatalyst, decreasing the photocatalytic efficiency. In addition, at pH =
5.7, the surface of TiO2 in Ag/TiO2@PUF is positively charged according 
to Equation (10), while MO is negatively charged [15,44]. 

TiOH+H+ ↔ TiOH+
2 (10) 

Therefore, there is an electrostatic attraction between the negatively 
charged pollutant and the positively charged surface of the photo-
catalyst [15,44] that favours the adsorption of MO onto the photo-
catalyst and thus increases MO removal. MO was completely removed at 
pH = 5.7 after 150 min of irradiation time. Moreover, MO removal was 
predominant at pH = 4, achieving complete removal after 90 min of 
light irradiation (see Fig. 12a). The improved photocatalytic activity of 
Ag/TiO2@PUF at pH = 4 compared to pH = 5.7 can be attributed to the 
pHPZC of TiO2 (pHPZC = 6). At pH = 4, the surface of TiO2 in 
Ag/TiO2@PUF is strongly positively charged with a zeta potential value 
of around +30 mV [75,76], while it is about +5 mV at pH = 5.7 [75,76]. 
Consequently, the surface of Ag/TiO2@PUF at pH = 4 is more positively 
charged to adsorb negatively charged MO and increases the removal 
efficiency. Our findings indicated that MO (5 mg/L) at pH = 4 was 
completely removed by Ag/TiO2@PUF (0.4:200 g/mL) under simulated 
sunlight irradiation (90 min).

Fig. 12b shows the effect of pH on the apparent rate constant, sug-
gesting that MO removal by Ag/TiO2@PUF followed a first-order ki-
netics. At pH = 4, kapp was 0.050 min− 1, which was the highest value 
obtained for this system.

The faster removal rate for MO occurred at the beginning of the 
photocatalytic reaction due to the high initial concentration of MO. 

Fig. 13. UV–Vis absorption spectra of MO removal under the optimal condi-
tions (MO concentration = 5 mg/L, Ag/TiO2@PUF amount = 0.4:200 g/mL, 
pH = 4, and irradiation time = 90 min).

Fig. 14. Schematic of the possible mechanism for MO removal with Ag/TiO2@PUF under simulated sunlight irradiation.
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Based on the Langmuir-Hinshelwood kinetics model (− rA = kappCA), 
the reaction rate was directly proportional to the concentration of MO. 
Therefore, at the start of the photocatalytic reaction, MO has its 
maximum concentration, resulting in a higher reaction rate. As the re-
action proceeds, MO concentration decreases over time, which reduces 
the reaction rate.

Fig. 13 shows the UV–Vis absorption spectra of MO removal under 
the optimal conditions: MO concentration = 5 mg/L, Ag/TiO2@PUF 
amount = 0.4:200 g/mL, pH = 4, and irradiation time = 90 min. The 
maximum absorption peak of MO was observed at 464 nm, which 
decreased to nearly zero during 90 min irradiation time. This suggests 
the potential cleavage of the azo group (–N=N–) in the MO structure 
[77], resulting in the complete removal of MO after 90 min. In addition, 
we investigated ICP-OES analysis for the leaching of Ti and Ag elements 
from Ag/TiO2@PUF during MO removal under optimal conditions. Ac-
cording to the results, Ti and Ag were not observed (limit of detection of 
0.000028 ppm for Ti and 0.0007 ppm for Ag) in the solution, suggesting 
that the metals were not released from the photocatalyst.

3.8. Possible mechanism of MO removal by Ag/TiO2@PUF

We proposed the possible mechanism of photocatalytic MO removal 
using Ag/TiO2@PUF under simulated sunlight irradiation (Fig. 14). 
According to Equation (11), electrons in the valence band (VB) of TiO2 
were excited by simulated solar light and then migrated to the con-
duction band (CB) of TiO2, creating positively charged holes in the VB 
and negatively charged electrons in the CB of TiO2. From the XPS results, 
Ag existed on the surface of TiO2 as Ag0. At the same time, the metallic 
silver absorbed sunlight irradiation and created hot electrons by means 
of the LSPR effect (Equation (12)) [14,78,79]. The creation of hot 
electrons corresponded to forming Ag+, which participated in an 
oxidation reaction to produce •OH (Equation (13)). The hot electrons of 
Ag0 had more negative energy than the CB of TiO2 (− 0.5 V vs. NHE 
[80]), so they migrated to the CB of TiO2 and reacted with oxygen to 
form •O2

− (Equation (14)). In addition, oxidized silver (Ag2O or AgO) 
was present in the photocatalyst surface, which can contribute to 
removing MO. Ag + n (Ag+1 or Ag+2) had more positive band energy 
(0.8 V vs. NHE [81]) than TiO2. Under sunlight irradiation, excited 
electrons from the VB of TiO2 moved to Ag + n by interfacial charge 
transfer (IFCT) [54,79]. The IFCT improves the separation of 
electron-hole pairs and contributes to MO removal by generating reac-
tive oxygen species [54]. The existing electrons in the CB of TiO2 and Ag 
+ n participated in the reduction reaction and converted O2 to •O2

−

(Equation (14)). Consequently, the presence of Ag in TiO2 not only 

improves the photoinduced charge generation but also suppresses the 
electron-hole pairs recombination [15,16,79]. Simultaneously, the 
photoinduced holes on the VB of TiO2 participated in an oxidation re-
action and converted H2O into •OH (Equation (15)). Eventually, the 
generated reactive species (i.e., •O2

− and •OH) can react with MO and 
convert it into CO2 and H2O (Equations (16) and (17)). Moreover, as 
shown in Equation (18), the photoinduced holes on the VB of TiO2 can 
convert MO into CO2 and H2O directly. 

TiO2 + hν → h+
VB + e−CB (11) 

Ag0 + hν → Ag+ + e− (12) 

Ag+ +H2O → •OH + H+ (13) 

e−CB +O2→•O−
2 (14) 

h+
VB +H2O → •OH + H+ (15) 

•O−
2 +MO→CO2 + H2O (16) 

•OH +MO→CO2 + H2O (17) 

h+
VB +MO→CO2 + H2O (18) 

Fig. 15a shows free radical scavenging experiments performed under 
optimal conditions to evaluate the contribution of each reactive species 
to the photocatalytic MO removal. Fig. 15a shows that adding BQ as a 
•O2

− scavenger decreased MO removal from 100 % to 45 %, indicating a 
55 % reduction in the removal efficiency by •O2

− . In addition, 55 % of 
MO was removed in the presence of EDTA as a h+ scavenger. To 
determine the direct and indirect contributions of h+, IPA as a •OH 
scavenger was added to the floating system, causing a 26 % reduction in 
the MO removal. Thus, h+ had a 19 % contribution to remove MO 
directly and the contribution of •OH was 26 %. Also, •O2

− was the main 
reactive species in MO removal with a 55 % contribution, as depicted in 
Fig. 15b.

Fig. 16a shows the LC-MS chromatograms for the photocatalytic 
degradation of MO under optimal conditions (MO concentration = 5 
mg/L, Ag/TiO2@PUF amount = 0.4:200 g/mL, pH = 4, and irradiation 
time = 90 min). Initially, a strong peak was observed at m/z = 304, 
which belongs to MO. After 30 min of degradation, the MO peak 
decreased, while some new peaks appeared, which were attributed to 
the degradation products of MO. After 60 min, all the peaks gradually 
decreased and finally disappeared at 90 min. Fig. 16b depicts 

Fig. 15. (a) Free radical scavenging experiments and (b) reactive species contribution on MO removal using Ag/TiO2@PUF under optimal conditions.
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Fig. 16. (a) LC-MS chromatograms of MO degradation for 0 min, 30 min, 60 min, and 90 min under optimal conditions and (b) identified intermediates from MO 
degradation after 30 min.
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intermediates generated after 30 min of MO degradation, with identified 
peaks at m/z = 320, 306, 290 and 276. The intermediate compounds of 
m/z = 320 and m/z = 306 are related to the monohydroxylated product 
of MO and the oxidation in the aromatic ring of MO, respectively [82]. 
Also, the detected compounds with m/z = 290 and m/z = 276 corre-
spond to demethylated products of MO [83,84]. According to the liter-
ature, further photocatalytic degradation of MO can lead to the 
mineralization of these intermediates, forming CO2 and H2O [83–86].

3.9. Comparison of floating Ag/TiO2@PUF for MO removal with 
previous work

Table 3 reports a comparison of the present work with other recent 
studies for the photocatalytic removal of MO. Based on Table 3, only one 
study utilized a floating photocatalytic system for MO removal. Swathi 
et al. [72] synthesized floating g-C3N4 photocatalysts supported on PUF, 
removing 75.1 % of MO after 240 min of irradiation. In another study 
[87], the removal efficiency of MO was 97.9 % by suspended TiO2/-
biochar photocatalysts after 270 min based on pseudo first-order ki-
netics. In this work, our floating Ag/TiO2@PUF photocatalyst was 
efficient in eliminating MO after 90 min of simulated sunlight 
irradiation.

4. Conclusion

We fabricated suspended and floating TiO2 and Ag/TiO2 photo-
catalysts using an ultrasound-assisted sol-gel method, followed by spray 
drying to remove MO. The results showed the uniform deposition of the 
photocatalysts onto the floating PUF due to the ultrasonication in the 
impregnation synthesis method. The decoration of Ag on TiO2 extends 
its absorption into the visible-light range. Ag/TiO2 had a mixed-phase, 
and its BET surface area increased to 30 m2/g, which was three times 
higher than TiO2. The existence of Ag in TiO2 for both suspended and 
floating systems increased MO removal efficiency. Floating Ag/TiO2@-
PUF had more photocatalytic activity than suspended Ag/TiO2, 
removing 89 % of MO after five consecutive cycles. In addition, MO was 
completely removed with Ag/TiO2@PUF under optimal conditions as 
MO concentration = 5 mg/L, photocatalyst amount = 0.4:200 g/mL, pH 
= 4, and irradiation time = 90 min (300 W commercial solar lamp with 
an intensity of 35 W/m2). Moreover, MO removal by Ag/TiO2@PUF 
followed first-order kinetics (kapp, Maximum = 0.050 min− 1), and the main 
reactive species involved in MO removal was •O2

− (55 %). Our results 
suggest that Ag/TiO2@PUF constitutes a promising approach to 
removing coloured organic pollutants from wastewater. Due to the 
photocatalytic properties of Ag/TiO2@PUF, we suggest applying this 
floating photocatalyst to treat other aqueous organic pollutants. Future 
work can focus on either modifying the elemental composition of the 
photocatalyst or adding oxidants like H2O2 to decrease the activation 

energy for the MO removal and consequently decrease the degradation 
process time.
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