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Abstract. Computed Tomography (CT) is an essential imaging tool for medical12

inspection, diagnosis and prevention. While X-rays CT is a consolidated technology,13

there is nowadays a strong drive for innovation in this field. Between the emerging14

topics, Diffuse Optical Tomography (DOT) is an instance of Diffuse Optical Imaging15

which uses non-ionizing light in the near-infrared (NIR) band as investigating16

signal. Non-trivial challenges accompany DOT reconstruction, which is a severely17

ill-conditioned inverse problem due to the highly scattering nature of the propagation18

of light in biological tissues. Correspondingly, the solution of this problem is far from19

being trivial. In this review paper, we first recall the theoretical basis of NIR light20

propagation, the relevant mathematical models with their derivation in the perspective21

of a hierarchy of modeling approaches and the analytical results on the uniqueness22

issue and stability estimates. Then we describe the state-of-the-art in analytic theory23

and in computational and algorithmic methods. We present a survey of the few24

contributions regarding DOT reconstruction aided by machine learning approaches25

and we conclude providing perspectives in the mathematical treatment of this highly26

challenging problem.27
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1. Introduction22

Imaging has become vital to many aspects of medicine, including detection and diagnosis23

of disease, treatment planning, and monitoring of response to therapy. Computerized24

Tomography (CT) is a central pillar in this field and has offered a huge beneficial impact25

in clinical practice. Based on X-rays as investigating signals, CT was developed all26

along the 20th century with an exceptional theoretical and technological effort: we refer27

to [126] for a historical review written in occasion of the 50th anniversary of the first CT28

scan of a live patient. Nowadays, advances in CT imaging technology explore different29

paths aimed at overcoming limitations of the traditional approach, in first place to reduce30

patients’ exposure to radiations [2]. A promising class of approaches uses different31

non–ionizing investigating signals (light, sound, electric currents). These modalities32

are intended as alternatives to X-ray CT but also as complementary techniques able33

to provide additional information about the targeted organ, for example related to34

its metabolic or haemodynamic functional status. In this paper we focus on the so–35

called Diffuse Optical Tomography (DOT), an instance of Diffuse Optical Imaging36
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(DOI). This functional imaging tool relies on the relatively low attenuation of near-1

infrared (NIR) light to probe the internal optical properties of biological tissues. DOT2

imaging has been explored in different medical fields, including brain [128], thyroid and3

breast cancer imaging [49, 129, 105] and, more in general, for detecting and monitoring4

functional changes related to blood flow. In DOT, one reconstructs images of tissue5

spatial optical properties from boundary measurements of the light propagated through6

the tissue itself [18]. Photons emerging from the biological samples (classified as turbid7

media) consist of a mixture of very few coherent and quasi–coherent photons, with a8

predominant component of incoherent photons which experienced multiple scattering9

events. Due to these latter phenomena and to measurement noise, DOT reconstruction10

is a mathematically severely ill-posed inverse problem: in this framework, standard11

backprojection algorithms, as routinely employed in X-ray CT, have indeed limited12

applicability, and more complex image-reconstruction algorithms must be adopted [21].13

Model-based image reconstruction algorithms have been for several years the standard14

approach in this field; they usually consist of three components [89]: i) a forward15

model, often based on partial differential equations, that provides a prediction of the16

measurements based on a guess of the system parameters; ii) an objective functional that17

compares the predicted data with the measured data; iii) an efficient way of updating18

the system parameters of the forward model, which in turn furnishes a new set of19

predicted data [88]. This latter point has been approached both by linearization (Born20

or Rytov approximations developed from an analytical solution to the forward model)21

and nonlinear iterations formulated as optimization problems. A more recent trend22

is machine learning-supported DOT image reconstruction, which is motivated by the23

outstanding performance of deep learning on computer vision problem tasks. Very few24

examples exist at present of this approach.25

Aim of this paper is to review from a mathematical viewpoint, both in its26

theoretical analysis and computational aspects, the DOT reconstruction problem.27

Namely, we consider the inverse problem of reconstructing internal optical properties28

of a body/sample by measurements which are typically available on the boundary29

of the investigated body [13]. In practice, the measurements do not provide a full30

knowledge of the data. As a matter of fact, even if one performs a set of different31

experiments, with various excitation patterns (i.e., with different influx and/or source32

terms) measurements can be collected only at discrete locations along the boundary of33

the domain. This implies that one has only partial knowledge of the induced response.34

Due to relevant technological differences, which directly impact on the reconstruction35

problem, we specifically focus on DOT based on Steady-State-Domain (SSD) systems,36

which are among the most widely used in clinical settings for breast cancer screening, a37

main field of application of DOT [104]. In this technology, the light source continuously38

emits light into the tissue at a single frequency (continuous wave modality, CW) and39

the propagated light fluence is measured on the tissue boundary. In some “non-contact”40

applications, the situation may also be more involved, since free-space propagation from41
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the sample boundary to a distant detector, for example a CCD sensor, through another1

medium (air, liquid) should also be considered. We will however not enter into details2

of this latter aspect.3

We start discussing in Section 2 the derivation of the optical coefficients - which4

are the target quantities in the reconstruction - and we proceed to show model-driven5

approaches, being the most established and historical resolution methods. To do this,6

first we present in Section 3 the staple Radiative Transfer Model and then we derive7

the so-called “Diffuse Approximation”, based on a Schrödinger type equation. This8

is the most known and applied approximation used in the applications thanks to the9

description of light propagation with a reasonable accuracy and to the possibility of10

computing its numerical solution with efficient and fast algorithms. We then recall11

the main analytical results concerning the inverse problem of reconstructing both12

the diffusion and the absorption coefficients in the diffusion approximation equation,13

especially the well-known non-uniqueness result due to Arridge and Lionheart [20].14

However, imposing some a priori assumptions on the coefficients, a uniqueness result can15

be proven and stability estimates provided. Numerical algorithms are then discussed16

in Section 3 to tackle the computational solution of the problem, with a specific17

accent on regularization procedures. We also outline the concept of Bayesian approach18

and implementations in the DOT framework. Eventually, since recent progress in19

computational technology, including artificial intelligence (AI) and high-performance20

supercomputers, are expected to have a deep influence also on reconstruction in DOT, we21

address this point in Section 4 by presenting the available data-enhanced reconstruction22

approaches. Finally, in Section 5 we draw the conclusions of the paper and discuss some23

perspectives in this innovative and complex field.24

For ease of reading, Tab.1 summarizes the main symbols used in the text, classified25

accordingly to the area they pertain. It is our convention to use bold letters for vectors26

as well as for discretized functions and matrices.27

2. Physical processes in light–tissue interaction and optical coefficients28

In this section we provide a concise discussion about the main physical phenomena29

occurring in light propagation in highly scattering media as biological tissues. Then, we30

present a derivation of the optical coefficients that mathematically describe the above31

phenomena and are the object of the DOT reconstruction.32

The optical properties of biological tissues are the result of the internal tissue33

microstructure and refractive index distribution. These correlations are highly complex34

since due to structural complexity and diversity, with typical sizes ranging from tenths35

of nanometers to hundreds of micrometers. Figure 1a) shows the principal phenomena36

occurring to a light beam incident on a slice of biological matter and, namely, reflection,37

absorption and (multi)scattering. Such physical processes can be quantified by a series38
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Nomenclature Description

Geometrical quantities

d spatial dimension (=2,3)

r position vector

ŝ ′, ŝ in, out coming light directions

dŝ solid angle around direction ŝ

Sd−1 unit sphere in Rd

Physical model parameters

ν refraction coefficient

µs, µ
′
s scattering coefficient, reduced scattering coefficient

D, µa diffusion and absorption coefficient

L, u light radiance (RTE model), fluence (DA model)

ps(ŝ, ŝ
′), g normalized scattering phase function, avg cosine of scatter

δ noise level

Functional spaces and operators

Q,U, Y optical properties, optical field and data Banach spaces

Θ generic parameter space

M : D(M) ⊂ (Q× U)→ Y measurement map

F : Θ→ Y forward map

D : Y → [0,∞] discrepancy measure

R : Θ→ [0,∞] regularization functional (with parameter λ)

Other mathematical symbols

Ω, ∂Ω computational domain, boundary of the domain

n unit normal vector on ∂Ω

Discretization parameters

h mesh size

Table 1. Symbols (organized into macro-areas) and relative significance as used in

the text.

of parameters, which are presented as coefficients and include the index of refraction (ν)1

and the absorption (µa) and scattering (µs) coefficients. Notice that the definition of2

such coefficients implicitly impinges on the hypothesis that the tissue is as an isotropic3



CONTENTS 6

Figure 1. a) Main physical phenomena occurring in light propagation in biological

tissues, turbid media characterized by a highly complex structure; b) absorption by a

single particle; c) scattering by a single particle.

medium. While the isotropy assumption is reasonable for “randomly” organized soft1

tissues as the breast, it may not be true for highly structured tissues such as the muscle,2

where a fully anisotropic description would be more appropriate.3

2.1. Refraction4

The index of refraction is a measure of the bending of a ray of light when passing from one5

medium into another. The (real part of the) refractive index at wavelength λ is defined6

in terms of the phase velocity of light in the medium cm = cm(λ) with respect to the7

velocity of light in vacuum c as ν(λ) = c/cm.When a light wave propagating in a material8

with a given refractive index encounters a boundary with a medium with a mismatch9

in the refraction index, the path of the light is redirected and reflection and refractive10

transmission result, see Figure 1a), where ν1 and ν2 indicate the refraction indices11

of the air and tissue, respectively. The amount of light reflected by and transmitted12

through the boundary depends on the refractive indices of the two materials, the angle13

of incidence (via the Snell’s law ν1 sin θ1 = ν2 sin θ2, see Figure 1a), and the polarization14

of the incoming wave [109].15

2.2. Absorption16

Absorption is a process involving the extraction of energy from light by a molecular17

species -and in particular by some of its parts, known as chromophores - which18

undergo a transition process (electronic transition or vibrational state transition). The19

probability of transition between different states or energy levels is governed by complex20

quantum mechanical rules that depend on the chemical structure, size, and symmetry21

of the molecules. The level of absorption of incident light by tissue chromophores22
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provides a measure of water content, hemoglobin saturation with oxygen, and possible1

concentration of pharmaceutical products in blood and tissues. These characteristics2

can be used in the diagnosis of various diseases as for example cancer or stroke, which are3

known to alter such physiological values [123]. Since living tissues do not contain strong4

intrinsic chromophores that absorb radiation in the NIR band [144], DOI applications5

take advantage of this wavelength window which allows deeper penetration. For a6

localized absorber, the absorption cross section σa (cm2) - independent of the relative7

orientation of the impinging light and the absorber- can be defined as σa = QaAg, where8

Ag is the geometrical cross section of the particle and Qa an efficiency correction factor.9

One can imagine that the localized absorber “blocks incident light and casts a shadow”,10

which constitutes absorption, see Figure 1b). The absorption cross section corresponds11

then to the ratio12

σa =
Pabs
I0

, (1)13

where Pabs (W) is the amount of power absorbed out of an initially uniform plane wave14

of intensity I0 (W/cm2) which invests the particle. A medium with a distribution of15

identical absorbing particles with density ρa = ρa(r) (#/cm3) can be characterized by16

the absorption coefficient µa (cm−1) given by17

µa(r) = ρa(r)σa. (2)18

Notice that the probability per infinitesimal path length that a photon will be absorbed19

by the tissue is given by 1/µa. A transmission measurement through a pathlength of an20

absorbing medium of thickness Lt (cm) with light intensity I0 entering the sample and21

light intensity I leaving the sample is modeled by the Beer-Lambert law, which linearly22

correlates absorbance and concentration of an absorbing species as23

I = I0e
−µaLt . (3)24

Historically, the definition of µa was based on spectrometers that reported transmission25

T = I/I0 = 10−ελCLt , where ελ (cm2 mol−2) is the extinction coefficient, which is a26

measure of the “absorbing power” of the species at wavelength λ, and C is the molar27

concentration (mol cm−3) of the absorption species. Therefore, µa = εC log(10). In a28

complex medium, where several chromophores contribute to absorption, the absorption29

coefficient can be expressed as30

µa =
∑
i

εi,λCi, (4)31

where εi,λ and Ci are the extinction coefficient and concentration of the i-th32

chromophore, respectively. At NIR wavelengths the main absorbing chromophores in33

biological tissues are haemoglobin (in its oxy–genated or deoxy–genated forms), and to34

a lesser extent water, lipids, melanin, myoglobin, and cytochromes. In this setting, one35

can write36

µa = B(Sat · µa,oxy + (1− Sat) · µa,deoxy) +Wµa,water +
∑
i

εi,NIRCi, (5)37
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where Sat is blood oxygen saturation, B is blood volume fraction in the tissue, W water1

content in the tissue and the sum accounts for other minor absorbers.2

2.3. Scattering3

Scattering originates from the interaction of photons with structural heterogeneities4

present inside the material, mainly cellular organelles such as mitochondria, thin fibrillar5

structures of connective tissues, melanin granules, and red blood cells and from the non-6

uniform temporal/spatial distribution of refractive index in the medium. The scattering7

interaction between a photon and a molecule results in a photon moving in a different8

direction. When scattering is elastic, the photon emerges at the same frequency of9

the incident beam and without extraction of energy. Elastic scattering represents the10

most significant scattering events in the NIR windows, unelastic scattering such as11

fluorescence, phosphorescence, and Raman scattering being negligible. Particles with12

a characteristic dimension similar to or greater than the incident wavelength, like cell13

nuclei, mainly scatter in a forward direction (Mie scattering), while structures with a14

characteristic dimension smaller than the incident wavelength, like the cytoskeleton15

and mitochondrial membranes, have a more isotropic scattering pattern (Rayleigh16

scattering or also small-scale limit of Mie scattering). The presence in biological17

tissues of both large and small structures causes both Mie and Rayleigh scattering18

events. Moreover, the presence of non–spherical scattering bodies further complicates19

the modeling problem. Analogously to (1) - but in a merely a convenient way to quantify20

the scattering strength without a geometrical significance - one can define a scattering21

cross section σs (cm
2) as σs = QsAg, where Qs is the scattering efficiency and Ag the22

geometrical area of the scatterer, see Figure 1c). The scattering cross section corresponds23

then to the ratio24

σs(ŝ) =
Pscatt
I0

, (6)25

where Pscatt (W) is the amount of power which is spatially redirected (scattered) along26

the outgoing direction ŝ. The angular distribution of the scattered radiation is given by27

the differential cross section dσs
dŝ
(ŝ′, ŝ), where the outgoing direction ŝ defines the axis28

of a cone of solid angle dŝ originating at the scatterer, see Figure 2. Notice that in the29

definition (6) we have implicitly assumed that the scattering cross section is independent30

of the relative orientation ŝ′ of the incident light and the scatterer. A medium containing31

a uniform distribution of identical scatterers is characterized by the scattering coefficient32

µs(r) = ρs(r)σs, (7)33

where ρs (#/cm3) is the number density of scatterers. The scattering mean free path34

ls = 1/µs represents the average distance a photon travels between consecutive scattering35

events.36
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Figure 2. Notation for a single scattering event: light incides at position r from

direction ŝ′ and is scattered in direction ŝ around a cone of angle dŝ′.

3. Physics–driven approaches1

In this section we deal with approaches known as physics-driven (or knowledge-driven)2

modeling because the reconstruction procedure utilizes implicitly or explicitly the3

knowledge of mathematical models of the implied physical phenomena. Optical imaging4

modalities involve physical phenomena which can be modeled by partial differential5

equations (PDEs), whose solutions depend on unknown parameters representing the6

coefficients of the PDEs themselves. The crucial step in the reconstruction of the7

unknowns is thus generally performed by a PDE-based map and the related optimization8

problem combines the boundary measurements with the solution of the PDE modeling9

the problem. Let Ω be the bounded domain in Rd, d = 2, 3, with boundary ∂Ω,10

representing the sample under investigation. We denote by q ∈ Q the set of spatially11

dependent optical parameters and by u ∈ U the state variable corresponding to the12

light distribution field in the body upon application of a light source. Here Q and U13

are generic Banach spaces. We consider the PDE problem14

L(u, q) = f in Ω,

B(u) = r on ∂Ω,
(8)15

where L : D(L) ⊆ U × Q → Z is a differential operator expressed by a polynomial16

in the derivatives of the state variable u ∈ U and depending on parameters q ∈ Q,17

and f is a given source term. The differential operator is augmented by generic18

(Dirichlet, Neumann or Robin) boundary conditions, represented by the operator B, in19

order to guarantee the well-posedness of problem (8) in appropriate functional spaces.20

Under suitable assumptions on the Fréchet differentiability of the operator L, see for21

example [99], one can introduce the parameter-to-state map S : D(S) ⊆ Q → U , i.e.22

S(q) = u, which is a solution to the boundary value problem (8). We then define the23

forward map as F = P ◦ S, P being the observation operator, providing the measured24

data on the boundary of the domain. Hence, the inverse problem of the identification25

of the set of parameters q, subject to (8), can be equivalently rewritten as the operator26

equation27

F(q) = yq ≈ yδ, (9)28
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where yδ is the noisy measurement vector for some noise level δ ≥ 0 obtained via the1

measurement map2

yδ =M(q;u). (10)3

HereM : D(M) ⊂ (Q×U)→ Y is a possibly nonlinear map and Y is a Banach space.4

In the following of this section we provide a brief review of the derivation of models of5

type (8) for DOI applications.6

3.1. Mathematical models of light-tissue interaction: Radiative Transfer Model7

The knowledge of light distribution during irradiation in a tissue with known optical8

properties is a fundamental point in DOI applications. Classical Maxwell theory9

considers light to be an oscillating electromagnetic field. However, the multiple10

scattering events and associated decoherence effects in turbid media effectively suppress11

the wave nature of light; therefore, instead of tracking light waves, one can track only12

the average energy they contain. The flow of light energy through the medium is13

described by radiation transport (RT) theory, a continuum–based model which explicitly14

disregards wave interference effect [92]. Let N(r, ŝ, t) (cm−3sr−1) be the photon density,15

that is the number of photons per unit volume at a position r, propagating in direction16

ŝ within a solid angle dŝ at time t. The photon density can be connected to the scalar17

field energy radiance L(r, ŝ, t) as L = EphotcN (Wcm−2sr−1), Ephot being the quantized18

photon energy. The RTE is an energy balance equation which considers a small volume19

of tissue V with absorbing and scattering centers uniformly distributed inside. The20

change in energy in the volume within the solid angle element per unit time is given by21

1

c

∂

∂t

∫
V

LdV =

−
∫
V

∇L · ŝ dV︸ ︷︷ ︸
transport term

−
∫
V

(µa + µs)LdV︸ ︷︷ ︸
extinction

+

∫
V

µs

∫
Sd−1

ps(ŝ, ŝ
′)Ldŝ ′ dV︸ ︷︷ ︸

cross−scattering

+

∫
V

f dV︸ ︷︷ ︸
internal source

,
(11)22

where µa and µs are the optical coefficients introduced in Section 2 and ps [sr−1] is23

the scattering phase function (see below). Moreover, “extinction” represents energy24

loss due to absorption and scattering from propagation direction ŝ to direction ŝ ′, and25

cross-scattering describes the energy gain due to scattering from any direction ŝ ′ and26

scattered into dŝ around direction ŝ per unit time. Function f stands for a source term27

in the medium. Relation (11) is an equation of integro-differential type.28

3.1.1. Scattering phase function The normalized scattering phase function ps(ŝ, ŝ
′)29

represents the probability density function for scattering from an incident direction ŝ′30

into a new direction ŝ within the unit solid angle dŝ (see Figure 2). Hence31

ps(ŝ, ŝ
′) ≥ 0, ∀ ŝ, ŝ ′ ∈ Sd−1,32
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where Sd−1 = {s : s = (s1, . . . , sd), |s| = 1} is the unit sphere in Rd. The phase1

function has to satisfy some mathematical properties, reflecting the physical properties2

of the light and the scattering process:3

• it is standard the assumption that the probability of scattering over Sd−1 is equal4

to one, regardless of the incoming radiation direction, that is5 ∫
Sd−1

ps(ŝ, ŝ
′) dŝ′ = 1, ∀ ŝ ∈ Sd−1, (12)6

• the phase function satisfies the so-called “reciprocity of light propagation” property7

which corresponds mathematically to require that8

ps(ŝ, ŝ
′) = ps(−ŝ ′,−ŝ).9

In case when the scattering is independent on the absolute direction of the incident10

light, the phase function fulfills the further relation11

ps(ŝ, ŝ
′) = ps(−ŝ,−ŝ ′),12

which corresponds to an isotropy condition. More precisely, the scattering phase13

function depends only on the angle between the incident ŝ and scattered directions14

ŝ ′, hence is a function of only ŝ′ · ŝ. In this context, a constant of interest is the cosine-15

weighted average of the scattering (expectation value of the cosine of the scattering16

angle or average cosine of scatter), that is17

g =

∫
Sd−1

ps(ŝ · ŝ′)ŝ · ŝ′ dŝ ′, g ∈ [−1, 1]. (13)18

This is a measure of the forward scattering bias and quantifies how efficiently photons19

keep propagating in the forward direction despite scatter [85]. When g = 0 one has20

fully isotropic scattering, while when g → 1 the propagation is strongly forward biased,21

that is scattering vanishes, and for g → −1 scattering becomes completely backward22

directed. For in vitro tissues at the visible and NIR wavelengths one has typically23

0.65 < g < 0.95 [93].24

A convenient approximate model for ps(ŝ · ŝ′) is derived from the so-called Henyey-25

Greenstein function Hd(ŝ · ŝ′; g), which has different expressions depending on the space26

dimension d. For example, when d = 3, we have that27

H3(ŝ · ŝ ′; g) =
1

4π

1− g2

(1 + g2 − 2g ŝ · ŝ ′)3/2
.28

Making use of Legendre polynomials Pl, l = 1, . . . ,∞, we can represent the function H329

as a series, i.e.,30

H3(ŝ · ŝ ′; g) =
∞∑
l=0

2l + 1

4π
hlPl(ŝ · ŝ ′), (14)31

where the coefficient (2l + 1)/4π is added only for numerical convenience. By32

straightforward calculations one finds the useful property that the coefficients of the33

expansion (14) are the powers of the parameter g, that is34

hl =

∫
S2

Pl(τ)H3(τ) dτ = gl, for l ≥ 0.35
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In the two-dimensional setting, given that ŝ = φ and ŝ ′ = φ ′, where φ, φ ′ are two1

arbitrary angles, the Henyey-Greenstein function has the following expression2

H2(φ, φ
′; g) =

1

2π

1− g2

1 + g2 − 2g cos(φ− φ′)
,3

which can be represented as a Fourier series (similarly to (14)), see [85].4

We mention that the Henyey-Greenstein function is not only the possible choice5

for the phase function. In the literature, in fact, the modified Henyey-Greenstein and6

delta-Eddington functions have also been postulated to represent single scattering phase7

functions for tissue. We refer the reader to [87] for more details.8

Assuming sufficient regularity one can write the differential formulation of (11) as9 (
1

c

∂

∂t
+ ŝ · ∇+ (µa + µs)(r)

)
L(r, ŝ, t)−Q(L)(r, ŝ, t) = 0 inΩ× Sd−1 × [0,∞), (15)

where10

Q(L)(r, ŝ, t) = −µs(r)
∫
Sd−1

ps(ŝ
′ · ŝ)L(r, ŝ, t) d ŝ ′ − f(r, ŝ, t). (16)11

Applying the Fourier transform with respect to the time variable in (15)-(16), the12

previous equation is written in the frequency domain as13 (
iω

c
+ ŝ · ∇+ (µa + µs)(r)

)
L(r, ŝ)−Q(L)(r, ŝ) = 0, in Ω× Sd−1, (17)14

where for simplicity we omit the dependence of L(r, ŝ) from ω ∈ [0,+∞). We define15

the boundary sets16

Γ± = {(r, ŝ) ∈ ∂Ω× Sd−1 such that ± ŝ · n > 0},17

where n is the outer unit normal vector to the domain at r ∈ ∂Ω. Adding to (17)18

boundary conditions on Γ−, we get the following boundary value problem19 (
iω

c
+ ŝ · ∇+ (µa + µs)(r)

)
L(r, ŝ)−Q(L)(r, ŝ) = 0, in Ω× Sd−1, (18)

L(r, ŝ) = gL(r, ŝ), on Γ−, (19)

where gL represents the flux of particles incident on ∂Ω at the point r ∈ ∂Ω. In order20

to provide a mathematical characterization, we set21

Qad = {(µa, µs) : µa, µs ≥ 0, (µa, µs) ∈ L∞(Ω)× L∞(Ω)} , (20)22

which states that the absorption and the scattering coefficients µa, µs are nonnegative23

and bounded functions. For the phase function, we require that ps ∈ L1(Sd−1). We also24

introduce the functional spaces25

L2
ŝ·n(Γ±) :=

{
η(r, ŝ) :

∫
Γ±

η2(r, ŝ)|̂s · n(r)| dσ(r)dŝ < +∞
}
,

W2(Ω× Sd−1) :=
{
η(r, ŝ) : η ∈ L2(Ω× Sd−1), ŝ · ∇η ∈ L2(Ω× Sd−1)

}
.

In this functional setting, the well-posedness of the boundary value problem (18)-(19)26

has been proved, see for example [4, 121].27
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Proposition 3.1 Assume that (µa, µs) ∈ Qad, ω is finite, gL ∈ L2
ŝ·n(Γ−), and f(r, ŝ) ∈1

L2(Ω × Sd−1). Then the forward problem (18)-(19) is well-posed and admits a unique2

solution L(r, ŝ) ∈ W2(Ω× Sd−1).3

As in [121], we can then define the following operator, called the albedo operator, which4

maps the incoming flux on the boundary Γ− into the outgoing flux on Γ+,5

M : gL ∈ L2
ŝ·n(Γ−) → L|Γ+ ∈ L2

ŝ·n(Γ+),6

which depends on the optical parameters µa and µs. We point out that in practice only7

measurements of the outgoing currents, which are averages of the outgoing flux, are8

available [53, 121].9

Diffusion approximation. The RTE model is of integro-differential type and requires10

heavy computations to get accurate solutions. To overcome this issue, typically, an11

approximation of the RTE equation is considered, based on the assumption that the12

photons propagate diffusively through the tissue [95]. A standard approximation method13

for the RTE is the PN approximation, see e.g. [46], which consists of expanding the14

radiance, the phase function in (16), and the source term via spherical harmonics, when15

d = 3, and via Fourier series, in the case d = 2 ( see for example [18, 85]). If the series is16

truncated at order N , we get the so-called PN approximation. The P1 case corresponds17

to the Diffusion Approximation (DA), as explained, for example, in [18, 21, 19]. Since18

the PN approximation is well-known in the literature [18] and in the sequel we work with19

the P1 approximation only, we summarize here the principal step for getting the DA20

framework by a projection argument, as in [86]. With this target, given ŝ = (ŝ1, . . . , ŝd),21

we introduce the spanning set22

A1 = span{1, xi, 1 ≤ i ≤ d} ⊂ L2(Sd−1),23

which is composed of polynomial of degree less or equal than one. Defining the projection24

operator Π : L2(Sd−1)→ A1, and the photon fluence [W cm−2] and the photon current25

[W cm−1] which are given by26

u(r, t) =

∫
Sd−1

L(r, ŝ ′, t)d ŝ ′, (21)27

F(r, t) =

∫
Sd−1

ŝ ′L(r, ŝ ′, t)d ŝ ′, (22)28

then the P1-approximation of the radiance corresponds to the projection of the radiance29

in A1, that is,30

L(r, ŝ, t) ≈ ΠL(r, ŝ, t) =
1

|Sd−1|
u(r, t) +

d

|Sd−1|
F(r, t) · ŝ, (23)31

thanks to variational arguments. DA is obtained by integrating over Sd−1 the RTE (15)32

and the RTE (15) multiplied by ŝ, and then using (12) and the first order approximations33

for the radiance (23), both for the phase function ps and for the source term f . After34
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lengthy calculations, we get two coupled equations in terms of the photon density and1

current2

1

c

∂u

∂t
+ µau+∇ · F = f0, (24)3

1

c

∂F

∂t
+ (µa + µ′

s)F+
1

d
∇u = f1, (25)4

where µ′
s is the so-called effective or reduced scattering coefficient defined as5

µ′
s = µs(1− g), (26)6

and7

f0(r, t) =

∫
Sd−1

f(r, ŝ, t) dŝ, f1(r, t) =

∫
Sd−1

ŝ f(r, ŝ, t) dŝ.8

In order to get a single second order partial differential equation, we consider other two9

possible simplifications, assuming that10

(i) only isotropic sources exist, i.e. the linearly anisotropic source term f1 = 0;11

(ii) the change with respect to the time of the flux is assumed to be negligible (or,12

alternatively, proportional to F), ∂F/∂t ≈ 0.13

The previous two assumptions hold when the medium is scattering dominated, which14

corresponds to the physical condition µs ≫ µa, that is the diffusion approximation (DA)15

to the RTE is valid in the regime where the scattering length is small compared to the16

distance of propagation. Moreover, the phase function is independent of the absolute17

angle and the photon flux changes slowly and that all sources are isotropic. A detailed18

description of reduction process is given in [21]. With the two assumptions stated above,19

equation (25) reduces to Fick’s law20

F =
1

d(µa + µ′
s)
∇u = −D∇u, (27)21

where22

D =
1

d(µa + µ′
s)
∼ 1

dµ′
s

(28)23

is the diffusion coefficient. Inserting the expression (27) for F into the equation (24),24

we finally get the diffusion approximation of the RTE, that is25

1

c

∂

∂t
u(r, t)−∇ · (D(r)∇u(r, t)) + µa(r)u(r, t) = f0(r, t). (29)26

In applications like the SSD-DOT, one can assume that the distribution of light inside27

the domain of interest is instantaneous. Mathematically, this corresponds to reducing28

the problem to a stationary equation, hence assuming that 1
c
∂
∂t
u(r, t) ≃ 0. Then, with29

this further simplification, (29) reduces to following elliptic equation30

−∇ · (D(r)∇u(r)) + µa(r)u(r) = f0(r). (30)31

To get a well-posed problem, (30) requires the specification of suitable boundary32

conditions. The simplest conditions one can consider are homogeneous Dirichlet33
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boundary conditions but they are physically incorrect [19, 124]. In fact, in applications1

(30) is often supplemented with a Robin-type boundary condition, also known as the2

partial current boundary condition [18, 19, 124, 127]. Briefly, we introduce the total3

inward- and outward-directed photon fluxes at a point r ∈ ∂Ω as follows4

J−(r) := −
∫
ŝ·n(r)<0

ŝ · n(r)L(r, ŝ) dŝ, (31)

J+(r) :=

∫
ŝ·n(r)>0

ŝ · n(r)L(r, ŝ) dŝ. (32)

It is straightforward to show that, thanks to the P1 approximation (23),5

J−(r) = cdu(r)−
1

2
n · F(r), J+(r) = cdu(r) +

1

2
n · F(r), (33)6

where cd is a constant depending on the space dimension (cd = 1/π if d = 2, and cd = 1/47

if d = 3). In the simplest setting, one can assume that the total inward-directed photon8

flux on ∂Ω is zero, i.e. J−(r) = 0, r ∈ ∂Ω. The use of the Fick’s law (27) in the first9

equation of (33), with the assumption that J−(r) = 0 for r ∈ ∂Ω, yields the Robin10

boundary condition11

u(r) +
D

2cd

∂u(r)

∂n
= 0, r ∈ ∂Ω. (34)12

This represents the physical situation of a nonscattering medium surrounding Ω, i.e.13

no diffuse surface reflection on ∂Ω occurs [127]. However, in practical situations, it14

is mandatory to consider the case where the object has a different refractive index to15

the surrounding medium, as depicted in Figure 1a). In fact, in this circumstance, it16

could happen that a large portion of the radiant energy is reflected back into the object.17

Therefore, the feasible relation to consider between the fluxes is18

J−(r) = RJ+(r), r ∈ ∂Ω, (35)19

where 0 ≤ R ≤ 1 is the reflection coefficient on the boundary ∂Ω. Note that, from20

the previous relation, we recover the special case of no boundary reflection (34) when21

R = 0. There are different options to calculate the parameter R, see for more details22

[127]. Usually it is derived from the Fresnel’s law [127], that is, denoting by ν1 and ν223

the refractive indices of the medium and of the external part respectively, the reflection24

coefficient R can be also derived, when ν2 = 1, by an experimental fit [1], that is25

R ≃ −1.4399ν−2
1 + 0.7099ν−1

1 + 0.6681 + 0.0636ν1.26

From the equality (35) and using again the Fick’s law (27) in both the equations of (33),27

we eventually obtain the following Robin boundary condition28

u(r) +
ζD(r)

2cd

∂u(r)

∂n
= 0, r ∈ ∂Ω, (36)29

where ζ = (1+R)/(1−R). Summarizing, the DA model is reduced to the study of the30

following boundary value problem31

−∇ · (D∇u) + µau = f0, in Ω, (37)

u+
ζD

2cd

∂u

∂n
= 0, on ∂Ω. (38)
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In some technological arrangements, part of the boundary ∂Ω of the object under1

investigation may be supported on a solid plate containing a certain number of light2

sources (see, e.g., [48]). Therefore, different boundary conditions have to be chosen on3

the contact surface between the medium and the plate [31, 30, 19, 124] or the light4

sources on the boundary of the domain can be approximated as source terms in the5

equation (37), see for example [19, 86, 115]. In fact, in the DA approximation, light6

sources can be modeled by using the so-called collimated model : the source (assuming7

that only one boundary source is activated) is modeled as an isotropic internal point8

source localized to within at a depth rs = 1/µ′
s below the object surface9

f0(r) = Q0 δ(r− rs),10

Q0 begin an intensity constant. Therefore, in this specific model, we have a non zero11

source term f0 in the equation (30), an homogeneous Dirichlet boundary condition for12

the fluence u on the portion of the boundary corresponding to the supported part, and13

homogeneous Robin conditions on the non-supported boundary part. This model, which14

we will refer to in the following as DOT-DA, provides good results at distances from15

the source larger than the mean free path, but less accurate results close to the source16

[127]. For a better description of the light intensity in a neighborhood of source terms,17

a Monte Carlo method was introduced in [143]. We refer the reader to [127] for other18

possible configurations to model the light source incident at a point on the boundary of19

the domain which corresponds to the case of a non-homogeneous Robin condition on a20

portion of the boundary.21

3.1.2. Measurements: The exitance. In DOT the measurable quantity on the boundary22

of the domain Ω is the so-called exitance, that is the energy transfer through a unit area23

with normal vector n, mathematically defined as24

Jex(r) :=

∫
Sd−1

ŝ · n(r)L(r, s) dŝ, r ∈ ∂Ω. (39)25

Using definitions (31), the corresponding P1 approximation (33), the Fick’s law and the26

Robin boundary conditions (36), the exitance (39) is equal to27

Jex(r) = J+(r)− J−(r) = n(r) · F (r) = −D∂u(r)
∂n

=
2cd
ζ
u(r), r ∈ ∂Ω. (40)28

3.1.3. The inverse problem and known results. The general inverse problem for the29

DOT is to determine the coefficients D,µa from the knowledge of all possible pairs30

of Neumann and Dirichlet boundary values, that is, from the use of the Neumann-to-31

Dirichlet map, thanks to the fact that we are assigning Robin boundary conditions, see32

(38), and measuring the exitance (40). It has been shown by Arridge and Lionheart [20]33

that this inverse problem is in general not uniquely solvable, in the sense that it is not34

possible to determine uniquely the pair D,µa from infinitely many pairs of Neumann35

and Dirichlet boundary values. In fact, in the case where D is sufficiently regular and36

strictly positive, the DOT-DA equation37

−∇ · (D∇u) + µau = 0, in Ω (41)38
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can be transformed into a Schrödinger type equation, by setting v =
√
Du, as in [132],1

that is2

−∆v + µv = 0, in Ω, µ :=
∆
√
D√
D

+
µa
D
, (42)3

where ∆
√
D is the laplacian of

√
D. If, for example, D = 1 in a neighborhood of ∂Ω,4

then the Cauchy data of v coincides with those of u (v = u and ∂v/∂n = ∂u/∂n on5

∂Ω). This means that under suitable regularity assumptions on the coefficients D and6

µa, hence on µ, we can recover µ only, see [91, 139], that is we cannot extract a unique7

value for D and µa [20, 82]. Non-uniqueness results have been also proven in presence8

of a source term in (41), see [20].9

A uniqueness result can be obtained requiring suitable regularity assumptions on the10

coefficients, as in the case of a piecewise constant diffusion and a piecewise analytic11

absorption coefficients [82, 83].12

Recent lines of research concern the case of nonlocal models [152] and of anisotropic13

media [65]. An instance in the latter direction is given by [69] where the case of an14

anisotropic diffuse tensor, which is assumed a real matrix-valued function, has been15

studied. It is shown that µa and its derivatives at the boundary of Ω can be determined in16

a stable way by boundary data with a modulus of continuity of Lipschitz and Hölder type17

respectively, assuming that the scattering coefficient µs is known. These results have18

been extended to the anisotropic time-harmonic case, that is when the diffusion tensor19

and the absorption coefficients are complex-valued tensors and functions respectively.20

Precisely in [58] a Lipschitz stability result of the boundary value of µa in terms of21

boundary data, when µs is again assumed known, was established. The Hölder stability22

of the derivatives of the absorption coefficient on the boundary of the domain has been23

established in [55]. The same results hold in the case where µa is known and µs has to24

be determined [55, 58, 69]. The stable determination of µa (or equivalently µs) and its25

derivatives at the boundary are useful tools to infer uniqueness and stability of µa (or26

µs) in the interior of Ω [69]. We finally also mention [66] for the determination of an27

anisotropic inclusion in a Schrödinger type equation from local Cauchy data.28

We give here some references on related problems which are intimately connected29

with those presented above and equations (41), (42). We previously mentioned that the30

coefficient µ in (42) can be uniquely reconstructed from Cauchy data. This question has31

mainly been studied in the context of the Calderon’s problem [42], corresponding to the32

case where µa and f0 in (41) are zero, that is in the case of the equation div(D∇u) = 0.33

For seminal contributions in this field, when infinitely many pairs of Dirichlet and34

Neumann data are known on the entire boundary, we refer the reader to the following35

papers: Kohn-Vogelius [100, 101] for d ≥ 2 and when D is assumed piecewise analytic,36

Sylvester and Uhlmann [132] for d ≥ 3 and D ∈ C2(Ω), Haberman-Tataru [74] and37

Caro-Rogers [44] for D ∈ W 1,∞(Ω). When d = 2, we mention the results of Nachman38

[113] for D ∈ W 2,p(Ω) and of Astala-Päivärinta [23] when D ∈ L∞(Ω). The stability39

issue was first investigated by Alessandrini in [10] for d ≥ 3 and D ∈ W 2,∞(Ω). Recently40

Alberti-Santacesaria presented a general framework to study uniqueness, stability and41
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reconstruction for infinite-dimensional inverse problems, such as Calderon’s problem,1

when only a finite-dimensional approximation of the measurements is available [7, 8, 9].2

The determination of a L∞ potential in the Schrödinger equation in three and higher3

dimensions when only a finite number of measurements is available and the diffusion4

depends on finitely many parameters has been studied in [7]. Harrach derived Lipschitz5

stability from a finite number of measurements for the complete electrode model in6

electrical impedance tomography in [84].7

Equation (41) appears also in the analyis of hybrid inverse problems, which are a8

particular class of inverse problems using internal data coming from the use of coupled-9

physics phenomena [6]. For example, the DOT inverse problem is completely analogous10

to the one of quantitative photoacoustic tomography (qPAT), except for the fact that11

the photon current data in DOT are known and available only on the boundary of the12

domain, while in qPAT the available data, given by the absorbed energy, are known in13

the interior of the domain [122], see also [6, 13]. The literature on qPAT is generously14

vast. We refer, for example, the reader to [11, 24, 25, 26, 27, 28, 41, 52, 60, 114]15

for theoretical results related to uniqueness and stability issues in qPAT and to16

[5, 14, 22, 24, 36, 54, 61, 70, 76, 77, 118, 119, 122, 135] for possible reconstruction17

methods.18

The results above show that the inverse problem of identifying both the diffusion19

and the absorption coefficients is ill-posed and nonlinear. In order to mitigate the ill-20

posed nature of the problem and get feasible numerical solutions, regularization methods21

must be adopted.22

3.2. Reconstruction methods23

In order to end up with an approximate solution of the problem, one has to introduce

a discretization. The standard approach is to decompose the computational domain Ω

into triangular/trapezoidal areas (2D) or into voxels of suitable shape (3D). While mesh

generation is significantly easier today than in the past, meshing irregular objects with

complex internal structure in an acceptable time may still be a challenge, as already

observed in the more than 15 years old review by Gibson and Arridge [71]. The

construction of the geometry may be benefit from the simultaneous collection of data

with other techniques, as for example in the realistic test case presented in [45], where an

anatomically coherent mesh of the patient’s breast was created by manually segmenting

2D coronal MRI slices to generate 3D surface maps and then a volume mesh. Upon

introducing a discretization of the domain, one then operates with functions belonging

to finite dimensional subspaces parametrized by the mesh diameter h. For example,

using a FEM approach, one approximates the solution u of the DOT-DA problem (41)

by a piecewise polynomial function uh ∈ Uh given by

uh =

Nh∑
j=1

ujϕj(r)
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where Uh is a finite dimensional subspace spanned by the basis functions ϕj, j =1

1, . . . , Nh and where the nodal values uj are to be determined. Piecewise polynomial2

approximations to the continuous optical coefficients are constructed in the same way.3

Applying a Galerkin approach transforms the continuous problem of into an Nh-4

dimensional discrete problem of finding the nodal field values at all nodes, given the5

set of nodal parameters.6

In the classical variational framework, one then rephrases the inverse problem (9)7

as the optimization procedure [125]: seek the optimal parameter set q∗ such that8

q∗ = argmin
q∈Q
D(yq, yδ), (43)9

where D : Y → [0,∞] is a loss function which typically contains a discrepancy measure10

(or data fidelity) term. A very common assumption considers the noise perturbing the11

data of Gaussian nature: this hypothesis naturally leads to choose D as the Least Square12

functional:13

D(yq, yδ) :=
1

2
∥yq − yδ∥22. (44)14

Notice that in applications like Time Domain DOT (TD-DOT) one could consider also15

a mixture of Poisson and Gaussian noise [64, 150]: in such a case, the fidelity functional16

may for example be of Kullback-Leibler type. Problem (43) with the choice (44) is17

nonlinear and several techniques have been used to obtain a linearized approximation.18

Supposing that the forward map F is Fréchet differentiable, a Taylor expansion around19

the reference point q0 reads20

F(q) ≈ F(q0) + F ′(q0)∆q (45)21

where F ′ is the first order Fréchet derivative of the forward operator with respect to q.22

Referring to SSD-DOT technologies, many source-detector pairs are typically spread out23

over the sample surface. Given Ns sources and Nd detectors (for a total ofM = Ns×Nd24

pairs), the forward operator maps the vector of absorption (and diffusion) coefficients25

qh at voxels within the sample to the vector of detector measurements for a given26

source. Let the index i stand for the detector/source pair, i.e. i = 1, . . . ,M → {l, k},27

l = 1, . . . , Nd, k = 1, . . . , Ns and the index j for the voxel number, j = 1, . . . , Nv. Thus,28

a common notation in the discrete setting for the first order Fréchet derivative is the29

Jacobian matrix J of size M × Nv. Inserting (45) into (43) and truncating to the first30

order yield in the discrete space31

∆q∗ = argmin
∆q

1

2
∥J∆q− yδ∥22 , (46)32

where ∆q and yδ are the discrete counterparts of ∆q and yδ, respectively. The33

optimization problem (46) can be solved by one of the many available algorithms, that,34

however, generally imply a significant computational cost. With this respect, a technique35

which plays a very relevant role in this field is the so–called Rytov perturbation approach,36

which we discuss in detail here below.37
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3.3. Linear inversion by perturbation approach: the Rytov approximation1

As observed above, DOT inverse problem is in general nonlinear, but in the limit that2

the optical properties are close to a specified background value, it can be considered3

approximately linear. This is usually the case for imaging differences in optical4

properties with respect to a reference condition. To obtain a linearization, one can5

approximate the change in the field when a change in the state occurs, making use of an6

expansion of the solution of the problem in series. There are two possible approaches:7

the Born and the Rytov approximations. In the Born approximation, u(r) is a linear8

superposition of the incident (background, u0) and scattered (heterogeneous, usc)9

diffusive waves such that u = u0 + usc. In the Rytov approximation, the contributions10

from the incident and scattered parts are expressed in exponential fashion as11

u(r) = eψ(r), with ψ(r) ≈
N∑
i=0

ψi(r), N ≥ 1. (47)12

For details on Born approximation, we refer the reader to [18, 19, 124] and we consider13

here in detail the Rytov approximation. This choice is motivated by the fact that14

in experimental and clinical researches on optical tomography, quite often the Born15

approximation is impractical and tomographic images are obtained with the Rytov16

approximation [111]. In addition, the Rytov approximation tends to be more accurate17

as it accounts for some non-linear saturation due to increasing perturbation in the18

absorption coefficient [39]. We mention however the fact that both the linearized19

approaches have clear limitations, see for example [38], where - in addition - the Rytov20

approximation is considered to be inferior to the Born approximation.21

We denote then by (D0, µa0) the reference state and by u0 the corresponding solution22

of (37)-(38) with D = D0 and µa = µa0, i.e.23

−∇ · (D0∇u0) + µa0u0 = f0, in Ω, (48)

u0 +
ζD0

2cd

∂u0
∂n

= 0, on ∂Ω. (49)

Let us consider a perturbation of the reference state inside the domain, that is24

D̃ = D0 + δD and µ̃a = µa0 + δµa in Ω, with the further assumption that25

D̃ = D0 on ∂Ω.26

We denote by ũ the solution of (37)-(38) with D = D̃ and µ = µ̃a, i.e.,27

−∇ ·
(
D̃∇ũ

)
+ µ̃aũ = f0, in Ω, (50)

ũ+
ζD0

2cd

∂ũ

∂n
= 0, on ∂Ω. (51)

Choosing N = 1 in (47), we get that28

ũ = eψ0+ψ1 , with u0 = eψ0 , hence ln ũ = lnu0 + ψ1.29
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Using the fact that u0 = eψ0 in (48) and ũ = eψ0+ψ1 in (50), subtracting the resulting1

equations and then using some differential identities we obtain2

−∇ · (D0∇(ψ1u0)) + µa0u0ψ1

= ∇ · (δD∇u0) + u0δD|∇ψ1|2 + u0∇ · (δD∇ψ1) + 2u0δD∇ψ0 · ∇ψ1

− δµau0 + f0(e
−ψ1 − 1 + ψ1).

The Rytov approximation comes in neglecting the second order terms on the right-hand3

side and noticing that e−ψ1 − 1 + ψ1 = O(ψ2
1) for a small perturbation ψ1, so we finally4

find that5

−∇ · (D0∇(u0ψ1)) + µa0u0ψ1 ≈ ∇ · (δD∇u0)− δµau0. (52)6

Taking this equation together with the Robin boundary conditions for u0ψ1, which can7

be deduced straighforwardly by (49) and (51), the first Rytov approximation gives the8

following boundary value problem9

−∇ · (D0∇(u0ψ1)) + µa0u0ψ1 = ∇ · (δD∇u0)− δµau0, in Ω, (53)

u0ψ1 +
ζD0

2cd

∂(u0ψ1)

∂n
= 0, on ∂Ω. (54)

Using Green’s functions, the solution of the boundary value problem (53)-(54) can be10

expressed in an integral form. For, we define the Green’s function associated to the11

Robin boundary value problem (53)-(54), that is the solution to the following problem12

−∇ · (D0(r)∇(G(r, r′))) + µa0(r)G(r, r
′) = δ(r′), r, r′ ∈ Ω (55)

G(r, r′) +
ζD0(r)

2cd

∂G(r, r′)

∂n
= 0, r ∈ ∂Ω. (56)

where δ(r′) is the delta distribution centered at r′. Using classical arguments, we find13

that14

u0(r)ψ1(r) =

∫
Ω

G(r, r′) [div (δD(r′)∇u0(r′))− δµa(r′)u0(r′)] dr′,15

hence, integrating by parts the first term on the righthand side, we get16

ψ1(r) = −
1

u0(r)

∫
Ω

[δD(r′)∇u0(r′) · ∇G(r, r′) + δµa(r
′)u0(r

′)G(r, r′)] dr′. (57)17

In the following analysis we assume that D0 is constant in Ω, as it is customary18

done in CW-DOT applications (see, e.g., papers [39, 102, 131] for examples of such a19

simplification which is customarily applied when a fast computation is required). Hence20

a reduced version of Eq.(57) can be considered. In fact, repeating the same calculations21

above, with the assumption that D0 is constant and δD = 0, that is considering the22

boundary value problem23

−∆(u0ψ1) +
µa0
D0

u0ψ1 = −
δµa
D0

u0, in Ω,

u0ψ1 +
ζD0

2cd

∂(u0ψ1)

∂n
= 0, on ∂Ω,
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an analogous simpler expression holds, which is1

u0(r)ψ̂1(r) = −
∫
Ω

δµa
D0

(r′)u0(r
′)Ĝ(r, r′) dr′, (58)2

where Ĝ is the Green’s function, solution to3

−∆Ĝ(r, r′) + µa0(r)

D0

Ĝ(r, r′) = δ(r′), r, r′ ∈ Ω,

Ĝ(r, r′) +
ζD0(r)

2cd

∂Ĝ(r, r′)

∂n
= 0, r ∈ ∂Ω.

Moreover, let δµa ∈ R(Nv×1) be the vector of unknown variations in absorption4

coefficient and ψ1 ∈ R(M×1) be the vector of logarithmic fluctuations evaluated in the5

detector positions for each source. One obtains6

Jδµa = ψ1, (59)7

where the sensitivity matrix J ∈ R(M×Nv) stems from the discretization of the integral8

in Eq. 57 and, namely,9

(J)ij =

[
∆V

u0(rks , r
l
d)
Ĝ(rld, rj)

1

D
u0(r

k
s , rj)

]
. (60)10

Now, let yδ ∈ R(M×1) be the vector of logarithmic fluctuations obtained from measured11

data in the detector positions for each source12

(yδ)i = log
UM(rks , r

l
d)

UM
0 (rks , r

l
d)
, i = 1, . . . ,M. (61)13

One ends up with the following discrete problem: find the best vector δµa which14

minimizes ||ψ1 − yδ||22.15

3.4. Bayesian approaches16

In Bayesian methods, both the measurements and the unknowns are modeled as random17

variables. The construction of the likelihood (observation) and the prior models is18

the starting point of the Bayesian approach to inverse problems. The most common19

likelihood models considers the case of an additive error model, i.e.,20

y = F(q) + ε,21

where ε is the additive error term with a distribution πε(ε), usually assumed to be22

mutually independent of q. Denoting by π(q, y) the joint distribution and by π(q) the23

prior distribution, then by the definition of the conditional probability we have that24

posterior distribution π(q|y), describing the uncertainty of the unknown q given the25

measurements y, is then well-defined and given by26

π(q, y) = π(y|q)π(q) = π(q|y)π(y),27

that is28

π(q|y) = π−1(y)π(y|q)π(q) = π−1(y)π(q, y),29
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which is the Bayes’ theorem. Knowing the joint distribution, the posterior distribution1

can be computed easily but, unfortunately, the joint distribution is not practically2

available [19]. On the other hand, many times, the derivation of the likelihood density3

π(y|q) can be obtained. In fact, by means of the Bayes’ theorem4

π(y|q) = πε(y −F(q)).5

In the special case of Gaussian additive noise, i.e. πε(ε) = N (ε,Γε), where ε is the mean6

and Γε is the covariance function, we get7

π(y|q) ∝ exp
(
− 1

2
∥Lε(y −F(q)− ε∥2

)
,8

where Γ−1
ε = LTε Lε. In this context, the most common choice for the prior distribution9

is of the form10

π(q) ∝ exp
(
− 1

2
∥Lq(q − q)∥2

)
,11

where Lq is a usually a differential operator, and q is an a priori information. Using12

again the Bayes’ theorem, we get13

π(q|y) = π(y|q)π(q) ∝ exp

(
− 1

2

(
∥Lε(y −F(q)− ε∥2 + ∥Lq(q − q)∥2

))
.14

Then, the main goal is to compute the points of maximal probability. The most common15

point estimates are the maximum a posteriori estimate (MAP) or the conditional mean16

estimate (CM), defined by17

qMAP = argmaxπ(q|y)18

and19

qCM = E(q|y) =
∫
qπ(q|y) dq,20

where E(·) denotes the expectation. It can be shown that in the case of Gaussian21

processes then the MAP estimator coincides with a minimizers of a Tikhonov22

regularization [19]. The so-called “approximation error method” [98] introduces an23

uncertainty in the modelling, then the aim is to determine the statistical properties of24

the modeling errors and compensate for them making use of a Bayesian approach. We25

refer the reader to [17], [19] for an application of this method to the case of optical26

tomography.27

3.5. Regularization methods28

Due to predominant scattering phenomena in light transmission, the DOT inverse29

problem is severely ill-posed. Mathematically, this means that it does not fulfill all the30

Hadamard conditions [75], in the sense that there might be lack of uniqueness (several31

possible model parameter values are consistent with the data) and that there is lack of32

continuous dependence of the solution on the measurements (small errors in the data33

may lead to large errors in the model parameters). In these circumstances, it becomes34

essential the adoption of regularization techniques to solve the problem. One possible35
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way is to introduce in the optimization procedure (43) a regularization term such that1

the problem becomes [125]: seek the optimal parameter set q∗ such that2

q∗ = argmin
q∈Q

[D(yq, yδ) +R(q)], (62)3

where R : Q → [0,∞] is a regularization functional which encodes soft or hard4

prior knowledge about the hidden structures to be investigated, favouring appropriate5

minimizers or penalizing those with undesired structures [16, 35, 62]. A commonly used6

form of (62) is the formulation7

q∗ = argmin
q∈Q

[D(yq, yδ) + λR(q)], (63)8

which decouples the regularization functional R from the regularization parameter λ,9

whose role is to balance the trade–off the weight between the discrepancy term and the10

penalty functional. Solving (63) is however, again, not a trivial problem and several11

approaches have been proposed, which we will review in the following in the SSD-DOT12

reconstruction context.13

Referring to the general linearized problem (linearized full problem or Rytov14

linearization) arising from the discretization, one has then to solve15

∆q∗ = argmin
∆q

1

2
∥J∆q− b∥22 + λR(∆q), (64)16

where here we have used the general notation J and b for the tangent matrix and17

measured data, respectively. Notice that in the case of the Rytov approximation, we18

have that J corresponds to the sensitivity matrix defined in (60), ∆q coincides with19

the vector δµa, and b is the vector whose components are defined in (61). Problem (64)20

can be tackled by several approaches, which we review in the following, focusing on the21

most relevant in the present field.22

Truncated Singular Value Decomposition. When λ = 0 (no regularization), one can use23

the Singular Value Decomposition (SVD) of J , J = VΣU⊤, where V,U are orthogonal24

matrices whose columns represents the left and right eigenvectors and Σ is the diagonal25

matrix whose diagonal elements are the ordered singular values, σ1 ≥ σ2 ≥ . . . ≥ σnr ,26

nr being the rank of J . A solution to the problem can be written as27

∆q =
nr∑
i=1

⟨b,ui⟩
σi

vi. (65)28

In the case of ill-conditioned problems, singular values typically span several order29

of magnitude and the lowest singular values exacerbate the influence of the noise30

on the computed solution, inducing artifacts and unreliable reconstruction. A well31

known regularization technique is to consider a Truncated Singular Value Decomposition32

(TSVD), which consists in truncating the above sum to a lower number of addends,33

neglecting the smallest singular values.34
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Tikhonov Regularization. A widely explored choice is to set R(q) = 1
2
∥Γq∥22, where1

Γ is a linear operator. This approach takes the name of Tikhonov regularization.2

When Γ is chosen as the identity operator, such strategy is named ℓ2 regularization, or3

ridge regression in statistical frameworks, and promotes solutions with smaller norms.4

Other suitable choices for Γ are differential operators, which enhance smoothness of the5

computed solution. In this framework, problem (64) reads6

argmin
∆q

1

2
∥J∆q− b∥22 +

λ

2
∥Γ∆q∥22, (66)7

and admits the one-step optimal solution8

∆q∗ =
(
J ⊤J + λΓ⊤Γ

)−1 J ⊤b. (67)9

Notice that when Γ = I, then the solution can be written as10

∆q∗ =
nr∑
i=1

σi
σ2
i + λ

⟨b,ui⟩vi, (68)11

where the regularization parameter at the denominator prevents the lowest singular12

values to exacerbate noise.13

Remark 3.1 Under suitable hypothesis, Gradient Descent methods can be applied for14

solving (66) (see also Remark 3.2 and Algorithm 1 for the more general case). When the15

regularization functional R is convex but not differentiable, one can resort to Bregman16

iterative techniques [33].17

Remark 3.2 Under the more general framework (44), when Rytov approach or a

similar one is not employed, one may use a Levenberg–Marquardt algorithm to solve

argmin
q

1

2
∥F(q)− yδ∥2 +

λ

2
∥Γq∥2.

Algorithm 1 presents a pseudo-code of a possible implementation.18

Algorithm 1 Levenberg–Marquardt Algorithm

Set the initial iterate q(0), set J the first order Frechét derivative. Set β = yδ−F(q0)

for k = 0, 1, . . . do

Compute the residual: ρ(k) ← β − J q(k).

Solve (J ⊤J + λΓ⊤Γ)d = J ⊤ρ(k)

Update q(k+1) ← q(k) + d

β ← yδ −F(qk+1)

Stop if a convergence criterion is satisfied.

end for

The choice of the parameter λ is pretty delicate: it can be made a priori but it can19

also depend on the noisy data yδ and then it is called an a posteriori strategy, which20

consists in adapting this parameter along the iterations. In this latter case, λ is typically21
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chosen in dependence of the noise level δ, i.e. if σ2 is the variance of data yδ, a well1

known choice is λ→ 0, σ2λ→ 0 for δ → 0.2

In practice, several semi-empirical methods exist: the L-curve method [80, 81] is3

the first of this list. It is an a posteriori strategy which employs only the data yδ and4

the computed solution. The L-curve method computes several regularized solution {qλ}5

for pre-selected set of values λ chosen in a fairly ample range. Then the ℓ2 norm of the6

residuals {∥Jqλ−yδ∥2} and the ℓ2 norm of the regularized solutions {∥qλ∥2} are plotted7

against each other in a log-log plot: the optimal value (and the corresponding optimal8

solution) is the one related to the corner of the L-shape. Such point can be computed by9

estimating the maximum curvature of the curve [81, 47, 79]. Numerically speaking, the10

L-curve method is easily tractable, but it has significant inner limitations: the distance11

of optimal regularized solution from the ground truth increases as δ → 0 [78], or when12

the dimension of the problem is too large [141]. The method can be tailored for other13

regularizers rather then ℓ2 norm [107]. Examples of the use of the L-curve strategy to14

solve DOT problems are reported in [151, 103, 138, 108].15

The Generalized Cross Validation (GCV) [72] consists in estimating the optimal16

value for λ as the minimizer of the function17

Ψ(λ) =
∥(I+ J

(
J TJ + λΓ⊤Γ

)−1 J ⊤)b∥2[
tr(I+ J (J TJ + λΓ⊤Γ)−1 J ⊤)

]2 . (69)18

Despite having a complicated appearance, the function Ψ(λ) can be easily minimized19

using the Fourier transform or, when Γ = I, the Singular Value Decomposition (SVD)20

of J . The idea beyond this procedure relies on the principle that when some data value21

is missing, then a suitable choice for λ should provide a good estimation of such missing22

value [80]. The major strength of GCV approach is that it does not need any estimation23

of noise level and its minimization is rather easy. On the other hand, the graph of Ψ can24

present a plateau close to its minimizer and numerical methods may fail in localizing25

it [140].26

The Minimal Residual Method (MRM, [94]) consists in a steepest descent method27

where the regularization parameter is estimated online, using the last approximated28

solution. The main drawback of such method is that the theoretical analysis assumes29

that δ = 0, i.e. no noise is affecting the data: in practical applications this leads to a30

sub-optimal choice for the regularization parameter.31

The Discrepancy Principle is an a posteriori method for selecting the optimal

regularization parameter. Denote with ∆qλ a solution of (66), where the dependency

on λ is explicit. The optimal parameter is given by

λopt = sup{λ > 0 | ∥J∆qλ − b∥ < τδ},

where δ is the noise level and τ > 1, see [62] for the technical details. This strategy32

is very useful from a theoretical point of view, but it requires the information about33

the noise level that is realistically not often available in practical problems. Even when34

δ is known, this approach provides oversmoothed solution [80]. For overcoming such35
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issue, several methods use this principle for dynamically estimating λ. In [145] the1

authors develop a Model Function Method (MFM) based on a damped version of such2

principle. In [97] a Padé approximation is employed for generalizing also to non smooth3

functionals. As a matter of fact, Morozov’s principle aims to provide the optimal value4

for λ not only for Tikhonov regularization, but also for other type of functionals (e.g.5

Total Variation).6

Remark 3.3 One may use the SVD for estimating the noise level perturbing the data7

[80, Section 6.6], [137], or statistical methods [90, 51].8

As shown in Eq. (66), the regularization term can encompass a linear operator Γ:9

this latter may include a–priori information on the tissue structure, for example the10

operator Γ can be generated using spatial information, typically derived from other11

imaging modalities. In [56] Γ is a matrix (of suitable dimension) that links all the12

elements (pixel, voxels or nodes) in a particular tissue type (glandular or fatty) as13

recognized from MRI, so that a second differential operator is approximated within14

each region, in a way conceptually similar to Total Variation functional. Each node in15

the mesh is labeled according to the region, or tissue type, with which it is associated.16

Namely one can choose:17

Γi,j =


−1/n regioni = regionj
1 i = j

0 otherwise

(70)18

where i and j are points within a region and n is the total number of unknowns in a19

given region. Another strategy to construct the linear operator Γ is to employ previous20

knowledge from ultrasound images [12].21

The authors in [59] use L-curve in combination with damped Gauss-Newton22

iterations to solve the (complex) DE upon finite element discretization. A quasi-optimal23

Tikhonov parameter is identified, based on a coarse mesh for the control-space. A finer24

mesh is used afterwards for better reconstructions exploiting the quasi–independence of25

the quasi-optimal Tikhonov parameter with the control-space discretization.26

The above methods for the selection of the parameter λ refer to the case in which27

the noise perturbing the data is of Gaussian type. In presence of Poisson noise such28

estimation can be achieved via a discrepancy principle [37, 149].29

Sparsity Promoting Regularization. In practice, contrast regions where the absorption30

coefficient is altered are restricted to limited areas embedded in the healthy tissue and31

the discrepancy with respect to the physiological value can be significant (up to 5-1032

times the physiological value). This implies that using the ℓ2 norm as regularization often33

causes an unphysical smoothing of the coefficient value and an enlarged distribution.34

Hence, one can resort to regularization functionals that promote sparsity and enhance35

differences between healthy and altered regions. A suitable choice is the ℓ1 norm36

R(∆q) = ||∆q||1 =
∑
i

|∆qi|. (71)37
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In [43] such choice is employed and some numerical tests on a 3D phantom show reliable

results. The authors in [142] solve problem (44) when R is the ℓ1 norm employing the

FISTA algorithm [29]. In [31] it is shown that in some cases a pure ℓ1 regularization

may fail in estimating the shape, area and value of even simple heterogenieties, whilst

employing a Bregman technique with this regularization functional provides more

reliable results, particularly when there are contrast regions with different absorption

coefficients. Compressed sensing theory [147] suggests that the regularization parameter

should be selected as

λ > ∥J ⊤b∥∞

in order to avoid algorithms to reach a trivial zero solution.1

Total Variation regularization. Suppose that the function q is differentiable. The Total2

Variation regularization is defined as3

R(∆q) =
∫
Ω

|∇(∆q)| dΩ, (72)4

where ∇q denotes the gradient of q, Ω is an open and bounded subset and dΩ a suitable

measure. When q is not differentiable, one has to refer to the more general definition

[50]. Its discrete counterpart reads

TV (∆q) =
∑
i

∥Ai∆q∥,

where Ai is the 2D discrete first order difference operator of suitable dimension acting5

on the ith element of q. The authors in [107] develop a method which couples an6

homotopy strategy with Bregman iterations [33], using as regularization the Total7

Variation function together with a Tikhonov term. The regularization parameter λ8

is chosen by an adaptive strategy, that relies on the knowledge of the noise level δ.9

In [110] the Total Variation regularization is implemented under a graph framework and10

implementing an alternating direction method of multipliers (ADMM). In this work the11

authors use the L-curve method for the estimation of λ. A similar approach is adopted12

in [106], where the objective function consists in a convex and in a nonconvex term, the13

latter being a Huber function subtracted from the general Total Variation functional.14

In [133] it is presented a solid and complete theoretical analysis for the treatment of15

Eq. (46) whenR is chosen as a nonconvex nonsmooth total variation based regularization16

functional.17

Mixed functionals. The functional R may consists in more than one term, leading18

to a mixed functional: for example, in [107] the Total Variation is coupled with the19

ℓ2 norm. The authors in [134] used a split Bregman method including a weighted20

combination of TV and ℓ1 norms to compute a stable approximation of the discrepancy21

functional when the forward model is represented by the RTE. They tested the approach22

on a 2D synthetic case consisting in a circular domain with different targets. The23
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experimentation is done by manually setting the weights of the two terms, and it led1

to conclude that the TV+ℓ1 regularization performs better than the single counterparts2

in reconstructing and locating the small inclusion. Specifically, the weight of ℓ1 norm3

was chosen one order of magnitude larger that the TV one (10−3 vs 10−4). When4

the pathological tissue covers large regions of the investigated body, there were no5

significant differences in using TV+ℓ1 or TV regularization, beside a slight improvement6

in deblurring for the combined regularization. Also in [120] a combination of TV and7

ℓ1 is employed.8

In [31] the authors employ the Elastic Net functional:9

R(∆ q) = (1− α)∥∆ q∥22 + α∥∆ q∥1, α ∈ [0, 1]. (73)10

Originally introduced in the statistical framework [153], it consists in a convex11

combination of ℓ2 and ℓ1 norms, and it aims to couple the positive priors imposed12

by both functionals: it preserves smooth components and at the same time promotes13

sparsity of the solution. Upon a suitable choice of the parameters, the Elastic Net14

provides reliable results, both when ∆ q is localized in one region and when ∆ q presents15

several components with different values. In [48] this procedure has been applied also16

to 3D cases.17

Numerical tests. We present here a series of numerical tests aimed at comparing the18

quality of the reconstruction obtained via some of the methodologies discussed above.19

This discussion is not aimed at being an exhaustive compendium of the results obtained20

in this field, rather at showing some significant aspects. All the tests are solved via21

in-house implementations of the authors of the present paper. We consider both on22

2D and 3D geometries. The 2D setting consists of a semi-circular domain of radius23

5 cm discretized through a uniform voxel-based mesh composed of 3822 voxels, which24

corresponds to a spatial resolution of about 0.1 cm. The location of detectors (200) and25

sources (20) is depicted in Fig. 3(a). The 3D setting consists of a semi-spherical domain26

of radius 5 cm discretized through a uniform voxel-based mesh composed of 7240727

voxels, which corresponds to a spatial resolution of about 0.15 cm. These geometries,28

albeit in a reduced dimensional setting and idealized version, represents a female breast29

supported on a solid plate on which embedded light sources are alternatively turned on30

for the DOT exam. The location of detectors (200) and sources (16) for this case is31

depicted in Fig. 3(b). We embed in a uniform background, with absorption coefficient32

µa = 0.01 cm−1, one or two contrast regions represented as circular (2D) or spherical33

(3D) areas, respectively. If not specified differently, we solve the problems using the34

Rytov perturbative approach and regularization represented by the elastic net (73) with35

parameters α = 0.5 and λ of the order of 10−4. Moreover, we use the Green’s function36

method to address the solution, with a dipole approximation to enforce the null Dirichlet37

boundary condition on the flat portion of the boundary.38

Test: reconstruction with different strength of the contrast regions. We consider the 3D39
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setting and we embed in the domain two spherical contrast regions, both having radius1

0.5 cm and centered respectively at (−2.5, 0, 2) and (2.5, 0, 2). We consider the cases of2

equal (2×) and different (5× and 2× on the leftmost and rightmost region) strengths3

for the contrast regions with respect to the background, respectively. Results are shown4

in Figure 4b). In the case of equal strength, both regions are identified, well localized5

and their intensity is accurately estimated. In the case of two regions with different6

strength, both regions are identified as well, although the reconstruction has a lower7

quality both in terms of the localization of the interested voxels and in the estimation8

of the contrast intensity, especially for the weaker contrast. Similar results are obtained9

in the 2D case (not shown here). Note that one should pay much attention in the choice10

of the regularization parameter λ. As a matter of fact, exceeding in regularizing causes11

the merging, or even the overlap, of the regions if they have equal intensities, or the12

identification of the only higher strength inclusion if the intensities are different.13

Test: comparison of different methods in the 2D case. Three different cases are14

considered:15

i) a single circular inclusion is centered in (0, 2) with radius 0.3 cm. The absorption16

coefficient of the inclusion is set to 2× µa,0;17

ii) two circular inclusions are centered in (±2, 2) both with radius 0.3 cm. The18

absorption coefficient of the inclusions is set to 2× µa,0;19

iii) as in case ii) but the absorption coefficient of the left inclusion is set to 5 × µa,0,20

while for the right one is set to 2× µa,0.21

Tests are performed using the elastic-net regularization method implemented in the22

glmnet software package [68] and alternatively using the Bregman procedure as23

described in detail in [32]. The results are depicted in Fig. 5, where the two approaches24

are compared with other techniques. We observe that the elastic-net approach correctly25

locates the inclusion(s) with their absorption coefficient for tests i) and ii). In test iii) the26

localization is less precise, but the expected values of the absorption coefficient are well27

estimated. Using the Bregman procedure, choosing the 2-norm regularization, albeit the28

quality of the reconstruction is improved by the contrast enhancement, the inclusion29

is not clearly identified and the recovered halo can be confused with some artefacts.30

On the other hand, setting the 1-norm regularization really benefits from the Bregman31

implementation: the results for test i) show that the location of the inclusion is properly32

recognized and its absorption value is correctly reconstructed. The reconstruction of test33

ii) suffers from a small displacement, but the value of the coefficient is well recovered.34

Eventually, in test iii), both inclusions are not completely placed in the correct location,35

but the absorption value is close to the correct one. This misplacement is due to the36

different values of absorption coefficient, hence the regularization parameter promotes37

the higher one.38

Test: effect of boundary conditions. We consider here both the 2D and 3D settings. In39
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the 2D case we embed a single circular perturbed region with radius 0.3 cm, centered1

at (2, 2) and with contrast 2× with respect to the background value. We consider two2

different strategies:3

a) standard approach, which neglects the Robin boundary condition on the curved4

boundary and uses to represent the solution u0 in (60) as Green’s function5

corresponding to a semi–infinite domain, with a dipole approximation on the6

straight portion of the boundary (see Fig. 6a);7

b) do not neglect the Robin boundary condition for the representation of the solution8

u0 in relation (60) using more accurate numerical method. Here we consider the9

Method of Fundamental Solution (MFS, [67]) which allows, albeit in an approximate10

manner and in a moderately more computationally expensive manner, to enforce11

boundary conditions on all the boundary in the framework of a Green’s function12

solution (see Fig. 6b).13

An evident improvement in terms of localization of the contrast region is observed when14

correct boundary conditions are taken into account.15

We perform the same experiment in the 3D setting using again the Rytov perturbative16

approach with elastic net regularization and investigating the same strategies as in the17

2D case. Figure 7 represents from left to right for the upper and lower rows (first and18

second strategy, respectively): i) the shape and position of the simulated inclusion (red19

sphere) and the voxels for which the computed solution has a non-zero component (i.e.20

the reconstructed inclusion); ii) the computed solution restricted to the vertical plane21

containing the center of the contrast region; iii) the computed solution restricted to the22

horizontal plane containing the center of the contrast region. Again, it is apparent the23

improvement when physically correct boundary conditions are considered. One should24

consider however that in the 3D case the computational times are significantly larger25

and one should balance this aspect with the effective improvement.26

Test: adaptation of the voxel size. A possibility to reduce the execution time is to first27

employ a coarse-mesh to locate in a rough manner the contrast area and then use this28

information as a soft-prior to cover with the voxel-based mesh only the identified ROI.29

We report the results for the same setting of the previous test case in the 3D geometry,30

using the second strategy. Figure 8 show the interested voxels superposed to the exact31

contrast region, along with the voxel size. Notice that different values of the elastic net32

parameters are required to obtain optimal results when the voxel size is changed.33

4. DOT reconstruction aided by Machine Learning34

Physically–driven approaches present mainly two drawbacks. First, PDE models give35

only an approximate description of the physical phenomena, being accurate in some36

circumstances, less in other. Even if one considers pretty sophisticated models, as the37

RTE, which translate in increasing complexity, this usually imply i) the introduction38
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of several new parameters to be estimated; ii) a strong dependence on regularization1

techniques which require a delicate tuning; iii) in general, an increasing request of2

computational resources that often cannot be met in practical applications. Nowadays,3

the possibility of acquiring a large number of data is bringing the attention of the inverse4

problems community to data-driven methods that are able to capture data features5

without making any particular a priori assumption in the reconstruction procedure and6

without the need to postulate complex mathematical models. In this respect, machine7

learning, with specific emphasis on deep neural networks (NN)-based techniques, has8

shown great potential in solving problems in image processing with special relation to9

the biomedical field [136]. The application of deep learning in DOT reconstruction is10

very recent and studies in this field are still not abundant. In the following, we provide11

a overview of such attempts, along with the description of their most salient features,12

highlighting trends and patterns. For a general introduction to machine learning and13

deep learning we refer to the many available textbooks, e.g. [73, 3].14

4.1. Earlier contributions15

Patra et al [117] used an embryonic version of a fully connected NN with 2 hidden16

layers to obtain a prior on the spatial localization of a single contrast region embedded17

in a 2D circular domain. Accordingly, in the iterative reconstruction procedure they18

updated only the parameters in a neighborhood around the detected contrast region.19

Sun et al [130] addressed the multiple scattering problem of microwaves in biological20

samples using a two-step reconstruction method, where an analytical method based on21

the linear backprojection operator provided a first image estimate, followed by a U-Net22

decoder for image reconstruction. This approach avoided the iterative evaluation of23

the nonlinear discrete Lippmann-Schwinger operator (or its Jacobian). Feng et al. [63]24

adopted a NN based on a fully connected architecture made of 3 layers for end-to-end25

DOT image reconstruction, the internal hidden layer comprising 695 neurons, for a26

total of about 1.56M parameters in the test examples. Training was performed using27

20,000 synthetically generated 2D samples (with 2% added Gaussian noise), requiring28

about 26 hours of computation on a mid-level personal computer. For comparison,29

DOT reconstruction based on Tikhonov regularization-based was also performed, as30

well as ℓ1 and TV -based reconstructions with manually chosen optimal regularization31

parameters. The results showed that the NN-based reconstruction outperformed the32

Tikhonov regularization-based on in terms of accuracy and image quality and also the33

ℓ1 and TV -based reconstructions, even if to a lesser extent for these latter. They also34

explored the use of different activation functions and a reduced number of neurons in35

the hidden layer, albeit obtaining results far from optimal.36

4.2. Fully data-driven approaches37

Fully data-driven approaches completely rely on data and they do not assume the38

existence of a physical model of the underlying processes. The network parameters39
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are tuned according to supervised training procedures which compare the ground truth1

with the net predictions. In this framework, Yoo et al [148] investigated an end-to-2

end model based on a DNN-architecture to reconstruct heterogeneous optical maps3

in small animals. A fully connected layer performed a first inversion, followed by an4

encoder-decoder structure which implemented a deep 3D convolutional framelet. It5

is interesting to notice that, despite this approach being fully data-driven, the neural6

network structure was inspired by the Schwinger–Lippmann integral equation model7

which provides a nonlinear representation of the scattered field. Deng et al [57] proposed8

an architecture in which a fully connected layer input the data into an encoder-decoder9

structure followed by a U-Net for image denoising and quality improvement. Skip10

connections further enhanced high-resolution features for reconstruction. The proposed11

loss function penalized the inaccurate contributions from the contrast regions rather12

than the whole volume. Yedder er al [146] exploited an architecture formed by a13

first fully–connected layer followed by deep nets with spatial-wise residual attention14

mechanisms (implemented by convolutional blocks) to focus on important features. A15

fuzzy Jaccard loss component was used in addition to the reconstruction error loss16

to address the imbalance between the minority pixels corresponding to one or more17

lesions versus the majority of background pixels. Transfer learning techniques were18

used to bridge the gap between in silico simulated data and equivalent data acquired19

with the real device on phantoms. Upon training of the net on the sole basis of20

simulated data, the authors performed DOT image reconstruction on phantom and21

patients diagnosed with breast cancer (2 participants). They contrasted the results22

of the proposed method to several existing methods, and, namely, with conventional23

approaches and other deep–learning based methods (including their previous work),24

showing the increased accuracy of these latter, albeit without being able to remove the25

notorious difficulty of reconstructing deeper and multiple lesions. Benfenati et al [34]26

investigated a NN-based regularization technique, inspired by the Learned-SVD method27

originally proposed in [40] for general inverse problem. This approach is a fully data–28

driven strategy which adopts two autoencoder networks bridged by an operator which29

mimics the effect of a (truncated) singular value matrix in a nonlinear fashion. In the30

numerical experiments, noise-free data as well as noisy measurements were considered,31

obtained by adding white Gaussian noise to the fluence values at the observations32

points with variance 1%, 3% or 5%, respectively. The performance was assessed by 1)33

the average value of the absorption coefficient (ACR) inside the reconstructed contrast34

regions; 2) the True Positive Ratio (TPR), which assesses the spatial accuracy of the35

positioning of the reconstructed contrast regions by checking how many pixels in the36

reconstruction actually belong to the true contrast region. The results are summarized37

in Table 2, which presents the ACR and TPR metrics averaged on 150 test samples38

for the Learned-SVD approach and, for comparison, for the elastic net and Bregman39

variational approaches. For all the considered approaches, increasing levels of noise40

significantly worsen the TPR, as well as the ACR. However, the quality loss exhibited41

by the Learned-SVD approach is significantly less pronounced, especially for the ACR42
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Table 2. ACR (binned according to the intensity of the contrast region) and TPR

metrics for different noise levels for the Learned-SVD [34] and for comparison the

Elastic Net and Bregman variational approaches. Values are averaged over 150 test

samples. Noise level 5% is not considered for the variational approaches due to the

extreme difficulty to obtain a sensible reconstruction.

Noise Level 3µa,0 (GT: 3e-2) 4µa,0 (GT: 4e-2) 5µa,0 (GT: 5e-02) TPR

Learned-SVD

0% 3.05e-02 ± 2.00e-03 4.08e-02 ± 3.72e-03 4.74e-02 ± 2.19e-03 0.94

1% 3.07e-02 ± 2.77e-03 3.76e-02 ± 5.54e-03 4.38e-02 ± 4.01e-03 0.76

3% 3.06e-02 ± 5.56e-03 3.61e-02 ± 6.10e-03 4.11e-02 ± 4.65e-03 0.52

5% 3.00e-02 ± 3.82e-03 3.15e-02 ± 4.44e-03 3.39e-02 ± 6.04e-03 0.46

Elastic Net

0% 2.73e-02 ± 4.74e-03 3.45e-02 ± 4.96e-03 3.90e-02 ± 8.69e-03 0.45

1% 2.91e-02 ± 9.36e-03 4.30e-02 ± 8.70e-03 5.01e-02 ± 9.80e-03 0.17

3% 9.55e-02 ± 1.92e-02 1.25e-01 ± 2.83e-02 1.23e-01 ± 3.36e-02 0.05

Bregman

0% 4.02e-02 ± 8.95e-03 5.93e-02 ± 1.61e-02 8.54e-02 ± 2.98e-02 0.26

1% 4.77e-02 ± 1.81e-02 5.85e-02 ± 1.84e-02 8.34e-02 ± 2.85e-02 0.17

3% 1.28e-01 ± 5.50e-02 1.45e-01 ± 9.06e-02 1.36e-01 ± 6.80e-02 0.03

metric. As a matter of fact, the reconstructed regions with the NN-based method still1

show a notable contrast with respect to the background value, and 46% of the extension2

of the perturbed regions is correctly recovered on average even for the highest noise level3

(vs 5% and 3% for the variational approaches, respectively). One should notice that4

in the Elastic Net approach the reconstructed intensities constantly approximate the5

nominal one by defect for low noise level: this is not fully surprising, since regularization6

comes at the cost of a certain degree of smearing/blurring of the solution. On the7

other hand, Bregman technique increases the contrast, as already observed in previous8

works. In presence of high level of noise, the results are completely unreliable. Classical9

variational methods suffer from this problem to a higher degree especially for a rather10

coarse voxelization as the one we considered here (results, not reported here, for finer11

voxelizations, do confirm in any case this general trend).12

4.3. Hybrid model/data-driven approaches13

In contrast to directly learning a reconstruction operator, one can combine deep learning14

with model-based (knowledge–driven) approaches. In this framework, Jiang et al [96]15

investigated DOT reconstruction with limited available boundary measurements. The16

Direct Sampling Method was used as the idea guiding the design of a neural network17
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which learned from data the index function representing the location and shape of1

contrast regions. Mozumder et al [112] followed an approach based on iterative model-2

based techniques where learned components given by a CNN were intertwined with the3

model physical equations. Specifically, a finite element solver was used to approximate4

the solution of the physical model, embedded in a Gauss-Newton method whose update5

step was chosen accordingly to a CNN. The method was shown to favorably compare6

with a standard Bayesian inversion method. Zou et al [154] used an autoencoder-7

like architecture comprising two neural networks. The first net learned the photon8

transport process using as an input the optical coefficient map ground truth and9

producing the predicted perturbation while the second net tried to reconstruct the10

optical properties from measurements. The weights obtained from the initial training11

process were further refined by adding physical constraints based on the difference12

between the predicted perturbation and the perturbation produced by the Born model13

and anatomical information by co-registered US.14

4.4. General trends in machine learning-based DOT reconstruction15

Despite apparent differences, the above works show common trends which we highlight16

here to provide a rationale of the present state of the art in this field:17

• fully data-driven approaches generally adopt a NN architecture consisting in a fully18

connected layer which performs a first inversion and then refine/denoise the result19

via a series of convolutional layers. Existing frameworks, such as U-nets, can be20

conveniently adapted to the refinement task with minimal changes21

• end-to-end approaches based on NNs can benefit from knowledge coming from22

physical models by incorporating in the net structure information about the physical23

process, for example in the choice of the convolutional filters. Physical constraints24

can also be added in the form of the loss function25

• skip connections/attention mechanisms may enhance the recognition of the contrast26

regions and deviate computational resources on these areas, alleviating the27

computation from the background28

• all the above mentioned papers only train the network on synthetic data, for29

which the ground truth is readily available. However, the trained nets show a30

good generalization capability to real data (albeit tested on very limited realistic31

datasets). With this respect, some authors argue that NNs, which directly learn32

from the measurement data, suffer less from prior conditions that might bias the33

search space and this may favor generalization. This is however still a poorly studied34

topic, which will require more investigation on larger datasets.35

A synthetic illustration of the above concepts is presented in Figure 9.36
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5. Conclusions and perspectives1

DOT has clear advantages over other imaging techniques in medical imaging, being2

able to detect lesions without ionization. As such it can be employed safely in both3

diagnosis and therapy follow up. However, much room is open to improvements in order4

for DOT to enter into clinical practice. Unlike X-ray CT, DOT image reconstruction5

is indeed affected by the scattering nature of light propagation in biological media,6

which significantly reduces the spatial resolution and quantification of images. Aim7

of this work was to review the mathematical foundations of the following issues: i)8

derivation of optical coefficients, which are the reconstructed quantities; ii) derivation9

and well posedness of the mathematical models used to describe the underlying physical10

processes; iii) approximation methods and numerical techniques both of physics-driven11

and data-driven type. In this paper we have focused our attention on the so-called12

Steady State-Domain DOT technology. We refer to [15] for a recent review on other13

existing DOT technologies. We also refer to [116] and [89] for interesting discussions14

about clinical aspects in the use of DOT and its integration with other imaging15

modalities.16
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Figure 3. Geometry and position of sources and detectors used in the numerical tests

in the: (a) 2D setting and (b) 3D setting.

Figure 4. Reconstruction with contrast regions with the same (a) or different (b)

strength. In the second case the algorithm struggles to obtain a good quality both in

terms of localization and intensity.
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Figure 5. Results for test cases i), ii), iii) in column–wise order. Top to bottom:

Tikhonov regularization, Bregman procedure coupled with 2–norm, pure LASSO

approach, Bregman coupled with 1–norm and elastic–net procedure with α = 0.5.

Figure 6. Results in the 2D test setting with: (a) no enforcement of Robin boundary

conditions on the background solution; (b): enforcement of Robin boundary conditions

on the background solution via the MFS strategy. The red circle represents the exact

location of the contrast region.
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Figure 7. Results in the 3D test setting with: (a) no enforcement of Robin boundary

conditions on the background solution; (b): enforcement of Robin boundary conditions

on the background solution via the MFS strategy. The red circle represents the exact

location of the contrast region.

Figure 8. Improvement (right) of the spatial resolution in the 3D geometry using as

soft-prior a first rough estimation of the position of the contrast region from a coarse

voxelization (left).
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Figure 9. Classes of existing DL-based approach for DOT reconstruction: a) methods

of this family are fully data-driven. Sometimes the loss function used in the training

of the net can be enriched with physically motivated constraints; b) methods of this

family partially rely on physical models that can produce a first guess for the solution

and then are supported by nets which improve it.


