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1. Introduction

Recent Advancements in Hematology: Knowledge, Methods and Dissemination is a series of
editorials which is published on a biannual basis by the editorial board of the journal Bloods. In these
editorials, we highlight in brief reports (of about one hundred words) a number of recently published
articles that describe the most recent advancements in hematology. In this way, we hope Bloods will
not only publish high-level scientific articles, but will also discuss their significance in the scientific
scenario, which includes the transfer of information to the media.

2. DLBCL: Divide and Conquer

Highlighted by Jude Fitzgibbon

Wright et al. [1] build on their previous studies [2] with the development of the LymphGen
algorithm, which combines mutation, copy number, and fusion status, to assign >60% of Diffuse
Large B Cell Lymphoma (DLBCL) tumors to seven subtypes, all having distinctive molecular features
and clinical outcomes. The profile of each subtype reveals novel observations on cell of origin,
dysregulated pathways, and composition of the immune microenvironment, and proposes routes
to histologic transformation of indolent lymphomas. CRISPR loss-of-function screens uncovered
therapeutic vulnerabilities of each subtype, including the dependence of BN2 tumors on BCR-NFκB
signaling. It is encouraging that these molecular subtypes largely converge on groups defined
by other large-scale initiatives [3,4], despite differing patient series, sequencing approaches, and
statistical methodologies. The emerging consensus lends confidence to testing these new classifications
prospectively in biomarker-directed clinical trials.

3. Benefits of Iron Chelation in MDS Patients: The TELESTO Trial

Highlighted by Sophie Park

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized
by cytopenias and progression to acute myeloid leukemia (AML). Although several treatments for
MDS are available, the mainstay of therapy for most patients remains supportive care. This includes
red blood cell (RBC) transfusion to correct anemia, which leads to iron overload. RBC transfusion
dependence and iron overload portend inferior overall survival. Some studies indicate that iron
chelation therapy (ICT) may have beneficial effects on clinical endpoints in MDS; however, these data
are from non-randomized trials and the validity of the results is vigorously debated.

TELESTO is the first prospective randomized double-blind placebo-controlled study testing the
impact of ICT with deferasirox on a composite endpoint; e.g., event-free survival including non-fatal
events such as echocardiographic evidence of worsening cardiac function, hospitalization for congestive
heart failure, liver function impairment, cirrhosis, and transformation to acute myeloid leukemia [5].
It shows that median EFS with DFX is improved by one year with an HR 0.64, supporting the clinical
benefit of ICT with deferasirox in low-risk and intermediate-1-risk MDS. This study is important as it
is the first and the last prospective randomized trial demonstrating this advantage after a decade of
retrospective non-controlled studies.

http://www.mdpi.com//1/1/5?type=check_update&version=1
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4. Improving Early Infection-Related Morbidity and Mortality May Allow More Effective
Delivery of Systemic Anti-Cancer Therapy (SACT) in Multiple Myeloma (MM)

Highlighted by Gordon Cook

Myeloma survival has substantially improved; a substantial proportion of early deaths, and
deaths in remission, are due to infections. Infections induce considerable morbidity and frequently
lead to SACT interruption or discontinuation, resulting in inferior treatment responses with poorer
survival. Susceptibility to infection is primarily the consequence of acquired tumor-related deficiency
of both humoral and cellular immunity. The publication by Drayson et al. [6] in Lancet Oncology
is a welcomed focus on supportive care in myeloma. They present the findings that showed that
12 weeks of fixed-duration levofloxacin prophylaxis reduced the occurrence of febrile episodes and
deaths with a hazard ratio [HR] 0.66, (95% CI 0.51–0.86; p = 0.0018) when levofloxacin was delivered
prophylactically compared to placebo. Independent to levofloxacin, use of prophylactic low dose
co-trimoxazole significantly reduced febrile infections and death, though this was not protocol-driven,
rather as a consequence of local standard of care. Additionally, use of levofloxacin for a fixed duration
was not associated with an increase in adverse events, especially healthcare-associated infections such
as C. difficile and MRSA. The results of this trial provide a good basis for considering fixed-duration
quinolone prophylaxis for newly diagnosed patients with MM undergoing SACT.

5. Genetic Versus Immune Evolution behind Myeloma Progression

Highlighted by Bruno Paiva

Using single-cell RNA sequencing of bone marrow cells from the precursor stages of monoclonal
gammopathy of unknown significance and smoldering multiple myeloma (SMM), to full-blown MM
alongside healthy donors, Zavidij and colleagues [7] confirmed previous concepts about immune
changes during patient progression [8], and provided unprecedented resolution about the immune
microenvironment in precursor and malignant stages of MM. Interestingly, the same group of authors
reported recently that most genetic alterations present in MM patients have already occurred by the
time of SMM diagnosis, some of which predict risk of progression [9]. Taken together, both studies
support the relevance of genetic and immune evolution behind the progression of MM. However,
while the core of genetic abnormalities remains relatively stable over time, there seems to be profound
editing of the tumor-immune crosstalk. These observations provide rational therapeutic approaches
aiming at enhance or restoring patients’ immune status to prevent malignant transformation of SMM
patients at greater risk of progression.

6. A Biologic Agent is Involved in the Pathogenesis of a Subset of NLPHL

Highlighted by Annunziata Gloghini

In the study by Thurner and colleagues, “Lymphocyte predominant cells detect Moraxella
catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma” [10], the
authors provide evidence that chronic antigenic stimulation by Moraxella catarrhalis (M. catarrhalis)
contributes to lymphomagenesis in immunoglobulin D (IgD) positive nodular lymphocyte predominant
Hodgkin lymphoma (NLPHL). Moraxella catarrhalis is a common bacterium colonizing the upper
respiratory tract that express a 200 kDa IgD-binding protein (MID/hag), enabling M. catarrhalis to bind
to the Fc part of IgD and thus activating IgD-carrying B-cells. IgD is expressed in the lymphocyte
predominant (LP) cells in about 25% of NLPHL cases [11].

Thurner and colleagues suggest that the persistent or recurrent presence of M. catarrhalis
presumably induces a germinal center (GC) reaction resulting in production of class-switched
anti-DNA-directed RNA polymerase sub-unit beta’(RpoC) serum antibodies. The costimulatory
effect of MID/hag selects for retention of IgD on a fraction of the stimulated GC B cells. Meanwhile a
clone acquires genetic alterations and may transform into LP cells. However, the transformed IgD
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+ LP cells still gain growth advantage by the interaction of their BCRs with M. catarrhalis RpoC and
MID/hag.

Anti-M. catarrhalis therapies should be assessed and validation of morphological and phenotypic
surrogates encouraged to identify NLPHL cases related to M. catarrhalis.

7. “Into Thin Air”: Living High or Staying Low

Highlighted by Eric van Breda

Thirty-five (35) years ago Stray-Gundersen et al. [12] proposed an alternative training method for
elite athletes to boost their endurance capacity. Living at 2500 m above sea level (masl) for 27 days with
regular training sessions at sea level increased performance significantly through, among other things,
increases in hemoglobin concentration. To date, professional endurance athletes still make use of this
altitude training to boost the oxygen-carrying capacity to working muscles for performance increments.

Interestingly, Staub et al. recently showed that adaptation to altitude is far more subtle than
previously thought [13]. In contrast to the general assumption that adaptation to altitude only occurs
above 2500 masl, Staub et al. found increases in hemoglobin concentration and thus oxygen carrying
capacity from 300 masl onwards in Swiss men.

Although more research is needed, the important finding of the study of Staub et al. is that
adaptation to thin air occurs at lower altitudes than expected and maybe altitude training camps for
elite athletes should be viewed from a different perspective.

8. Iron Homeostasis and Viral Pulmonary Infections: Possible Insights from COVID-19

Highlighted by Fabiana Busti

Iron is essential for many biological functions, including immunity. During infections,
hepcidin-mediated iron redistribution causes hypoferremia. It represents a defense mechanism
against invading pathogens, such as viruses, which need the iron-dependent machinery of the host
cells to replicate and spread efficiently in the body [14]. However, hypoferremia can become harmful
for the immune cells, and it has been associated with poor outcomes in critically ill patients [15].

Although high ferritin levels appeared an independent predictor of mortality [16], the role of iron
homeostasis in COVID-19 patients has remained largely unexplored until now.

In this study, Shah et al. have investigated the iron parameters in a small group of COVID-19
patients admitted to the intensive care unit [17]. Lower serum iron levels were associated with more
severe hypoxemic respiratory failure (defined as PaO2/FiO2 ratio < 100) and lymphopenia, irrespective
of the inflammation extent, suggesting a possible role for hypoferremia as an early biomarker of
disease severity.

This study provides interesting insights to understand the implications of iron dysregulation
not only in COVID-19 patients but more generally in subjects with viral respiratory infections and
lung damage.

9. Adding a Monoclonal Antibody to Treat Newly Diagnosed Transplant Ineligible Myeloma
Patients Improves Overall Survival

Highlighted by Laurent Garderet

There are currently three ways to treat first line non-autologous stem-cell transplantation eligible
myeloma patients: either the combination of an alkylating agent, melphalan, plus steroid and
a proteasome inhibitor, bortezomib, the so-called VMP combination or the combination of an
immunomodulatory agent, lenalidomide plus steroid (Rd) and more recently adding bortezomib to Rd
(VRd) [18]. MV Mateos et al. [19], in a randomized phase 3 trial, added the anti-CD38 monoclonal
antibody daratumumab [20] to VMP (D-VMP) until disease progression. Compared to VMP fixed
duration, it improved not only the PFS but also the OS with 40% reduction in the risk of death and
reached an approximately four-fold higher rate of negative status for minimal residual disease. The
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additional toxicity was mostly grade 1–2 respiratory infections. This is a major achievement but it is
already challenged by the addition of daratumumab to RD [21] or VRd [22]. However, it definitely
demonstrates that myeloma patients should receive a monoclonal antibody to most, if not any, drug
combinations in the first line setting, similarly to what has been largely proved in the relapse setting.
D-VMP is a new standard-of-care for these patients but is challenged by alkylator-free regimen.

10. Targeting Cathepsin S, a Regulator of Antigen Processing, to Enhance Immunogenicity of
Lymphoma Cells

Highlighted by Riccardo Dolcetti

The early stages of development of follicular lymphomas are characterized by the dependence of
lymphoma cells from interactions with follicular T helper cells and follicular dendritic cells. Dheilly [23]
and collaborators demonstrated that these pathogenic interactions are at least in part mediated by
overexpression and recurrent activating mutations of Cathepsin S (CTSS). In addition to sustaining
lymphoma cell survival and proliferation, the aberrant expression of CTSS was also shown to limit
the ability of CD8+ T cells to recognize and eliminate lymphoma cells. Notably, inhibition of CTSS
in preclinical models diversified the antigen repertoire of lymphoma cells, thereby promoting their
recognition by cytotoxic T lymphocytes. These findings highlight the therapeutic relevance of strategies
able to induce antigen diversification and indicate that targeting CTSS may improve adaptive immunity
against lymphomas and responses to immunotherapies.

11. Treatment for Glucocorticoid-Refractory Acute GVHD

Highlighted by Marie Robin

Results of the REACH-2 trial have just been published in the New England Journal of Medicine
by Zeiser et al. [24]. REACH-2 is an international multicenter, randomized, open-label, phase 3
trial comparing the efficacy and safety of oral ruxolitinib (10 mg twice daily) with other therapy
commonly used (control) in patients with glucocorticoid-refractory acute GVHD after allogeneic
stem-cell transplantation. The primary end point was overall response on day 28. For the first time,
a treatment, i.e., ruxolitinib, showed a significant improvement in the response rate (62% vs. 39%).
Furthermore, the incidence of loss of response was lower with ruxolitinib at six months (10% vs.
39%). Non-relapse mortality was not significantly different between the two arms of treatment. Few
randomized trials have been conducted in glucocorticoid-refractory GVHD and ruxolitinib is the only
treatment showing a significant benefit in terms of sustained response. Ruxolitinib is the only treatment
currently approved by FDA for this indication.

12. Intermediate-1 Myelofibrosis also Benefits from Allogeneic Transplantation

Highlighted by Rodrigo Martino

Although allogeneic hematopoietic stem cell transplantation (alloHCT) is the curative option in
primary myelofibrosis (PMF), and secondary MF (SMF) [25], few patients are actually even considered
candidates and the patients′ risk groups are usually underestimated [26].

In ELN/EBMT 2015 guidelines for identifying optimal alloHCT candidates [27], most doubts about
indication focused on the intermediate-1 using the DIPSS classification. The current study by Gowin at
al., however, supports proceeding to alloHCT in this specific scenario [28]. These authors compared
the outcome of 551 alloHCT recipients from 2000 to 2014 with that of 1377 contemporary non-HCT
patients. In brief, their finding in the intermediate-1 group (40% of all patients) was that alloHCT
was associated with improved long-term OS, but only after +1 year of follow-up. This study thus
concludes that alloHCT benefits transplant-eligible patients with int-1 or higher-risk PMF/SMF using
the DIPSS. The author of this editorial considers that alloHCT is even more justified in int-1 patients
using DIPSS-Plus. Another provocative finding in this study is that prior therapy with ruxolitinb was
associated with improved OS in both cohorts.
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13. The Role of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) and Post-Transplant
FLT3 Inhibitors for AML Patients with FLT3-Internal Tandem Duplication (ITD)

Highlighted by Alessandro Busca

Approximately 25–30% of patients with newly diagnosed acute myeloid leukemia (AML) present
mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, either by internal tandem duplication
(FLT3-ITD) of the juxtamembrane domain or by a point mutation involving the tyrosine kinase domain
(TKD). The FLT3-ITD mutation is a predictor of a higher relapse rate and worse survival. Allogeneic
HSCT remains an effective treatment option for FLT3-mutated AML patients, however, a consistent
number of targeted therapies has been developed over the most recent years and might be incorporated
in the treatment of these patients. A position paper from the EBMT has been recently published
summarizing indications of HSCT and the potential optimization of post-transplant maintenance
with FLT3 inhibitors [29]. Based on this statement, indication for allogeneic HSCT is controversial in
FLT3-ITD patients who belong to the European leukemia net (ELN) favorable risk group (for instance
FLT3-ITD mutation with <0.5 allelic ratio and concomitant NPM1 mutation) and achieved minimal
residual disease negativity; HSCT may be delayed until first relapse. Post-HSCT maintenance with
FLT3 inhibitors for patients receiving an allogeneic HSCT for FLT3-ITD AML is strongly recommended:
at the present, sorafenib may be considered the preferred option, however, the therapy duration and
the role of other FLT3 inhibitors need to be defined.

14. How Myeloma Cells Promote Adipogenesis

Highlighted by Michèle Sabbah

The suppression of bone formation is a hallmark of multiple myeloma and understanding
the mechanisms by which myeloma cells disturb the bone marrow is fundamental. Liu et al. [30]
studied the effects of the interactions between myeloma cells and mesenchymal stem cells (MSCs)
on osteoblastogenesis. Using single cell RNA-sequencing, an in vitro coculture system, and mouse
models, the authors found that myeloma cells shift the differentiation of MSCs into adipocytes rather
than osteoblasts. Mechanistic studies revealed that integrin α4 on myeloma cells activated the adhesion
molecule VCAM1 on MSCs and inhibited ubiquitylation of PPARγ2 through PKC-MURF1 signaling.
The resulting increase in PPARγ2 enhanced adipogenesis and suppressed osteoblastogenesis from
MSCs. Therefore, counteracting α4–VCAM1–MURF1-mediated adipogenesis from MSCs may be a
promising strategy to heal myeloma-induced bone resorption.

15. Anticoagulation in Patients with Active Cancer

Highlighted by Salvatore De Rosa

The Caravaggio trial recently provided further evidence on the efficacy and safety of apixaban
for the treatment of venous thromboembolism (VTE) in patients with cancer [31]. Hence, the current
evidence outlook shows that DOACs are noninferior to dalteparin to prevent VTE recurrence with
no increase in major bleeding [32]. It emerges that higher-risk clinically relevant non-major bleeding
(CRNMB) is mostly associated with gastrointestinal cancers. This reinforced evidence should inform
clinical management of cancer patients. Careful selection of anticoagulants based on clinical history,
cancer type, concomitant medications, and bleeding risk can improve the quality of care. For instance,
patients with brain tumors or acute leukemia were excluded from the Caravaggio but reassuring data
come from the Hokusai VTE Cancer and the SELECT-D. In case of multiple concomitant treatments, it
should be remembered that fewer drug interactions are expected with edoxaban. As residual use of
warfarin is expected for cost-related issues; financial costs should not be the main decision driver in
this setting. Furthermore, the apparent increase in DOAC-related costs is largely counterbalanced by
the reduction in healthcare costs related to the management of bleeding events.



Hemato 2020, 1 16

16. Megakaryocytes Ca2+ Flow Alteration in the Mutant CALR Type 1 Related Myeloproliferative
Neoplasms Pathogenesis

Highlighted by Maurizio Martini

Di Buduo CA and colleagues [33] have recently explained the molecular mechanisms by which
CARL type 1 mutation leads to myeloproliferative neoplasms (MPN), inserting a keystone helps
to understand the pathogenesis in this disease. Carrying out the in vitro cellular and molecular
studies, the authors demonstrated that type 1 mutant CALR leaves the endoplasmic reticulum (ER)
of megakaryocytes (MKs), losing its physiological binding with two other ER proteins, STIM and
ERp57. Disengaged STIM proteins are now able to dimerize, translocate to plasma membrane, and,
after binding to Orai and TRPC cellular membrane channel proteins, determine an extracellular Ca2+

entry. Ca2+ intra-MK increment plays a central role in regulating many cell processes, including
cell proliferation and metabolism. This report also highlighted the fundamental part of MK in the
myeloproliferative neoplasm pathogenesis, opening the way to new therapeutic approaches in the
CARL mutant-related MPN treatment.

17. Intestinal Microbiota Diversity Restoration as a Potential Way to Decrease Non-Relapse
Mortality in Allo-HCT

Highlighted by Francesco Onida

Based on a centralized analysis of a longitudinal serial fecal sampling from a very large patient
population undergoing allogeneic HCT, the multicenter intecontinental prospective study from Peled
J.U. et al. [34] confirmed previously published single-center experiences reporting the negative impact
of intestinal microbiota diversity loss on allogeneic HCT outcome. In particular, the association of lower
intestinal diversity in the periengraftment period with inferior survival was shown to be determined
by higher transplant-related and GvHD-related mortality, whereas no difference was observed in
cumulative incidence of post-transplantation relapse. Indeed, lower microbiota diversity did not
impact on survival in patients in whom ex vivo T-cell depletion was selected for GvHD prophylaxis
strategy. Worth emphasizing is the study showed that also lower baseline microbiota diversity—i.e.,
based on pretransplantation samples—is associated with inferior post-transplant survival.

Even though not adjusted for antibiotics exposures, nor for diet and nonantibiotic drugs, the
results of this study strongly advocate the implementation of future trials aimed at investigating
intestinal microbiota diversity restoration as a potentially effective way to decrease allo-HCT-associated
non-relapse mortality.

18. Light-Chain PGNMID: A Genuine Monoclonal Gammopathy of Renal Significance

Highlighted by Pierre Aucouturier

Proliferative glomerulonephritis with non-organized monoclonal immunoglobulin (Ig) deposition
(PGNMID), is considered a “monoclonal gammopathy of renal significance” (MGRS) in spite of the usual
absence of an identified B-cell clone. Reported PGNMID features “immune-complex like” mono-isotypic
Ig deposits (mostly of the rare IgG3 subclass) that are restricted to the glomerulus. However,
mono-isotypy does not mean monoclonality, which has obvious consequences on therapeutic decisions.

Recently, Nasr et al. [35] reported on a well-documented series of 17 patients with atypical
PGNMID featuring deposition of monoclonal Ig light chains (LC) only. Unlike classical IgG-PGNMID,
a monoclonal gammopathy was identified in virtually all of them, including myeloma in one-third.
Moreover, proteomic analyses of microdissected glomeruli demonstrated the monoclonal origin
(homogenous variable domain sequences) of deposited material, which to my knowledge has not been
demonstrated in classical IgG-PGNMID, contrary to other MGRS including light chain deposition
disease [36]. Molecular studies also suggested activation of the complement alternative pathway. Thus,
while treatments of IgG-PGNMID empirically target a hypothetical B-cell clone, LC-PGNMID appears
as a distinct entity with a true rationale for the use of myeloma regimens.
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19. Is Tandem Transplantation the Standard of Care?

Highlighted by Fredrik Schjesvold

The EMN group is capable of running large randomized trials, asking several questions in one
clinical study. EMN02 is such a study, asking whether transplant is good (yes), whether consolidation
is good (probably), but more importantly, providing the best data to date on whether tandem ASCT
is beneficial [37]. To be short, it is. In the ITT population with a 5 y follow-up, overall survival was
80.3% in the tandem arm, 72.6% in the single ASCT arm, and 71.5% in the group randomized to VMP
instead of transplant. The OS benefit for tandem over single ASCT was statistically significant with an
HR of 0.62, most prominently demonstrated in the HR group. At ASCO 2020, long-term follow-up
from the STaMINA trial was presented, confirming PFS benefit of tandem ASCT, in the patients that
received the allocated treatment (30% did not). Further, in this study the results were more evident in
the high-risk group. Based on this, the coming ESMO guidelines recommends tandem ASCT in HR
patients, and it should be a definite option in the standard-risk patients as well.

20. Chromatin Organization Contributes to T Cell Acute Lymphoblastic Leukemia Pathogenesis

Highlighted by Stéphane Minvielle

Transcriptional regulation in mammalian cells is orchestrated by cis-regulatory elements that
include promoters, enhancers, and insulators. A majority of them display cell-type specific chromatin
accessibility and act as enhancers to regulate specific gene expression. Enhancers are often located at a
great genomic distance from their target gene promoters, therefore correct assignment of enhancers to
genes requires knowledge of spatial genome organization. Chromatin structure changes and their
impact in tumor development remain largely unknown. In the present study, Kloetgen et al. in 2019
filled this gap [38]. The authors explored the potential reorganization of a distinct chromatin structure
called TAD in primary T-ALL compared to T cells. They identified significant alterations in intra-TAD
chromatin interactions affecting important genes for T-ALL pathogenesis including NOTCH1 targets
genes as well as TAD boundary changes including a TAD fusion that conferred spatial proximity of
MYC promoter and the super-enhancer. They revealed the importance of NOTCH1 binding activity that
maintains specific enhancer-promoter loops. Overall this study opens the way to identify and target
factors like NOTCH1 that orchestrate the interactions between super-enhancers and gene promoters in
cancer cells.

21. The Thrombotic Storm in COVID-19 Pandemic Outbreak: The Link between Inflammation
and Haemostasis

Highlighted by Mario Mazzucato

The coronavirus disease 2019 (COVID-19) pandemic has besieged us with its relentless worldwide
march and high morbidity and mortality [39]. COVID-19 appears to preferentially target respiratory
epithelium where it enters host cells through the angiotensin converting enzyme 2 receptor, similar
to SARS-CoV.

The triggering of host inflammatory reactions also results in increased production of
proinflammatory cytokines that have pleiotropic effects, including activation of coagulation. Factor XII
(FXII) is the zymogen of serine protease, factor XIIa (FXIIa). In vivo, FXIIa initiates coagulation via the
fibrin-forming “intrinsic” pathway and promotes inflammation via the bradykinin (BK)-producing
kallikrein kinin system, comprising high-molecular weight kininogen (HK) and plasma prekallikrein
(PK) [40]. Together, FXII, PK, and HK are termed the plasma contact activation system. Because of its
original identification as part of the coagulation intrinsic pathway, the inflammatory branch of the
contact activation system has long been underappreciated. In addition to neutrophil pro-inflammatory
responses, FXII modulates the functions of an array of innate immune cells. Macrophages react to FXII
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and FXIIa by increasing the production of IL-6, IL-12, and tumor necrosis factor-α. Finally, FXII was
shown to promote the differentiation of T helper naive cells to TH17 cells [41].

Although not considered part of the contact system in vitro, plasmin has a known capacity for
FXII activation. In addition, recent studies indicate that soluble polyP enhances the plasminogen
activator function of FXIIa (hyperfibrinolytic states).

A rapid global community effort has been made to integrate new clinic and laboratory observation,
involving coagulation and fibrinolytic pathways, to help guide patient care with COVID-19. Studying
the intrinsic pathway of coagulation in COVID-19 may be the true keystone to understanding thrombotic
complications. Our understanding of this new human pathogen is rapidly evolving, and our approach
to patient management must continue to evolve.

22. We Are History: Studying the Present to Understand the Past of Multiple Myeloma (MM)

Highlighted by Carolina Terragna

The study of Rustad E.A. et al. [42] shows that several mutational processes actively shape the
genome of MM patients, starting years before the onset of the clinical symptoms. Consequently, the
genomic snapshot provided by the bone marrow aspirates commonly obtained before therapy allows a
proper risk stratification of patients, according to the presence of structural and numerical chromosomal
aberrations. More importantly, it also tells about the patients’ tumor history, providing one can read
the genomic footprints, which remind of individual habits, aging, exposure to genotossic agents, and
random activation of (eventually) oncogenic pathways occurring throughout the whole lifetime.

These so-called mutational signatures mark any given DNA sample and can be read by
high-throughput technologies, allowing to trespass the outer surface of chromosomes, by deepening
into their biochemical information core, made of nucleotides liable to mutations [43].

With an MM genomic picture at the onset of the disease being the result of a long and progressive
genomic ride, intercepting the MM evolutive process might delay or even prevent the disease
progression, thus supporting the possibility to therapeutically change the natural history of this
disease [44].

23. On the Road to Newer and Safer CARs

Highlighted by Michel Delforge

CAR-T cells are reshaping the treatment paradigm of patients with relapsed and refractory
lymphoproliferative disorders. Currently anti-CD19 CAR T-cells are licensed for the treatment of
subgroups of patients with relapsed/refractory diffuse large B-cell lymphoma and refractory ALL.
In multiple myeloma, several phase II studies have shown impressive results with CAR-T cells directed
towards BCMA. However, despite impressive response rates, many patients will relapse after CAR-T
treatment. Moreover, the infusion of CAR-T cells can be complicated by cytokine release syndrome
(CRS) and neurotoxicity. Therefore more efforts are needed to improve efficacy and reduce toxicities of
genetically engineered cell therapies. Another limitation is the autologous source requiring several
weeks of manufacturing time and the use of autologous cells from patients who have been exposed to
several immunosuppressive drugs. A potential strategy to overcome these drawbacks is the use of
allogeneic NK cells [45]. Despite being a small phase 1/2 study, it supports the proof-of-concept of
using CAR-NK cells from cord blood as an effective treatment without causing major toxicities and
may be a potential future alternative to CAR T-cells.

24. Erythocyte Microvesicles and Thrombosis in MPN

Highlighted by Claire Harrison

The dominant clinical feature of the Philadelphia negative myeloproliferative neoplasms (MPN)
is vascular events. Some 30% of patients will have a vascular event (mostly arterial) at or within a few
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years of diagnosis. The cause of thrombosis and its relationship with the commonest driver mutation,
JAK2 V617F, is unclear. In this paper, Poisson and colleagues [46] reveal a putative mechanism
involving JAK2 V617F erythrocyte-derived microvesicles carrying MPO, and that these are responsible
for increased oxidative stress in arterial endothelium and decreased availability of NO, which strongly
increased arterial contraction in response to vasoconstrictive agents, possibly accounting for the arterial
events associated with MPNs. This was demonstrated with a series of mouse models and could
explain in part the features of coronary events without coronary artery disease in these patients.
This paper also highlights the potential role of NO pathway inhibition and increased endothelial
oxidative stress in arterial constriction in MPN. Several groups have reported high levels of circulating
ROS products [47–49] and low antioxidant status in MPN [48,50]. Erythrocyte microvesicles have
already been linked to vascular dysfunction in various settings, such as erythrocyte storage and
sickle cell disease [47,48,51], but not in the context of MPN. Using proteomics, a defect in GSTT1
and overexpression of MPO in microvesicles derived from JAK2 V617F erythrocytes link this to
oxidative stress. This opens new therapeutic perspectives and the authors demonstrated the benefits
of simvastatin and hydroxycarbamide.
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