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Abstract
Objectives  The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking 
using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images.
Methods  PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: 
ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking 
performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between 
manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed 
on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and auto-
mated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication.
Results  The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were 
included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model 
revealed a mean value of 2.44 mm, with a high heterogeneity (I2 = 98.13%, τ2 = 1.018, p-value < 0.001); risk of bias was high 
due to the presence of issues for several domains per study. Meta-regression indicated a significant relation between mean 
error and year of publication (p value = 0.012).
Conclusion  Deep learning algorithms showed an excellent accuracy for automated 3D cephalometric landmarking. In the last 
two years promising algorithms have been developed and improvements in landmarks annotation accuracy have been done.

Keywords  Landmark · Three-dimensional imaging · Orthodontics · Maxillofacial · Deep learning

Introduction

Radiographic exams are considered essential for orthodon-
tic and maxillofacial treatments; however, diagnostic val-
ues of conventional radiographs and indications for their 
use are controversial, especially when radiation exposure is 
related to pediatric patients. To solve the appropriateness of 
orthodontic radiographs, specific guidelines were recently 
provided [1].

Cephalometric analysis is a quantitative diagnostic tool 
that is daily used by orthodontists and maxillofacial sur-
geons to evaluate skeletal and dentoalveolar relationships, 
morphometrical characteristics, and growth pattern of their 
patients [2]. It was first introduced in 1931 and since then it 
has been evolving until the latest finding in orthodontic radi-
ology and diagnostics [3]. This method has been based on 
both linear and angular measurements conventionally taken 
on two-dimensional (2D) radiographs of the skull, producing 
an individual cephalogram for each patient. Conventional 
reference points for cephalometry are marked on skeletal 
structures like the anterior and posterior cranial base or the 
maxilla and mandible, on teeth like molars and incisors, 
and on the soft tissue-like structures among nose and chin; 
distances and angles between pointed landmarks, as well 
as axes and planes, allow to classify individual patients in 
accordance with skeletal, dental and profilometric features. 
The gold standard for performing this procedure is still the 
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manual tracing of these specific points relative to meaning-
ful anatomical structures of skull and neck, visualizing them 
on lateral, frontal, and axial views of 2D radiographs. The 
main issues related to accurate identification of the cepha-
lometric points are represented by the time and high level of 
expertise required, and the risk of intra- and inter-operator 
variability [4].

Given the crucial role of cephalometric analysis in treat-
ment planning, it's noteworthy that inaccuracies in land-
marking can lead to incorrect measurements of distances 
and angles between reference points [5]. As a result, misi-
dentification of landmarks and consequent errors in meas-
urement can not only result in incorrect diagnoses but also 
inappropriate treatment planning and suboptimal treatment 
outcomes, such as over- or under-correction of the malocclu-
sion, changes in facial esthetics, or functional issues.

Since the introduction in dentistry and maxillofacial sur-
gery of cone beam computed tomography (CBCT), the ceph-
alometric analysis can also be performed by three-dimen-
sional (3D) visualization and identification of the landmarks. 
In 1995 3D analysis started by soft tissue and progressively 
moved to bone until it became what it is known as 3D cepha-
lometric analysis. However, there is no 3D conventional or 
validated list of anatomical landmarks, also because 3D data 
made it possible to identify hidden structures to 2D analysis. 
Despite that, the main advantage represented by 3D analysis 
is to avoid the superimposition of bilateral structures and the 
distortion caused by the representation of a 3D object into a 
2D image, resulting in a greater accuracy [6]; furthermore, 
CBCT technology in orthodontics allows the reduction of 
the X-rays exposition due to reduction of field of view and 
through the use of new reference landmarks and planes [7].

Because manual landmarking is a time-consuming task, 
automated detection of landmarks could be certainly help-
ful, as it facilitates access to the cephalometric analysis even 
it represents a challenge for the biomedical engineering 
field. Artificial intelligence (AI) applications are becom-
ing increasingly common in dentistry especially on image 
analysis [8], and it has been an active research field over the 
last years [9]. Orthodontics, as well, is one of the dentistry 
branches most involved in this field by means of different 
AI algorithms for diagnosis and treatment planning [10]. 
Advances in medical imaging technologies and methods 
allow AI to be used in orthodontics to shorten the planning 
time of treatment, including tooth segmentation on CBCT 
images or digital casts, classification of defects on X-rays 
images, and automatic search of landmarks for cephalomet-
ric analysis [11].

The main issues in developing AI algorithms for 3D ceph-
alometry are the increased number of parameters, the need 
for high-performance computing, and the greater computa-
tional complexity that increase subsequently of the clinical 
requests for more accurate and faster analyses. Recently, 

two systematic reviews on the accuracy of automated 
cephalometric points identification have been published: 
Dot et al. [12] compared different automated methods for 
analyzing 3D images, while Schwendicke et al. [13] evalu-
ated deep learning (DL) methods for analyzing 2D and 3D 
radiographs; it was by both of them reported that DL-based 
methods yielded promising results compared to older tech-
niques like knowledge-based, atlas-based or learning-based 
methods. The image analysis approach is quite similar to all 
automated methods: determination of the region of interest 
where the landmark is potentially located, determination of 
the landmark positioning on the 3D model surface, finally 
confirming and adjusting on sectional or cutaway views to 
reduce the mean error of the landmarking; nevertheless, the 
difficulty in the computational identification depends on the 
fact that cephalometric landmarks have different anatomical 
characteristics, being located on surfaces, in the space or 
within the bone cavity. Most of the analyzed studies included 
in these reviews reported a great accuracy between manual 
and automated landmarking, often under 2 mm threshold of 
clinically acceptability [14–16]; reviewing previous scien-
tific literature about this field reported an accuracy depend-
ing on the algorithm used for the automation in landmark-
ing: knowledge-based method shown an accuracy ranging 
from 1.88–2.51 mm [17–19], registration-based method a 
mean error between 1.99–3.4 mm [20, 21], machine learning 
(ML) ranged between 1.44–3.92 mm [22, 23], whereas the 
best results were offered by DL method with error ranging 
between 0.49–1.80 mm [14, 15, 24]. Probably, the variability 
in the accuracy between studies may depend not only on 
the type of artificial neural network (ANN) but also on the 
amount of CBCT data, the number and type of landmarks 
analyzed. Considering the excellent performances of DL 
studies published before 2020, we focused our research on 
studies that used DL algorithm for this purpose, in order to 
better analyze performances in a larger number of studies. 
Unfortunately, the aforementioned systematic reviews have 
not yet been updated since 2021.

Despite the number of studies involving DL for auto-
mated landmarking is increasing day by day, the accuracy 
of their results remains unclear; a previous systematic review 
analyzed both ML and DL methods on 3D images [12], 
whereas another one focused on DL algorithms applied on 
2D or 3D cephalometric analysis [13]. To the best of our 
knowledge, new studies have been carried out on the last two 
years increasing the data available for accuracy comparison 
between them. Therefore, the aim of the present systematic 
review and meta-analysis is to assess the accuracy of auto-
mated landmarking using DL in comparison with manual 
tracing for cephalometric analysis of 3D medical images. 
The aim of the present research was to investigate the accu-
racy of DL-based algorithm for automatic identification of 
cephalometric landmarks on 3D radiographs. Implications 
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related to the present topic may help radiologists in identify-
ing the maximum mean error tolerated by future AI systems 
for automated landmarking, as well as to show the possibil-
ity to erase intra- and inter-observer errors that frequently 
affect manual landmarking and subsequent cephalometric 
analysis. The combination of greater precision and the exclu-
sion of intra- and inter-operator errors can lead to a more 
accurate diagnostic process that ends with better quality in 
treatment, esthetics and functionality.

Materials and methods

Protocol and registration

The present systematic review was registered to the PROS-
PERO database (registration number CRD42022315312). 
The reporting of this study is in accordance with PRISMA 
statement [25] and followed the guidelines in the Cochrane 
Handbook for Systematic Reviews of Interventions [26].

Eligibility criteria

The selection criteria were structured according to the 
PICO (Problem, Intervention, Comparison, Outcome) for-
mat: ex vivo and in vivo volumetric data images (CBCTs or 
CTs) suitable for 3D landmarking of osseous cranial refer-
ence points for cephalometric purpose (P), a minimum of 
five automated landmarking performed by DL method (I), 
manual landmarking (ground truth) performed once or more 
times by one or more trained operators or annotated images 
from previous studies (C), and intergroup mean accuracy, 
expressed in mm, between manual and automated landmark-
ing (O). All studies that did not include the main outcome, 
reporting partial data, or non-English written were excluded. 
Thus, the selection criteria applied were: accuracy studies 
based on DL algorithm, using 3D images (CT or CBCT) 
with a minimum of 5 landmarks to be detected, reporting 
the outcome as mean error between automatic and manually 
performed landmarking, published between 2020 and 2022.

Information sources and study selection and Data 
Collection

In order to get only the most recent evidence, articles pub-
lished from January 1, 2020, to December 31, 2022, were 
searched, and those already cited in the previous reviews 
were not included. The following electronic databases were 
screened: PubMed/Medline, Web of Science, IEEE Xplore, 
Scopus and ArXiv. The combination of different Boolean 
operator AND/OR and MeSH/non-MeSH terms was used to 
select appropriate studies: [deep learning] AND [landmark-
ing], [3D cephalometry] AND [deep learning], [CBCT] OR 

[CT] AND [automated cephalometry], [deep learning] AND 
[tomography], [automatic] AND [3D cephalometric analy-
sis]. The last electronic search was performed on  January 
27th, 2023. Additional studies were selected by searching 
the reference lists of all included articles, and all related 
papers were also screened through the PubMed database. 
EndNote software (EndNote X9; Clarivate™, Philadelphia, 
PA) was used to collect references and remove duplicates. 
The study selection was independently carried out by two 
reviewers (MS and BB) and evaluated through Cohen’s 
Kappa coefficient; any disagreement was solved by a third 
expert reviewer (CS). The same two reviewers extracted 
study characteristics, such as authors, year of publication, 
algorithm architecture, type and number of images included 
in the dataset, dataset partition (training and test), number of 
landmarks aimed to detect, accuracy metrics defined as total 
maximum, minimum and mean difference between manual 
and automated landmarking.

Risk of Bias Assessment and Level of Evidence

Risk of bias and applicability concerns were assessed by 
QUADAS-2 tool [27], whereas GRADE criteria were used 
to assess the overall quality of the evidence. The two review-
ers evaluated independently all the included studies. Any 
disagreement was solved by discussion. The risk of bias was 
evaluated for Data Selection, Index Test, Reference Standard 
and Flow and Timing, while applicability concerns regarded 
Patient Selection, Index Test and Reference Standard. These 
domains were judged as low risk, unclear risk, and high risk, 
while the overall quality of the evidence was categorized as 
high, moderate, low, and very low.

Meta‑analysis

Meta-analysis was performed on the studies that reported 
as outcome mean and standard deviation values of error 
between manual and automated landmarking. Meta-analysis 
was performed in Prometa3 (ProMeta 3 – IDoStatistics), 
while the graphs were realized in Excel (Microsoft Corpora-
tion. (2018). Microsoft Excel. Retrieved from https://​office.​
micro​soft.​com/​excel). It was conducted using random-effects 
model, that takes two sources of variance into account: the 
within-study variance and the between-studies variance. For 
each study, the considered parameters were mean difference, 
standard deviation and sample size (number of considered 
landmarks). Graphic display of the estimated mean error 
between studies in conjunction with the 95% confidence 
interval (CI) was obtained. Heterogeneity was assessed by 
I2 and τ2 statistics, using random-effect models [28]. Linear 
regression plots were also used to analyze any correlation 
between the mean accuracy and the year of publication. p 
values < 0.05 were considered statistically significant.

https://office.microsoft.com/excel
https://office.microsoft.com/excel
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Results

Study selection and qualitative analysis

Figure 1 reports the PRISMA flowchart of the study selec-
tion process. A total of 295 studies (121 PubMed, 17 IEEE 
Explore, 14 ArXiv, 100 Scopus, 43 Web of Science) were 
initially selected at the first screening; 280 studies suitable 
for eligibility were subsequently excluded in accordance 
with exclusion criteria. After a final step selection, a total 
of 15 studies were included for the qualitative synthesis, 
whereas 11 studies were used for the meta-analysis. A final 
Cohen’s K coefficient of 0.96 was achieved as a result of 
the double-blind search.

All articles were retrospective studies published dur-
ing years 2020–2022 and employed DL models. All of 
the studies used convolutional neural network (CNN) 

architectures modified or combined with other architec-
tures. Almost all studies used as dataset images paired 
with the correspondent set of landmarks. Six studies used 
an image dataset of CT, two studies CBCT and four stud-
ies used both. One study used as dataset both annotated 
CBCT images (labeled images) and not-annotated ones 
(unlabeled) [29] and three studies [30–32] used a dataset 
composed by labeled CT images and a landmark dataset 
of the 3D positions of landmarks from CT. One study 
reported the mean error in pixels dimension [33] instead 
of mm, and for this review, it was converted in mm using 
the pixel-to-mm conversion rate reported in the article. 
Studies detected a mean (± standard deviation) of 47(± 35) 
landmarks, with a 5–105 range. On average, the size of the 
image dataset was 88 (± 53), 24–198 range. Description of 
the sample characteristics (e.g., age, gender, craniofacial 
characteristics) was not provided by all the articles. Only 
eight studies [29, 34–40] indicated the execution time of 

Fig. 1   Prisma flowchart for the papers’ selection process
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the identification system, and four of them [34, 36, 38, 39] 
also reported the duration of the training phase.

Twelve studies provided information about the com-
puter system used. The reference standard used was manual 
landmarking for all of the studies, it was established by two 
experts in five studies, by one expert in four studies and in 
one study part of the dataset was annotated by one expert 
and the rest by three experts. In five studies the number of 
experts who annotated the images was unclear. Only one 
study [40] indicated the inter-rater agreement. For eleven 
studies the reported outcome was the mean error and the 
standard deviation between manual and automatic landmark-
ing and they were included in the meta-analysis [29, 30, 
33–41]. Four studies didn’t report the standard deviation [31, 
32, 42, 43]; thus, they were excluded. Detailed information 
about studies’ characteristics can be found in Table 1.

Quality assessment

Risk of bias and applicability concerns were performed 
according to QUADAS-2 tool and resumed in Table 2. High 
risk of bias was found regarding the data selection (n = 10), 
low for reference standard (n = 4), index test (n = 0) and Flow 
and Timing (n = 0); high risk was also found regarding the 
applicability concerns in most of the studies toward data 
selection (n = 10), references test (n = 4), while low risk for 
index test (n = 0). The high risk of bias for data selection was 
due to lack of description of patient selection and imaging 
parameters. As far as the reference standard is concerned, 
not all articles report how the manual annotation was con-
ducted. Applicability issues for patient selection were due 
to the fact that the articles did not explain the patient inclu-
sion and exclusion criteria. All included studies were judged 
to have a critical risk of bias, as issues existed for at least 
three domains per study. According to GRADE criteria, the 
overall quality of the evidence was considered low due to 
the presence of severe risk of bias in the sample selection in 
the individual studies and discrepancies in the landmark’s 
selection and definition.

Meta‑analysis

A meta-analysis was conducted on eleven studies that pre-
sented mean and standard deviation (SD) values of the dif-
ferences between the automated and manual landmarking. 
As shown in Fig. 2, the random effect model revealed a 
mean value (95% CI) of 2.44 (1.83–3.05) mm. Five stud-
ies reached a mean value significantly better than the over-
all effect, whereas three of those have shown a mean value 
significantly higher. Heterogeneity calculation reported a 
I2 = 98.13%, τ2 = 1.018, p value < 0.001. Meta-regression 
indicated a significant association (p value = 0.012) between 

the mean error and the year of publication, as shown in 
Fig. 3.

Discussion

The present systematic review and meta-analysis showed 
that automated landmarking on 3D radiological images is 
a promising research field in maxillofacial and orthodontic 
area for diagnostic purposes. Orthodontic as well as maxil-
lofacial diagnostics are based on clinical evaluation com-
bined with substantial support from radiological imaging 
techniques. Traditionally, this analysis has been done on 2D 
images (cephalometries) bringing with it numerous prob-
lems in image reconstruction and measurement accuracy, 
due to the superimposition and distortion of three-dimen-
sional structures projected on a two-dimensional image. 
Recently, thanks to the introduction of systems for volu-
metric rendering and the management of large datasets, the 
interest has been moved toward cephalometric analysis on 
3D images, CT or CBCT [44]. However, accurate identifica-
tion of reference points from X-ray images is used to calcu-
late angular and linear measurements, essential to provide 
quantitative evaluation of craniofacial structures [45].

In recent years, numerous studies have shown the greater 
accuracy of 3D cephalometric analysis compared to 2D [46] 
and the greater efficiency of DL algorithms compared to tra-
ditional machine learning methods in the field of bioimages 
[47], and thus, the trend is to develop DL-based algorithms 
for automatic identification of points on 3D images. In this 
context, studies evaluated in this systematic review and 
meta-analysis showed the update done in the last two years 
on the automatic identification of craniofacial landmarks on 
3D radiographs. Although there is no standard threshold for 
localization error, the value resulting from the present meta-
analysis can be considered a promising result.

To interpret this result, we must consider different sources 
of bias:

•	 The overall localization error reported in each paper 
refers to different type and number (range 5–105) of 
annotated landmarks. As said before, there is no stand-
ard threshold for localization error in 3D cephalometric 
analysis and, in addition, required accuracy can vary 
depending on landmark positioning and type, anatomi-
cal or geometrical. Moreover, the quality of landmark 
location and their precise placement is crucial on the reli-
ability of 3D linear and angular measurements [48]; if a 
landmark is to be used to evaluate a certain dimension, 
then it should demonstrate a good consistency and preci-
sion[49].

•	 The measurement error can be affected by different types 
of inaccuracies, thus modifying the clinical significance 
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of the diagnosis and the outcome analysis [46]. Land-
marks reproducibility regarding intra- and inter-observer 
error was previously analyzed for 3D cephalometry [50]. 
In manual landmarking, it was observed that landmarks’ 
reliability, reproducibility, accuracy, and precision in the 
3D space are affected by the operator, and that 3D refer-
ences are more reliable than 2D ones. Several features 
can affect reliability and accuracy, among them the com-
plexity of the model surface, the presence of surrounding 
structures and landmark type.

•	 Although in all selected studies the gold standard is 
manual identification, this is susceptible to human error 
that is not quantified in the literature. However, from a 
clinical point of view, the repeatability and reproducibil-
ity of manual placements of landmarks with 3D images 
are acceptable for the majority of anatomical reference 
points [48].

•	 Furthermore, since 2D cephalometry is still the gold 
standard, there is no defined set of points for 3D analy-
sis. In fact, included studies considered different land-
marks, so it isn’t possible to make a precise comparison 
in landmark annotation performance between different 
used algorithms.

•	 The performance of DL models crucially depends on the 
quality of the input dataset, both in terms of quality and 
appropriateness. The studies included in this systematic 
review considered different types of datasets: twelve 
studies used annotated images (pair of images and sets 
of reference points referred to it) in a supervised learning 
approach; among these, six used CTs, two CBCTs and 
the remaining both imaging types. Four studies used a 
semi-supervised approach with a dataset composed of 
both paired data (annotated images) and unpaired data. 
Three of these studies used as unpaired data files con-
taining the 3D positions of the landmarks set, while the 
other used not annotated images. Moreover, there is high 
variability in dataset sizes, ranging from 24 to 198 items.

Thus, a challenge for the data scientists and DL develop-
ers is to train models that can take these sources of bias into 
account and to prove their robustness and the generalizabil-
ity on large multicentric dataset. From a clinical point of 
view, it is important to define standardized study design and 
a set of landmarks to be used for 3D cephalometric analysis, 
to reduce bias in comparison between the different models.

In light of these considerations, the high value of τ2 
(τ2 = 1.018) obtained from the meta-analysis can be inter-
preted. τ2 is used to refer to the amount of among-study 
heterogeneity in a set of studies being analyzed. A high 
value of τ2 means that the results of the studies are quite 
different from one another and that the abovementioned 
factors are influencing the results and need to be consid-
ered. Therefore, each study result reported in this review Ta
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must be interpreted also considering the characteristics 
of the investigation. This systematic review with meta-
analysis provides a useful insight into the current situation 

in the field of 3D automatic identification and underlines 
the need to define standardized protocols.

Table 2   QUADAS-2 analysis for all the studies included in the systematic review

Author(s) and 
year

Risk of Bias Applicability Concerns Overall Risk of 
bias

Data selection Index test Reference 
standard

Flow and tim-
ing

Patient selec-
tion

Index test Reference 
standard

Yun et al. [28] High Low Unclear Low High Low Unclear High
Yun et al. 

2020b [29]
High Low Unclear Low High Low Unclear High

Ma et al. [32] Unclear Unclear High Low Unclear Unclear High High
Lian et al. [33] Unclear Low Low Low Unclear Low Low Unclear
Kang et al. [34] Unclear Unclear Low Low Unclear Unclear Low High
Palazzo et al. 

[40]
High Low High Low High Low High High

Nishimoto et al. 
[31]

High Unclear High Unclear High Unclear High High

Chen et al. [27] High Low Low Low High Low Low Unclear
Zhang et al. 

[41]
High Low Unclear Low High Low Unclear High

Liu et al. [35] High Low Unclear Low High Low Unclear High
Chen et al. [39] High Low Unclear Low High Low Unclear High
Dot et al. [36] Unclear Low Low Low Unclear Low Low Unclear
Chen et al. [37] High Low High Low High Low High High
Lang et al. [38] Unclear Low Low Low Unclear Low Low Unclear
Yun et al. [30] High Low Unclear Low High Low Unclear High

Fig. 2   Forest plot reporting the mean error [mm] between manual and automatic landmarking for studies included in the meta-analysis, includ-
ing relative weights. Indicators represent the mean error for each study and horizontal lines the 95% confidence interval
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Another interesting aspect that can be observed from the 
forest plot in Fig. 2 is that five out of eleven studies are on 
the left side of the graph, i.e., their effect size is lower than 
the overall effect size. Of these, four studies are the most 
recently published ones. As evidenced by the presence of 
numerous articles over the past two years, interest in this 
type of analysis is rapidly increasing, with great improve-
ments in the identification accuracy. The graph in Fig. 3 
shows the error trend during the last 2 years: From an aver-
age error of 3.71 mm in 2020 and 2021, it reached 1.84 mm, 
to arrive in 2022 to an error of 1.34 mm. Considering that, 
from a clinical point of view, the threshold for the manual 
reference point is fixed at 2 mm in 2D cephalometry [51], 
these models can be considered a huge support for the cli-
nician in reducing operator-dependent error. Furthermore, 
the main advantage will be the reduction of the operating 
time. In fact, an expert clinician takes 10/15 min for the 3D 
cephalometric annotation, while using DL-based automatic 
models the time would be significantly reduced to about 
1 min or less. This would allow the dentist/orthodontist to 
speed up time consuming and cumbersome procedures and 
devote time to patient care and well-being.

One aspect of the current review is the exclusion of diag-
nostic tools like conventional 2D radiographs, as previously 
purposed by a recent review [52], in favor of 3D imaging 
methods. CBCT and CT technologies can surely solve main 
problems related to bidimensional image analysis: loss of 
third dimension that results in anatomical structures overlap-
ping, image distortion and non-real measurements quanti-
fications [53, 54].

The main limitations of the present systematic review and 
meta-analysis are related to the studies included for quali-
tative and quantitative assessment. The number of studies 
included in the review may be limited due to the relatively 

recent emergence of DL and automated landmarking in 3D 
cephalometry. This can potentially limit the generalizabil-
ity of the findings and limit the ability to draw definitive 
conclusions. Furthermore, the included studies have dif-
ferent designs, especially regarding number and type of 
landmarks, and DL algorithms, which can introduce vari-
ability in the results. This can make it difficult to compare 
and synthesize the findings across studies to be also reliable 
into clinical reality. Statistical inferences for each specific 
landmark couldn’t be investigated since the number and type 
of examined landmarks varied across studies, and not all the 
studies reported localization errors related to each specific 
landmark.

Conclusion

Orthodontic diagnosis is a process that takes a long time, as 
it includes the analysis and review of radiographic record-
ings and photographs, model analyses, and patient examina-
tion. Hence, these diagnostic methods have to be automated 
in order to enhance consistency, accuracy, and speed.

DL algorithms have shown a greater accuracy for auto-
mated 3D cephalometric landmarking with respect to other 
ML algorithms. In the last two years, promising DL models 
have been developed and improvements in landmarks anno-
tation accuracy have been achieved. Despite all the discussed 
sources of bias, the result of the present meta-analysis is 
promising from both a clinical and a technological point of 
view: Clinicians can benefit from an automatic support in 
3D cephalometric analysis in terms of excellent intra-oper-
ator accuracy and lower time. The development of efficient 
automatic DL-networks will play an important role in the 
emerging field of digital dentistry.

Fig. 3   Scatterplot between 
Mean Error [mm] and Publica-
tion Year
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One area of future expansion is the improvement of the 
accuracy and efficiency of automated landmarking through 
the development of more sophisticated deep learning algo-
rithms. By training models on larger and more diverse 
datasets, these algorithms could potentially improve the 
reliability and reproducibility of cephalometric analyses. 
Additionally, DL-based methods could enable the identifi-
cation of new anatomical landmarks, which could provide 
additional information for clinical decision-making.
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