
Spamdoop: A Privacy-Preserving Big Data
Platform for Collaborative Spam Detection
Abdelrahman AlMahmoud ,Member, IEEE, Ernesto Damiani , Senior Member, IEEE,

Hadi Otrok, Senior Member, IEEE, and Yousof Al-Hammadi ,Member, IEEE

Abstract—Spam has become the platform of choice used by cyber-criminals to spread malicious payloads such as viruses and

trojans. In this paper, we consider the problem of early detection of spam campaigns. Collaborative spam detection techniques can

deal with large scale e-mail data contributed by multiple sources; however, they have the well-known problem of requiring disclosure

of e-mail content. Distance-preserving hashes are one of the common solutions used for preserving the privacy of e-mail content while

enabling message classification for spam detection. However, distance-preserving hashes are not scalable, thus making large-scale

collaborative solutions difficult to implement. As a solution, we propose Spamdoop, a Big Data privacy-preserving collaborative spam

detection platform built on top of a standard Map Reduce facility. Spamdoop uses a highly parallel encoding technique that enables

the detection of spam campaigns in competitive times. We evaluate our system’s performance using a huge synthetic spam base and

show that our technique performs favorably against the creation and delivery overhead of current spam generation tools.

Index Terms—Spam campaign, privacy-preserving analysis, Map Reduce

Ç

1 INTRODUCTION

THE word spam was originally used to describe unsolic-
ited e-mails sent in bulk. It is hard to define the term

spam more accurately. Some argue spam is about the lack
of consent on the part of the recipient, while others believe
it is about unsolicited e-mail quantity or scale. Other defi-
nitions also stressed the commercial nature of spam; for
example, the US SPAM act of 2003 established stringent
requirements for sending commercial e-mails [1]. Later,
spam got closely associated with cyber-crime. Spam e-mails
often try to lure the recipient to click on a fake or infected
URL that links to a malicious Website (phishing) or down-
loads a malicious attachment containing a zero-day exploit
(spear-phishing).

Spam in all of its forms is still considered as one of the
hardest challenges of the connected generation. This in return
drove a massive amount of research towards countering it.
The effort led to the gradual decline of spamming activities
which leadmany to believe that spamwas no longer a threat.
However, recent thorough studies and statistics have con-
cluded otherwise [2]. In fact, about 66.34 percent of all e-mails

sent worldwide are considered spam e-mails according to
Kaspersky’s Spam and Phishing Statistics for the first quarter
of 2014 [3] which leads us to conclude that it is still an evolv-
ing phenomenon and is still an active cyber threat.

While some spam campaigns advertise products and
services, others serve more malicious and sinister purposes
such as advertising illegal goods and terrorism which was
the main topic of spam in the first quarter of 2016 [4].
Furthermore, evidence has shown that spam serves as a
platform for many other cyber-criminal activities. A major
case of link between spam and criminal activities goes back
to November 11th 2008, when two Internet upstream pro-
viders blocked the network access of McColo, a U.S. based
web hosting service provider, reporting that the firm’s serv-
ers were being used for illegal activities. The Washington
Post later reported that McColo was used by organized
crime as a host for e-mail sales of counterfeit pharma-
ceuticals, fake security products and child pornography.
Following McColo’s shutdown, security agencies noticed a
decrease of 75 percent percent in unsolicited e-mail sent
worldwide.1 In the last ten years, multiple sources have
mentioned spam being used for distributing malicious soft-
ware, phishing, and delivering other social engineering
related attacks [5]

In the 1990s, the average PC user received one or two
spam messages a day. Some years ago, the amount of spam
grew to an estimated 190 billion messages sent per day [5].
Spammers collect gross worldwide revenues of the order of
$200 million per year. Today, the huge quantity of spam
generated and distributed on a daily basis makes fighting
spam a tall order in terms of processing power and

� A. AlMahmoud is with Emirates ICT Innovation Center (EBTIC), and
Khalifa University of Science and Technology, Abu Dhabi 127788, UAE.
E-mail: Abdelrahman.Almahmoud@kustar.ac.ae.

� E. Damiani is with Khalifa University of Science and Technology, Abu
Dhabi 127788, UAE, and the Universit�a degli Studi di Milano, Milano
20122, Italy. E-mail: Ernesto.Damiani@kustar.ac.ae.

� H. Otrok and Y. Al-Hammadi are with Khalifa University of Science and
Technology, Abu Dhabi 127788, UAE.
E-mail: {Hadi.Otrok, Yousof.Alhammadi}@kustar.ac.ae.

Manuscript received 25 Oct. 2016; revised 30 May 2017; accepted 10 June
2017. Date of publication 22 June 2017; date of current version 9 Sept. 2019.
(Corresponding author: Abdelrahman AlMahmoud.)
Recommended for acceptance by K.-K. R. Choo,M. Conti, and A. Dehghantanha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TBDATA.2017.2716409

1. See www.spamcop.net/spamgraph.shtml?spamyear for a discus-
sion on how McColo shutdown impacted on the amount of spam
worldwide.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019 293

2332-7790� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6770-3654
https://orcid.org/0000-0002-6770-3654
https://orcid.org/0000-0002-6770-3654
https://orcid.org/0000-0002-6770-3654
https://orcid.org/0000-0002-6770-3654
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0001-6469-9154
https://orcid.org/0000-0001-6469-9154
https://orcid.org/0000-0001-6469-9154
https://orcid.org/0000-0001-6469-9154
https://orcid.org/0000-0001-6469-9154
mailto:
mailto:
mailto:
www.spamcop.net/spamgraph.shtml?spamyear


bandwidth. Rather than being selective in their campaigns,
spammers aim to reach as many users as possible in a short
period of time [6]. Many specialized software tools for bulk
mail delivery are available, including Shotmail, Batware,
Bulk e-mail generator, and others. All these tools support
bulk e-mail address collection, the creation of mailing lists
and pushing large amounts of e-mails. Recently, spam
delivery has become integrated with cyber-crime toolkits
such as Blackhole, Whitehole, Cool pack, Zeus and others
[7]. Furthermore, spammers have started using botnets to
speed up the spread of spam [8]. The suppression of spam
involves the need to understand complex patterns of behav-
ior and the capacity to detect emerging types of spam. Con-
sequently, dealing with the massive amount of exchanged
e-mails and telling spam messages apart from legitimate e-
mails in a reasonable time can be considered as a classic Big
Data problem. Many techniques have been proposed to
tackle this problem [9], [10], [11]; here, we focus on collabo-
rative spam detection, which tries to detect spam by putting
together e-mails collected from several sources. Collabora-
tive detection faces the following challenges:

� Privacy: E-mails can contain private and confidential
information about individuals and organizations.
Revealing this information to unauthorized parties
can have severe consequences.

� Scalability: The flood of exchanged e-mails compli-
cate the detection of spam which makes it more diffi-
cult to handle in reasonable time.

Distance-preserving hashing techniques have been put
forward for the preservation of the participant’s privacy in
collaborative spam detection. However, such techniques
involve distance computation that limits their scalability
[12].

Driven by the need for a truly scalable cooperative spam
detection platform we have developed Spamdoop, a plat-
form that can process a huge amount of e-mails in a reason-
able time while preserving their content’s privacy. More in
detail, Spamdoop has the following features:

� Preserves the privacy of e-mails and enables the
detection of spam campaigns.

� Applies a two stage obfuscation encoding scheme
that utilizes one-way cryptographic hashes.

� Scales easily on distributed Map Reduce platforms.
In order to validate the performance of Spamdoop, we

replicated a spammer’s behavior by building a spam cam-
paign generator that mimics a commercially available
spamming tool. We conducted a number of spam cam-
paigns targeting our developed platform, showing that
the encoding used in Spamdoop allows for detecting spam
e-mails generated from a single template. The scalability of
the Spamdoop platform was evaluated using a huge set of
more than 42 million e-mail digests where our solution was
able to identify spams within a few minutes. This should be
compared with the minimum of 12 hours [13] up to weeks
or possibly months [14] that a spam campaign requires
from its start until the delivery of its last e-mail. Comparing
our detection time to the typical spam campaign duration
time, we conclude that Spamdoop can counter large scale
spam campaigns in a very competitive time frame.

The remainder of the paper is organized as follows. In
Section 2, we present the related work followed by the pro-
posed system which is addressed in Section 3. The experi-
mental results and analysis are considered in Section 4.
Finally, we conclude this paper in Section 5.

2 RELATED WORK

Due to the large body of knowledge on spam detection, we
will not try to provide a complete survey of the domain.
Rather, we focus on work closely related to our problem,
i.e., approaches to collaborative privacy aware spam detec-
tion relying on distance-preserving hashing to obfuscate e-
mail content.

2.1 Distance-Preserving Hashing

The idea of using message digesting or hashing for preserv-
ing e-mail confidentiality while filtering spam has been put
forward since long [15], [16]. However, cryptographic hash-
ing techniques are easily defeated by simply inserting minor
changes into the e-mails. In fact, “hash busters”, which are
random strings that are inserted into the end of an e-mail,
are made specifically for altering the hash value and are
used by spammers regularly. Distance-preserving hashes
look more attractive as they mask the effect of hash busting
to some degree. Indeed, a distance-preserving hash can
show how similar two e-mails are to each other in terms of
character trigram distribution, identical portions of the e-
mail or similarity at binary level. Thus, substantial changes
to the e-mail are necessary to obtain a completely new/dis-
tant hash output. Among hashes most related to spam
detection, Spamsum is a Context Triggered Piece-wise
Hashing (CTPH) scheme that was proposed in [17]. It com-
putes a rolling hash over a moving window to detect a con-
text which then triggers a hash function over the chunk of
data. Variations of CTPH include Multi-Resolution Similar-
ity Hash (MRSH), which introduces bloom filters to the pre-
vious process and chooses different standards for the
window and chunk hash functions [18]. And MRSH-v2
which follows the same principal as MRSH but aims to
improve efficiency using different set window and chunk
hash functions [12], [19]. Those techniques, however, have
not been directly applied to spam and still require a dis-
tance computation step.

Nilsimsa [20] is a Locality Sensitive Hash (LSH) which
aims to detect similarity between e-mails by generating a
hash that represents the distribution of trigrams in an e-
mail using a sliding window and the combination of tri-
grams obtained from it. Furthermore, the median is used to
determine the final encoding value. Trend Micro Locality
Sensitive Hash (TLSH) uses a sliding window over bytes of
data and uses quartiles instead of the median to adapt this
technique to binary data and images [21]. While techniques
that are based on finding similar trigram distributions are
used for spam detection [18]. They differ from our proposed
solution for the following two main reasons:

1) Sensitivity to changes: Minor changes in the input has
an influence on the output which effectively forces
the need for distance computations (possibly between
data points that are scattered across multiple

294 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



machines). Our proposal does not require the need for
distance computation by ensuring that the output is
not easily affected by minor modifications. This effec-
tively allows for efficient grouping of related digests
using a Boolean expression rather than computing the
distance between hashes.

2) Regulations and users trust: Data owners choose not
to trust distance-preserving hash techniques for per-
sonal data sharing because these techniques have
not been scrutinized as thoroughly as other well-
known cryptographic hashes and have not been
properly standardized by regulatory bodies [22].
This means that collaborative platforms that rely on
distance-preserving hashes are inapplicable because
data owners cannot share their data using them. On
the other hand, our proposal applies strong crypto-
graphic hashing which complies with data sharing
regulations. [22].

A common property of distance-preserving functions is
that they all involve costly distance computation. Fast
Forensic Similarity Search (F2S2) [23] argues that trying to
find similar files using distance-preserving hashes over
large amounts of data requires a lot of time. The authors
propose indexing digests based on the occurrences of cer-
tain trigrams in them. While this technique speeds up the
process of finding similarities and looks suitable for foren-
sics, it means that the platform must know which trigrams
occur in the digest, potentially giving away some informa-
tion about the content that makes it unsuitable for certain
cases.

2.2 Collaborative Spam Detection

Spam detection has been a subject of much research [24],
[25], [26]. Here, we focus on collaborative techniques where
participants collaborate in the detection process rather than
simply informing others of their detected spam. Further-
more, since collaborating introduces additional data sour-
ces, we are interested in platforms that are designed to
process large amounts of data in a short time frame.

Classic machine learning approaches such as Naive
Bayesian, Linear discriminant analysis and Support Vector
Machines proved the effectiveness of this category of spam
detectors [27]. These classifiers were studied and compared
thoroughly in the literature [28]. Bayesian techniques are
especially popular in spam detection domain thanks to the
availability of open source statistical packages such as R
[29]. However, early implementations did not provide
explicit control of parallelization. Later, research has been
conducted toward implementing machine learning algo-
rithms for the purpose of spam detection over Map Reduce
[30], [31]. Cosdes [32] is a platform for spam detection that
relies on the HTML content/tags of e-mails to perform near
duplicate matching. Today, libraries are available that pro-
vide scalable parallel implementations of popular machine
learning algorithms such as Apache Mahout [33]. However,
these approaches do not consider privacy issues. The paper
[34] presents a system for performing large scale analysis on
spam from different sources. Raw e-mails are collected and
processed on a Big Data platorm called OrientDB that uses
implicit Map Reduce. However the authors report that their
distance computation may take a long time (up to several

days). Also, the paper does not deal with preserving the pri-
vacy of the e-mails.

2.3 Collaborative Privacy Aware Spam Detection

Other previous works and commercial solutions claim to
achieve privacy-aware collaborative spam detection. In par-
ticular, the notion of Distributed Checksum Clear-housing
(DCC) has been around for a long time [35]. A DCC is a cen-
tral system in which participants share hashes of their e-
mails. The platform then counts the number of times similar
e-mails appear and tags suspicious ones as spam. The DCC
approach relies on distance-preserving hashing techniques
that compute the inter-hash distances to check if the e-mails
that generated the hashes are similar. Some seminal works
involved P2P networks of mail servers which exchange dis-
tance-preserving hashes to securely share information about
spam [36]. A P2P architecture was also utilized in [37] to
allow e-mail users to query each other for similar digests.
More recently, a Large-scale Privacy-Aware Collaborative
Anti-spam System (ALPACAS) was proposed in [38] and
[39] to prevent inference attacks. These papers put forward
the notion of shingles, i.e., distance-preserving fingerprints
that are used to identify similar e-mails; however, both rely
on computing distance between shingles to identify spam.
Furthermore, similarly to distance-preserving hashes, the
reversibility and security properties of shingles have not
been throughly tested and thus are not recommended for
private data sharing.

From the above discussion, it is clear that few of any of
the proposed solutions can cope with scalability and pri-
vacy requirements of spam detection. Our solution, Spam-
doop, is described in the next section.

3 THE SPAMDOOP PLATFORM

Spamdoop is a platform that allows multiple entities to
collaborate in early detection of bulk spam campaigns.
Our platform also satisfies the privacy requirements of
participants. An overview of Spamdoop architecture is
shown in Fig. 1, highlighting the three key components
of the system:

� The Obfuscator: Encodes e-mail content. The encod-
ing allows for parallel spam processing without
compromising the privacy of the original e-mail.
The details of this component are presented in
Section 3.1.

� The Parallel Classifier: Leverages the properties of
the encoding in order to parallelise the process of
routing digests corresponding to similar messages to
the same bucket. Section 3.2 presents the details of
this component.

� The Anomaly Detector: Detects spams based on the
size of the buckets and their rate of growth. This
component is presented in Section 3.3.

3.1 Obfuscator

The Spamdoop obfuscator is deployed on the participant’s
side to preserve the privacy of e-mails’ content. The obfusca-
tor can be customized to fit the organizational needs where
administrators can decide their preferred cryptographic

ALMAHMOUD ET AL.: SPAMDOOP: A PRIVACY-PRESERVING BIG DATA PLATFORM FOR COLLABORATIVE SPAM DETECTION 295

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



hashing function. Also, the obfuscator source code can be
easily verified to make sure it preserves integrity and confi-
dentiality of the data. Fig. 2 shows a possible work-flow.
First, e-mails received by a participant are written into an
index for batch processing. Second, every t seconds (a period
which will be determined and discussed in Section 3.2), the
body of the collected e-mails listed in the batch index are
extracted and encoded using Spamdoop encoding tech-
nique. Third, all digests are written into a file that is sent to
our distributed platform. Note that participants can forward
their obfuscated e-mails directly to any Spamdoop process-
ing node depending on availability.

3.1.1 The Two Stage Encoder

In this work, we assume that the spammer’s strategy is to
spread spam as fast as possible by modifying a parent/tem-
plate to evade detection techniques. Based on the example
presented in Fig. 3, we remark that one way of putting
together spam e-mails generated from the same template is
an encoding technique that leads to identical encoding of
different-though similar-e-mails. This rules out standard
hash techniques that would lead to close but not identical
digests.

We propose a novel many-to-one encoding technique
that allows scalable bulk spam detection and classification

of e-mails over Map Reduce platforms. Our encoding is
designed to meet the following requirements:

1) Resilience w.r.t. to modification techniques: Our
encoding must be robust against e-mail modification
techniques employed by spammers, such as hash
busting and customization of content. To address
this requirement, we introduce a process which pro-
duces a normalized representation of e-mails that is
robust w.r.t. to changes. The details of the process
are given in stage 1.

2) Privacy-Preservation: Our encoding technique must
not be reversible to retrieve the original e-mail. To
achieve this, we add a second stage of obfuscation
based on one-way hashing.

3) Scalability: Since traditional distance-preserving
hashing techniques can require in the order of days to
compute the distances between the hashes, we aim
to eliminate the need for distance measurement by
introducing a preprocessing stage that represents an
e-mail as a language model which contains all the tri-
grams and their corresponding occurrence value.
Then substitutes the occurrence value with a channel
which is a string that represents a fixed range of
numerical values. This allows for two slightly differ-
ent e-mails to be grouped together using a Boolean
expression aswill be further explained in Section 3.1.2.

The operation of a two-stage encoding system which
meets all of the above requirements is shown in Algorithm 1
which is divided into two main stages. The notation used in
this paper is shown in Table 1. The first stage generates a set
of trigram and value pairs of an e-mail such that similar e-
mails (from the same parent template) have an identical
representation. The second stage applies a cryptographic
hash function to ensure the privacy and non-reversibility of
the e-mail. The details the two stages are as follows:

Fig. 2. The obfuscator work flow.

Fig. 1. A high-level illustration of the proposed solution.

Fig. 3. A spam template would generate two distinct but similar outputs
when using traditional fuzzy digest techniques. Our proposal gives the
exact same output for two similar yet distinct inputs.

296 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1. Encoding Algorithm

Input: E-mail’s Body
Output: Digest
Parameter: C, N, T[K, count], S
1 while K has Next do
2 T[K, count] = T[K, 0]; nnInitialize to memory the language

model and set occurrence values to 0
3 end
4 S = first five characters of the e-mail;
5 while S has Next do
6 T[St, count++]; nnIncrement the value of an occurring

trigram;
7 S++;
8 end
9 for All K do
10 c = T[tk]; nnPlaces count of tk into c ;
11 i = c mod C;
12 if i > C

2 then
13 b = 1;
14 else b = �1
15 end
16 T[tk, count 7! Ni [Niþb];
17 end
18 Hash_algo(T);
19 END

Stage 1: Our process of encoding an e-mail starts by initial-
izing a base language model including all possible trigrams
obtainable using the chosen set of characters (K) and setting
their occurrence count to 0 [40]. Moreover, a sliding window
(S) is initialized and set to the beginning of the e-mail con-
tent. All possible trigram combinations from S are captured
and their corresponding values inK are incremented, then S
is moved ahead by a character. Trigrams and a sliding win-
dow (S) size of five characters were chosen because they
proved to be the most suitable for spam detection

applications (see [20] and [21]). This process is repeated until
S reaches the end of the e-mail where K contains a count of
all the occurrences of trigram combinations in the e-mail.
The next step involves substituting the values of all the tri-
gram occurrences count in K with two channels that repre-
sent a range of occurrences. A simple example of value-to-
channel substitution is shown in Fig. 6, where a trigram
becomes a member of two channels based on the number of
times the trigram occurred in the e-mail. For example, the tri-
gram “aaa” shown in Fig. 6 occurred 4 times, thus it falls in
channel 2. Furthermore, channel 1 is the nearest neighbor to
the occurrences value 4, thus the trigram belongs to both
channels. Similarly, “aab” has a value of 13 placing it in chan-
nel 5 and its next closest neighbor channel is 4.2

The final output is the entire set of possible trigrams (the
language model of the message set [40]) and the channels
that correspond to the trigram counts in the processed e-mail.

Stage 2: The process of obtaining the final representation
includes adding an appropriate hash function to provide an
adequate level of non-reversibility. Since language models
are big and unpractical to store and manipulate in their raw
form, some compressing is necessary. Here, we assume that
the spammer’s strategy is to spread e-mails as fast as possible
by modifying a parent/template to evade detection techni-
ques. Moreover, even though cryptographic hashes are sen-
sitive to minor changes, the output of the first stage ensures
that similar e-mails are identical. SHA and CRCwere used in
our implementation, but the choices are not restricted to
those two. The full two stage process is described in Fig. 5
showing a reduced example of the outputs.

Finally, a file that contains the outputs of our encoder is
fed into the Parallel Classifier. Our current implementation
feeds the classifier with entire batch of e-mail encodings.
However, the data can also be streamed in smaller updates
as micro-batches. This design choice affects the way the
anomaly detection works and will be discussed in detail in
the next section.

3.1.2 Scalability

In a centralized system that uses traditional distance-pre-
serving hashing for spam detection, the distance between
each data point and all the other points is computed to find
pairs with a lower distance than a determined threshold as
dðXi;XjÞ < d. This process is repeated for each hash value
which requires significant computational time for large data
sets. However, in distributed systems, there is no efficient
method to route related data (close in distance) that are
obtained from hashing to the same physical machine, this
results in data being scattered across multiple nodes regard-
less of how related or close the data points are to each other.
The issue with this approach to data partitioning is that in
order to perform analysis such as spam detection, heavy
cross-machine data exchangemust occur. An example of this
is shown in Fig. 4 Case 1 where a data point from node A is
moved to node B so that the distance between it and all the
points on node B can be computed, the process of moving

TABLE 1
Notation Table

K , Language model of a character set.
S , A Sliding window.
C , Channel size.
c , Trigram occurance count.
N , Set of all channels.
T ½K,count� , An array containing the trigram as key

and the number of occurrences as the
value.

B , Group ID.
E , The encoded e-mail.
G , The number of groups.
q , A score of a digest.
a b g , Weight parameters that control if the

anomaly detector prioritizes historical
data or emerging spams.

442 , Score
m m0 m00 , A threshold parameter denoting the top

% of spam messages.
L , Top occurring digests.
h , An encoding’s occurrence count.
b , A value that determines the closest

neighbour.
d , A threshold value to determine close

hashes.

2. The channel sizes were determined according to the top trigram
count where the value was rounded up and divided over the channel
number. Different dynamic and static channel sizes can be defined but
that is outside the scope of this work.

ALMAHMOUD ET AL.: SPAMDOOP: A PRIVACY-PRESERVING BIG DATA PLATFORM FOR COLLABORATIVE SPAM DETECTION 297

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



data between nodes is very costly in terms of network com-
munication specially when dealingwith huge data sets and a
high number of nodes. On the other hand, the design of our
approach allows for related data (where the hashes as identi-
cal) to be routed and stored on the same nodes in the collec-
tion stage as shown in Fig. 4 Case 2. This means that the
computations can be performed locally without the need for
data exchange between nodes, which reduces network com-
munication latency as well as distance-computation steps.

3.2 Parallel Classifier

This component has two purposes: it routes related digests
to the same bucket and groups data so that it is stored on
the same node.

The properties of our encoding make this goal simple
and inexpensive. The routing of related digests is per-
formed using a simple and efficient method that is applied
by [41] which uses hashes of IP addresses to route Netflow
information to the same Hadoop nodes. It is shown in Equa-
tion (1) where B is the group id, E is the encoded e-mail,
and G is the number of groups

B ¼ E mod G: (1)

As a result, similar e-mails are grouped together as
shown in Fig. 7.

A major challenge when performing parallel analytics is
the way input data is distributed across processing nodes. If
related data is scattered across multiple nodes, it has to be
shuffled around, causing large overheads due to network
latency. Our technique groups digests together, and then
stores groups on suitable slave nodes. As we shall see, this
makes anomaly detection faster, as scores can be computed
without shuffling data between nodes.

3.3 Anomaly Detector

Our approach is based on the notion that occurrences and
the rate of arrival of spammessages to be very different than
the ones of ordinary mail. This is due to spam being gener-
ated by automatic tools that try to make the most out of the
available bandwidth sending as many messages as possible
in the shortest possible time [42]. To take advantage of this
difference, we adopted a histogram-based anomaly detec-
tion technique that has been used successfully for many
other applications, including finding outlying instances
in network traffic, or system calls in computers indicating
compromised systems. The literature also shows histogram
based anomaly detectors to be fast and simple [43].

In our implementation of histogram anomaly detection,
we start by constructing the e-mail occurrence density func-
tion; for each number of occurrences, we compute the num-
ber of messages that are present in the batch that many
number of times. Fig. 8 shows an example of such a den-
sity function. We establish a threshold corresponding to
the number of occurrences which is higher than the one
in the x percent of the messages. Parameter x is tunable in
our system.3

At each time t, we compute our score q as shown in Equa-
tion (2) where a digest’s score is not only determined by its
occurrences count in the current batch Lt, but also affected
by the number of times it appears in the previous batches
by capturing the first and second order differences of digest
occurrences 4 and 42 between time t and t� 1. Determin-
ing the score based on all of the previous parameters allows

Fig. 4. A comparison between traditional approaches and spamdoop.

Fig. 6. Multiset membership: In this case, aaa is a member of group CH 1
[ Ch 2 while aab is a member of Ch 4 [ CH5.

Fig. 5. A spam template would generate two distinct but similar outputs
when using traditional fuzzy digest techniques. Our proposal gives the
exact same output for two similar yet distinct inputs.

Fig. 7. Grouping of encoded e-mails.

3. In our experiments we considered x as 99.9 percent. However,
this parameter can be learned, as it depends on the number of partici-
pants and many other factors.

298 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



for the anomaly detector to be applicable for both historical
data processing and the detection of emerging spams. This
is achieved by tuning the values of the weight parameters a,
b and g. For example, a higher value of a might be pre-
ferable if historical data is being processed for statistical
purposes. On the other hand, if the target is to detect an
emerging spam campaign quickly or when using smaller
but more frequent batches of digests then a higher value of
b is advisable. Top scorers are earmarked as potential
spams. The values of Lt for an encoding is computed as
shown in Equation (3) where a value is only computed if
the digest count surpasses the defined threshold m shown
in Fig. 8. A value is computed by dividing the digest’s
occurrences count by the count of the highest occurring
digest in that batch. Similarly, 4Lt is computed as shown in
Equation (4) using m0, which is a specific threshold value for
the first order difference of digest occurrences which deter-
mines if a value is to be calculated for the encoding. This value
is calculated using the difference between digest occurrence
values in consecutive batches 4h divided by the maximum
obtained value 4hmax. Finally, 42

Lt is computed using
Equation (5) taking into account that m00 is a threshold for the
second order difference of digest occurrences.

A well-known trick for the spammer to avoid detection is
to introduce variations in the messages in order to decrease
the occurrence and rate of any individual version. However,
our implementation computes the score based on the den-
sity function of our proposed encoding of messages, which
brings multiple versions of the message under the same
digest (Fig. 7).

q ¼ aLt þ b4Lt þ g42
Lt (2)

Lt ¼
h

hmax
if h > m

0 otherwise

( )
(3)

4Lt ¼
4h

4hmax
if h > m0

0 otherwise

( )
(4)

42
Lt ¼

42
h

42
hmax

if h > m00

0 otherwise

8<
:

9=
;: (5)

While classic histogram-based detection lends itself to
parallelization, some adjustments need to be made for

achieving an efficient Map Reduce implementation. A scor-
ing equation targeted to Map Reduce implementation is
presented in Equation (6). Instead of computing 4 func-
tions, we simply estimate their values by computing local
histograms of micro-batches which are smaller chunks of
batch digests that are sent to the system every set period
of time ti. Being timed chunks, they represent the rate of
change in the arrival of e-mails. Comparing both anomaly
detectors, we found that the second approach has the
advantage of allowing two distinct simple mappers to per-
form4 and L computations as shown in Fig. 9.

q ¼ aL þ
Xn
i

fðxÞ: (6)

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe the adversary set-up and the
testing environment where we evaluate the functionality
and scalability of the proposed encoding.

4.1 Experimental Setup

The spamming business is very profitable, and spammers
have perfected their techniques and platforms. We tested
our proposal against a spamming platform that includes
many features of commercial spamming tools that are being
used by spammers worldwide.4

First, we give an insight on platforms currently in use
by spammers. A high-level overview of the adversary’s
architecture is shown in Fig. 10. A spammer usually starts
by collecting target e-mails to spam by either buying a mail-
ing list or collecting them. This is done using features of
spamming software that crawl the web to find addresses
(can be risky because of the large number of honeypots).
Once a mailing list is created, the details of the campaign
are finalized including the selection of the topic of spam
and the targeted demographic. The next step is to find a
distribution platform by either scanning the network for

Fig. 8. An example of a density function.

Fig. 9. The difference between a naive approach and estimating4 using
micro-batches.

4. Such as Atomic Mailer, Dark Mailer and other well-known
software.

ALMAHMOUD ET AL.: SPAMDOOP: A PRIVACY-PRESERVING BIG DATA PLATFORM FOR COLLABORATIVE SPAM DETECTION 299

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



available non-blacklisted sendmail mailers (with sufficient
bandwidth) or by employing a botnet. A spammer starts a
campaign by creating a parent spam template which is fed
into multiple mail distribution platforms/spamming soft-
ware which will produce different variations of spams.
The spamming software maintains a list of source e-mail
addresses to push spams from and a list of destination
e-mail addresses to spam. Typically, the software alternates
between source and destination e-mail addresses stored
in its databases to avoid some countermeasures such as
black listing.

Our adversary set-up complies with the above architec-
ture. However, we limited our spamming platform to fol-
low a specific path from Fig. 10. Namely, our spam
templates were created manually using examples of spam
e-mails from CSDMC2010 SPAM corpus [44]. The mailer
consists of scripts that are inspired by commercially avail-
able spamming software which supports known spamming
strategies such as word substitution and hash busting.

The details of the testing environment and the parame-
ters used are shown in Table 2. The functionality test is
divided into two parts. For the first set of functionality tests,
five distinct parent templates were created each with a pre-
defined number of characters as shown in the first column

of Table 3. Each template was used to create 1,500 unique
child spam e-mails. The modification capabilities of the
spammer was set to inserting from 3 to 8 word substitutions
into the template plus a hash buster as shown in the second
column of Table 3. Such setting are compatible with known
constraints due to available computation time at the spam-
mer site [45].

The goal of the second set of functionality tests is to mea-
sure the rate of false positives in the system. Our encoding
scheme was applied on a set of one thousand non-spam e-
mails from the CSDMC2010 SPAM corpus. The number of
groups created and the size of the groups were observed.
The parameters used for our encoding were a sliding win-
dow of 5 characters that captured trigram combinations and
the number of channels was set to 4.

As for the scale of testing, digests of the generated tem-
plates and of other e-mails were added to reach 43,176,780
digests, a value suitable to test the ability of the system to
handle a significant fraction of a region’s (or a large organ-
ization’s) e-mail traffic.5 We employed a run-of-the-mill
Map Reduce implementation, Apache Hadoop [46].

4.2 Functionality and Scaling of Tests

The results of the first set of functionality tests are reported
Table 3 where the third column shows the results obtained
by our encoding and the fourth column are the results
obtained using Nilsimsa. The goal of this test is to verify if
our encoding is able to group messages generated from the
parent templates and place them under the same encoding.6

Thus, a smaller group number means less variety of encod-
ings generated for a spam campaign which translates into
better detection of spam campaigns.

Our technique managed to group the child templates
under the same encoding except for the third template
which was an e-mail that is repeated three times making the
trigram count skewed before the spamming software began

Fig. 10. A spam campain generator.

TABLE 2
Experimentation Setup

Blade Server Settings

CPU Intel Xeon E5-1620v2 3.7/3.9 GHz
RAM 64 GB DDR3 ECC 1600 MHz
Hard Disk 2x 2 TB SATA3
Hypervisor XenServer 6.5

Virtual Machine Settings

Environment Ubuntu 14.04
Software Hadoop 1.2.1
CPU 1 virtual CPU
RAM 4 GB

Settings and Variables

Number of spam templates 5
Sliding Window Size 5
Multigram size 3
Channel Count 4
Channel Size 50 occurrences
Total Number of Digests 43,176,780
Batch 1 10,794,195
Batches 2 to 6 6,476,517 each
Number of Micro-batches 6
Second stage Hashes CRC32, SHA512

TABLE 3
Experimentation Environment: Each Template

Generated 1,500 e-mails

Template
Char Count

Point of
alteration

Number of Groups

Spamdoop

Nilsimsa SSdeep

Threshold
out of 128

Threshold
out of 100

54 103 43 80

345 4 1 1 1 1 3
345 6 1 1 1 1 21

501 3 1 1 1 1 1
501 4 1 1 1 1 1

1310 6 13 1 1 1 1
1310 9 157 1 1 1 5

442 3 2 1 1 1 1
442 5 1 1 1 1 9

2474 3 1 1 1 1 1
2474 5 1 1 1 1 1

5. According to www.radicati.com, the number of e-mails sent and
received per day worldwide in 2015 was around 205 billion..

6. In our tests we use ASCII messages and and do not consider
e-mails which use different character sets.

300 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 

www.radicati.com


processing it. Thus, a targeted attack aiming to inject a sig-
nificant number of a trigram is the most efficient way to
force an encoding change. However, this process is compu-
tationally expensive and would makes the spam e-mail
very unnatural and suspicious. Such attacks can be con-
trolled using more intelligent channel sizes which is out of
the scope of this work. Since Nilsimsa and ssdeep do not
readily group similar e-mails under the same hash, an extra
step had to be performed. Each hash value was compared
with all of the other hashes where scores over 56 (recom-
mended by the original paper) and 103 were considered a
match for Nilsimsa, while scores over 54 and 80 were con-
sidered a match for ssdeep. Nilsimsa scored perfectly in our
tests using both thresholds since it was originally designed
for such applications. SSdeep also scored perfectly using
the lower threshold with minor misses on the higher one.

To evaluate if Spamdoop can scale up, we devised a test
in which the performance of the system is measured based
on the time spent by working nodes to group 43,176,780
digests. The effects of adding working nodes and the choice
of second stage hashing on the time are also reported.

Initially, the digests were set to be grouped by a single
virtual machine, then we gradually increased the number of
working machines. The virtual machine settings are shown
in Table 2.

We start by measuring the processing time of a single
batch containing all of the digests in Table 4. A single node
is able to group the entire data set in 878.20 seconds in the
case SHA512 being used as the second stage encoding.
However, the run-time can be reduced by 373.109 seconds if
CRC32 is used as the final representation because it is more
efficient to manipulate shorter digests and the file size is
much smaller.

To measure the performance of computing 4 as dis-
cussed in Section 3.3, the digest file was partitioned to six
batches where the grouping time of these batches are mea-
sured. The first batch contains 10,794,195 digests and the
remaining five contained 6,476,517 digests each. The first
batch is the largest because we assume that the system was
not previously operational, thus the amount of collected e-
mails is larger than other batches where the data is regularly
collected after time t.

The detailed run-time of all batches are demonstrated in
Tables 5 and 6. In a full deployment, participants send their
contributions every set of time (t) and thus to compute the
total run-time of processing all the batches we do not

include the wait time. Tables 5 and 6 shows that the process-
ing time of the batches are considerably longer than that of
the single batch approach. In fact, adding the fourth node
had a negative effect on performance and switching from
SHA512 to CRC32 yielded much smaller improvements.
That is due to the initialization time of Hadoop and the
assignment of Map Reduce nodes and jobs.7

Comparing our run-time to the life time of a spam cam-
paign, which usually ranges from 12 hours to 8 days [13],
we find that our platform is capable of processing a large
amount of e-mails in a much shorter time (few minutes),
blocking campaigns well before they conclude.

The results of the second set of functionality tests are
shown in Fig. 11. We find that the median group size is 1 and
the largest group contains 91 e-mails. By inspecting the e-
mails and the groups they were mapped to, we found that
the larger groups were heterogeneous. We found that a sam-
ple of the e-mails in the larger group contains hyperlinks,
which led us to believe that special symbols and hyperlinks
contribute to routing e-mails to similar groups. However, the
larger groups are still too small to be considered as a spam
campaign (considering the scale of our tests and the thresh-
olds used in the previous tests) and thus are not flagged as
spam (nor considered as false positives). Finally, we would
like to remark that the obtained group sizes can be either
decreased or increased using a different number of channels
or different channel sizes for each trigram.

4.3 Privacy and Compression

In this section we discuss the reversibility of our encoding.
Accuracy, design choices and targeted attacks on the encod-
ing are also discussed.

Given that a common attacker model used in cloud plat-
forms is a passive adversary, we remark that our proposed
encoding ensures that a honest-but-curious platform host-
ing the Spamdoop service will not able to read any data
post second stage hashing. Instead, an active adversary will
try to compute an e-mail given the output of the two stages
of encoding. That means that both stages of encoding would
have to be reversed.

Let us start analyzing reversibility from the second stage.
By using a cryptographic hash function such as SHA, Spam-
doop encoding inherits its non-reversibility properties,
meaning that it is computationally unfeasible to revert the
output of stage two back to stage one. However, in some
cases where security is not an issue and performance is pri-
oritized, a short representation such as CRC, which is easily
reversible, could be favored. While the first stage of obfusca-
tion offer no privacy guarantees, it offers basic anonymiza-
tion of e-mails because of three factors:

� The output contains the entire language model
regardless of the trigram count where the appear-
ance of the trigram is masked.

� The output of the first stage replaces trigram counts
with channels that represent a range of possible
occurrences.

TABLE 4
The Effect of Adding More Working Nodes and Different Second

Stage Hashes on the Time Needed to Complete Grouping

Number of slaves time in seconds Second Stage

1 878.201316118 SHA512
1 373.109747887 CRC32

2 483.20413303 SHA512
2 221.210319042 CRC32

3 428.81635499 SHA512
3 208.976243973 CRC32

4 407.835330963 SHA512
4 217.356626034 CRC32

7. A wide variety of Hadoop optimizations are possible to further
speed up various aspects of Spamdoop performance, but Hadoop con-
figuration details are beyond the scope of this paper.

ALMAHMOUD ET AL.: SPAMDOOP: A PRIVACY-PRESERVING BIG DATA PLATFORM FOR COLLABORATIVE SPAM DETECTION 301

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



� The position of the occurring trigrams are masked.
The output does not show the order in which the tri-
grams appeared in the e-mail.

Having neither an exact count of the trigrams nor the set of
occurring trigrams (we recall the entire language model is
included and set to channel one)makes it nowhere near trivial
to reverse the first stage to the original e-mail. However, we
stress that the first stage’s output is not suitable for data shar-
ing because it does not offer any privacy guarantees. Further-
more, the representation obtained from the first stage is very
large, thus the cryptographic hash in second stage provides
both amore compact andmore secure output.

Given the output of the first stage, an attacker can try to
guess if a word is present in an e-mail by looking for
improbable trigrams. If an unlikely or rarely occurring tri-
gram (in the English language) is found in the first stage
output, then the choice of words generating that trigram
can be narrowed down. However, would find difficulty
because the entire language model (all possible trigrams)
are included in the representations and are set to channel
one, thus no educated guess can be made on which trigram
is in the e-mail unless it occurs often enough to put it into
the next channel which can be unlikely for rarely occurring
trigrams. On the other hand, an attacker can guess with a
probability if a trigram does not occur at all or often enough.
However, that information is seldom useful to attackers.

A more sophisticated attack on our encoding is to specifi-
cally alter the messages so that a certain trigram is increased

or decreased enough to change the output of the first stage,
thus changing the final hash output. To achieve this, the
spammer has to inject a specific trigram enough to move it
from its channel to the neighboring channel and half of the
neighboring channel (Fig. 6 ). by doing this, the similarity
between both e-mails cannot be detected because of the
effects of the cryptographic hash. However, this would sub-
stantially increase the time needed to generate the spam
messages from the template because the attacker is also
bound by computational constraints and needs to push a
large number of e-mails quickly.

One of the most well documented trade-offs of any spam
detection platform regards achieving performance, accuracy
and privacy at the same time. This remains true in our pro-
posal. Indeed, we sacrifice a small degree of accuracy for
performance by introducing the first stage. For the second
stage, however, the user can choose to prioritize perfor-
mance over privacy depending on the chosen hash. Due to
the progress of in-memory computation for Map Reduce,
populating the entire possible trigrams combinations of a
character set is a computationally inexpensive.

Finally, we would like to discuss compressing an e-mail
using our digest. The language model created in the first
stage contains every possible trigram combination. How-
ever, the value associated with a trigram can range from a
single digit to multiple digits. Since a cryptographic hash
function with a fixed output length is used for our final
representation, the large size of the language model is
always compressed to a fixed size regardless of the trigram
count. However, the choice of final representation is up to
the developer to decide.

5 CONCLUSION

Spamdoop aims to facilitate collaborative spam detection by
taking into account the privacy of all the participants and
the scale of collective data. A major innovation of our stage
encoding based is representing and then hashing the entire
language model. This allows us to group spam e-mails
generated from the same parent template into one bucket.
Our encoding scales well on Map Reduce platforms, outper-
forming distance-preserving hashing techniques [23], [34].
Also, an efficient bucketing technique was deployed to

TABLE 5
Individual Batch Run-Times in Seconds Using CRC32

Stage 2: CRC Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1 Slave 261.96301 255.9453 255.94553 255.93754 255.92305 255.90723 1541.622
2 Slaves 168.96397 156.8959 156.83579 156.89052 156.85789 155.87952 952.3236
3 Slaves 150.87205 138.8188 133.94329 135.85188 136.84365 137.84446 834.1741
4 Slaves 147.97175 136.9069 134.93146 134.89545 133.02509 135.13934 822.87

TABLE 6
Individual Batch Run-Times in Seconds Using SHA512

Stage 2: SHA512 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1 Slave 368.3527 327.1311 327.10202 318.03333 332.07158 321.01609 1993.707
2 Slaves 206.9189 177.8994 180.90103 176.82687 181.91243 188.91305 1113.372
3 Slaves 174.9691 149.8416 153.03948 151.01346 149.9121 152.8793 931.6551
4 Slaves 183.9834 147.03694 158.9786 154.38748 151.9147 155.9728 952.27392

Fig. 11. Second functionality test results showing the number of groups
created and their sizes.

302 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 



simplify grouping of digests. The histogram based anomaly
detection we used to distinguish between ham and spam
readily lends itself to Hadoop implementation; however,
we remark that our framework is agnostic with respect to
the specific anomaly detection technique. We used an
adversary platform mimicking real spamming platforms to
test the effectiveness of our encoding and the performance
of our parallel classifier against digests of more than 43 mil-
lion synthetic e-mails.

For a single large batch, our tests showed that it is possi-
ble to reduce the grouping time of digests by 53 percent
when distributing the work across four nodes. Furthermore,
the computation time was further decreased by 57 percent
when using CRC32 on a single working node and 46 percent
in the case of four nodes compared to SHA512. On the other
hand, processing the six batches was 52 percent faster on
four nodes compared to only one node and 13 percent when
switching to CRC32. We believe these results to show
clearly that Big data spam detection technique are ripe for
in-production deployment.

The spam detection mechanism currently uses the e-mail
body only. However, the first stage of obfuscation can be
applied to trigram techniques such as [21] which can be
used for grouping binary data such as images. Instead of
using the entire language base to produce the first stage
output, one can intelligently remove unlikely trigrams if the
spammer has no way of knowing which. Finally, different
strategies for choosing channel sizes can be employed
where channels can be of different sizes.

ACKNOWLEDGMENTS

We would like to thank the Japanese-French Laboratory
for Informatics for providing the source code for their
project which gave us the initial inspiration for this work.
This work has been partly funded by the European Commis-
sion under theH2020 TOREADORproject (contract n. 688797).

REFERENCES

[1] S. Heron, “Technologies for spam detection,” Netw. Secur.,
vol. 2009, pp. 11–15, 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1353485809700078

[2] D. Wang, D. Irani, and C. Pu, “A study on evolution of email
spam over fifteen years,” in Proc. 9th Int. Conf. Collaborative Com-
put.: Netw. Appl. Worksharing, 2013, pp. 1–10.

[3] Kaspersky Lab, “Spam and phishing statistics report Q1–2014,”
[Online]. Available: https://usa.kaspersky.com/internet-security-
center/threats/spam-statistics-report-q1-2014/, Accessed on: Jun.
02, 2016.

[4] Kaspersky Lab, “Spam and phishing statistics for 2016, ” [Online].
Available: https://www.kaspersky.com/about/press-releases/
2016_kaspersky-lab-reports-significant-increase-in-malicious-
spam-emails-in-q1-2016, Accessed on: Jun. 02, 2016.

[5] P. Wood, B. Nahorney, K. Chandrasekar, S. Wallace, and
K. Haley, “2016 Internet security threat report,” Symantec, vol. 21,
pp. 27–36, 2016.

[6] G. Cormack, “Email spam filtering: A systematic review,” Found.
Trends Inf. Retrieval, vol. 1, pp. 335–455, 2007.

[7] A. Khraisat, A. Alazab, M. Hobbs, J. Abawajy, and A. Azab,
“Trends in crime toolkit development,” in Network Security Tech-
nologies: Design and Applications: Design and Applications. Hershey,
PA, USA: IGI Global, ch. 2, 2014, pp. 28–43.

[8] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The under-
ground economy of spam: A botmaster’s perspective of coordinat-
ing large-scale spam campaigns,” in USENIX Workshop Large-Scale
Exploits Emergent Threats, 2011, Art. no. 4.

[9] M. Crawford, T. Khoshgoftaar, J. Prusa, A. N. Richter, and H. Al
Najada, “Survey of review spam detection using machine learning
techniques,” J. Big Data, vol. 2, 2015, Art. no. 23.

[10] M. Sheikhalishahi, A. Saracino, M. Mejri, N. Tawbi, and
F. Martinelli, “Fast and effective clustering of spam emails
based on structural similarity,” in Proc. Int. Symp. Found. Prac.
Secur., Berlin, Germany: Springer, 2015, pp. 195–211.

[11] J. Francois, S. Wang, W. Bronzi, R. State, and T. Engel, “BotCloud:
Detecting botnets using MapReduce,” in Proc. IEEE Int. Workshop
Inf. Forensics Secur., 2011, pp. 1–6.

[12] M. V. Gayoso, �A. F. Hern�andez, and E. L. Hern�andez, “State of the
art in similarity preserving hashing functions,” in Proc. Int. Conf.
Secur. Manage., 2014, pp. 1–7.

[13] L. Zhuang, J. Dunagan, D. Simon, H. Wang, I. Osipkov, and
D. Tygar, “Characterizing botnets from email spam records,” in
Proc. USENIX Workshop Large-Scale Exploits Emergent Threats, 2008,
pp. 1–9.

[14] J. Chen, R. Fontugne, A. Kato, and K. Fukuda, “Clustering spam
campaigns with fuzzy hashing,” in Proc. Asian Internet Eng. Conf.,
2014, Art. no. 66.

[15] Vipuls razor, [Online]. Available: http://razor.sourceforge.net,
Accessed on : Feb. 02, 2017.

[16] V. Prakash and A. O’Donnell, “Fighting spam with reputation
systems,” Queue, vol. 3, pp. 36–41, 2005.

[17] J. Kornblum, “Identifying almost identical files using context trig-
gered piecewise hashing,” Digit. Investigation, vol. 3, pp. 91–97,
2006.

[18] V. Roussev, G. Richard, and L. Marziale, “Multi-resolution simi-
larity hashing,”Digit. Investigation, vol. 4, pp. 105–113, 2007.

[19] F. Breitinger and H. Baier, “Similarity preserving hashing: Eligible
properties and a new algorithm MRSH-v2,” in Proc. Int. Conf.
Digit. Forensics Cyber Crime, 2012, pp. 167–182.

[20] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati, “An
open digest-based technique for spam detection,” in Proc. Int.
Workshop Secur. Parallel Distrib. Syst., 2004, pp. 559–564.

[21] J. Oliver, C. Cheng, and Y. Chen, “TLSH-a locality sensitive
hash,” in Proc. 4th Cybercrime Trustworthy Comput. Workshop,
2013, pp. 7–13.

[22] N. Smart, V. Rijmen, B. Warinschi, G. Watson, K. Patterson, and
M. Stam, “Algorithms key sizes and parameter report-2013 recom-
mendations,” Eur. Union Agency Netw. Inf. Secur. (ENISA), Enisa
Report Version 1.0, 2013.

[23] C. Winter, M. Schneider, and Y. Yannikos, “F2S2: Fast forensic
similarity search through indexing piecewise hash signatures,”
Digit. Investigation, vol. 10, pp. 361–371, 2013.

[24] N. Spirin and J. Han, “Survey on web spam detection: Principles
and algorithms,” ACM SIGKDD Explorations Newslett., vol. 13,
pp. 50–64, 2012.

[25] W. Shi and M. Xie, “A reputation-based collaborative approach
for spam filtering,” in Proc. Conf. Parallel Distrib. Comput. Syst.,
2013, pp. 220–227.

[26] M. Sirivianos, K. Kim, and X. Yang, “SocialFilter: Introducing
social trust to collaborative spam mitigation,” in Proc. IEEE INFO-
COM, 2011, pp. 2300–2308.

[27] G. Caruana and M. Li, “A survey of emerging approaches to spam
filtering,” ACM Comput. Surveys, vol. 44, pp. 1–27, 2012.

[28] K. Kumar, G. Poonkuzhali, and P. Sudhakar, “Comparative study
on email spam classifier using data mining techniques,” in Proc.
Int. MultiConf. Eng. Comput. Scientists, 2012, pp. 14–16.

[29] D. Conway and J. White, Machine Learning for Hackers. Sebastopol,
CA, USA: O’Reilly Media, Inc., 2012.

[30] G. Caruana, M. Li, and M. Qi, “A MapReduce based parallel SVM
for large scale spam filtering,” in Proc. Int. Conf. Fuzzy Syst. Knowl.
Discovery, 2011, pp. 2659–2662.

[31] G. Caruana, “MapReduce based RDF assisted distributed SVM for
high throughput spam filtering,” Ph.D. dissertation, School Eng.
Des., Brunel University, London, U.K., 2013.

[32] C. Tseng, P. Sung, and M. Chen, “Cosdes: A collaborative spam
detection system with a novel e-mail abstraction scheme,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 5, pp. 669–682, May 2011.

[33] Apache Mahout: Scalable machine learning and data mining.
[Online]. Available: https://mahout.apache.org/, Accessed on:
Jun. 02, 2016.

[34] S. Dinh, T. Azeb, F. Fortin, D. Mouheb, and M. Debbabi, “Spam
campaign detection, analysis, and investigation,” Digit. Investiga-
tion, vol. 12, pp. 12–21, 2015.

ALMAHMOUD ET AL.: SPAMDOOP: A PRIVACY-PRESERVING BIG DATA PLATFORM FOR COLLABORATIVE SPAM DETECTION 303

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 

http://www.sciencedirect.com/science/article/pii/S1353485809700078
http://www.sciencedirect.com/science/article/pii/S1353485809700078
https://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q1-2014/
https://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q1-2014/
https://www.kaspersky.com/about/press-releases/2016_kaspersky-lab-reports-significant-increase-in-malicious-spam-emails-in-q1-2016
https://www.kaspersky.com/about/press-releases/2016_kaspersky-lab-reports-significant-increase-in-malicious-spam-emails-in-q1-2016
https://www.kaspersky.com/about/press-releases/2016_kaspersky-lab-reports-significant-increase-in-malicious-spam-emails-in-q1-2016
http://razor.sourceforge.net
https://mahout.apache.org/


[35] Distributed checksum clearinghouses. [Online]. Available:
https://www.dcc-servers.net/dcc/, Accessed on: Jun. 02, 2016.

[36] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati, “P2P-
based collaborative spam detection and filtering,” in Proc. 4th Int.
Conf. Peer-to-Peer Comput., 2004, pp. 176–183.

[37] J. Kong, B. Rezaei, N. Sarshar, V. Roychowdhury, and O. Boykin,
“Collaborative spam filtering using e-mail networks,” IEEE
Comput., vol. 39, no. 8, pp. 67–73, Aug. 2006.

[38] Z. Zhong, L. Ramaswamy, and K. Li, “ALPACAS: A large-scale
privacy-aware collaborative anti-spam system,” in Proc. IEEE 27th
Conf. Comput. Commun., 2008, pp. 556–564.

[39] K. Li, Z. Zhong, and L. Ramaswamy, “Privacy-aware collabora-
tive spam filtering,” IEEE Trans. Parallel Distrib. Syst., vol. 20,
pp. 725–739, 2009.

[40] K. Church, T. Hart, and J. Gao, “Compressing trigram language
models with golomb coding,” in Proc. Joint Conf. Empirical Methods
Natural Language Process. Comput. Natural Language Learn., 2007,
pp. 199–207.

[41] R. Fontugne, J. Mazel, and K. Fukuda, “Hashdoop: A MapReduce
framework for network anomaly detection,” in Proc. IEEE Comput.
Commun. Workshops, 2014, pp. 494–499.

[42] J. Iedemska, G. Stringhini, R. Kemmerer, C. Kruegel, and
G. Vigna, “The tricks of the trade: What makes spam campaigns
successful?” in Proc. IEEE Secur. Privacy Workshops, 2014,
pp. 77–83.

[43] M. Goldstein and A. Dengel, “Histogram-based outlier score
(HBOS): A fast unsupervised anomaly detection algorithm,” in
Proc. German Conf. Artif. Intell.: Poster Demo Track, 2012,
pp. 59–63.

[44] CSDMC2010 SPAM corpus, “Spam email datasets,” [Online].
Available: http://csmining.org/index.php/spam-email-datasets-
.html, Accessed on : Oct. 02, 2016.

[45] C. Karlberger, G. Bayler, C. Kruegel, and E. Kirda, “Exploiting
redundancy in natural language to penetrate Bayesian spam
filters,” in Proc. 1st USENIX Workshop Offensive Technol., 2007,
pp. 1–7.

[46] Apache Hadoop, “Welcome to apache hadoop,” [Online]. Avail-
able: http://hadoop.apache.org/, Accessed on: Oct. 02, 2016.

Abdelrahman AlMahmoud received the BSc
degree in information technology from the United
Arab Emirates University, where he won the distin-
guished student award, along with the first place in
the Senior Graduation Project Competition, and
the MSc degree by research in engineering from
Khalifa University, in 2014, where he is currently
working toward the PhD degree. He joined EBTIC
in 2011 where he is currently working as an
Associate Researcher. His research interests are
Privacy-Preserving analysis and Cybersecurity.
He is amember of the IEEE.

Ernesto Damiani is a full professor with the
Universita degli Studi di Milano, where he leads
the SESAR research lab, and the leader of the Big
Data Initiative at the EBTIC/Khalifa University,
Abu Dhabi, UAE. He is the Principal Investigator
of the H2020 TOREADOR project. He was a
recipient of the Chester-Sall Award from the IEEE
IES Society (2007). He was named ACM Distin-
guished Scientist (2008) and received the IFIP
TC2 Outstanding Contributions Award (2012). He
is a senior member of the IEEE.

Hadi Otrok received thePhDdegrees inECE from
Concordia University. He holds an associate pro-
fessor position in the Department of ECE, Khalifa
University, an affiliate associate professor in the
Concordia Institute for Information Systems Engi-
neering, Concordia University, Montreal, Canada,
and an affiliate associate professor in the Electrical
Department, �Ecole De Technologie Sup�erieure
(ETS), Montreal, Canada. He is an associate editor
at: the Ad-HocNetworks (Elsevier), the IEEE Com-
munications Letters, theWireless Communications

and Mobile Computing (Wiley). He co-chaired several committees at
various IEEE conferences. Moreover, he is a TPC member of several
conferences and reviewer of several highly ranked journals. He is a senior
member of the IEEE.

Yousof Al-Hammadi received the bachelor’s
degree in computer engineering from KUSTAR
(previously known as Etisalat College of Engi-
neering), UAE, in 2000, the MSc degree in tele-
communications engineering from the University
of Melbourne, Australia, in 2003, and the PhD
degree in computer science and information tech-
nology from the University of Nottingham, United
Kingdom, in 2009. He is currently a director of
Graduate Studies and assistant professor in the
Electrical & Computer Engineering Department,

Khalifa University of Science, Technology & Research (KUSTAR), Abu
Dhabi, United Arab Emirates. His main research interests include the
area of Information security which include Intrusion detection, botnet/
bots detection, viruses/worms detection, artificial immune systems,
machine learning, RFID security and mobile security. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

304 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 3, JULY-SEPTEMBER 2019

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 30,2022 at 11:41:04 UTC from IEEE Xplore.  Restrictions apply. 

https://www.dcc-servers.net/dcc/
http://csmining.org/index.php/spam-email-datasets-.html
http://csmining.org/index.php/spam-email-datasets-.html
http://hadoop.apache.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


