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Abstract: Adulteration and fraud are amongst the wrong practices followed nowadays due to the attitude
of some people to gain more money or their tendency to mislead consumers. Obviously, the industry
follows stringent controls and methodologies in order to protect consumers as well as the origin of
the food products, and investment in these technologies is highly critical. In this context, chemometric
techniques proved to be very efficient in detecting and even quantifying the number of substances used
as adulterants. The extraction of relevant information from different kinds of data is a crucial feature to
achieve this aim. However, these techniques are not always used properly. In fact, training is important
along with investment in these technologies in order to cope effectively and not only reduce fraud but
also advertise the geographical origin of the various food and drink products. The aim of this paper is
to present an overview of the different chemometric techniques (from clustering to classification and
regression applied to several analytical data) along with spectroscopy, chromatography, electrochemical
sensors, and other on-site detection devices in the battle against milk adulteration. Moreover, the steps
which should be followed to develop a chemometric model to face adulteration issues are carefully
presented with the required critical discussion.
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1. Introduction

Milk and milk products provide the human body with valuable nutritional compo-
nents such as proteins, carbohydrates, vitamins, minerals, organic acids, and fat [1,2].
Milk’s high protein content has attracted many consumers, making it a popular nutri-
tional commodity [3]. The increasing consumption of milk and dairy products leads to
many cases of adulteration [4,5]. A range of possible milk adulterants is described by
Nascimento et al. [4].

The prices of milk differ primarily depending on the type of animal from which they
come, whereas its availability is significantly affected by the season. These two factors are
enough to cause problems in its market, as practices of replacing it with cheaper milk are
common [6]. Goat’s milk shows a nutritional profile superior to that of cows, as a result of
which it is a priority for consumers not only in traditional dairy products such as cheese and
yogurt, but also in liquid form. Its low production combined with its beneficial nutritional
content makes this category of milk an attractive target for adulteration. Goat’s milk is
easily mixed with water, whey as well as cow’s milk which is much cheaper. The latest
fraud is increasingly worrying people because of their sensitivity to lactose and the allergic
disorders that can be caused by cow’s milk proteins [7]. An equally important adulteration

Foods 2023, 12, 139. https://doi.org/10.3390/foods12010139 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12010139
https://doi.org/10.3390/foods12010139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-2102-9713
https://orcid.org/0000-0003-0206-4860
https://orcid.org/0000-0002-7052-514X
https://orcid.org/0000-0002-4505-8471
https://orcid.org/0000-0003-3927-9056
https://doi.org/10.3390/foods12010139
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12010139?type=check_update&version=1


Foods 2023, 12, 139 2 of 28

is related to the substitution of goat’s milk with sheep’s milk. In this case, the lower price
of goat’s milk compared to sheep’s milk pushes the producers to this adulteration [6].

Fraud in milk production is carried out by admixture or substitution of inferior
substances and sometimes dangerous products. The economically motivated adulteration
(EMA) is the most important, aiming to gain profit by the addition of extraneous water,
glucose or other sugars, non-dairy proteins such as soybean and pea protein isolates [8],
various substances such as melamine, urea, maltodextrin, cheese whey (a byproduct of
cheese production) [9], hypochlorite, dichromate, salicylic acid [10], and reconstituted milk
powders to correct protein and/or density values [11]. A famous case of adulteration was
recorded in China in 2013 when the substance melamine was detected in milk powder
in infant milk products, which was added to increase the apparent protein content, with
dramatic consequences for public health [12].

The deliberate addition of formaldehyde to raw milk is also illegal and considered a
major adulteration, which aims to increase the shelf life of milk at room temperature. High
moisture content is responsible for the rapid spoilage of milk. Therefore, formaldehyde
provides preservative and antiseptic properties, and the ability to improve the appearance
including the smell of milk. Furthermore, formaldehyde is toxic at low concentrations and
is classified as a human carcinogen by the International Agency for Research on Cancer
(IARC) [12,13].

Another form of adulteration is the replacement of milk fat with vegetable fats of lower
economic value [14]. Among others, soybean oil has been mentioned in the adulteration of
milk [15]. In addition, the recent EU regulations for foods designated as PDO (protected
designation of origin), PGI (protected geographical indication), and TSG (traditional spe-
cialty guaranteed) require the inclusion on the label of the geographical origin of food.
In the case of dairy products such as cheeses produced in a defined area with specific
physicochemical and sensorial features, their geographical origin is put forward as an
important indication [16].

Chemometrics plays a dominant role in the field of food adulteration as it relates
a multitude of chemical analytical characteristics to the qualitative and quantitative
analysis of food [17]. Deriving a fingerprint of each sample and reflecting its complex
chemical composition could be a way to solve such difficult analytical tasks. Then,
chemometric techniques can be used to develop classification models to classify samples
into authentic/adulterated ones, or regression models aiming at quantifying a specific
adulterant [8,18–21]. In this direction, both specific and non-specific fingerprinting can
be implemented. Specific chemical analysis is based on the detection of organic species,
mainly achieved by chromatographic techniques.

The non-specific fingerprinting approach relies on the implementation of instrumental
methods to obtain a multivariate description of the chemical composition of the sam-
ple. These non-specific fingerprints can be obtained by different methodologies such as
Fourier transform infrared spectroscopy (FT-IR), mid-infrared spectroscopy (MIR), Raman
spectrometry, nuclear magnetic resonance (NMR), or mass spectrometry [22]. All these
methodologies have been used in studies, which are relevant to authenticity and chemo-
metrics in milk and dairy products [23–25]. In addition, near-infrared (NIR) spectroscopy
has been used by several researchers to detect various forms of adulteration in both cow’s
milk and cow’s milk products [26–28].

Vibrational spectroscopic techniques are rapid, low-cost, and non-destructive tests
that require only limited training for processing. Results are evaluated using chemometric
models to extract meaningful information that distinguishes different and significant groups
by removing redundant data [29].

Data processing can be completed by principal component analysis (PCA) since it
is amongst the most fundamental methods for multivariate data exploration [18]. PCA
has been used along with other methodologies to help to differentiate fresh milk and
reconstituted skim milk powder samples [11].
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kNN (k-nearest neighbor), PLS-DA (partial least squares-discriminant analysis), and
SIMCA (soft independent modeling of class analogy) are the most popular classification
methods [30]. kNN and PLS-DA have been used for the detection of various types of
adulteration, such as water, urea, cow’s whey, and cow’s milk in goat’s milk samples [31].
SIMCA could also be employed to model the class of fresh types of milk. When address-
ing a specific adulterant quantification, the goal could be achieved by means of partial
least squares (PLS) regression analysis, as demonstrated for the prediction of fresh milk
adulteration with reconstituted skim milk powders [11].

Finally, in order to validate a chemometric approach, a sampling strategy should be
followed taking into account the size and the representativeness of the sample along with
intrinsic variability [32]. Sampling is closely associated with robustness and reliability. Other
key parameters of authenticity and fraud not to be ignored are the heterogeneity of a food
matrix and the presence of an undeclared substance to the geographical origin discrimination.

In this framework, the aim of this work is to give an overview of the recent applica-
tion of different chemometric techniques—from clustering to classification and regression
applied—to several analytical data—encompassing spectroscopy, chromatography, and
electrochemical sensors—to fight milk adulteration. Further, a critical discussion is pre-
sented to schematize the steps which should be followed to develop a chemometric model
to face adulteration issues.

2. Chemometric Approaches
2.1. Clustering

The definition of “cluster analysis” or “clustering” encompasses the techniques which
split a set of samples (observations) into several groups or clusters. The outcome is usu-
ally represented as a vector of data, or a point (scatter) in a multidimensional space [33].
Clustering falls in the general category of unsupervised pattern recognition and numerical
and mathematical taxonomy [33,34]. Natural grouping of data takes place based on some
inherent similarity, as clustering is performed without any group labels, and this justifies
the unsupervised pattern recognition [33,35]. Furthermore, it takes place based on simi-
larities of the samples within the same group and others in different groups. Therefore,
homogeneity is dominant within the same groups [34]. In practice, the most common
approach to define similarity is the distance among the patterns; by lowering the distance
(e.g., Euclidean distance which is a well-used dissimilarity measure) between the two
objects, higher similarity and vice versa will be obtained [35,36].

Clustering is a valuable component of data analysis or machine learning-based ap-
plications such as regression, prediction, data mining, etc. [35]. Saxena et al. (2017) [35]
stated that there are various ways to categorize clustering methods because it is difficult
to define a cluster. In their paper, they suggested division into two different groups such
as hierarchical and partitioning techniques, or in three categories based on application,
density-based methods, model-based methods, and grid-based methods.

Hierarchical methods initially group the objects into small clusters of some samples,
and these are next grouped into larger clusters, thus a dendrogram is produced, which
is a tree-based depiction of each observation [36]. Optimization- partitioning methods
split the samples into a few groups to optimize a particular feature e.g., total within-group
distances. In this category, algorithms like k-means clustering, Fuzzy c-means clustering,
etc., are included [33–35]. Density-based clustering is focused on the probability that data
objects are drawn from a specific probability distribution and the overall distribution of
the data is assumed to be a mixture of several distributions. Data points can be derived
from different types of density functions (e.g., multivariate Gaussian or t-distribution),
or from the same families but with different parameters. Model-based clustering works
by detecting feature details for each cluster, where each cluster represents a concept or
class. Decision trees and neural networks are the two most frequently used methods in this
category. Grid-based clustering divides the space into a finite number of cells that make a
grid structure on which all the operations for clustering are performed [35].
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Recently, many evaluation criteria have been developed, and these are internal and
external. Internal quality parameters include the sum of squared error, scatter criteria,
Condorcet’s criterion, the C-criterion, category utility metrics, and edge cut metrics. Ex-
ternal quality criteria are related to the mutual information-based measure, Rand index,
F-measure, Jaccard index, Fowlkes–Mallows index, and confusion matrix [35].

Clustering is applied to perform data reduction or compression for handling huge
loads of data. It helps in compressing data information by grouping them into different
sets of clusters. This helps us to choose what is useful or not by saving time from data
processing along with data reduction [35]. Other uses contain data mining, document
retrieval, image segmentation, and pattern classification [33].

In order to explore the use and development of clustering methods recently, Table 1
has been prepared to summarize the studies related to milk adulteration and authenticity.

Table 1. Recent studies (2015–2021) related to milk adulteration and authenticity in combination with
clustering analysis.

Type of Milk Target Analytical
Method(s)

Clustering
Method Approach Reference

Milk adulteration

Cow’s, sheep’s, and
water buffalo’s origin

milk

Adulteration from
different species’ origin

milk
FTIR HCA method [37]

Bovine milk Adulteration with urea EIS HCA Euclidean
distance [36]

UTH milk samples
(skimmed and

semi-skimmed) and raw
milk

Adulteration with cheese
whey, based on
quantification of

caseinomacropeptide

FTIR-ATR HCA

Euclidean
distance and

Ward’s
method

[38]

Cow milk Adulteration with
melamine and urea

Electrochemical
biosensor HCA Ward’s

method [39]

Bovine milk
Adulteration with

formaldehyde, based on
aldehydes and ketones

Colorimetric sensor
array HCA - [40]

UHT whole bovine milk
and UHT goat milk

Adulteration with
soymilk in bovine and
goat milk, as well as

bovine milk in goat milk.

NMR CA

The
minimum
distance
method

[41]

Raw cow milk

Adulteration with
Sodium Salicylate,

Dextrose, Hydrogen
Peroxide, Ammonium

Sulphate

Sensor system
k-means

clustering
algorithm

- [42]

Milk authentication

Powder and liquid milk Type of milk based on
metal profiles ICP-OES HCA

Euclidean
distance and

Ward’s
method

[43]

Organic and
conventional milk

Type of milk (organic vs.
conventional) based on
organic status and trace

element content

ICP-MS HCA

Euclidean
distance and

Ward’s
method

[44]

Malaysian vs. milk from
other countries

Geographical origin,
based on metal content ICP-MS HCA Ward’s

method [45]
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Table 1. Cont.

Type of Milk Target Analytical
Method(s)

Clustering
Method Approach Reference

-
Geographical origin,
isotope ratios, metals,

and fatty acids

CF-IRMS (δ 18O),
EA-IRMS (δ 13C and

δ15N), GC (fatty
acids), ICP-OES (Na,
K, Mn, P, Zn, Ca, Fe,

and Mg), and ICP-MS
(other metals)

HCA - [46]

Cow milk
Geographical origin,

based on stable isotope
ratios

IRMS and CRDS HCA - [47]

Raw milk
Geographical origin,

based on stable isotope
ratios and metal content

IRMS and ICP-MS

HCA and
k-means

clustering
algorithm

HCA:
Euclidean

distance and
Ward’s
method

K means: 200
iterations and

25 random
starting
points

[48]

Cow, goat, camel,
donkey, and yak milk

Species recognition
based on sn-2 and sn-1,3
fatty acid composition

and sterols

GC, GC-MS HCA - [49]

Fresh buffalo, bovine,
and donkey milk as well

as processed milk
samples (pasteurized
and dried skimmed

powder)

Species recognition
based on amino acids,
non-amino acids, and

citric acid cycle
metabolites

GC-MS HCA

Euclidean
distance and

Ward’s
method

[50]

Reconstituted milk vs.
UHT milk

Different content of
peptides, lipids, and

nucleic acids

UPLC–Q-TOF-MS
combined with
UPLC–MS/MS

HCA - [51]

Cow milk

Fat globule
characteristics (diameter,
membrane surface, and
yield), fat, protein, fatty
acids, calcium content

IR (fat, protein, and
lactose contents), GC

(fatty acids
composition), atomic

absorption
spectrophotometry
(calcium content)

HCA Euclidean
distance [52]

Cow, goat, buffalo, and
camel milk

Different seasons of milk
collection, based on
sterols in milk fat of

different species’ origin
of milk

GC–MS-SIM HCA Euclidean
distance [53]

Abbreviations: CA = cluster analysis, CF-IRMS = continuous flow-isotope ratio mass spectrometer, CRDS = cav-
ity ring-down spectroscopy, EA-IRMS = element analysis-isotope mass spectrometry, EIS = electrochemi-
cal impedance spectroscopy, FCM = fuzzy c-means, FTIR-ATR = Fourier transform infrared-attenuated to-
tal reflection, FTIR = Fourier transform infrared spectroscopy, GC = gas chromatography, GC-MS = gas
chromatography-mass spectrometry, GC-MS-SIM = gas chromatography-mass spectrometry-single ion moni-
toring mode, HCA = hierarchical cluster analysis, ICP-MS = inductively coupled plasma mass spectrometry,
ICP-OES = inductively coupled plasma emission spectroscopy, IR = infrared, IRMS = isotopic ratio mass
spectrometry, UHT = ultra-high temperature, UPLC–MS/MS = UPLC–tandem mass spectrometry, UPLC–Q-
TOF-MS = ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
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Regarding milk adulteration studies, Cirak et al. [37] focused on determining milk
species adulteration by using FTIR. HCA was conducted based on Ward’s algorithm after
having calculated the initial derivate by using a standard method. The produced 2D-
dendrogram indicated that the types of origins (sheep, cow, and water buffalo origin, and
adulterated samples in binary mixtures) were clustered correctly. Minetto et al. [36] applied
HCA to detect urea in raw bovine milk samples, and the Euclidean distance was used to
build the dendrogram. HCA helped them to find the more appropriate number of clusters
which was used later in the classification of the samples. Vinciguerra et al. [38] used HCA
as an exploratory treatment on the pre-processed measurements obtained by FTIR-ATR.
By using both the Euclidean distance and Ward’s method, a dendrogram was generated,
however no pattern related to the caseinomacropeptide concentration was observed in
the dendrogram, and multivariate regression was followed. Qualitatively, the adulterated
groups with caseinomacropeptide were separated correctly in 3 groups: raw milk, skimmed
milk, and semi-skimmed milk. Adulteration with melamine and urea in cow’s milk was
also studied by Ezhilan et al. [39], who developed an electrochemical biosensor to detect the
two adulterants simultaneously. HCA application was useful to study the interrelationship
of the factors affecting the model for measurements taken by using various combinations of
concentrations of the adulterants. Mostafapour et al. (2021) [40] used a colorimetric array
device. The authors commented that even if there are differences in the colorimetric schemes
of the analytes, it is not a proper manner to group the samples after visual examination,
thus chemometrics is used to perform the clustering. The HCA dendrograms showed
highly accurate clustering of the studied carbonyl compounds, particularly eight different
aldehydes and ketones. In addition, HCA showed that one sample from formaldehyde
and one sample from acetophenone has been misclassified. Li et al. [41] used NMR to
detect the metabolites as markers of different milk types. Clustering analysis (CA) was
very useful as it provided similarities for the same species of milk as well as variations
in different milk species by applying the minimum distance method. CA also separated
the three milk types and showed that NMR and metabolites can differentiate these milk
products. Sowmya et al. [42] during the pre-processing steps applied cluster analysis, i.e.,
the k-means clustering algorithm. The algorithm proceeded by calculating the centroid
point of the dataset and the groups’ mean points to build the new groups required. The
aim was to see the grouping of samples, to identify the similarities in the same categories,
and to check if the adulterants can be clustered by using raw spectra. Intraclass variation
was performed.

Regarding milk authenticity, Souza et al. [43] studied the metal profile of powder and
liquid milk samples to differentiate them based on the type of milk. HCA successfully
confirmed the initial outcome of PCA, and it allows the visualization of a sample’s trend to
form two groups. Whole cow powder milk, whole goat powder milk, skimmed cow powder
milk, and milk compounds powder fell in the first group due to their similar composition.
A sample from the last group clustered at a longer distance from its group due to the high
content of Zn. The second group consisted of whole and skimmed cow liquid milk and some
yogurts. Rodriguez-Bermudez et al. [44] by applying HCA revealed a correct clustering
based on the type of milk, organic vs. conventional. It was obvious that the variables
(metal content) in both the organic and conventional sets were distinct. To determine the
geographical origin, Zain et al. [45] measured the metal content of milk samples and due
to different environmental conditions, and the samples clustered successfully by HCA.
Ca, Na, Fe, Zn, Mn, K, Ba, and Mg are the metals that were significant for the samples’
grouping regarding geographical origin. Xu et al. [46] worked also in terms of geographical
origin by measuring isotope ratios, metals, and fatty acids and then by applying HCA. δ18O
measurements were taken by having the milk in the fluid state, but for δ13C, δ15N, and
elemental and fatty acid measurements lyophilization took place. HCA aided to picture
the correlation between the sample and each variable as HCA heatmaps were created.
In addition, geographical origin was the target of Amenzou et al. [47], who studied the
13C/12C, 15N/14N, 18O/16O. The application of HCA was very important to visualize the
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samples in 3 important clusters. The stable isotope ratios analysis in combination with
chemometrics showed a very good capability to indicate the geographical origin of milk. In
a similar study, Podkolzin and Solovev [48] used HCA and the k-mean clustering algorithm
and both methods showed an equal number of clusters with almost the same content.
Karrar et al. [49] used HCA to evaluate the similarity in terms of sn-2 and sn-3 fatty acids
in different milk-origin samples. HCA heatmaps were produced to present the content
of sn-2 and sn-3 fatty acids in the samples. Bhumireddy et al. [50] applied HCA to group
the samples based on intrinsic similarities in their GC-MS measurements. HCA heatmaps
were produced using the log-transformed and normalized values of the relative abundance
of 17 amino acids, and their high and low expressions in each sample were presented
with different colors. Tan et al. [51] employed HCA to proceed to the clustering of the
different biomarkers (peptides, lipids, and nucleic acids) and to demonstrate the chemical
properties of the important metabolites. It must be also noted that the results indicated
that the processing that takes place to produce milk powders influences the nutritional loss
of peptides and lipids. HCA heatmaps showed that nutritional components were found
to be in lower concentrations in reconstituted milk compared to ultra-high-temperature
milk. Couvreur and Hurtaud [52] studied the parameters of fat globule characteristics
(diameter, membrane surface, and yield), fat, protein, fatty acids, and calcium content in
milk concerning diet composition, milking frequency, breed, stage of lactation, parity and
residual/cisternal milk. Based on the principal components of PCA, HCA was performed
which indicated 4 independent clusters of milk. A minor relationship was observed
between fat content and fat globule diameter in milk, especially for the Normandy breed at
the very end of the lactation. Dhankhar et al. [53] proposed a method to study the influence
of season on the variability of sterols in different species’ origins. Buffalo milk has a very
different sterol profile compared to other animal species. In addition, seasonal variation
affected especially cholesterol content compared to other minor sterols, and winter milk
had a lower level of cholesterol compared to other seasons. The authors commented that
the variation based on season was not able to be satisfactorily explained by PCA. However,
HCA correctly grouped the 4 species of animals into 4 clusters by the sterol content. Squared
Euclidean distance between objects was applied in HCA, to give the natural grouping of
samples. The HCA dendrogram allowed the visualization of the similarity or dissimilarity
of the measurements in 2D.

As can be observed, HCA is the main representative of the clustering methods. It
is also important to note that after CA, most of the studies presented above proceeded
to classification and/or regression analysis, which are presented in the next sections of
this paper. Overall, in the aforementioned-studies, CA was used as a step to visualize the
samples in clusters and to understand the interrelationships of the samples’ datasets, before
proceeding to supervised methods.

2.2. Classification

The capability to assign an object to a class on the basis of its characteristics belongs to
the pattern recognition field. There are many methods to classify objects and one of the
applications of chemometrics is the classification of objects in groups depending on their
characteristics expressed as results of a set of measurements [54]. Classification methods
could be distinguished into “discriminant” and “class-modeling” techniques (Table 2).

In the first case, the technique tries to discriminate among the object’s groups di-
viding the model hyperspace into several regions equal to the number of classes and
assigning each object to a specific region of the hyperspace on the base of its characteris-
tics. In this way, each sample may belong to just one class. In the case of class modeling
instead, the technique tries to model the analogies between objects of a class rather than
observe the differences. So, each group of objects is modeled separately, and, at the end,
an object could be assigned to one or more classes, or rejected as non-included in none of
the classes (Figure 1).
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Table 2. Main classification methods cited.

Classification Method Extended Name Abbreviation

Discriminant

Partial least squares-discriminant analysis PLS-DA
Orthogonal partial least squares-discriminant analysis OPLS-DA
One class-partial least squares OC-PLS
Quadratic discriminant analysis QDA
Random forest RF
Support vector machine SVM
Linear discriminant analysis LDA
k-nearest neighbors kNN
Extreme learning machine ELM
Ensemble of extreme learning machine EELM

Class-modeling
Soft independent modeling of class analogy SIMCA
Data-driven soft independent modeling of class analogy DD-SIMCA
Unequal class models UNEQ
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Figure 1. Example of difference between discriminant (a) modeling and (b) classification methods. In
(a) the hyperspace is divided into regions equal to the category number.

In the discriminant classification, some methods may be counted: kNN, PLS-DA, LDA,
and QDA. Instead, class-modeling techniques may be included: SIMCA, DD-SIMCA, and
UNEQ [55].

Describing the details of all classification methods is out of the scope of this work,
and here we will consider only the most used techniques (discriminant or class-modeling)
applied to the milk and dairy product classification in milk adulteration in the last years.

A basic distinction between supervised and unsupervised classification techniques
will be maintained. Supervised classification methods require some knowledge “a priori”
of the classes and the method to assign or not assign samples to a certain class; in contrast,
the unsupervised methods just classify samples on the base of their characteristics [56].

In recent years, the number of studies that use chemometrics to properly elaborate and
interpret analytical results is largely increasing. The power of the chemometric technique
is evident in all the cases where the output of an instrumental analytical technique is a
spectrum, like in visible and/or infrared spectroscopy (VIS, VIS-NIRS, NIRS), nuclear
magnetic resonance (NMR), or spectrometry (CG-MS, LC-MS).

Regarding classification used in milk adulteration, in the last five years, there have
been several examples that used chemometrics and in Table 3 some relevant examples have
been reported.
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The use of chemometrics on instrumental data requires some preliminary steps, like
data pre-processing or data dimension reduction. A short illustration of these steps has
been reported below. In general, the application of a specific classification technique in
place of another one depends on the data structure. In some cases, using one method rather
than another one leads to the same results; in others, the application of a specific method
could improve classification efficiency.

The classification statistical techniques most used in the last years for milk applications
were PLS-DA as a pure classification technique and SIMCA as a class-modeling approach.
Kamboj [57], for example, used PLS-DA to detect water adulteration in milk from NIRS
spectra. Chung [58], working on isotope ratio data, used OPLS-DA to perform classification.
The paper did not extensively explain the reason for this choice. Jin [59] used the least
squares support vector machine (LS-SVM) for qualitative analysis of adulterated milk
identification using 2D autocorrelation spectroscopic data. Karunathilaka [60] used Raman
spectroscopy data from two different instruments and SIMCA for not-target classification to
detect milk powder adulteration. Galvan [61], on data coming from low-cost spectroscopic
devices (NIR and energy dispersive X-ray fluorescence—EDXRF), used more than one
technique: PLS-DA for the EDXRF data and C-support vector classification (C-SVC) for
NIR data. In the end, they concluded that DD-SIMCA was more useful to classify the
samples with good accuracy (98.9%). Other two interesting uses of PLS-DA applied to NIR
data were conducted by Ejeahalaka et al. [62] on cow’s milk and by Di Donato et al. [63]
on donkey’s milk. DD-SIMCA is a one-class classification algorithm proposed in 2017 by
Zontov [64]. The algorithm in the first phase is similar to the SIMCA algorithm, with a
preliminary PCA. Then the PCA results were used to calculate the orthogonal distance and
score distance for each object. These distances were then used to individuate a threshold
limit value of the classification area. New samples were then classified in the orthogonal vs.
score plot and assigned to the class when under the acceptance area defined for a given
alpha value. Wang [65] evaluated four different classification methods (RF, LDA, SVM,
and kNN) when dealing with milk authentication by infrared spectroscopy. To evaluate
the best algorithm, the means of precision, accuracy, recall (true positive divided by the
sum of true positive and false negative), and another parameter F1 (that together evaluate
precision and recall) were calculated for each performance evaluation of all classes and
for every classifier. The results indicate that RF had the best performance. In a work
about image analysis [66] applied to recognize goat’s milk (as a target class) from other
milk species adulterants, two methods were tested: OC-PLS and DD-SIMCA. In this case,
OC-PLS was not recommended and DD-SIMCA was preferred. Chen [67] used ELM
and extreme ELM (EELM) to classify six types of milk of different brands analyzed by
NIRS. ELM is a regression and classification algorithm. It is simple and efficient and
extremely fast. Vargas [56] applied PLS on the voltammetric characterization of fresh cow’s
milk and from milk powder, using as Y the percentage of adulteration with reconstituted
milk. Potocnik [68] in his paper used DA and OPLS-DA to elaborate data from isotopic
ratios on types of milk to verify their geographical origins. Similarly, Xie [69] performed
similar work on geographical discrimination of milk from Mongolia using isotope ratio,
elements, and amino acids composition. In this paper, the chemometric analysis was
performed with OPLS-DA. Tommasini [70], again using NMR, in this case, to classify
the breed of cow, used PLS-DA analysis to distinguish between milk from different cow
breeds, Friesian vs. autochthonous. PLS-DA and OPLS-DA, together with HCA and RF,
were also cited by Sundelkide [71] to elaborate on the NMR spectra acquired in order to
underline the importance and potentiality of the milk metabolomics studies. Segato et al.
also used NMR to discriminate the metabolic profiles of different pasture-based alpine
Asiago PDO cheeses [72]. To conclude the NMR overview, Yanibada [73] reported the
application of OPLS-DA, preceded by an explorative PCA, to classify two groups of cows
by NMR metabolomics. In Table 3 a synthesis of the more relevant papers identified has
been reported.



Foods 2023, 12, 139 10 of 28

To summarize, excluding PCA (mainly used to preliminarily study the problem),
PLS-DA and OPLS-DA were the most used methods for classification in the recent papers
on milk classification. The second most used have been SIMCA and DD-SIMCA, followed
by many other various methods. The use of some classification techniques more than
others could be attributed to different reasons: PLS-DA and OPLS-DA, the more used in
the reviewed articles, are more known compared to some other more specific methods. The
main reason for their popularity is probably linked to the fact that they are implemented in
a lot of user-friendly commercial software, mainly used by non-expert users. It is advisable
to use PLS-DA in place of LDA when the number of variables is higher than the number of
samples and when the predictors are correlated. When classes are not balanced (i.e., the
number of samples for each class is very different), better results are often obtained by class-
modeling techniques, such as SIMCA. The choice of the proper classification method should
also be influenced by their parametric or non-parametric nature: the former, such as LDA,
assumes that the data follow a particular statistical distribution, so the model calculation
becomes the calculation of the parameters of these distributions. The disadvantage of
parametric techniques is that they can lead to big mistakes when starting assumptions
fail to be verified. The advantage is that they make it easier to obtain the probability of
obtaining a correct classification. On the other hand, non-parametric methods do not
explicitly assume no statistical distribution (e.g., SIMCA, kNN, etc.).

Table 3. Recent studies (since 2018) involving classification methods related to milk adulteration.

Type of Milk Target Analytical Method(s) Classification
Method(s) Reference

Cow Classification NIRS EELM Chen [67]

Cow Organic milk
geographical indication Isotope ratio OPLS-DA Chung [58]

Cow Authenticity NMR CDA Segato [72]

Goat Adulteration detection Image analysis OC-Classifier, OC-PLS,
DD-SIMCA dos Santos Pereira [66]

Cow Quality Chemical analysis, NIRS PCA, SIMCA, PLS-DA Ejeahalaka [62]

Various Authenticity NIRS, EDXRF DD-SIMCA, PLS-DA,
C-SVC Galvan [61]

Cow Adulteration IR LS-SVM Jin [59]

Cow Adulteration NIRS PCA, PLS Kamboj [57]

Milk powder Adulteration Raman PCA, SIMCA Karunathilaka [60]

Cow Geographical origin Isotope ratio ANOVA, DA, OPLS-DA,
DD-SIMCA Potočnik [68]

Cow Authentication Chemical analysis PCA, OPLS-DA Vargas [56]

Cow Authentication FTIR PCA, kNN, SVM, RF,
LDA Wang [65]

Cow Traceability Chemical analysis,
isotope ratio, PCA, OPLS-DA Xie [69]

Cow Quality, breed
classification NMR PLS, PLS-DA Tomassini [70]
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Table 3. Cont.

Type of Milk Target Analytical Method(s) Classification
Method(s) Reference

Cow Quality NMR PCA, PLS-DA, OPLS-DA,
HCA, RF Sundekilde [71]

Cow Quality NMR PCA, OPLS-DA Yanibada [73]

Donkey Authentication NIRS PLS-DA, VSN, ASCA Di Donato [63]

Abbreviations: ANOVA = analysis of variance, ASCA = ANOVA simultaneous component analysis,
CDA = canonical discriminant analysis, C-SVC = C-classification support vector classifier, DA = discriminant
analysis, DD-SIMCA = data-driven soft independent modeling of class analogy, EELM = ensemble of extreme
learning machine, HCA = hierarchical cluster analysis, k-NN = k-nearest neighbors, LS-SVM = least squares
support vector machine, LDA = linear discriminant analysis, OC = one-class classifier, OC-PLS = one-class
partial least Squares, OPLS-DA = orthogonal partial least squares-discriminant analysis, PCA = principal com-
ponent analysis, PLS = partial least squares, PLS-DA = partial least squares-discriminant analysis, RF = random
forest, SVM = support vector machine, VSN = variable sorting for normalization.

2.3. Regression

Multivariate regression is widely used to quantify the concentration of adulterants in
food matrices. In Table 4, the papers presented for this review in the last five years, with
reference to regression methods, are listed.

The most popular multivariate regression method is certainly partial least squares
(PLS) [74], as it is relatively simple to use and is implemented in a lot of statistical soft-
ware, including instruments software (e.g., Opus). For this reason, in the last five years,
PLS regression was used in more than three-quarters of the works on milk adulteration.
The main advantage of PLS is its ability to handle data with many more variables than
samples, specifically when these variables co-vary. The algorithm performs a simultaneous
decomposition of both X (descriptors matrix) and Y (response matrix) matrices with the
aim to maximize the covariance between the two matrices, computing at the same time
latent variables (LVs) that explain the maximum variability of X. Due to its features, PLS
is often used to treat spectral data, especially in the infrared region. In fact, with respect
to other methods, such as chromatography, near- and mid-infrared spectroscopies (NIR
and MIR, respectively) offer numerous practical advantages: they are fast, non-destructive,
non-invasive, and relatively cheap techniques. Moreover, sample preparation is usually
absent or extremely simple. The only drawback is the complex interpretation of the spectra,
especially for NIR spectra, where differences in overtones and combination bands are
difficult to detect and interpret. For this reason, the use of a simple multivariate tool for the
extraction of relevant information is essential.

NIR spectroscopy is used to detect and quantify different kinds of adulterants: the
most common and simple ones, such as water [57], urea [75–77], melamine [76–78], and
sugar [79], and less common ones, such as sodium dodecyl sulfate (a milk surfactant) [80]
or different vegetable oils added to yogurt [81]. Moreover, NIR spectroscopy is also used
to detect specific adulterants for particular matrices as showed by Pandiselvam et al.,
where coconut milk residue was used to adulterate desiccated coconut powder [82], or by
Di Donato et al., which used cow’s milk as an adulterant in goat’s milk samples [63].

MIR spectroscopy is also widely used coupled with PLS regression to detect and
quantify adulterants in different milk samples. In several works, MIR was used to quantify
the amount of cow’s milk in more expensive milk types: buffalo [83,84], goat [85], and
horse [86]. It was used to analyze coconut milk samples adulterated with water [87]. MIR
spectrometers equipped with an ATR cell were employed to detect soya bean oil and
common sugar [88], sucrose [89], and formalin [13] in cow’s milk. The use of an ATR cell
allows for minimizing sample preparation, as the penetration depth in the sample of IR
radiation does not depend on sample thickness. Obviously, NIR and MIR spectra have to be
properly pre-processed to minimize noise, scattering, and other undesirable contributions.
Hence, it is good practice to build PLS models applying different combinations of pre-
processing methods and compare the results to see which one provides the best prediction
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performance. For instance, Temizkan et al. [81] tried different preprocessing options: nor-
malization, smoothing, first derivative, second derivative, multiplicative scatter correction
(MSC), and standard normal variate (SNV). These, together with the baseline correction,
are the most common row pre-processing method used to treat NIR and MIR spectra.

Another spectroscopic technique coupled with PLS in the milk adulteration field is
Raman spectroscopy, whose spectra rely on the light scattering of vibrating molecules.
Raman spectroscopy was employed to find maltodextrin, sodium carbonate, and whey
in bovine milk [90,91], as well as margarine, palm oil, and corn oil in cheeses made using
adulterated milk samples [92,93].

Although in the majority of papers PLS regression is applied to vibrational spectro-
scopic data, in recent literature, there are also many applications with different techniques.
Cyclic voltammetry, using a graphite/SiO2 hybrid-working electrode, was employed to
quantify reconstituted skim milk in cow’s milk [11], electrochemical impedance spec-
troscopy was used to measure urea [36] whereas face fluorescence spectroscopy and laser-
induced breakdown spectroscopy assessed the amount of bovine milk in buffalo milk [90]
and ovine and caprine milk [94], respectively. Moreover, time-domain NMR [12] and
opto-electronic nose [40] quantified formaldehyde in bovine milk. The versatility of this
technique is one of the reasons why its presence is predominant among papers that deal
with multivariate regression. Actually, in many papers, PLS is frequently compared with
other two multivariate regression methods, i.e., multiple linear regression (MLR) [95] and
principal component regression (PCR) [96]. Jaiswal et al. [85] and Gonçalves et al. [84]
showed comparable results between PLS and MLR in quantifying adulterants with MIR
spectroscopy. Conceição et al. [97] used MLR coupled with MIR spectroscopy to assess
the amount of sodium bicarbonate, sodium hydroxide, hydrogen peroxide, starch, sucrose,
and urea in cow’s milk. However, the use of MLR is not recommended if the data matrix is
ill-conditioned, namely has more variables (e.g., wavenumbers) than samples, and if those
variables co-vary, as the regression model would be unstable. On the other hand, PCR
is a more reliable method, since the variables are orthogonal (the ill-conditioned matrix
problem has been overcome) and only relevant information in the original data matrix
is considered, being based on PCA. Unlike PLS, in PCR the information in the response
matrix (Y) is not taken into account when choosing the number of PCs. Moreover, for this
reason, PLS has been habitually preferred to PCR. In some of the papers inspected for
this review, these two methods were compared: on three occasions PLS provided the best
prediction performances [13,86,89], whereas in one case the results obtained by the two
methods were similar [87].

Throughout the years, the PLS algorithm has been modified by many authors to add
features and make it more suitable for specific tasks (e.g., multiblock analysis, locally
weighted models, etc.). One of the most famous extensions of PLS is orthogonal PLS
(OPLS) [98], which removes the systematic variation from X that is not correlated (orthogo-
nal) to Y. It was used by Delatour et al. [99] on data collected from eight different NIR and
MIR miniature sensors to measure the amount of semicarbazide hydrochloride, ammonium
sulfate, and cornstarch in skimmed milk powder [96]. Another different use of PLS regres-
sion, synergy interval PLS (siPLS) [100], has been used by Vinciguerra et al. to quantify
cheese whey in cow’s milk samples through MIR spectroscopy [38]. In this method, the MIR
spectra were divided into different intervals (8, 16, 32, 64, and 128) with the same number
of variables, applying a PLS on each interval. Furthermore, combinations of these intervals
(two by two, three by three, and four by four) were also explored and PLS was performed
for each combination. Hosseini et al. used the genetic algorithm PLS (GA-PLS) in order to
perform an efficient variable selection before calculating the regression models [80]. Lastly,
unfolded PLS with residual bilinearization (U-PLS/RBL) [101] coupled with fluorescence
spectroscopy was used by Barreto et al. to quantify melamine in bovine milk [102]. Actually,
U-PLS/RBL belongs to the family of multiway methods, similar to other techniques such
as parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least
squares (MCR-ALS), all based on obtaining pure profiles of the components present in
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a mixture system. They are also called second-order calibration algorithms, as they can
operate by decomposing the 3-way data matrix and then performing a regression between
the resolved relative concentration of the constituents of interest and the corresponding
reference concentration. Fluorescence spectroscopy provides excitation-emission matrices
(EEMs) that can be resolved by those algorithms. According to de Araújo Gomes et al.,
U-PLS/RBL is particularly suitable to deal with fluorescence data, as it is able to model the
inner filter effect that occurs in chemical fluorescence spectroscopy analysis systems [103].
Barreto et al. also used PARAFAC to quantify melamine, obtaining slightly better results
than the ones achieved with U-PLS/RBL. PARAFAC [104] is a generalization of PCA to
higher-order matrices, and its models furnish parameters (loadings) that describe the vari-
ability in the samples. Hence, MCR-ALS [105] was used by Zhao et al. on NIR data to
compute calibration models for the simultaneous quantification of multiple adulterants
(urea, melamine, and starch) [77]. In this case, MCR-ALS was used on classical 2-way data
(i.e., NIR spectra), but the assumptions made earlier are valid. In general, MCR decomposes
the data matrix into a bilinear model constraining the components’ profiles to assure that
the solution makes sense not only from a statistical point of view, but also chemically. ALS
optimization explores the possible solutions through an iterative least square calculation
until convergence is achieved.

Moving forward, some other less popular (but no worse) applications of multivariate
regression techniques employed in the area of milk adulteration than PLS and its extensions
can be found in the literature. Artificial neural network (ANN) regression methods, namely
generalized regression-NN [106] and back propagation-ANN [107], were used to assess
the amount of melamine, wheat flour, and corn flour in milk powder samples [108] and
acidity in cow’s milk samples [109], respectively, both through Raman spectroscopy. Least
squares support vector machine (LS-SVM) [110] was applied on both NIR and dielectric
spectroscopic data to quantify mature bovine milk in colostrum samples [111] and on
MIR data to assess cheese whey in bovine milk [38], providing better results than PLS.
A generalized linear model with lasso regularization (GLM-Lasso) [112] coupled with
MALDI-TOF mass spectroscopy provides better results than PLS too, in this case, to detect
bovine milk in caprine and ovine milk [113]. Ehsani et al. applied boosted regression
tree (BRT) [114] on NIR spectra collected by a portable spectrometer for a fast water
quantification in cow’s milk [115]. The presence of water in cow’s milk was also inspected
by Asefa et al. [116], who proposed a procedure based on digital image analysis coupled
with extreme gradient boosting (XGBoost) [117].

To sum up, the most-used technique for multivariate regression in the field of milk
adulteration is by far PLS, as it is relatively simple to use and is present in much commercial
software. In most cases, proper use of PLS regression is enough to obtain good prediction
performances, but in the case of a more complex data structure, it is worth trying more
advanced techniques. The use of the many extensions of PLS can be useful to increase the
signal-to-noise ratio, to compute prediction models only with the most relevant variables,
or to deal with 3-way data. More expert users sometimes use other kinds of multivariate
regression methods, such as ANN or SVM. In some cases, they provide slightly better
results than PLS, but in many other cases, the results are comparable.
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Table 4. Recent studies (2018–2022) involving regression methods related to milk adulteration.

Type of Milk Target Analytical Method(s) Regression Method(s) Reference

Cow milk Water NIR PLS [57]

Cow milk Urea NIR PLS [75]

Fat-filled milk powder Melamine, urea NIR PLS [76]

Goat milk powder Melamine, urea, starch NIR PLS, MCR-ALS [77]

Milk powder—infant
formula Melamine, vanillin NIR HSI PLS [78]

Cow milk Sugar NIR PLS [79]

Cow milk Anionic surfactant (SDS) NIR, MIR (ATR) PLS, GA-PLS [80]

Yogurt
Margarine, sunflower oil,

corn oil, hydrogenated
vegetable oil

NIR, MIR PLS [81]

Desiccated coconut
powder Coconut milk Vis-NIR PLS [82]

Donkey milk Cow milk NIR PLS [73]

Buffalo milk Cow milk MIR PLS [83]

Buffalo milk Cow milk MIR PLS, MLR [84]

Goat milk Cow milk MIR, Raman PLS [85]

Horse milk Cow milk, goat milk MIR PLS, PCR [86]

Coconut milk Water MIR PLS, PCR [87]

Cow milk Soya bean oil, sugar MIR (ATR) PLS, MLR [88]

Cow milk Sucrose MIR (ATR) PLS, PCR [89]

Cow milk Formalin MIR (ATR) PLS, PCR [13]

Cow milk Maltodextrin, sodium
carbonate, whey Raman PLS [90]

Cow milk Whey Raman PLS [91]

White ultra-filtered
cheese

Margarine, palm oil, and
corn oil Raman PLS [92]

Cow milk Reconstituted skim milk
powder Cyclic voltammetry PLS [11]

Cow milk Urea Electrochemical
impedance spectroscopy PLS [36]

Buffalo milk Cow milk Face fluorescence
spectroscopy PLS [93]

Ovine and caprine milk Cow milk Laser-induced
breakdown spectroscopy PLS [94]

Cow milk Formaldehyde TD-NMR PLS [12]

Cow milk Formaldehyde Opto-electronic nose PLS [40]

Cow milk

Sodium bicarbonate,
sodium hydroxide,
hydrogen peroxide,
starch, sucrose, urea

MIR (ATR) MLR [97]

Skimmed milk powder

Semicarbazide
hydrochloride,

ammonium sulfate,
cornstarch

NIR (miniature spectral
devices) OPLS [99]
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Table 4. Cont.

Type of Milk Target Analytical Method(s) Regression Method(s) Reference

Cow milk Whey MIR PLS, siPLS, LS-SVM [38]

Cow milk Melamine Fluorescence
spectroscopy PARAFAC, U-PLS/RBL [102]

Milk powder Melamine, wheat flour,
corn flour Raman GRNN [108]

Cow milk Acidity Raman PLS, BP-ANN [109]

Colostrum Mature cow milk NIR, dielectric
spectroscopy PLS, LS-SVM [111]

Ovine milk and caprine
milk Cow milk MALDI-TOF-MS PLS, GLM-Lasso [113]

Cow milk Water NIR (portable) BRT [115]

Cow milk Water Digital image analysis XGBoost [116]

Abbreviations: ATR = attenuated total reflection, BP-ANN = back propagation artificial neural networks,
BRT = boosted regression trees, GA-PLS = genetic-algorithm partial least squares, GLM-Lasso = generalized
linear model with lasso regularization, GR-NN = generalized regression neural networks, HSI = hyperspectral
imaging, LS-SVM = least squares support vector machine, MALDI-TOF-MS = matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry, MCR-ALS = multivariate curve resolution alternating least
squares, MIR = mid-infrared, MLR = multiple linear regression, NIR = near-infrared, OPLS = orthogonal partial
least squares, PARAFAC = parallel factor analysis, PCR = principal component regression, PLS = partial least
squares, siPLS = synergy interval partial least squares, TD-NMR = time-domain nuclear magnetic resonance,
U-PLS/RBL = unfolded partial least squares with residual bilinearization, Vis = visible, XGBoost = extreme
gradient boosting.

3. Steps for Development and Validation of a Chemometric Approach

It is difficult to define a precise pipeline for the correct development and validation
of a chemometric approach for authentication purposes. This chapter tries to face the
fundamental steps, covering the sampling procedure, considering the analytical source of
data, the model calibration and validation, and the main figure of merits useful for model
evaluation (Figure 2).
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3.1. Correct Sampling Procedure
3.1.1. Sampling Strategies

No matter the chemometric model to be performed, according to the developed
strategy goal, it is mandatory to perform a proper sampling strategy. Behind the word
“proper” there are a set of extremely challenging standpoints that should consider the nature
of the sample, the statistical representativeness, the analytical chemistry principles, and
the quality and the management of the obtained datasets. Sampling procedures are very
important to assure the robustness and reliability of the developed chemometric models.
However, no well-defined sampling protocols exist so far for fingerprint techniques.

When addressing the nature of the sample, a relevant emphasis should be placed
on the heterogeneity of a food matrix, together with the wide possibility of frauds, from
the adulteration, i.e., the presence of an undeclared substance to the geographical origin
discrimination, passing through the substitution of ingredients or commodities. In any case,
the source of the samples, i.e., the provider, must be extremely reliable when addressing an
authentication issue. They must be of provable provenance to assure they are authentic or
not; thus, it would be advisable to obtain them from the producer rather than buying at
retail markets [21].

For instance, the collection of commercial samples from local grocery stores to study
goat’s milk adulteration by cow’s milk [85] could be inappropriate. Indeed, the commercial
milk already passed to technological operation (heat treatments, fat separation, homoge-
nization); thus, it would be more representative of real fraud to mix the different types of
milk before any unit operation. This is what was done by Spina et al. [83], who described
in detail the farmers, the breeds, and the sampling period and batches. Furthermore, they
strengthened their experimental plan by planning a randomized pairing of cow and buffalo
milk to obtain 17 adulteration levels.

Pandiselvam et al. [82] also adopted the strategy of ad hoc sample preparation. They
prepared different adulterated samples by adding coconut milk residue to desiccated
coconut powder. Even though the sample numerosity was quite high, i.e., 20 samples
prepared for ten adulteration levels (from 0 to 100% w/w), it seems that the raw materials
used to prepare the standard samples were always the same, thus not covering all the
possible sources of variability. The variability of simulated adulterated samples was better
covered by de Oliveira Mendes et al. [88], who considered six samples of milk from
different producers to be adulterated with sweet whey prepared at a laboratory scale at
eight adulteration levels.

From a statistical standpoint, the size and the representativeness of the sample col-
lection must be considered [32] to obtain samples spanning all the sources of variability
associated with the application of the model [118]. Different strategies described by the
theory of sampling (ToS) could be followed to guarantee representative sampling and
appropriate analytical quality [119]. A power analysis could be performed to establish the
adequate number of samples required and to reduce the technical and biological variability.
When a wide variability should be covered in a limited set of measures, design of experi-
ments (DoE) techniques could be applied to obtain statistically valid data; the advantages
of these approaches are well described by Peris-Díaz & Krężel [120].

In the literature there are examples of poor sampling strategies; for example, there are
works considering a number of samples that is too low to be representative from both a
technological/chemical and statistical point of view [12,38,87].

From an analytical point of view, the sample handling in terms of conservation prior
to analysis, preparation, and analytical replicates should be faced to circumscribe the
intrinsic variability. This is quite a challenging issue which has been clearly pointed out by
Kemsley, et al. [121], and too often poorly described in the revised literature.

Finally, to sum up the useful sampling strategy to be adopted, the approach proposed
by the “Five Ws” iterative interrogative technique could be winning. The first W to be
clearly set is the goal of the developed approach, i.e., why, and the definition of the
authentication issue to be addressed. Then, it is appropriate to cover the personnel and
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instrument variability (who), together with the definition of sample unit, the number of
samples, handling procedure, representativeness, balanced/not balanced datasets, and
possible development/availability of trusted samples (what). Moreover, the range of time
(when)—which could refer to seasons, harvesting years, vintages, product aging, and so
on—should be adequately covered. Finally, the investigation of the effects of the area of
origin and/or the processing steps (where) should be faced.

3.1.2. Data Quality

The quality of the collected raw data strongly influences the data processing and
the model quality. This is highly dependent on the instrumentation characteristics and
related analytical methodology. The review by Szymanska [122] deeply described the four
main dimensions of data quality (accuracy, completeness, timeliness, and consistency) and
their characteristics. The most common artifacts generated by quality collection failures
are missing values, outliers, noise, and misalignments. According to the type, there are
strategies for their detection and deletion, substitution, or correction [122]. However, in
most of the literature, little attention is given to the description of these strategies, which
are hopefully applied to assess and monitor the quality of the collected data before the
chemometric model construction.

3.2. Pre-Processing

An exception is the description of data pre-processing, which is generally reported
as a winning strategy to remove irrelevant sources of variation, such as instrumental and
experimental artifacts due to the employed analytical method. However, there are still
authors who miss the preprocessing description, such as Kamboj et al. (2020) [57], or just
mention an automatic strategy applied by the software. Different preprocessing strategies
are available; in-depth information is given by Engel et al. [123]. Every specific dataset
has specific features; thus, the definition of a rule of thumb to define which preprocessing
strategy is more appropriate is impossible.

In any case, the spectroscopic data requires a pre-processing step before the statistical
data analysis to remove or minimize variability in the spectra not related to the sample’s
characteristics. It will be clear that pre-processing cannot generate information, but only
help to extract proper information already existing in the data. Moreover, incorrect use of
pre-processing may cause a loss of information. Pre-treatment should be well calibrated to
minimize the effects of “noise” such as optical phenomena, effects of temperature changes,
light scattering, baseline shift or trends, and so on.

Most of the revised works, especially the ones dealing with infrared data, apply
different preprocessing strategies, such as smoothing, standard normal variate (SNV) or
multiplicative scatter correction (MSC), and derivatives alone or in combination [87,99,124].
Later on, they select the most appropriate one to solve the specific adulteration issue based
on the performance criteria obtained in the developed models. However, it is important
not to apply all of them by default without looking back at their effect on the data. Indeed,
it should be considered that an inappropriate transformation can cause alterations to data
quality, driving relevant consequences on model outcomes. A must-read tutorial concerning
pre-processing has been written by Oliveri et al. [125].

Between the papers explored, some different approaches have been found in NIR
pre-processing. Ejeahalaka [62] performed a comparison between two different approaches:
first, no pre-processing at all, and second, extended multiplicative signal correction (EMSC)
on a selected part of the spectrum. In Galvan [61] some different pre-processing methods
were tested before a mean centering for all: (1) raw data, (2) Savitzky–Golay smoothing
(third-order polynomial and 21 window points), (3) standard normal variate (SNV), (4) mul-
tiplicative scatter correction (MSC), (5) first and second derivative with Savitzky–Golay
smoothing, (6) SNV plus first and second derivative, and (7) MSC plus first and second
derivative. At the end, the best performance (evaluated by RMSE of the calculated models)
was obtained by the application of the first derivative with smoothing (pre-processing 5).



Foods 2023, 12, 139 18 of 28

Wang [65] used three pre-processing steps: (1) mean centering, (2) first, and (3) second-
order Savitzky–Golay derivative, selecting at the end the first-order derivative as the better
pre-processing method.

Kamboj [57] did not indicate which pre-processing was used. Not mentioning the
pre-processing step should be avoided because this step implies some assumptions on
the nature of the data set variability, and it is crucial that these assumptions are well
understood and appropriate. An innovative approach was reported by Di Donato [63] in a
study on donkey milk. NIR data were used to identify and quantify cow adulteration in
expensive donkey milk. In this case, the pre-processing was done by variable sorting for
normalization (VSN), a recent scatter correction technique [126] that estimates the weight
of wavelengths that are or are not related to scattering effects instead of that related to the
response of interest. Not-related wavelengths were not considered in the successive step.
In this way, it is possible to obtain an improvement in signal and model interpretation.

Karunathilaka [60] in an application of Raman spectroscopy cites different spectral
pre-processing to remove fluorescence and laser fluctuations, including Savitzky–Golay
first and second derivatives and standard normal variate (SNV), choosing at the end the
second derivative.

3.3. Data Reduction

The analysis of spectroscopic results is a typical example in which the dimension of
the analytical part of the dataset (n columns) is much higher than the number of samples
(m rows), normally thousands of columns vs. tens or hundreds of rows. So, to avoid
elaboration problems and to select just the variables relevant for the statistical analysis, a
variable selection step is often evaluated. Reviewing in detail all the possible algorithms is
out of scope, considering their relevant number; thus, here we only report the ones used
in the evaluated papers. Between them, just a few used a data reduction algorithm. For
example, Chen [67] on NIRS data used an extension of the ReliefF filter algorithm [74].
ReliefF filter works on multiple classes, building a weight vector that indicates for each
feature (wavelengths in the NIRS case) how important it is to explain the differences
between samples of different classes. Wang [65] instead used just an observation of the first
two PCA loadings as the criterion to understand relevant wavelengths, but it was unclear
if just the relevant wavelengths in the subsequent classification step were used.

3.4. Use of Robust Validation Procedures

Before detailing the possible validation procedures, it is essential to consider the quality
of the calibration. Taking for granted that the data representativeness and numerosity must
be guaranteed according to the defined purpose, it is relevant not to overfit or underfit the
model calibration.

Model validation is frequently addressed by iterative validation procedures, such
as cross-validation. In the considered papers, the most used cross-validation strategy
is leave-one-out, to whatever degree it should be avoided for its over-optimistic results,
especially in the case of exhaustive sampling procedures [13,75,83]. Indeed, it means
that during the iterative recalculation of the model just one sample at a time is removed;
this way the robustness of the model is poorly investigated. None of the work internally
validates models with other iterative procedures such as Monte Carlo, Jackknife, holdout,
or bootstrapping.

The use of internal validation is often justified when a low number of samples is at
disposal. In these situations, it can be unaffordable to exclude 30–40% of the collected data
to be used as a test set. Westad and Marini [127] suggest this strategy when the number of
samples is smaller than 40.

Moreover, the internal validation procedures are fundamental insights to study
the model stability, identify the main sources of variation, and improve model perfor-
mance, i.e., by setting model dimensionality [128]. This was the approach followed by
Ejeahalaka et al. [76] for both SIMCA and PLS model development. It is important to notice
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that the correct model dimensionality is fundamental for predicting the test set; if the model
dimensionality is incorrect, the performance criteria/figure of merit may not be a good
estimate of future samples, as reported by Westad and Marini [127]. For instance, the
results obtained from internal validation give insights about model overfitting due to the
selection of a huge number of components/variables, which means fitting too much of the
data so that also the measurement noise is interpreted as a relevant effect.

Then, it is the time to use robust, mandatory validation procedures in order to guaran-
tee reliable and reproducible results. Usually, the available samples are divided into two
subsets: a training (or calibration) set to be used for building the model, and a test set used
to evaluate its validity [20] in terms of quality and generalization ability [129]. The division
should guarantee that the calibration set covers the whole variability domain to obtain
reliable results. The dataset split could be performed arbitrarily—according to the acquired
knowledge of the data, randomly, or designed by sampling strategies—such as the Kennard
and Stone algorithm, Duplex, D-optimality criterion, and K-means or Kohonen mapping;
for more details about the differences among the strategies and their effects refer to Westad
and Marini [127].

Infrequently, the experimental structure is considered for data splitting. This was
the case for Genis et al. [92] who considered 15 concentrations of fat in the calibration
set, and 11 concentrations of fat as validation data set when developing methods for the
identification of foreign lipid types and adulteration ratio in milk. Most of the revised
papers apply random sample selection to build the test set considering from 40 to 20% of
the whole data. Among the designed sampling strategies, the Kennard and Stone algorithm
is the one mostly used. However, in many cases no information is provided for dataset
splitting, thus making the model robustness evaluation difficult.

In any case, it would be advisable to use a fully independent set of data to test the
model; for example, considering a different production batch, a different time of the year,
or a different harvesting year.

This option will represent the ideal procedure for model validation, anyway it should be
set to guarantee the samples’ diversity if possible, or at least their mutual independence [130].

If someone argues it is still not enough, we can reply as suggested by Westad and
Marini [127]: “Another way to overcome the problem of using the same criterion to select
a subset of variables and the error (i.e., cross-validation) is to divide the objects into a
calibration, a validation and a verification set, where the verification set is the ‘proof of
the pudding’”.

Each step of model development (i.e., calibration, cross-validation, and external vali-
dation) should be properly evaluated by diagnostic metrics (i.e., Figures of Merits), which
are discussed in the next session.

3.5. Performance Criteria/Figure of Merits

Before mentioning the performance criteria useful for regression evaluation, it is
important to have enough information to evaluate the quality of the collected data. In
particular specific information must be reported about the numerosity of the data, their
variability (i.e., mean, median, and standard deviation), the nature of the measure (instru-
mentation used), the removed outliers (and adopted strategy), the regression algorithm
employed (mainly PLS, OPLS, PCR, MLR, LSSVM, SWM, ANN, GLM-Lasso, and so on),
or the classification approach (mainly PLS-DA and OPLS-DA for the pure classification,
and SIMCA and DD-SIMCA for the class-modeling techniques), the characteristics of the
model development steps (calibration, internal- and external validation), the potential data
pre-treatments, and the selected components/latent variables [131]. Last but not least, the
information about the reference method employed to determine the specific compound
and the associated error, i.e., the standard error of the laboratory (SEL), or the standard
error of the test (SET), must be reported [131]. Having a clear idea of the variance covered
by the data and the error of the reference analysis would be crucial to judge the results
obtained by the regression model obtained. Indeed, the accuracy of chemometric model
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predictors depends on the repeatability of the reference methods and it combines both the
error of the reference measure and the error of the fingerprint analysis [132].

3.5.1. R2 (Coefficient of Determination) and RMSE (Root Mean Squared Error)

The main effective tests used to evaluate multivariate regression models are R2, SEP,
and the RPD. R2, the coefficient of determination, is commonly used to evaluate regression
models in every development step. It is quite relevant to compare the different coefficients
of determination obtained in calibration, cross-validation, and prediction to understand
the model stability. It would be better to evaluate the R2 adjusted, which corrects for the
number of explanatory terms in relation to the number of data points.

The coefficient of determination (R2) is, in its most general definition, computed by:

R2 = 1 − SSres

SStot
(1)

where SSres is the sum of squares of residuals for measurements yi and mean of observed
data (Ῡ) and SStot is the total sum of squares.

The R2 adjusted is:

R2
adj = 1 − n − 1

1 − k − 1
SSres

SStot
(2)

where n is the number of observations and k is the number of independent variables.
However, the evaluation of R2 alone is not exhaustive: there may be models with

high coefficient values, thus describing high data variability, but with high error, expressed
as root mean square error. To determine the reasonability of RMSE value it should be
compared to measurement errors such as reference method, reproducibility error, historical
data, and so on.

The RMSE is computed as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (3)

where n is the number of observations, yi is the predicted value and ŷ is the actual value.
If divided by the standard deviation of the experimental values it is obtained the

normalized RMSE (nRMSE), which is an unbiased measurement for model predictions.
Good error estimation was performed for the models developed by Genis [92]. They

calculated the relative error of standard deviation (RSD) and relative error of prediction
(REP) together with the limit of detection (LOD) and the limit of quantification (LOQ) in
the regression model intended for fat authenticity in milk for ultra-filtered white cheese.

The use of both criteria, R2 and RMSE, is relevant especially in cases of high range of
variability of the considered compound; in this case, it could be plausible to obtain a model
with higher R2, but accompanied by higher RMSE, if compared with a dataset with limited
range of variability. Generally speaking, “wide” calibration could be less precise, but more
dangerous is a too-narrow calibration which will be valid just for the case understudy [132].

The ratio between the SD and the RMSE is referred to as ratio percentage deviation
(RPD). It can be seen as a performance criterion like R2, even if RPD is a ratio of SD,
whereas R2 is a ratio of variance. Its calculation is present in few papers dealing with
milk adulteration [13,82,84,89,91], but its use can give an immediate insight to evaluate
the predictions as well as to compare models predicting different compounds [132]. There
are different papers that give an interpretation of model performance according to RPD
values, among them the one of Williams [133] which defines six levels of performance.
In the considered works the RPD was always quite high. Indeed, very good prediction
capabilities were reached by the MLR model for buffalo’s milk authenticity verification
developed by Gonçalves et al. [84]; the RPD was 7.9. When developing a PLS regression
on the same data it improved to 9.0, thus demonstrating the excellent performance of mid-
infrared spectroscopy to assess cow’s milk levels in buffalo’s milk. The model developed by
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Pandiselvam et al. [82] for the detection of adulteration with coconut powder also achieved
excellent performance, resulting in an RPD of 11. Excellent performances were found by
Balan et al. [13] when developing a PLS model to predict formalin in cow’s milk, reaching
an RPD above 8. Also, the RPD of the PLS models developed by Balan et al. [89] was high
(13.4), demonstrating an excellent prediction capability of sucrose in milk, thus being able
to detect sucrose addition intended to increase total solid content as well as the sweet taste.
Similarly, de Oliveira Mendes et al. [91] developed a PLS model for whey quantification in
raw milk by Raman spectroscopy obtaining an RPD of 13.9.

In any case, where RPD is not reported as a model parameter, it can be calculated
directly from the R2 such as 1/−(1 − R2).

Bellon-Maurel et al. [134] proposed to substitute RPD with a new index, RPIQ (ratio of
performance to IQ). The index is based on quartiles, thus better representing the population
distribution. They found out that, in sample sets with skewed distribution, the RPD is
not a good approach for SEP standardization according to population spread, whereas the
RPIQ index, in which standard deviation is replaced by IQ (=Q3 − Q1), better considers
the spread of the population. However, none of the works considered here applied this
figure of merit.

3.5.2. Specificity and Sensitivity, and Graphical Representations

The performance of classification models is assessed by verifying if samples belonging
to the class of interest are designated as true positives (TP) or false negatives (FN), as well
as if samples not belonging to the class of interest are labeled as false positives (FP) or
true negatives (TN) [20]. Just to recall the theory, TP defines the samples recognized to
belong to the class a priori assigned, FN are samples erroneously rejected, FP are samples
erroneously assigned to the class, and TN are samples correctly refused.

From their assignments, it is possible to calculate the sensitivity and sensibility of the
method. Sensitivity is the true positive rate (TPR), computed as TP/(TP + FN). Specificity
is the true negative rate (TNR), computed as TN/(TN + FP).

The graphical tool used to represent the performance criteria of a discriminant model
is the receiver operating characteristic (ROC) curves (Figure 3a). The plot represents a
two-axis Cartesian space, with the horizontal axis reporting FPR, and the vertical axis the
TPR. The dashed diagonal represents the performance of a random classifier. Two examples
of classifiers (green and red) are shown, representing good and scarce results, respectively.
The curves are built by connecting with a line the experimental outcomes. This tool is
useful to compare the performances of models obtained with different parameter settings,
such as the threshold value. A detailed analysis of ROC curves is discussed by Oliveri [20].

If discriminant methods can be applied only to solve multi-class situations, class
modeling can be used to address both multi-class and one-class problems.

When performing a class-modeling analysis it could be useful to evaluate the results
with a graphical representation, so Coomans’ plots (Figure 3b). In a two-class problem, the
two axes represent the distances of samples from the models of Class 1 (#) and Class 2
(star), respectively. The two dashed lines correspond to the critical acceptance levels for
each model at the defined confidence level (normally 95%). Samples of the two classes
are projected as scatter points, with coordinates indicating the relative similarity with the
two models in the four sectors defined in the plot. In sector 1 it is possible to find samples
accepted only by Class 1 (#); in sector 2 it is possible to find samples accepted only by
Class 2 (star). Both sectors include samples defined as TP for the a priori defined class.

In sector 3 are positioned samples accepted by both models; indeed, since models
for each class are independently built, class spaces may overlap. Lastly, in sector 4 it
is possible to observe samples rejected by both models, which highlights that the used
variables do not completely resolve the class space. They prevent the forced (but possibly
wrong) classification of samples that may occur in discriminant approaches [20].
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4. Methods for Rapid and On-Site Detection to Combat Milk Adulteration

The dairy industry as well as regulatory bodies are looking for simple and rapid
methods for the detection of milk adulteration [135]. Lateral flow immunoassays (LFIAs)
have been used as in situ screening tools to monitor food raw material quality as they
provide rapid results [136]. LFIAs have been developed, among other applications [137],
for the detection and quantification of mycotoxins [138], such as aflatoxin M1 [139]. LFIAs
have been also used for the detection of adulteration of milk with melamine [140]. In a
very recent study adulteration of cow’s milk with buffalo’s milk was detected by an on-site
carbon nanoparticle-based lateral flow immunoassay in 10 min, with the sensitivity of the
test being 5%, i.e., 5% adulteration of cow’s milk with buffalo’s milk, proving that this tool
is suitable for rapid detection of adulteration [135].

Another novel technology for the rapid detection of milk adulteration is DNAFoil.
It is a portable, fully self-administered, on-site DNA test that does not require the use of
expensive PCR equipment or laboratory setups to confirm the detection of milk adulteration
within a short period of time. The efficiency of the DNAFoil kit used to detect the vegetable
material in milk products (DNAFoil UniPlant) was confirmed using real-time PCR assays.
The results showed that using 24 µL of DNAFoil UniPlant master mix, a 17.5 min reaction
time allowed the detection of 10% adulteration of liquid cow’s milk by wheat flour [141].

Moreover, an electronic nose (e-nose) system is being evolved for the falsification
detection of milk and dairy products in a reliable and rapid way [142]. This technology
avoids the disadvantages of chromatography, spectrometry, and chemical methods with
high costs and long cycle times [143]. Adulteration of bovine milk with formaldehyde,
based on aldehydes and ketones, was examined by electronic nose by Mostafapour et al. [40].
In another investigation, the identification of trace amounts of detergent powder in raw
milk using a customized low-cost electronic nose was achieved [144].

5. Conclusions

An overview of the different chemometric techniques (from clustering to classifica-
tion and regression applied to several analytical data) has been presented along with
spectroscopy, chromatography, and electrochemical sensors as well as rapid and on-site
detection devices in the fight against milk adulteration and fraud. HCA is the main rep-
resentative of the clustering methods. The classification of objects in groups depending
on their characteristics expressed as results of a set of measurements is one of the applica-
tions of chemometrics. Classification methods were distinguished into “discriminant” and
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“class-modeling” techniques. The classification statistical techniques mostly employed in
the last few years for milk applications were PLS-DA as a pure classification technique and
SIMCA as a class-modeling approach. Multivariate regression is widely used to quantify
the concentration of adulterants in food matrices and was deeply described.

Finally, the steps which should be followed to develop a chemometric model to face
adulteration issues were carefully presented with the required critical discussion describing
sampling strategies, pre-processing, data reduction, and use of robust validation procedures
along with performance criteria/figure of merits.

All chemometric methods, supervised and unsupervised, had fundamental results in
order to serve the goals of each research study. It cannot be concluded which chemometric
method is the best, as each dataset is unique and different. Robustness is usually more related
to supervised methods, but unsupervised methods are also important in the field. Usually,
the availability and access to each chemometric method are the variables that influence their
specific selection. With regard to the field of milk adulteration, it is clear that, in most cases,
the simplest methods are enough to obtain good results. However, even the simplest methods
are in some cases used improperly, making the results obtained inconsistent.
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