FITEMI - Programma definitivo GIOVEDI' 6 Aprile 2017

Gio 9:00-9:30

apertura convegno

Gio 9:30-

Vitor Verdehlo- A4F Algafuel, Presidente della European Alagae Biomass Association (EABA)

10:00

titolo provvisorio "State of the art in algae commercial production in Europe"

Chairman: Alberto Brucato

Gio

10:00-Cibo Nutraceutici e Farmaci

11:00

Keynote: Mario Tredici - Università di Firenze - "Microalghe: cibo del futuro?"

Keynote: Matteo Castioni - AlghItaly SRL - "Nutraceutici da microalghe"

Chairman: Patrizia Perego

Gio

11:00pausa caffè + poster

11:40

Gio

11:40-13:00

Keynote: Tomas Morosinotto - Università di Padova-"Miglioramento genetico dei ceppi"

Chairman: Marco Bravi

Processi innovativi

IMPROVING PHOTOSYNTHETIC SOLAR ENERGY CONVERSION IN MICROALGAL CULTURES FOR

THE PRODUCTION OF BIOFUELS AND HIGH VALUE PRODUCTS

Ballottari M.

MODELLAZIONE MULTISCALA DI PROCESSI PER LA PRODUZIONE DI MICROALGHE

Bezzo F.

CHARACTERISATION AND OPTIMISATION OF MIXOTROPHY IN PHAEODACTYLUM

TRICORNUTUM

Villanova V., Fortunato A., Conte M., Obata T., Falciatore A., Le Monnier A.

Gio

13:00pranzo

14:20

Gio

14:20-Phycoremediation

16:00

Keynote: Alberto Bertucco - Universitàdi Padova - "Trattamento di effluenti liquidi"

Chairman: Pietro Carlozzi

EFFECT OF LIGHT IRRADIANCE ON CHLORELLA SOROKINIANA GROWTH AND BIOCHEMICAL COMPOSITION IN AN ULTRA-FLAT PHOTOBIOREACTORS I

Gifuni I., Olivieri G., Pollio A., Gabriele P., Marzocchella A.

NOVEL VACUUM AIR-LIFT PHOTO-BIOREACTOR FOR MICROALGAE PRODUCTION

Brucato A., Caputo G., Grisafi F., Marotta G., Francesca S.

PULSED ELECTRIC FIELDS AND HIGH PRESSURE HOMOGENIZATION ASSISTED EXTRACTION OF VALUABLE COMPOUNDS FROM MICROALGAE C. VULGARIS

<u>Pataro G., Carullo D., Demelash Abera B., Donsi F., Ferrari G.</u>

Ven 10:40-

pausa caffè + poster

11:20

Ven 11:20-

Prodotti dalle microalgae

13:00

Keynote: Giuseppe Olivieri - Università degli Studi di Napoli Federico II - "Biomaterials da microalghe"

Chairman: Roberto De Philippis

EXOPOLYSACCHARIDES OF INDUSTRIAL INTEREST FROM CYANOBACTERIA

De Philippis R., Rossi F.

EXPLOITING CHLORELLA ZOFINGIENSIS FOR THE PRODUCTION OF SECONDARY CAROTENOIDS Simionato D., Salvalaio M., Morosinotto T., La Rocca N.

PRODUZIONE DI POLIIDROSSIALCANOATI IN FOTOBIOREATTORI DI VETRO PIATTI ATTRAVERSO COLTURE DI SYNECHOCYSTIS SP. PCC6803

<u>Padovani G., Baldini M., Cinelli P., Lazzeri A., Carlozzi P.</u>

STARCH PRODUCTION BY FRESHWATER MICROALGAE IN HETEROTROPHIC DARK FERMENTATION

<u>Cicci A., Mazzelli A., Pagnanelli F., Di Caprio F., Toro L., Masciocchi B., Iaquaniello G.</u>

Ven

13:00- pranzo

14:20

Ven 14:20-

Aspetti di Modellazione e di Processo

16:00

Chairman: Antonio Marzocchella

SELECTION, CULTIVATION AND INNOVATIVE APPLICATIONS OF MICROALGAE FROM THE SCCA CULTURE COLLECTION

Malavasi V., Soru S., Concas A., Cao G.

FROM PHOTOSYNTHESIS TO WASTEWATER TREATMENT: EXPLOITATION OF GAS EXCHANGE OF AN INTEGRATED ALGAL-BACTERIA CONSORTIUM FOR BIOREMEDIATION

Sforza E., Spagni A., Bertucco A.

Pulsed Electric Fields and High Pressure Homogenization assisted extraction of valuable compounds from microalgae *C. vulgaris*

Gianpiero Pataro^{1*}, Daniele Carullo¹, Biresaw Demelash Abera¹, Francesco Donsì¹, Giovanna Ferrari^{1,2}

¹Department of Industrial Engineering, University of Salerno, Fisciano (SA), Italy

Microalgae represents a rich source of valuable compounds (pigments, proteins, carbohydrates and lipids) with potential applications in cosmetic, nutraceutical, chemical and food sectors as well as for the production of biofuels. Most of the interesting compounds from microalgae are commonly stored either in the cytoplasm or in internal organelles, protected by the rigid cell wall and plasma membrane surrounding the cell, as well the chloroplast membranes, which greatly limit the rate of mass transfer of intracellular compounds during conventional extraction processes. Moreover, conventional extraction processes are generally conducted on dry biomass and often require long extraction time as well as the usage of relatively large amounts of organic solvents. For these reasons, over the last years, the use of innovative non-conventional technologies for processing of wet biomass in order to selectively or non-selectively increase the rate of mass transfer of high-added value compounds from the intracellular space, while reducing the energy costs, the solvent consumption and shortening the treatment time, has gained a growing interest. Among these technologies, pulsed electric field (PEF) and high pressure homogenization (HPH) are considered promising non-thermal cell disintegration techniques of biological cell, able to foster, respectively, the selective and non-selective release of intracellular compounds.

In this work the influence of the main processing parameters of the PEF treatment on the permeabilisation degree and on the extractability of carbohydrates and proteins from microalgae *Chlorella Vulgaris* was investigated, and compared with the more disruptive effects of HPH treatment.

Microalgae suspensions (1.2%, w/w) provided by the University of Genova, were subjected to PEF treatments at different electric field strengths (E=10–30 kV/cm) and total specific energy input (W_T =20–100 kJ/kg), while HPH treatments were carried out at constant pressure (P=150 MPa) and at different number of passes (n_P =1-10).

Determinations of time-conductivity profile of the biosuspension as well as quantification of dry matter, particle size distribution, and SEM analysis, revealed that PEF treatments were able to induce the permeabilization of cell membranes in a manner dependent on the treatment intensity, without any production of cell debris. HPH treatment, instead, induced total disruption of algae cells leading to the formation of large amount of cell debris. Consequently, as compared to the untreated samples, extracts of PEF treated biomass showed an increase in the amount of carbohydrates (36–78 %) and proteins (2–10 %) released into the supernatant from inside the algae cells, which were 1.3 and 7.5 fold lower than that detected for the HPH treated samples.

Results of this preliminary work demonstrated the different impact of PEF and HPH technologies on the efficiency of cell permeabilisation and extraction of valuable compounds from algae cells, which make them suitable for the integration in a multi-stage biorefinery, where PEF should represent the first disintegration step, while HPH should be placed at the end the cascade of operations.

²ProdAlScarl - University of Salerno, Fisciano (SA), Italy