

Synthesis of Indole-Fused 1,4-Diazepinones via Photoredox-Catalyzed Cascade Cyclization Reaction

S. Meraviglia,^a V. Pirovano,^a E. Brambilla,^a G. Abbiati^a

^aDipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini" Università degli Studi di Milano, 20133 Milan, Italy e-mail: silvia.meraviglia@unimi.it

Introduction

Indole-fused 1,4-diazepinones are an important class of biologically active molecules¹. Their synthesis has recently been reported starting from o-indoloanilines under different reaction conditions²:

Our goal

Photoredox catalyzed synthesis of complex [1,4] diazepino[1,7-a] indol-6(7H)-ones by a cascade radical addition on C–C double bond followed by intramolecular cyclization.

Screening of the reaction conditions

Entry	PC (mol%) Base Solvent		Solvent	Yield [%]	3aa/ 3aa'
1	$Ru(bpy)_{3}(PF_{6})_{2}(1)$	2,6-lutidine	CH ₃ CN	_	n.d.
2	Eosin Y (1)	2,6-lutidine	CH ₃ CN	25	n.d.
3	Ir(ppy) ₃ (5)	2,6-lutidine	CH ₃ CN	91	1.3:1
4	Ir(ppy) ₃ (5)	$Et_{3}N$	CH ₃ CN	78	1.3:1
5	Ir(ppy) ₃ (5)	DIPEA	CH ₃ CN	-	n.d.
6	Ir(ppy) ₃ (5)	K_2CO_3	CH ₃ CN	44	1:1.3
7	Ir(ppy) ₃ (5)	Na_2HPO_4	CH ₃ CN	29	1:1.2
8	Ir(ppy) ₃ (5)	2,6-lutidine	1,2-DCE	61	4:1
9	Ir(ppy) ₃ (5)	2,6-lutidine	DMF	33	3.2:1
10	Ir(ppy) ₃ (1)	2,6-lutidine	CH ₃ CN	88	1.3:1
11 ^{a)}	Ir(ppy)3 (1)	2,6-lutidine	CH ₃ CN	-	n.d.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), photocatalyst (1-5 mol%), base (2.0 equiv.) in CH_3CN (2 ml, 0.1 M) at rt for 20 h under 40 W blue led irradiation ($\lambda max = 440 \text{ nm}$). a) Reaction conducted in the dark

The structure of **3aa** (a) and **3aa'** (b) characterized by the presence of a center of axial chirality on the indole N-C(aryl) axis was confirmed by X-Ray analysis.

Scope of the reaction

$$R^{1}$$
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{7

Variations on Aroyl chloride

<u>^</u>	R		Yield (%)	3/3'
₽R	Н	3ab/ab'	99	1:1
	4-OMe	3ac/ac'	90	1:1
	4-F	3ad/ad'	99	1:1.7
	4-Br	3ae/ae'	63	1.7:1
	2-Me	3af/af'	75	1:1
	2-CI	3ag/ag'	62	1:1.4
	3-Me	3ah/ah'	65	1:1.4
	3-CI	3ai/ai'	64	1.5:1

 $R^2 = H$

	R		Yield (%)	3/3'
-R	4-Me	3aj/aj'	92	1:2.5
	4-OMe	3ak/ak'	99	1:2.5
	4-F	3al/al'	99	1:1.4
	2-Me	3am/am	78	1:1.7
	3-Me	3an/an'	57	1:2.5

Other variations

3bf/bf', 82%, (1:1)

Me ^O ✓ p-Tol

3bg, 72%

Me O p-Tol

COAr

Variations on Indole scaffold

R ¹	R^2		Yield (%)	3/3'
5-OMe	Me	3ar/ar'	88	1:1.3
5-OMe	Н	3as/as'	99	1:2.5
5-F	Н	3at/at'	62	1:3.3
6-OMe	Н	3au/au'	51	1:3.3
6-CF ₃	Н	3av/av'	90	1:2.5

3bh, Ar = 4-OMe-C₆H₄, 53%, (>20:1)

-H⁺

3aa/aa'

3bi, $Ar = 4-F-C_6H_4$, 54%, (>20:1)

Expantion of the applicability to other radicals

Acknowledgements

5a/a', 57%, (4:1)

Proposed mechanism

We acknowledge MUR-Italy (PostDoc fellowship to E.B.) for financial support. Lucia Feni and Stefano Pandini (Università degli Studi di Milano) are thanked for some mass analyses.

Conclusions

- Design of a new complex cascade reaction promoted by photoredox catalysis for the synthesis of [1,4] diazepino[1,7-a] indol-6(7H)-one derivatives starting from N-indolyl phenylacrylamides and aroyl chlorides.³
- Development of an efficient and high yielding methodology for the synthesis of indolefused 1,4-dizepinoses with mild reaction condition and wide scope.
- Extension of the protocol to pyrrole derivatives as well to other radical precursors such as Togni II reagent and bromoacetonitrile.

References

1) a. Zheng et al. Bioorg. Med. Chem. Lett. 2011, **21**, 2925–2929; b. Putey et al. Eur. J. Med. Chem. 2014, **83**, 617–629; c. Lee et al. J. Med. Chem. 2019, 62, 3971-3988.

2) a. Sun et al. Adv. Synth. Catal. 2019, 361, 2916–2925; b. Sun et al. J. Org. Chem. 2019, 84, 9322–9329. 3) doi: 10.1002/adsc.202300708