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Abstract: Plasmopara viticola is one of the main challenges of working in a vineyard as it can seriously
damage plants, reducing the quality and quantity of grapes. Statistical predictions on future incidence
may be used to evaluate when and which treatments are required in order to define an efficient and
environmentally friendly management. Approaches in the literature describe mechanistic models
requiring challenging calibration in order to account for local features of the vineyard. A causal
Directed Acyclic Graph is here proposed to relate key determinants of the spread of infection within
rows of the vineyard characterized by their own microclimate. The identifiability of causal effects
about new chemical treatments in a non-randomized regime is discussed, together with the context
in which the proposed model is expected to support optimal decision-making. A Bayesian Network
based on discretized random variables was coded after quantifying the expert degree of belief about
features of the considered vineyard. The predictive distribution of incidence, given alternative
treatment decisions, was defined and calculated using the elicited network to support decision-
making on a weekly basis. The final discussion considers current limitations of the approach and
some directions for future work, such as the introduction of variables to describe the state of soil and
plants after treatment.

Keywords: causal DAG; decision of treating; Plasmopara viticola
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1. Introduction

Plasmopara viticola is the causal agent of downy mildew, the most severe disease of
grapevines [1,2]. In order to prevent and/or mitigate the disease in a vineyard, fungicide
treatments are often required, despite the presence of side effects in the environment and
the potential hazard for human health in the case of prolonged exposition [3].

Optimal decisions about weekly treatments may be based on causal models to manage
downy mildew in an eco-friendly way, often a quite challenging tasks. Plasmopara viticola’s
growth and spreading mainly depend on [4]: (i) the local value of meteorological variables,
such as temperature and humidity; (ii) the local degree of plant’s exposition to oospores; (iii)
the soil’s features around each plant; (iv) the plant’s genotype; (v) the adopted agronomic
management. Local measurements of environmental features around plants are required to
account for spatial variability, but involve high costs to equip the vineyard [5]. A causal
model has the potential to provide the best recommendation on how and when to treat
each vineyard’s row if a causally sufficient set of determinants has been considered, even
in the presence of substantial variability along time and space. These models extract
causal information from observational (non-randomized) data in order to predict the future
outcome variable under intervention; thus, in principle, costs due to extensive randomized
experimentation may be reduced together with the reduction of useless treatments defined
just on the basis of calendar days.
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An important part of the large body of literature on Plasmopara viticola is devoted to the
development of mechanistic deterministic models to predict the dynamics of
infections [6–13]. For instance, Bove et al. [14] developed a model that reproduces the
disease kinetics (number of diseased sites) based on some tuning parameters, but, as the
authors declared, many simplifications have been made, especially about cluster infections,
both for the lack of information from the literature and for the inherent complexity of
the modeling task. Chen et al. [15] compared statistical models and machine learning
algorithms to predict the incidence and severity of this pathogen using field scouting and
climate variables as inputs. The results were used to evaluate the potential reduction in the
number of fungicide treatments.

The core of our approach is a causal Directed Acyclic Graph (DAG), where nodes
refer to variables measured at the row level using field sensors [16], such as climate
related variables, the prevalence of infection and the pathogen pressure. The DAG is built
exploiting expert knowledge and, if available, field data; thus, it can be used in many cases
for answering what-if questions, e.g., if the disease incidence will be reduced under the
selected intervention.

In this work, we start by considering a standard vineyard regime where treatments
are not randomized, but assigned after the visual inspection of vineyard’s rows performed
by an expert who will also consider calendar days. Then, by assuming that raw specific
information on realized environmental and field conditions can be gathered, we define a
model to support the selection of the optimal treatment at the row level. Lastly, we consider
the possibility of estimating the performances of newly introduced treatments through the
comparison with a subset of rows under the new regime and by exploiting external sources
of information [17].

This work is organized as follows. Section 2.1 introduces the context of the study and
the considered random variables and their sample spaces, then a causal DAG is defined. In
Section 2.2, different operational regimes are hypothesized, from the basic vineyard setup
to an advanced one with sensors and field data. Then, the Average Causal Effect (ACE) is
defined. In Section 2.3, the causal DAG is exploited to obtain formulas defining direct and
indirect effects through a mediator. In Section 3.1, an alternative graphical representation
depicting potential outcomes provides another view of the identification problem in terms
of conditional exchangeability. In Section 3.2, prior distributions on model parameters are
introduced in the so-called Setup 4. Section 3.3 is devoted to the Monte Carlo algorithm
developed to simulate the future incidence under treatment, and the main results are
shown. Section 4 closes our work with the discussion of current limitations, relationships
with other models, and directions for future research to further improve the containment of
Plasmopara viticola.

2. Methods

In this section, the notation and assumptions are described before formulating our
proposal to solve the decision problem about treatments against Plasmopara viticola.

The crop season was divided into intervals of length 7 days, a value that, according
to our expert, is suited to most of the locations where Italian vineyards are located, with
i = 1, 2, . . . the index of the time intervals. Each interval is made by the first four days in
which data such as temperature and rain are collected, then the decision about treatment is
made (and eventually operated), but three more days are needed before observing the full
outcome. The experimental units are field rows of vines whose index is j = 1, 2, . . .; thus,
at time interval i row j is described by a collection of variables selected by the expert and
by a treatment variables Ci,j. The elicitation with the expert also included a partitioning
step in which sample spaces of quantitative variables and of counts were mapped to score
intervals after considering specific features pertaining to the location of the vineyard, such
as altitude, winds, daily sun exposure, and closeness to the sea. In the following list, each
variable is described with its partitioned sample space:
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• Ci,j, ΩC = {0, 1, 2}: decision variable for row j set at the end of Day 4 from the start of
current time interval i; the value 2 refers to the new treatment, 1 to the conventional
treatment, and 0 otherwise;

• Zi,j, ΩZ = {0, 1, 2, 3}: the degree of exposition of row j to oospores in the air during
the first 4 days of a time interval i, with 0 the best class and 3 the worst;

• Li,j, ΩL = {0, 1, 2, 3, 4, 5}: the average amount of oospores on leaves in the current row
j during the first 4 days of time interval i; the null value refers to the best class, while
5 to the worst;

• Xi,j, ΩX = {0, 1, 2, 3, 4, 5}: the average amount of oospores on leaves in the considered
row j during the 3 days after treatment at time i, with 0 the best class and 5 the worst;

• Hi,j, ΩH = {Low, Optimum, High}: the average local humidity at row j in the first
4 days of time interval i, before making the decision; it regulates the diffusion of
infection;

• Ti,j, ΩT = {Low, Optimum, High}: the average local temperature at row j during the
first 4 days of time interval i, before making the decision; it regulates the diffusion of
infection;

• Wi,j, ΩW = {Low, Optimum}: the climatological score for row j at time i based on the
predicted temperature and humidity for the 3 days following treatment (unknown at
the decision time); it represents climatological limitations or enhancements both on
oospores and on incidence;

• Mi,j, ΩM = {0, 0.05, 0.10, 0.25, 0.50, 0.75, 1}: the fraction of leaves already infected in
row j after the first 4 days of time interval i (prevalence);

• Yi,j, ΩY = {0, 0.05, 0.10, 0.25, 0.50, 0.75, 1}: the fraction of newly infected leaves in row
j (incidence) at the end of the time interval i, that is after 3 days from the decision
on treating.

The considered context ξ is made by rows of a vineyard in the role of experimental
units receiving fungicide treatments because our field expert stated that both evaluation and
treatment are almost always operated on rows of the vineyard. The expert also excluded
that interference among neighbor rows is strong, at least from null to medium levels
of prevalence.

2.1. A Causal DAG

The structure of the proposed causal model may be represented by a Directed Acyclic
Graph (DAG) (Figure 1), a common tool supporting probabilistic inference, decision-
making, and causal reasoning [18]. In a causal DAG (see [19] for a comprehensive account),
nodes refer to random variables and oriented edges indicate (direct) causal relationships.
It is worth noting that, in Figure 1, nodes’ variables have only index i because, implicitly,
the graph refers to a generic experimental unit; thus, index j would not add any useful
information. In this section, we simplify the notation by implicitly referencing a generic
field row.

The determinants of the predictive distribution of incidence Yi under the intervention
that sets Ci = 1 correspond to parent nodes of Yi, that is Ci, Xi, Wi. Incidence Yi is evaluated
at the end of the third day from treatment, because our expert recognized that the effect of a
chemical treatment on incidence spans for three days. An intervention such as the spreading
of a chemical substance is represented by a mutilated graph in which the intervention
variable C “loses” its links coming from parent variables H, T, M, and it is substituted by
the constant representing the intervention; thus, it is do(Ci = 1) if treated with the standard
chemical or do(Ci = 0) if untreated (also see Section 3.1 for an alternative representation
based on potential outcomes). The causal semantics of arrows in a DAG can be traced
back to an underlying Structural Causal Model (SCM) [19] (chapter 7), where deterministic
functions clearly define the role of each variable. In our context, at decision time i, the
incidence Yi in row j is defined as:
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Yi = fY(ci, xi, wi, uY,i) (1)

where fY() is a deterministic function producing a realized value of Y for each value of
UY,i, the error term, and for all other arguments represented as parent variables in the
causal DAG. It is not always needed to explicate the nature of these functions in a structural
model, in particular because our context is characterized by marginally independent error
terms (UY,i, UH,i, . . .). Each error term collects all other unconsidered exogenous causes
acting just on the endogenous node variable to which such an error term refers; therefore,
implied random variables such as Yi, Zi, and Li suffice to answer many causally relevant
questions [19].

Figure 1. Causal DAG for Plasmopara viticola infection at time interval i = 1. Random variables are
associated with nodes of the graph; arrows such as Ci −→ Yi indicate causal relationships, i.e., Ci

determines Yi. Orange-dark-grey background nodes pertain to the last 3 days within time interval i.
The white background nodes are quantified in the first 4 days of i. The yellow-light-grey node Mi+1

is the only variable in this DAG belonging to the next time interval i + 1. Dependencies on variables
in time intervals i− 1 are not shown.

In other words, the DAG in Figure 1 states that the decision Ci depends on local
temperature Ti and humidity Hi, which also affect the amount of oospores in the air Zi
and those on leaves Li just before the treatment; furthermore, temperature and humidity
combined in score W also determine the incidence Yi, whatever the amount of oospores
X acting on the leaf after making the decision about treating. The amount of oospores in
the air, Zi, partially depends on the prevalence Mi and contributes to defining the amount
of spores Li on a leaf. Lastly, we remark that the effect of Ci on incidence Yi is defined not
only by the oospore “pressure” Xi (mediated effect), but also by a direct effect of treatment
Ci on Yi, as in the case of a chemical substance with toxicity among the side effects that
reduce a plant’s vigor [20] or such as treatments planned to promote plant vigor [21].

The minimal decision space is made by just two options, no treatment Ci = 0 and
standard chemical treatment Ci = 1; nevertheless, further decisions could be added, such
as a plant vigor promoter treatment Ci = 2 or an alternative fungicide molecule Ci = 3 or
both of them at once as Ci = 4; see [22].

2.2. Does the Vineyard Row Need to be Treated at Time Interval i?

In a basic vineyard setting (Setup 1), after visual inspection by an expert revealing
prevalence mi,j in vineyard row j, the decision is made between treating, do(Ci,j = 1), or
doing nothing, do(Ci,j = 0): in case of doubt, calendar days are often considered, with a
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cautionary attitude that favors treating over doing nothing. In this section, the decision
made at time interval i and row j is indicated as ci,j ∈ ΩC.

A quantitative support to the decision-maker is obtained by the Bayesian prior predic-
tive distribution at time interval i:

p(yi,j | ci,j, hi,j, ti,j, mi,j) (2)

which can be elicited from field experts. A decision rule related to what has been presented
above as common practice is based on the probability:

P[Yi,j ≥ 0.25 | do(Ci,j = 0), hi,j, ti,j, mi,j] (3)

so that, if the probability value under do(Ci,j = 0) is greater than 0.8 (or another elicited
value close to 1.0), then decision do(Ci,j = 1) is considered, and if:

P[Yi,j ≤ 0.25 | do(Ci,j = 1), hi,j, ti,j, mi,j] (4)

takes large values, then the intervention do(Ci,j = 1) will be preferred; otherwise, the
intervention with chemicals will not take place, do(Ci,j = 0). If no uncertainty about the
model parameters (Conditionally Probability Tables (CPTs)) is present after elicitation,
then a Bayesian Network made by the DAG of Figure 1 and the variables described in
Section 2.1 will be sufficient to calculate the required prior predictive probability val-
ues under the two regimes of intervention with the aim of making the optimal decision.
It is worth noting that the expert might choose a threshold value of incidence smaller
or greater than 0.25, according to grape variety, vineyard location, and other features
specific to the considered farm. Similarly, different values for the probability of event
{Yi,j ≥ 0.25} might be considered by the expert, e.g., after judging the economic conse-
quences of alternative decisions.

The above approach can be refined in the case of a better-equipped vineyard (Setup 2),
where all field sensors have been installed. In this case, at decision time i, it is possible to
calculate the following probability values:

P[Yi,j ≥ ry ∩Mi+1,j ≥ rm | do(Ci,j = 0), bi,j] (5)

P[Yi,j ≥ ry ∩Mi+1,j ≥ rm | do(Ci,j = 1), bi,j] (6)

where bi,j = (hi,j, ti,j, zi,j) if oospores in the air are measured; bi,j = (hi,j, ti,j, li,j) if oospores
on leaves are quantified; bi,j = (hi,j, ti,j, mi,j) if all oospores are left unmeasured in row j due
to the failure of the equipment; ry ∈ ΩY and rm ∈ ΩM are two elicited values. Large values
in Equation (5) and small values in (6) lead to the decision of treating with chemicals.

We conjecture that the expert could have miscalibrated if training were based on the
evaluation of statistical associations between variables under a choice of treatment that
was not randomized, besides being notoriously protective for future grapes. An equally
serious limitation is present, whether Setup 1 or 2, if the data have been collected under
an observational regime to estimate the CPTs. The key point is that the distribution of
Yi,j estimated using observational data does not correspond to the required intervention
distribution do(Ci,j = c), with c ∈ ΩC, because confounding bias is in operation:

P[Yi,j = ry | Ci,j = c] 6= P[Yi,j = ry | do(Ci,j = c)] (7)

with ry ∈ ΩY. Using the back-door criterion ([19], pp. 79–81), a set of variables can be
tested to check if they are sufficient for identifying the intervention distribution of Yi,j given
do(Ci,j = c). In particular, from Figure 1, making index j explicit, it is possible to check
whether the two back-door conditions for the set of random variables Bi,j = {Mi,j, Ti,j, Hi,j}
representing, respectively, prevalence, temperature, and humidity are satisfied: (i) set Bi,j
does not contain descents of Ci,j; (ii) Bi,j contains variables (nodes) that block every path



Mathematics 2022, 10, 4326 6 of 14

from Ci,j and Yi,j with a directed edge pointing into Ci,j. It follows that the intervention
distribution may be obtained by back-door adjustment using observational distributions:

p(yi,j | do(Ci,j = c)) = ∑
b∈ΩB

p(yi,j | Ci,j = c, hi,j, ti,j, mi,j)p(hi,j)p(ti,j)p(mi,j) (8)

where b = (hi,j, ti,j, mi,j) and ΩB = ΩH × ΩT × ΩM; this equation requires that the
gathered data contain many tuples of values for each time–row pair:

{(yi,j, ci,j, hi,j, ti,j, mi,j)k=1,2,...,K : ∀(i, j), K � 0} (9)

with K a large value at each (i, j).
Equation (8) can be rewritten as:

p(yi,j | do(Ci,j = c)) = ∑
b∈ΩB

p(yi,j, c, hi,j, ti,j, mi,j)

p(c | hi,j, ti,j, mi,j)
(10)

where the denominator, often called the propensity score ([19,23] (p. 348)), represents
the probability of assigning treatment c ∈ ΩC given the set Bi,j of back-door sufficient
covariates. In Equation (10), the denominator must not be null, a condition called positivity:

P[Ci,j = c | hi,j, ti,j, mi,j] > 0 ∀(c, hi,j, ti,j, mi,j) (11)

where p(hi,j, ti,j, mi,j) > 0 for all pairs (i, j).
Positivity, as well as the condition in (9) are likely to fail because common field

management associates some tuples of values in (10) with the application of a chemical
treatment with certainty, that is:

P[Ci,j = c | hi,j, ti,j, mi,j] = 1 (12)

for a decision c 6= 0 in ΩC and for some tuples (hi,j, ti,j, mi,j) in ΩB known to highly boost
Plasmopara viticola: all other decisions are excluded by the agronomist. We note in passing
that inverse probability weighting [19] (p. 94) is not applicable when positivity fails.

A natural solution to guarantee positivity is the randomized assignment of a small
number of rows to the no treatment decision, Ci,j = 0. While some loss of grapes is expected
due to a suboptimal decision, these costs are likely to be compensated by future optimal
decisions based on high-quality data taken in the same vineyard after the learning step.
Another possibility is to restrict the considered context to situations in which uncertainty is
present; thus, extreme situations in which a burst of Plasmopara viticola is certain under Ci,j = 0
or in which null diffusion is certain under Ci,j = 0 are excluded from consideration: the
expert might state a reasonable restriction to the collection of tuples to consider, Equation (9),
before discretization.

After collecting enough data, the Average Causal Effect (ACE):

E[Yi,j|do(Ci,j = 1)]−E[Yi,j|do(Ci,j = 0)] (13)

is estimated after adjusting for back-door sufficient covariates [19] (p. 78):

E[Yi,j|do(Ci,j = c)] = ∑
b∈ΩB

E[Yi,j|Ci,j = c, Hi,j = h, Ti,j = t, Mi,j = m]·

·P[Hi,j = h, Ti,j = t, Mi,j = m]

(14)

where b = (h, t, m) ∈ ΩH ×ΩT ×ΩM ranges over every triple of values taken by three
conditioning variables.
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The ACE is suitable for comparing a newly formulated treatment with the current one
in use, i.e., the one associated with the larger, but negative value deserves consideration for
future use.

We close this section by emphasizing the importance of defining treatments in a unique
and unequivocal way (chemical formula, concentration, carrier composition, tools and
rules to apply the treatment, etc.). In our setup, this assumption holds because rows are
locally evaluated in a specific vineyard of a given region, for example a Tuscan vineyard
in Italy. In other terms, for a considered context, we are sure that each treatment, such as
Integrated Pest Management (IPM), corresponds to one unique and clear specification. This
point is not obvious at all because, for example, in other Italian regions, a similar label may
correspond to different versions of the original treatment because of different regulations.

2.3. Mediation Analysis

In Figure 1, a directed path originated from C reaches Y passing through X; therefore,
C has a direct effect on incidence Y, but also an indirect effect due to X. Following [19]
(p. 130 and chapter 12) and [24], the total effect TE of C on incidence Y may be decomposed
into Direct Effects (DEs) and Indirect Effects (IEs); thus, by leaving indices i, j implicit and
using do(ck) to denote do(C = k), the decomposition becomes:

E[Y|do(c1)]−E[Y|do(c0)]︸ ︷︷ ︸
TE(Y) f rom C=0 to C=1

=

∑
x

∑
w
{E[Y | c1, x, w]−E[Y | c0, x, w]}∑

h,t
p(w | h, t)p(h)p(t)∑

m
p(x | c0, h, t, m, w)p(m)︸ ︷︷ ︸

DE(Y) f rom C=0 to C=1

−∑
x

∑
w
E[Y | c1, x, w] ∑

h,t,m
{p(x | c0, h, t, m, w)− p(x | c1, h, t, m, w)}p(w | h, t)p(h)p(t)p(m)︸ ︷︷ ︸

IE(Y) f rom C=1 to C=0

(15)

where a set of back-door sufficient variables removes confounding also from the C to X
and from the X to Y, not only from the C to Y effect; in Equation (15), each summation is
performed on the sample spaces of the variable it refers to, e.g., x ∈ ΩX .

In other words, the values of the above equations depend on scenarios made by the
distributions of conditioning variables and expectations. If the Total Effect (TE) is large and
negative, then it makes sense to choose treatment c1. The TE is large and negative if: (i) the
DE is large and negative because it is made by the difference of expectations, which are
often negative due to a large protective effect of c1 with respect to c0 for the largest fraction
of values of x, w, h, t, m; (ii) the IE is large and negative because the expected value of Y
given c1 will be small and positive; furthermore, the difference of the probability values
at x will be often positive because c0 should lead to large positive values of x, while c1 to
small values; it follows that the result of the sum is large and positive, but the minus sign
will produce a negative addend.

3. Results

In this section, first, the relationship between SCM and potential outcomes is intro-
duced in order to mention an alternative way to check for the identifiability of causal effects.
Then, the elicited CPTs are defined under Setup 2, where uncertainty is present.

3.1. Potential Outcomes and SWIGs

SCM is not the only approach addressing causal questions. Potential outcomes play a
primary role in other approaches to causal modeling, such as the Rubin causal model [23].
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The structural interpretation of the potential outcome Yc(u) is provided by the quality
Yc(u) = YMc(u), where YMc(u) is the unique solution for Y under realized values of U in
the submodel Mc obtained by deleting all arrow entering into C and assigning C = c.

Confounding can be faced from the standpoint of potential outcomes by judging if
(conditional) exchangeability is in operation. Exchangeability is often referred to as the
condition in which we may swap the assignment of treated and untreated units, here
rows, without observing a relevant change in the distribution of Y under do(Ci,j = c) [19]
(see p. 196 for the relationship with SCMs). In other terms, rows do not differ for all the
most-important variables defining the response Y, but for C. In our context, exchangeability
does not hold by design, since the treatment is not randomized, but it is reasonable to
assume that conditional exchangeability is in force; thus, exchangeability holds within each
stratum made by triples of values (h, t, m):

Yc ⊥⊥ C | H, T, M

for each possible triple (h, t, m).
Single World Intervention Graphs [25] (SWIGs) are graphical tools suited to check if

conditional exchangeability holds for potential outcomes given a set of covariates. At time
interval i for row j (index j omitted hereunder and in the graph), the treatment variable
is substituted by random Ci and fixed ck components, with ck ∈ ΩC; thus, two distinct
nodes are introduced into the DAG to substitute the original intervention node. Every
descent of treatment variable C is labeled by the corresponding treatment operated on
C, here ck, while Ci has the value naturally defined before intervention (Figure 2). The
resulting SWIG shows that conditional exchangeability holds:

Yi(ck) ⊥⊥ Ci | Hi, Ti, Mi

since H, T, and M block all back-door paths from the random variable Ci to Yi(ck), whatever
the selected treatment ck ∈ ΩC: the causal effect is identifiable.

Figure 2. SWIG for Plasmopara viticola infection at time interval i. The original treatment variable C is
split into random Ci (half circle left) and fixed ck (half circle right, smaller) component nodes. Here,
variables measured in row j (index not shown) at time interval i are included in the DAG, with the
exception of Mi+1, which belongs to time interval i + 1.



Mathematics 2022, 10, 4326 9 of 14

We note in passing that the extension of exchangeability to rows belonging to different
vineyards is likely to require further variables, such as plant genotypes and soil conditions,
to describe heterogeneity in a larger context.

3.2. Uncertainty about Model Parameters: A Prior Predictive Approach

According to our expert, a plausible context of many vineyards in Italy is made by
technologists able to state their degree of belief about the CPTs together with the inherent
uncertainty (Setup 3), at least after some simple training in the elicitation exercise. A new
generation of low-cost field sensors is expected soon, so Setup 2 (Section 2.2) extended to
assimilate field data (Setup 4) could become widely adopted soon.

In this section, we consider Setup 3 with parameter uncertainty handled by eliciting
Bayesian prior distributions; in particular, vectors of model parameters at each node were
assumed to be marginally independent. Given a random variable in the DAG, e.g., Zi, we
indicate as pa(Zi) the vector of parent variables, with pa(zi)s a configuration belonging
to the Cartesian product of sample spaces taken from parents. Elements of the CPT are
indicated by thetas:

P[Zi,j = r | (hi,j, ti,j, mi,j)s] = θZ:i,r,s

so that θZ:i,s = (θZ:i,0,s, θZ:i,1,s, . . .) is a vector representing the probability values for each
possible (discrete) value taken by Z:

(Zi | pa(z)s) ∼
3

∑
r=0

θZ:i,r,s I(r)(z)

with ∑3
r=0 θZ:i,r,s = 1 for each s. Parameter uncertainty was assumed to be well represented

by a Dirichlet prior distribution:

θZ:i,s ∼ Dirichlet(αZ:i,s)

where αZ:i,s = (αZ:i,0,s, αZ:i,1,s, αZ:i,2,s, αZ:i,3,s) is the vector of hyperparameters. In the
elicitation of prior distributions, our strategy was to obtain from the expert the vector of
expected values:

(E[θZ:i,0,s], . . . , E[θZ:i,3,s])

for the CPT under consideration. Then, quantiles 0.1 and 0.9 were elicited for each element
of vector (θZ:i,0,s, . . . , θZ:i,3,s). The candidate value for the vector of hyperparameters was
calculated by multiplying the expected values by a positive constant ψZ:i,s describing the
concentration, that is:

αZ:i,s = ψZ:i,s · (E[θZ:i,0,s], . . . , E[θZ:i,3,s]) (16)

and theoretical quantiles calculated using αZ:i,s were compared with those elicited from the
expert. A few iterations of revision involving the refinement of expectations, concentration,
and quantiles generally solved initial small deviations from a fully coherent elicitation.

At the end of the elicitation, a collection of vectors {αX :i,s : ∀(i, s)}was defined for each
random variable X in the considered DAG. Depending on values taken by parents pa(Xi)s,
e.g., row not treated, the amount of uncertainty in prior distributions was not constant.
Another belief reflected in the prior distributions pertains to environmental conditions:
the more favorable conditions for the pathogen and more leaves already diseased are
present, the higher the probability of obtaining large values of Y. In all the elicitations with
temperature and humidity far from extreme values, the treatment do(C = 1) was elicited
as less efficient than treatment do(C = 2) on Y, since the latter hypothetically represents a
new and more powerful agronomic strategy, but with higher uncertainty than the first.
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3.3. Monte Carlo Estimate of Future Incidence

In this section, we consider a number of scenarios defined by temperature, humidity,
and prevalence, (h, t, m) ∈ ΩB, and for each configuration, the distribution of incidence
Y is plotted with (c1) and (c2) and without (c0) treatment. The notation is a bit simplified
below by omitting the indication of the time interval and row; thus, the probability of
incidence in row j at the end of time interval i is:

P[Y = ry | ck, h, t, m] =

= ∑
x,l,w,z

P[Y = ry | ck, x, w] · P[x | ck, l, w] · P[l | z, t, h] · P[w | t, h] · P[z | h, t, m] (17)

for each ry ∈ ΩY. The algorithm (1) listed below produces a (plain) Monte Carlo estimate
of the above-mentioned probabilities given the specified conditioning information. Due to
the presence of uncertainty in this setup, the parameters defining the CPTs were sampled
from prior distributions before sampling the variables of the DAG.

Algorithm 1: Monte Carlo estimate of incidence given information from the
current time interval at the end of 3 days after treatment.

Data: Conditioning values ΩS = {bs : bs = (ck, h, t, m)s, s = 1, 2, . . . , nS} for ns
different configurations; number of iterations nR ≥ 10000.

Result: Estimated probability distribution of Y given each configuration bs.

for bs ∈ ΩS do
for r ∈ {1, 2, . . . , nR} do

θZ:i,s,r ∼ Dirichlet(αZ:i,s);
sample zr using θZ:i,s,r;
θL:i,s,r ∼ Dirichlet(αL:i,s);
sample lr given zr using θL:i,s,r;
θW:i,s,r ∼ Dirichlet(αW :i,s));
sample wr using θW:i,s,r;
θX:i,s,r ∼ Dirichlet(αX :i,s));
sample xr given lr, wr using θX:i,s,r;
θY:i,s,r ∼ Dirichlet(αY :i,s));
sample yr given xr, wr using θY:i,s,r;

end
end

We ran a simulation with nS = 12 and nR = 10,000, where the collection Ωs was
defined by the Cartesian product of {c0, c1, c2}, temperature and humidity “favorable” vs.
“not favorable”, and prevalence M taking values {0.10, 0.50}, i.e., extreme scenarios were
considered. The values of M were chosen considering that, under an observed prevalence
below 0.10, farmers do not have any reason to apply any treatment, since the risk of
infection is quite low; on the other hand, under an observed prevalence above 0.5, farmers
do not have any doubt about the application of chemical treatment, since by now, the
infection has exploded. The output is summarized by bar plots of incidence given each
conditioning value of bs (Figures 3 and 4).

The results showed that the predicted incidence as low in scenarios where temperature,
humidity, and prevalence are not favorable for the pathogen, either treating the vine row or
not, because the treatment with chemicals is not necessary (Figures 3A–C and 4D–F): the
probability distribution does not change a relevant amount.



Mathematics 2022, 10, 4326 11 of 14

Figure 3. Probability distributions of each category of incidence for every quadruple (ck, m, t, h)s:
(A) (M = 0.10, H = L, T = L, C = 0); (B) (M = 0.10, H = L, T = L, C = 1); (C) (M = 0.10,
H = L, T = L, C = 2); (D) (M = 0.50, H = O, T = O, C = 0); (E) (M = 0.50, H = O, T = O, C = 1);
(F) (M = 0.50, H = O, T = O, C = 2). In scenarios where environmental conditions are not favorable
(A–C), the probability distribution of predicted incidence is concentrated on low values, either
treating the vine rows or not. Otherwise, under favorable conditions (D–F), the probability mass
shifts to the right; thus, treatment is necessary.

On the other hand, when favorable conditions for the pathogen come true, treatment is
indeed necessary; otherwise, high levels of incidence are expected, as shown in Figure 3D–F.
In Figure 4A–C, prevalence is relatively low in the considered conditions, but meteorological
variables are favorable: thus, in these cases, chemical treatments reduce the risk of high
levels of incidence, but the distributions show higher levels of uncertainty if compared to
Figure 3D–F.
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Figure 4. Probability distributions of each category of incidence for every quadruple (ck, m, t, h)s:
(A) (M = 0.10, H = O, T = O, C = 0); (B) (M = 0.10, H = O, T = O, C = 1); (C) (M = 0.10,
H = O, T = O, C = 2); (D) (M = 0.50, H = L, T = L, C = 0); (E) M = 0.50, H = L, T = L, C = 1);
(F) (M = 0.50, H = L, T = L, C = 2). In Scenarios (A–C), where environmental conditions are
favorable and prevalence is low, the treatments reduce the probability of obtaining high levels of
incidence, but with higher uncertainty; on the other hand, in the case of high prevalence and not
favorable environmental conditions (D–F), the decision of treating is less clear-cut: the distribution of
incidence is concentrated on zero, but also on incidence values as high as 0.25 and 0.5.

4. Discussion

In this work, we defined a causal DAG with the aim of relating the most important
determinants of infection due to Plasmopara viticola in vineyards. The identifiability results
in [19,25] made it possible to describe which data should be collected to improve and
calibrate our model and to test new chemical treatments. Considerations about positivity
restricted the domain of application to the risky early stages of infection. Another reason
for such a restriction was due to interference: frequent and intense treatments in one row
might cause effects also in rows nearby; similarly, high levels of prevalence in one row
might increase the exposition in rows nearby. According to our expert, such components
of interference are expected to be negligible in the early stages of infection. Moreover, at
high levels of prevalence, the decision of treating with a chemical is almost certain, up to
the point where the treatment is useless because the vineyard is almost entirely affected by
fungi: no uncertainty about treatment is left.

The dynamic of infection in a vineyard is a rather complex phenomenon, which we
faced by assuming that time intervals can be considered one at a time, that is by neglecting
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possible cumulative effects in late time intervals due to intensive treatments at early stages:
in other terms, given C, M, H, T, what did happen in the past did not play a role in the
current time interval. This is an approximation that is likely to hold if the vineyard is
not under an intensive level of chemical treatment. Nevertheless, the proposed causal
DAG could be extended by adding variables that describe soil quality and biodiversity, an
important step to assess the sustainability of treatments. Similarly, a node describing the
average vigor of plants in a row could describe the protective or damaging effects induced
by chemical treatments in addition to those on the pathogen. The resulting decision made
in such an expanded context could be grounded on the expected values of a multi-attribute
utility function [22,26,27].

The proposed model, after careful elicitation, may support the agronomist while
making the decision to treat a row of the vineyard or not. This is a first level of improvement
with respect to the widespread adopted rule based on calendar days or to poorly calibrated
deterministic models, but it strongly depends on the quality of elicitation. This is an
important point especially when data are not collected; thus, it deserves to be formulated
in greater detail. A related issue deals with seasonal stages of the vineyard. In this
work, a model for a generic time interval i was described without emphasizing that late
phenological stages typically differ from early stages; thus, different prior distributions on
the model parameters are likely to be elicited depending on the stages for most vineyards
in Italy.

The proposed causal DAG and the implemented Bayesian Network are tools open
to improvement and extensions. Under Setup 4, the posterior distribution of the model
parameters captures not only the expert degree of belief, but also information from field
data. The development of a probabilistic graphical model without discretization of random
variables is one of the most promising and challenging extensions of this work. By exploit-
ing parameterized families of probability density functions as conditional distributions,
we expect a gain in statistical efficiency, at least if the right set of assumptions is found.
Furthermore, model granularity would improve up to a point where mechanistic models
could be considered for an integration into a refined structural causal model. In such an
expanded context, deterministic models such as [8,14] could form the root from which to
explicate the structural equations such as Equation (1).
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