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ABSTRACT: 

Background Life expectancy has increased worldwide going from 45.7 years in 1950 to 72.6 years in 2019. A 

subgroup of these, chronic diseases (i.e., health problems requiring ongoing management over a period of years 

or decades), may lead to challenges in patient care when they present concomitantly (i.e., as multimorbidity). 

Because clinical trials often exclude patients with multimorbidity and most guidelines do not provide 

recommendations for multimorbid patients, these challenges persist. Moreover, multimorbidity negatively affects 

quality of life and functional ability and accelerates mortality. Many studies have been published on the role of 

modifiable lifestyle factors on multimorbidity, i.e., of tobacco and alcohol consumption, being overweight or 

obese, having a poor diet, and a low physical activity level. To our knowledge, only one study combined them in 

a comprehensive total lifestyle score. Therefore, a gap remains regarding the role of multiple lifestyle habits 

combined on multimorbidity. 

Aim Our aim was: i) to determine the patterns of multimorbidity of selected groups of diseases or conditions, 

chosen among the major causes of death. and ii) to estimate the effect of five important modifiable lifestyle 

behaviors on the morbidity and multimorbidity of the selected diseases or conditions. 

Methods To define multimorbidity we considered all chronic causes of death among the 369 diseases, injuries, 

and impairments recorded in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) publicly 

available databases. We ranked the causes of death by decreasing yearly rates and grouped them as follows: 1) 

Cardiovascular diseases, i.e., ischemic heart disease, stroke, and hypertensive heart disease; 2) Gastrointestinal 

tract (GIT) cancers (i.e., colorectal, gastric, liver, pancreatic, and esophageal cancers) and respiratory tract (RT) 

cancers (i.e., trachea, bronchus, and lung cancers); 3) Alzheimer disease and other dementias; 4) Chronic 

obstructive pulmonary disease. These four macro-groups of chronic diseases are together responsible for an 

average cause-specific crude mortality rate of 827 deaths per thousand inhabitants. Multimorbidity was defined as 

the occurrence of diseases from two different groups.  

We used data from the Swedish National March Cohort (SNMC) to study the association of five lifestyle factors 

with multimorbidity. We developed a partial healthy lifestyle index (HLI) score for each of the lifestyle exposures 

and a total HLI score ranging from 0 (worst habits) to 20 (best habits). Four states (i.e., baseline, morbidity, 

multimorbidity, and death) were used to define a multi-state framework, and each transition was modelled 

individually with a parametric multi-state model. We estimated transition probability between states and hazard 

ratios (HRs) and 95% confidence intervals (CIs) for the exposures of interest.  

Results During an average follow-up time of 18.2 years we observed 6,458 morbidity cases, 946 transitions to 

multimorbidity, and 4,441 deaths. For values of the five partial HLI scores corresponding to healthier lifestyles 

we observed a reduction in the risk of morbidity, multimorbidity, and mortality, and we found that, e.g., over 15 

years of follow-up, a man aged 65 years at baseline with an excellent lifestyle (all partial scores 4) would have a 



 

 

33% reduction in the cumulative probability of morbidity, multimorbidity, and death combined compared to 

another man with same characteristics but a poor lifestyle (all partial scores 0-1). In case of women, the cumulative 

probability would be reduced by 29%. One unit increase in the total HLI score corresponded to 4% reduction in 

the risk of morbidity (HR [95% CI]: 0.96 [0.95-0.97]) and 6% in the risk of multimorbidity (0.94 [0.92-0.96]), 

similarly for both males and females. Having an HLI score of 16-20 halved the risk of morbidity compared to an 

HLI of 0-4 (HR [95% CI]: 0.47 [0.36-0.61] in men, and 0.46 [0.33-0.64] in women) with a stronger effect for 

women (p-value for heterogeneity 0.01), and reduced the risk of multimorbidity by two thirds (0.35 [0.20-0.63] in 

men and 0.30 [0.16-0.56] in women; p-value for heterogeneity <0.01).  

Conclusions We found that healthy lifestyle habits, summarized by the HLI score, were inversely associated with 

morbidity and multimorbidity of selected cardiovascular diseases, gastrointestinal and respiratory cancers, 

dementia, and COPD. We determined that being a never smoker or quitting smoking, having a low alcohol 

consumption, high physical activity levels, and a low BMI, and following the Mediterranean Diet 

recommendations can lower the probability of morbidity, multimorbidity and death. This effect is particularly 

evident when all the healthy lifestyles are combined.  

  



 

 

LIST OF ABBREVIATIONS: 

AIC: Akaike’s Information Criterion 

AIDS: Acquired Immune Deficiency Syndrome 

BMI: Body Mass Index 

CI: Confidence Interval 

CIF: Cumulative Incidence Function 

COPD: Chronic Obstructive Pulmonary Disease 

EPIC: European Prospective Investigation into Cancer and Nutrition  

FFQ: Food Frequency Questionnaire 

GIT: gastrointestinal tract 

HHD: Hypertensive Heart Disease 

HIV: Human Immunodeficiency Virus 

HLI: Healthy Lifestyle Index 

HR: Hazard Ratio 

ICD: International Classification of Diseases 

IHD: Ischemic Heart Disease 

IPR: National Inpatient Register 

IQR: Interquartile Range 

MDP: Mediterranean Dietary Pattern 

MET: Metabolic Equivalent of Task  

MSM: Multi-state Model 

SNMC: Swedish National March Cohort 

NPR: National Patient Register 

PIN: Personal Identity Number 

PRTax: Population Register maintained by the Swedish Tax Agency 

RT: respiratory tract 

SNAC-K: Swedish National Study on Aging and Care in Kungsholmen 

SD: Standard Deviation 

TPR: Total Population Register 

WHO: World Health Organization 
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1 Background 

1.1 Chronic diseases 

Life expectancy has steeply increased worldwide in the last decades, going from just 45.7 years in 1950 to 72.6 

years in 2019 (United Nations, Department of Economic and Social Affairs, Population Division 2020). In the 

same year, in Europe there were almost 103 million (20%) people  aged 65 or more, and those aged 80 or more 

were more than 29 million (5.7%) (European Commission 2019).  At the same time, communicable diseases have 

been replaced by non-communicable diseases as the predominant burden in health care: in 2016, non-

communicable diseases caused an estimated 40.5 million (71%) of the 56.9 million deaths worldwide, the risk of 

dying from a non-communicable disease being highest in low- and middle-income countries (Bennett et al. 2018).  

Chronic diseases are defined by the WHO as health problems requiring ongoing management over a period of 

years or decades (World Health Organization 2002), and comprise mainly non-communicable diseases. 

Cardiovascular diseases, cancer, diabetes, and chronic respiratory diseases are widely considered the main chronic 

diseases; additionally, since survival rates have improved and illness duration increased, certain mental disorders 

and disabilities, and even HIV infection have also progressively been included in the pool of chronic conditions 

(Busse et al. 2010; Deeks, Lewin, and Havlir 2013).  

Chronic diseases, when combined, create additional challenges to patient care, since clinical trials usually exclude 

patients with coexisting conditions, and therefore most guidelines do not provide recommendations for patients 

presenting with multiple diseases (Lugtenberg et al. 2011). Moreover, polypharmacy may lead to adverse events 

and poor adherence to therapy (Gnjidic et al. 2012). 

1.2 Multimorbidity 

The prevalence of multiple chronic conditions appears to be heterogeneous among studies, depending on which 

diseases are included in the definition (Marengoni et al. 2011). Nevertheless, a Scottish study based on 1,751,841 

patients (about a third of the Scottish population) found that 23.2% of the included subjects had at least two chronic 

disorders from a pool of 40 (Barnett et al. 2012). As shown in Figure 1.1, the number of multiple conditions 

increased with age.  

To address the coexistence of two or more diseases or conditions, two terms are most commonly used. The first is 

comorbidity, coined in 1970 and defined as the presence of other diseases beyond an index disease (Feinstein 

1970). It was introduced to evaluate the possible impact that additional conditions may have on the prognosis and 

therapeutic pathway of the disease of main interest. In fact, it was also used with the general meaning of 

“concomitant diseases” until the concept of multimorbidity, a term which also was already sporadically used, was 
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brought to the attention of the international scientific community to specifically define any co-occurrence of 

diseases, without prioritizing one disease in particular (van den Akker, Buntinx, and Knottnerus 1996).  

Figure 1.1 Reproduction of the figure “Number of chronic disorders by age-group” (Barnett et al. 2012) 

 

A systematic review on the use and definition of terms to describe the presence of multiple concurrent diseases 

identified a total of 461 papers including the term multimorbidity, but also 144 in which comorbidity was used 

without referring to an index disease, and then a variety of other terms: polypathology was found in 31 

publications, polymorbidity in 31, multipathology in 6, multicondition in 5, and pluripathology in 3 (Almirall and 

Fortin 2013). About half of those using the term multimorbidity did not include any definition of the word; in the 

remaining half, thirteen essentially different definitions were given, the most frequent implying more than one 

chronic or long-term diseases/conditions and the second most frequent implying more than one disease or 

conditions, with no other specification.  

Given that the traditional definition of multimorbidity proved to be inconsistent between researchers, some 

attempts have been made to identify critical issues in defining multimorbidity and to suggest a novel 

comprehensive definition. 

The authors of a systematic review published in 2016 found that, of the 163 articles included in their research, 115 

(71%) used individually constructed definitions of multimorbidity, and that all of these explicitly named in their 

definitions one or more diseases (e.g., diabetes, stroke, cancer), possibly in conjunction with risk factors (e.g., 

hypertension, osteoporosis, obesity) or symptoms (e.g., back pain, visual impairment, alcohol disorder) (Willadsen 

et al. 2016). Duration and severity of the diseases, risk factors or symptoms were also used as criteria in the 

definition of respectively 28% and 23% of the articles. Finally, the cutoff of two or more diseases to define 

multimorbidity was applied to different pools of possible conditions to choose from, ranging from 4 to 147.  
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The purpose of giving a comprehensive definition of multimorbidity was pursued by the authors of a systematic 

review published in 2013 (Le Reste et al. 2013). Again, the authors found a wide variety of definitions for 

multimorbidity, ranging from very simple (i.e., “comorbidity”) to very complex (i.e., “overall impact of the 

different diseases in an individual, taking into account their severity and other health-related attributes or non–

health-related individual attributes”). To achieve the aim of the study, the authors grouped the different criteria 

used in the literature to define multimorbidity into 11 thematic groups, which were: chronic disease, acute disease, 

biopsychosocial factors and somatic risk factors, coping strategies of the patient, burden of disease, health care 

consumption, disability, quality of life, frailty, social network, and health outcome.  

The ultimate three-sentence definition proposed by Le Reste and colleagues, which would embrace all the 

definitions reviewed, is the following:   

“Multimorbidity is defined as any combination of chronic disease with at least one other 

disease (acute or chronic) or biopsychosocial factor (associated or not) or somatic risk factor. 

Any biopsychosocial factor, any somatic risk factor, the social network, the burden of 

diseases, the health care consumption, and the patient’s coping strategies may function as 

modifiers (of the effects of multimorbidity). 

Multimorbidity may modify the health outcomes and lead to an increased disability or a 

decreased quality of life or frailty.” 

As illustrated by the authors, the first sentence reveals the actual definition of multimorbidity, the second is 

indicative of possible modifiers of the burden of multimorbidity for long-term health professionals and patients, 

and the third clarifies the outcomes of multimorbidity. 
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Table 1.1 shows an adaptation of the themes and subthemes identified by Le Reste and colleagues, used to create 

this definition. 

This work was deemed useful by the authors of an umbrella review and meta-analysis conducted in 2017 on the 

definitions and measures of multimorbidity (Johnston et al. 2019). The authors appreciated the holistic perspective 

of the definition given by Le Reste and colleagues. However, they stated that a simple disease count, or measures 

(e.g., the Charlson index, the Index of Coexistent Disease, the Cumulative Illness Rating Scale) initially developed 

as comorbidity measures but increasingly used as multimorbidity measures, are particularly appropriate for certain 

outcomes. They suggested to consider including validated weighted measures when predicting the influence of 

multimorbidity on single outcomes, as they can be more appropriate or informative, and to choose disease count 

in case of multiple outcomes or populations, or where the evidence for a different measure is weak. 
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Table 1.1 Adaptation of the table “Themes and Subthemes Identified for Multimorbidity Conditions” (Le Reste et al. 

2013) 

Themes Subthemes 

Chronic disease Chronic condition – Chronic diseases – Psychosomatic diseases/physical 

implications – Complexity characteristics of chronic disease 

Acute disease Acute conditions – Acute disease – Reaction to severe stress and adjustment 

disorders – Complexity characteristics of acute disease 

Biopsychosocial factors and somatic 

risk factors 

Somatic risk factors – Psychological risk factors – Psychosocial risk factors – 

Lifestyle – Demography: age, sex – Psychological distress – 

Sociodemographic characteristics – Aging – Patients beliefs/expectations – 

Physiology – Physiopathology 

Coping Patients’ coping strategies 

Burden of diseases Disease complication – Disease morbidity 

Health care consumption Use of carers – Treatment or medication – Management – Disease 

management – Medical procedure – Malpractice – Health care services – 

Health care – Health care policy – Medical history – Family history – 

Assessment – Prevention – Pain – Health services/setting/treatment – 

Symptoms/signs/complaints – Cost of care – Polypharmacy 

Disability Handicap – Functional impairments 

Quality of life Quality of life – Health status – Impairment – Morbidity implications 

Frailty Frailty 

Social network Social network 

Health outcomes Mortality – Indicator – Outcome – Medical research 

epidemiology/instruments/level of multimorbidity – Classification of 

morbidity statistics 

 

Moreover, Le Reste and colleagues, while recommending an ultimate definition of multimorbidity that would 

solve the problem of its heterogeneity in the literature, fail to give also an operative set of rules that researchers 

could use in order to apply this definition. Multimorbidity remains tied to the setting of the research, the clinical 

questions, and ultimately to the data available for the analysis.  

1.2.1 Beyond multimorbidity: the concept of syndemic 

In latest years, syndemic, a new concept close to that of multimorbidity, has been discussed with increased 

frequency and interest. Syndemic identifies clusters of social and health problems at a population level and its 

definition is based on: i) the presence of a cluster of at least two diseases or health conditions within a specific 

population; ii) the presence of social factors involved in the clustering; and iii) the clustering of diseases affects 

diseases interaction, leading to a higher burden of affected populations in terms of overall health (Singer et al. 

2017). The first example of syndemic involves substance abuse, violence, and AIDS, and the term was coined to 

extend the concept of epidemic to factors other than those strictly related to a population’s health (Singer 1996). 

Syndemics go beyond describing the co-occurrence of diseases and aim at grasping how and why the changes in 

the severity or progression of diseases happen.  
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1.3 Risk factors 

Among all risk factors possibly involved in the development of multimorbidity, those related to lifestyle such as 

tobacco and alcohol consumption, being overweight or obese, having a poor diet, and being physically inactive 

are responsible for many years lost due to disability and a great number of premature death (Gakidou et al. 2017). 

Based on the recommendation of the WHO, a BMI in the range 18.5-24.9 kg/m2 is considered optimal, together 

with at least 30 minutes of physical activity on most days of the week (Report of the Joint WHO/FAO expert 

consultation 2003). A more recent report by the WHO changed these recommendations to at least 150-300 minutes 

of moderate-intensity aerobic physical activity or at least 75-150 minutes of vigorous-intensity aerobic physical 

activity per week, plus muscle-strengthening activities at least twice a week (WHO Guidelines on Physical Activity 

and Sedentary Behaviour 2020). A definition of a healthy diet is not so easy to achieve, since nutrient intakes may 

vary across countries and cultures, but generally involves 55-75% of the total energy intake in carbohydrates (less 

than 10% free sugars), 15-30% in fats (less than 10% saturated fatty acids and less than 1% trans fatty acids), and 

10-15% in proteins. Cholesterol should not exceed 300g per day. The benefit of fruits and vegetables cannot be 

ascribed to a mix of nutrients, and the recommendation is to consume at least 400g per day.  

Regardless of the definition of multimorbidity, many studies have been published on the role of modifiable lifestyle 

factors on multimorbidity (Freisling et al. 2020; Dhalwani et al. 2017; Han et al. 2021; Franken et al. 2022; 

Aminisani et al. 2020; Geda, Janzen, and Pahwa 2021; Wikström et al. 2015; Mounce et al. 2018; Lee et al. 2022; 

Li et al. 2020). We found that only a few of these studies considered all five lifestyle factors (Freisling et al. 2020; 

Dhalwani et al. 2017; Han et al. 2021; Franken et al. 2022), and to our knowledge only one combined them in a 

comprehensive total lifestyle score (Freisling et al. 2020). Therefore, a gap remains regarding the role of multiple 

lifestyle habits combined on multimorbidity. 

1.4 Aims 

The aim of our study was to: i) determine the patterns of multimorbidity of specific groups of diseases or conditions 

using data from the Swedish National March Cohort (SNMC); and ii) estimate the effect of five important 

modifiable lifestyle behaviors on the incidence and multimorbidity of the selected diseases or conditions.  
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2 Methods 

2.1 Study population 

The countries of Northern Europe, and Sweden among them, have a long tradition of epidemiological research 

based on solid nation-wide registers. National registers may contain information either on the whole population or 

on a subset of it based on an experienced event or depending on certain characteristics and are established with 

the purpose of covering the entire target population. For this work, the members of an important Swedish cohort, 

the Swedish National March Cohort (SNMC) established in 1997, will be analyzed, and a virtually complete 

follow-up will be possible thanks to the linkage to the information contained in selected national registers. 

In Sweden every resident is assigned a personal identity number (PIN) that allows linkage of records to outcomes 

across registers, whilst making sure that sensible information is treated with respect of privacy laws.  The PIN was 

introduced in 1947 and consists of a concatenation of date of birth (YYMMDD or YYYYMMDD depending on 

the county), a three-digit birth number (odd for males, even for females), and a check digit added in 1967. A unique 

PIN is given to every newborn and resident staying in Sweden for at least one year. Common reasons for a PIN 

change are incorrect recording of date of birth or sex among immigrants or newborns (Ludvigsson et al. 2009).  

Figure 2.1 shows a timeline of selected registers and the SNMC, which will be described in detail in the following 

paragraphs.  

Figure 2.1 Timeline of the initiation of the Swedish National Registers used in this work, and establishment of the 

National March Cohort 

 

2.1.1 The Swedish National March Cohort 

The Swedish National March Cohort (SNMC) was established in 1997 and takes its name from a 4-day 

promotional event to raise funds in favour of the Swedish Cancer Society. The National March took place in almost 

3600 cities and towns across the whole country, was advertised on local and national media and promoted by the 

Swedish King and Queen. 

Participants were enrolled on a voluntary basis during the march with the expectation that they would be 

particularly motivated to give thoughtful answers and complete all the 36 pages of the questionnaire. Participants 

were encouraged to take home their questionnaire, and to return it in special mailboxes strategically situated in the 

stores of a large chain of supermarkets. Statistics Sweden received a total of 43,880 completed questionnaires. 

After the elimination of forms with an inconsistent or non-existent PIN, the cohort counted 43,863 members.  
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Questions were divided into various sections regarding: physical activity (the main focus of the project); diet, 

dietary supplements and alcohol consumption; anthropometrical measures; possible confounders including 

country of birth, environment during childhood and adolescence, education and employment; tobacco products 

consumption and passive smoke exposure; vaccines, medical and pharmacological history; sun and UV exposure 

and skin complexion; psychosocial history including work, life events, self-perceived health and sleep duration 

and quality; for women only, menstruation history, parity, infertility, use of contraceptives,  menopause and use 

of hormonal replacement therapy.   

While it was not possible to estimate the proportion of respondents due to the open nature of the National March, 

researchers found that the proportion of missing or inconsistent answers in the returned questionnaires was 

exceptionally low (Trolle Lagerros et al. 2016).  

2.2 Risk factors  

2.2.1 En timme för forskningen – one hour for research 

The quality of the baseline information characterizing the lifestyle of the SNMC participants widely depends also 

on the quality of the questionnaire presented to the volunteers. The questionnaire was advertised to take 

approximately one hour to complete (thus its title, “One hour for research”), and comprised 36 pages of multiple 

choice questions. Often, questions were accompanied by illustrations that had the purpose of making the 

questionnaire clearer (Figure 2.2, panel A) or just more fun for the users (Figure 2.2, panel B), as well as trivia 

that served the same entertainment purpose. 

Figure 2.2 Examples of illustrations included in the SNMC questionnaire 

A B 

 
 

Panel A: a woman taking her height and waist and hip circumference measures; panel B: a man sunbathing 

 

In this paragraph I briefly report how the questionnaire was structured, and in the following how the answers were 

later translated into valid measures that were also comparable across other studies. 
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Cigarette smoking 

The portion of the questionnaire relative to cigarette smoking comprised only two questions: the first asked “Have 

you ever smoked cigarettes daily during more than 6 months?” and had two possible answers, i.e., yes or no. The 

second asked “How much have you smoked in different ages?” and was followed by the possible combinations of 

various age classes and number of cigarettes per day in classes of width 5 (the first being 0 and the last being More 

than 30).  

Alcohol consumption 

The section regarding alcoholic beverages followed that dedicated to diet and shared a similar structure. The 

participant was asked “How often do you usually drink alcohol?” followed by six choices of beverages (i.e., 

medium strong beer, strong beer, white wine, red wine, dessert wine, and liquor), foe each of which the participant 

had to select one frequency option choosing between Never, 0-1 or 2-3 times per month, 1-2, 3-4, or 5-6 times per 

week, or 1, 2, or 3+ times per day. This question was followed by another, asking “How much do you usually 

drink on every occasion?”. In this case there were only three possible specifications, one for beer, one for wine, 

and one for liquor. Each of the three types of beverage had different quantity options depending on how the 

beverage is usually consumed, i.e., beer could be quantified as <33cL, 33-50cL, etc. (where 33cL is a size of a 

small stein or can of beer, 50cL that of a medium can or stein), wine was classified in glasses and bottles, and 

liquor as 6cL or less, 7-12cL, 13-18cL, etc. (where 6cL is the average size of a shot of liquor). 

Body composition 

Participants were asked for, amongst other body measurements, their weight, height, and waist and hip 

circumferences. The participants were invited to write their measure in numbers and also to bar boxes 

corresponding to the units, tens, and hundreds of their measure (Figure 2.2, panel A). Waist and hip circumference 

had an additional box saying, “Do not know”.  

Physical activity  

The section dedicated to physical activity included detailed questions on various kinds of activity done in free time 

as well as during the working day. The part of the questionnaire regarding leisure-time physical activity asked two 

questions, the first involving daily activities (“How much daily exercise have you got per week during the last 12 

months, e.g. by walking and/or biking to work, by weekly cleaning, gardening or the alike?”), and the second 

involving sports (“How much time per week, on average, have you devoted to athletics/exercise/sports/outdoor 

life during the last 12 months?”). The first had five time classes (i.e., Less than 1 hour, 1-2, 3-4, 5-6 or More than 

6 hours) as options, while the second had three possible intensities (light, such as taking a walk, moderate, such as 

speedy walk, jogging, or swimming, and strenuous, such as hard training and competition) each crossed with time 

classes (0, 0-1, 2, 3, 4, and 5 or more hours). Moreover, the latter had also two separate sets of time classes, one 

for summer and one for wintertime. 
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Diet 

The dietary part of the questionnaire was one of the longest, spanning over six pages. Summarizing, food items 

were grouped into sections, i.e., nonalcoholic beverages (four options), sweeteners (one option), diaries (eight 

options), and bread (four options); fats used on bread (seven options) and for cooking (ten options); cereals (eight 

options); meat (excluding poultry; eight options); poultry, fish, and eggs (seven options); potatoes and carrots (four 

options); vegetables (twelve options); fruit and berries (seven options); other (twelve options, including sweets, 

biscuits, cake, chocolate, nuts, and various dressings); and fried food (five options). The frequency of consumption 

for each single item was normally expressed in 0 and 1-3 times per month, 1-2, 3-4 and 5-6 times per week, and 

1, 2, and 3+ times per day. Only for the first section (beverages, sweeteners, diaries, and bread) the frequency was 

measured in glasses, cups, spoons, tablespoons, or slices, per day, depending on the item; the options touched all 

integers between 0 and 6, the last option being 7+. 

2.2.2 Total lifestyle score 

In order to put together a variety of lifestyle risk factors, we developed a multi-component score, taking as a 

starting point various alternatives proposed and already used on data collected within the European Prospective 

Investigation into Cancer and Nutrition (EPIC) cohort and all falling under the name of Healthy Lifestyle Index 

(HLI) (Aleksandrova et al. 2014; McKenzie et al. 2015; 2016; Naudin et al. 2019).  

Scores based on these indices, proposed for the first time in 2014, combine information on smoking, alcohol intake, 

dietary habits, BMI, and physical activity, and were already related to colorectal, breast, gastric and pancreatic 

cancers, as well as to overall cancers. The HLI score is then constructed by summing the score (either binary or in 

quintiles) for each of the five lifestyle factors and ranges from 0 (least healthy) to either 5 or 20 (most healthy) 

points. From Table 2.1 it is clear that a variety of definitions was used for each component of the HLI score, even 

for the same population (the EPIC cohort participants) and broadly for the same outcome (cancer at different sites). 

We wanted to construct a score which was as close as possible to those already used in the framework of EPIC, 

but at the same time we had to come to terms with the fact that the questionnaire filled out by the SNMC 

participants not always allowed to calculate the HLI score components as previously proposed.  

Alcohol consumption, body composition and physical activity 

Grams of alcohol consumed on average per day, BMI, and METs to quantify leisure-time physical activity had 

already been calculated and implemented into the SNMC database (Lagerros et al. 2009; Bellocco et al. 2010). 

Alcohol was estimated considering the average alcoholic content of each type of beverage crossed in the 

questionnaire. Where the size of the drink corresponded to more than one type of drink (e.g., both red and white 

wine were selected), the same size was considered for all drinks crossed by the participant.  

BMI was calculated from self-reported height and weight. 
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METs were calculated on the basis of the Compendium of physical activities: an update of activity codes and MET 

intensities (Ainsworth et al. 2000). 

To build our partial HLI scores, we considered increasing quintiles of METs and decreasing quintiles of alcohol 

and BMI. The partial HLI scores all ranged between 0 (worst lifestyle habit) and 4 (best lifestyle habit). 
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Table 2.1 HLI score components proposed in five studies on the EPIC cohort 

Modifiable 

lifestyle 

factor 

Measure unit or modality Scores and levels of exposure  Study 

Cigarette 

smoking 

Status 1 = Never or former smoker 

0 = Current smoker 

A 

 A combination of status, intensity, and time 

since cessation 

4 = Never 

3 = Ex-smokers > 10 years 

2 = Ex-smokers ≤ 10 years 

1 = Current ≤ 15 cig/day 

0 = Current > 15 cig/day 

B, C, D, E 

Alcoholic 

beverages 

Standard drink, equivalent to 12 g/day of 

alcohol 

1 = Limit of two standard drinks a day for men and 

one for women 

0 = Otherwise 

A 

 Alcohol consumption in g/day 4 = None 

3 = 0.1-4.9 

2 = 5.0-9.9 

1 = 10.0-19.9 

0 = ≥ 20 

B 

 Alcohol consumption in g/day 4 = < 6.0 

3 = 6.0-11.9 

2 = 12.0-23.9 

1 = 24.0-59.9 

0 = ≥ 60.0 

C, 

D(McKenzie 

et al. 2016; 

Naudin et al. 

2019), E 

Body 

composition 

BMI in kg/m2 or waist circumference in cm  1 = BMI <25 kg/m2 or waist circumference <80 cm 

for women and <94 cm for men 

0 = Otherwise 

A 

 BMI in kg/m2 Quintiles (lower is better) B, E 

 BMI in kg/m2 4 = < 22 

3 = 22-23.9 

2 = 24-25.9 

1 = 26-29.9  

0 = ≥ 30 

C 

 Waist-to hip ratio Quintiles (lower is better) D 

Physical 

activity 

METs 1 = METs > 57 for men and METs > 82 for women 

0 = METs ≤ 57 for men and METs ≤ 82 for women: 

0 

A 

 METs Quintiles (higher is better) B, C, D, E 

Diet Dietary quality index including eight dietary 

items (fruits, vegetables, red and processed 

meat, fiber, fish, nuts, garlic, and yogurt) 

1 = 5 to 8 points of the diet index 

0 = 0 to 4 points of the diet index 

A 

 Intakes of seven dietary factors: cereal fiber, 

folate, the ratio of polyunsaturated to 

saturated fat, fatty fish, margarine, glycemic 

load, and fruits and vegetables. Consumption 

of dietary components were grouped into 

country-specific deciles and scored from 0 to 

9 (inverse for trans-fat and glycemic load), 

with 0 being least healthy consumption. 

Quintiles (higher is better) B 

 Intakes of six dietary factors: cereal fiber, red 

and processed meat, ratio of polyunsaturated 

to saturated fat, margarine, glycemic load, 

and fruits and vegetables. For each dietary 

factor, residuals were computed in models 

with total energy intake, and grouped into 

country-specific deciles. 

Quintiles (higher is better) C, D 

A: (Aleksandrova et al. 2014), B: (McKenzie et al. 2015), C: (McKenzie et al. 2016), D: (Naudin et al. 2019), E (Botteri et al. 2022) 
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Cigarette smoking 

For the HLI component of cigarette smoking, the main issue for us was the lack of precise time of cessation for 

former smokers. What we had, instead, was the intensity of smoking in various age classes of width 10 years, with 

addition of current intensity of smoking.  

We came up with a definition similar to that proposed in (McKenzie et al. 2015; 2016; Naudin et al. 2019), 

modifying the two levels for former smokers from “quit > 10 years prior” and “quit ≤ 10 years prior” to “quit less 

recently”, i.e., including in this level who quit in any previous age class and had age above the midpoint of current 

age class, and “quit more recently”, i.e., including who quit in current age class, or quit in previous age class and 

had age below the midpoint of current age class, respectively. As an example, if a participant aged 36 years had 

quit in the age class 20-29, he/she would be classified as a “less recent” former smoker; conversely, if another 

participant aged 34 years had quit in the age class 20-29, he/she would be classified as a “more recent” former 

smoker. Respectively, these two participants would be attributed a score for cigarette smoking of 3 and 2. 

Another issue we had to deal with was the presence of missing information in one or more of the smoking-related 

variables. We decided to consider as “No” every question left unanswered, if at least one other piece of information 

was available in the same section of the questionnaire. 

Finally, we had to beware of potentially contradictory information. The smoking-related variables found in the 

questionnaire can be described as follows: 

- cigarett = a yes/no variable, answering to the question: “Have you ever smoked cigarettes daily for more 

than 6 months?”  

- cignow = intensity of smoking in classes, i.e., 0 = “No”, 1 = “1-5”, 2 = “6-10”, 3 = “11-15”, 4 = “16-20”, 

5 = “21-30”, or 6 = “>30” referring to the current intensity of smoking 

- cig1014, cig1529, cig 2029, cig3039, cig4049, cig5059, cig60 = intensity in classes, i.e., 0=“No”, 1 = “1-

5”, 2 = “6-10”, 3 = “11-15”, 4 = “16-20”, 5 = “21-30”, or 6 = “>30” referring to the intensity of smoking 

in specific age classes. Note that smoking intensity in the current age class and cignow may have different 

values 

A possible source of contradiction is in the cigarett variable, which identifies habitual ever smokers rather than 

ever smokers. Therefore, wherever possible we used the intensity variables to define the HLI score component for 

cigarette smoking, leaving cigarett to a final check for those classified as never smokers. 

The decision diagram for the attribution of the HLI component for smoking is reported in Figure 2.3. 
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Figure 2.3 Decision diagram for the HLI score component of cigarette smoking 
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Diet  

Due to the extensiveness of the food frequency section of the SNMC questionnaire, and to the great variety of 

definitions found in the literature for a healthy diet (Lassale et al. 2016), this last HLI component was the most 

challenging to define.  

Dietary intake was assessed with an 85-item validated semi-quantitative, self-administered food frequency 

questionnaire (FFQ), part of the SNMC questionnaire. Participants were asked to report how many times a day, a 

week, or a month, on average, they consumed each food item and beverage. Linking this information to the mean 

portion size for each item, it was possible to obtain an estimated quantity, in grams, consumed per day by each 

participant.  

To define the HLI score component for diet, we followed the Mediterranean Dietary Pattern (MDP) score applied 

in another study on a cohort of Swedish women (Yin et al. 2021). The score is defined, first, placing each food 

item into one among eight categories, which are: vegetables, fruits and nuts (including fruit juice), cereals, 

legumes, dairy products, fish and seafood, meat, or alcoholic beverages. We ignored the latter, since we already 

intended to include alcohol as an independent lifestyle factor. Then, a MDP score for each participant on each 

category is calculated, comparing the calorie-adjusted participant’s consumption in grams and the median 

consumption in the SNMC. If the category is thought to be beneficial (i.e., vegetables, fruits and nuts, cereals, 

legumes, and fish and seafood), each participant with an intake greater than or equal to the cohort median is 

attributed a score of 1, and 0 otherwise. Instead, if the category should be consumed in moderation (i.e., dairy 

products, meat, and alcohol), each participant with an intake greater than or equal to the cohort median is attributed 

a score of 0, and 1 otherwise. Finally, one last binary variable is added to the others, based on the monounsaturated-

to-saturated fat (M/S) ratio for each participant. Since monounsaturated fats should be consumed in greater amount 

than saturated fats, participants with values of M/S greater or equal to the median in the SNMC were attributed a 

score of 1, and 0 otherwise. Missing values were interpreted as null intakes (Michels and Willett 2009).  

In calculating the MDP score, we did not include alcohol because we already included it as a separate component 

of our total HLI score, thus obtaining a MDP score ranging from 0 (worst dietary habits) to 8 (best dietary habits). 

We then rescaled the MDP score by dividing it into quintiles, with lower MDP scores corresponding to lower 

values of our HLI partial score for diet ranging from 0 to 4. 
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2.3 Outcomes  

2.3.1 Multimorbidity definition 

To define multimorbidity we considered all chronic causes of death among the 369 diseases, injuries, and 

impairments recorded in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) (Vos et al. 2020) 

publicly available databases (Global Burden of Disease Collaborative Network. Seattle, United States: Institute 

for Health Metrics and Evaluation (IHME) 2020).  

To obtain a ranking of the diseases compatible with the SNMC, we limited our search to Sweden and to calendar 

years between 1997 and 2016. We ranked the causes of death by decreasing yearly rates and grouped them as 

follows:  

1) Cardiovascular diseases, i.e., ischemic heart disease (IHD; ICD-10 codes: I20-I25), stroke (I60-I69), and 

hypertensive heart disease (HHD; I11-I15).  

2) Gastrointestinal tract (GIT) cancers, i.e., colorectal (C18-C21), gastric (C16), liver (C22), pancreatic 

(C25), and esophageal (C15) cancers. 

3) Alzheimer’s disease and other dementias (F01-F03, G30-G31).  

4) Chronic obstructive pulmonary disease (COPD; J40-J44). 

5) Respiratory tract (RT) cancers, i.e., trachea, bronchus, and lung cancers (C33-C34).  

Subsequently we combined the two cancer groups, obtaining four macro-groups of chronic diseases (Figure 2.4) 

that are together responsible for an average cause-specific crude mortality rate of 827 deaths per thousand 

inhabitants. Multimorbidity was defined as the occurrence of diseases from two different groups. 

Figure 2.4 Four groups of diseases 

 

 

2.3.2 Assessment of the outcomes 

Outcomes were assessed by linkage of the SNMC with nationwide registers, such as the cause of death register, 

the cancer register, and the patient register (Ludvigsson et al. 2016; 2011; Barlow et al. 2009; Brooke et al. 2017). 

Linkage was performed using participants’ unique personal identifier. The used registers cover virtually all of 

Sweden, therefore providing accurate outcome assessment. 
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The Total Population Register 

The Church of Sweden started to keep local registers of parish members as early as 1686, while the Swedish state 

took advantage of them for military and taxation purposes. In 1967 all local population registers were 

computerized, and the Total Population Register (TPR) was born. In 1991, the responsibility for local records was 

moved from the parishes to the local tax offices, which continued to organize data in local units. Local data are 

then stored nationally into the Population Register (PRTax), maintained by the Swedish Tax Agency, which in 

turn converges into the TPR, maintained by Statistics Sweden. Both registers share the same variables, including 

date and country of birth, sex, area of residence, changes of citizenship, immigration, movements within Sweden, 

emigration, civil status, family composition, cohabitants, and death. The TPR is updated monthly, quarterly, and 

annually (Ludvigsson et al. 2016).  

Based on the TPR, Statistics Sweden produces every year other special registers, including the PIN register, 

which contains every PIN since inception, and PIN changes, had they occurred.  

Close to 100% of births and deaths, 95% of immigrations and 91% of emigrations (plus at most 0.5% non-reported 

emigrations) are recorded into the TPR within 30 days, this proportion increasing even more over time (Ludvigsson 

et al. 2016).  

The National Patient Register 

The Swedish National Patient Register (NPR) was initiated in 1964, when the National Board of Health and 

Welfare started to collect information about inpatients at public hospitals, and complete national coverage was 

reached in 1987, when data delivery was made mandatory. Since 2001, the NPR also includes information on 

hospital-provided outpatient care. Within the NPR, the National Inpatient Register (IPR), also called the Hospital 

Discharge Register, currently holds information about more than 99% of all somatic (including surgery) and 

psychiatric hospital discharges, with higher data quality if the diagnosis is more severe or comprises causally-

related complications, and an overall positive predictive value of diagnoses of 85% to 95% (Ludvigsson et al. 

2011).  

The Cancer Register 

The Swedish Cancer Register was founded in 1958, and since the 1980s it is organized into six regional registers. 

It is compulsory for every health care provider to report new diagnoses of cancer to the register, whether the 

diagnosis was made clinically, by morphology, by other laboratory examinations, or at autopsy. The register covers 

the whole population, with under-reporting estimated at about 3.7% in 1998. Cancer diagnoses are recorded 

according to the current version of the ICD classification of the WHO (Barlow et al. 2009).  

The Cause of Death Register 

The first attempt to keep a register of deaths and specific causes such as the plague or maternal deaths dates back 

to 1751. Across centuries the responsibility of this register was passed from the Church to various governmental 
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organizations, to Statistics Sweden in 1911 when, for the first time, all causes of death were recorded. The final 

version of the Cause of Death register was established in 1952, moving in 1994 to the maintenance of the Swedish 

National Board of Health and Welfare. The Cause of Death Register is, today, a virtually complete register of all 

causes of death that occur among residents of Sweden. All causes of death are in compliance with the current 

version of the ICD classification of the WHO (Brooke et al. 2017).  

The Prescribed Drug Register 

The Prescribed Drug Register was founded in 2005 and is maintained by the Swedish National Board of Health 

and Welfare. It contains data on all prescribed drugs dispensed at pharmacies in Sweden, including the dose and 

price of the prescribed drug, date of prescription and date of collection at the pharmacy, and the prescriber’s 

profession and practice. Despite only drugs prescribed for home therapy are included in the register, thus excluding 

therapies typically prescribed and administered in hospital such as certain antibiotics and chemotherapeutic agents, 

it has been estimated that the records in the Prescribed Drug Register accounted for 84% of the total utilization 

(Wettermark et al. 2007).  

 

2.4 Inclusion and exclusion criteria 

We excluded participants who had an incorrect national registration number, were aged less than 18 years, 

emigrated or died before time of enrollment, or immigrated (i.e., were registered) after enrollment. Moreover, we 

excluded participants with any prevalent malignant cancer (excluding non-melanoma skin cancer), any prevalent 

cardiovascular disease (ICD-10 codes: I00–I99), or any prevalent disease or condition selected for our study. 

Lastly, we excluded participants with missing information on smoking habits, alcohol consumption, BMI, physical 

activity, or diet. Follow-up started October 1st, 1997, and censoring occurred at emigration or on December 31st, 

2016, whichever came first. The study was approved by the Regional Ethical Review Board at Karolinska 

Institutet, Stockholm, Sweden and all subjects provided informed consent. 

 

2.5 Statistical methods 

For this study, baseline variables were summarized overall and in strata of the HLI score divided in tertiles. 

Continuous variables were presented as means and standard deviations (SD), skewed variables as medians and 

interquartile ranges (IQR), and categorical variables as counts and percentages. The incidence rates of IHD, stroke, 

and HHD combined, GIT and RT cancers combined, dementia, COPD, multimorbidity, and death, were reported. 

Multi-state models (Hougaard 1999) were used to model the transitions between 1) baseline and morbidity, 2) 
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baseline and death, 3) morbidity and multimorbidity, 4) morbidity and death, and 5) multimorbidity and death 

(Figure 2.5).  

Figure 2.5 Multi-state framework 

 

We used stacked graphs to represent the probability of transitions between states of our multi-state framework at 

fixed values of relevant baseline covariates, and we calculated 95% confidence intervals (CIs) using 200 bootstrap 

samples. For each transition we tested the performances of four parametric models: exponential, Weibull, Royston-

Parmar with three or four degrees of freedom. To select the best fitting model for each transition we looked for 

the lowest Akaike’s Information Criterion (AIC). We included in the models the exposures of interest together 

with age, sex, and highest completed education (categorized into compulsory school or below, high school, and 

university or higher) as possible confounders. We reported estimates from the models which included either the 

continuous total HLI score, the total HLI score in five categories (0-4, 5-9, 10-12, 13-15, 16-20), or the five 

continuous partial HLI scores. We tested the proportional hazard assumption for each model by adding interactions 

of the covariates with the logarithm of the survival time (Hosmer, Lemeshow, and May 2011) and we included as 

time dependent covariates those with statistically significant interaction terms. We reported hazard ratios (HRs) 

and 95% CIs for the exposures of interest, overall and stratified by sex. A possible heterogeneity of the estimates 

between males and females was investigated using the Cochran's Q test. In case of time-varying effects, the 

estimates were reported at 5, 10, and 15 years.  

As a sensitivity analysis, to identify the most influent factors among those composing the HLI score, we created 

five modified HLI scores ranging from 0 to 16 obtained by removing one lifestyle at a time from the calculation. 

The consequent models were also adjusted for the removed partial HLI score. 

Statistical analyses were performed with Stata version 17.0 (College Station, TX: StataCorp LLC), R version 4.2.0 

(R Core Team 2021), and SAS software version 9.4 (SAS Institute Inc). 

2.5.1 Multi-state models  

In the setting of a longitudinal study, subjects are usually followed over time until the occurrence of a particular 

event of interest. Sometimes, however, the condition of a patient may be split into more than one state representing 

the patient’s life experience. Multi-state models (MSMs) have been discussed by various authors to describe the 

development of longitudinal data in a wide selection of epidemiological situations, while including the possible 
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effect of covariates on the entire process. The following paragraphs are based on some of these publications 

(Hougaard 1999; Commenges 1999; Andersen and Keiding 2002; Meira-Machado et al. 2009).  

States can be defined on the basis of symptoms, clinical evaluations or biomarkers, while the events leading to a 

change of state are called transitions. A state is absorbing if cannot occur further transitions from it, while a state 

that is not absorbing is transient. The complexity of a MSM increases with the number of states, and depends on 

state structure, i.e., the states of the process and which transitions from state to state are possible.  

The simplest form of MSM is the K-progressive model, illustrated in Figure 2.6. In a K-progressive model the 

subject experiences states sequentially, and the transitions are oriented in one direction only, towards the absorbing 

state. An example of this model is the fertility model for a woman, where the states represent the number of 

children, e.g., none, one, two and three or more. When two transient states and an absorbing state are present, then 

the model is called a progressive three-state model, e.g., the evolution of HIV infection, with states not infected, 

infected by HIV, and full-blown AIDS. When one transient and one absorbing state are the only possibilities, e.g., 

alive and dead, this results in the degenerate case of a mortality model that is handled with survival analysis 

techniques.  

Figure 2.6 K-progressive model 

 

When studying the evolution of a disease, another simple example of MSM is the illness-death model, illustrated 

in  
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Figure 2.7. In this example, transitions are also possible between the first and the last state, and usually backwards 

from the second and the first transient states. Examples of illness-death model usually involve disease-free and 

diseased as transient states and dead as absorbing state. When the transition from the second state back to the first 

state is not possible, this is also sometimes referred to as the disability model, implying the non-reversibility of the 

disabled intermediate state. 
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Figure 2.7 Illness-death model 

 

 

Model specification 

In general, MSMs are used to model a continuous time stochastic process, i.e., a family of random variables 

{X(t), t ∈ T} with T an interval and values in a finite state space S = {1, … , K}. The observation of the process up 

to the time t, excluding t, is denoted with Ht− and called history. The history of a multi-state process refers to all 

that happened through time in [0, t), including the states visited and the times of transitions, and is summarized by 

{N(t), T1, … , TN(t), X(0), X(T1), … , X(TN(t))} where N(t) is the number of transitions experienced until time t, and 

Tm with m = 1, … , N(t) are the times of transition. The process is characterized by the state structure and the 

transition probabilities ph,j(s, t) from state h to state j, defined as  

phj(s, t) = prob(X(t) = j | X(s) = h, Ht−) 

with h, j ∈ S, s, t ∈ T and s ≤ t.  

Alternatively, transition probabilities can be replaced by the transition intensities λhj(t), which represent the 

instantaneous hazard of transitioning from state h to j at time t: 

λhj(t) = lim
∆t→0

phj(t, t + Δt)

Δt
 

with j ≠ h and considering the intensity conditionally to the history Ht−. We shall consider the limit to exist, and 

the transition intensities to be smooth and continuous. The instantaneous hazard of exiting from state h at time t 

is given by λh(t) =  ∑ λhj(t)j≠h , while that of remaining in h is assumed to be λhh(t) = −λh(t). 

Transition probabilities and intensities are collected, respectively, into a transition probabilities matrix 𝐏(s, t) and 

a transition intensities matrix 𝚲(t), both of dimensions K × K.  

Different assumptions can be added about the transition intensities and their dependence on time. A Markov model 

is obtained if we consider the future evolution of the process to be dependent only on the currently occupied state, 

i.e., λhj(t) is independent of the history Ht− for each j ≠ h. The Markov assumption, also known as loss of memory, 

is not always appropriate and should be tested, for example, by including covariates depending on the history. An 
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even stricter assumption on the transition intensities leads to a homogenous Markov model, characterized by time-

independent hazards, i.e., λhj(t) = λhj. Since the homogeneity assumption is too strict in many applications, non-

homogenous Markov models can be simplified by partitioning time into intervals and considering transition 

intensities to be piecewise constant in each interval. A more general assumption consists in letting the transitions 

depend on the time spent in the current state but not on the history Ht−, leading to semi-Markov models. 

Remembering that Tm is the time until the m-th transition, and N(t) the number of transitions until time t, the time 

spent in the present state can be expressed as t − TN(t−) and the semi-Markov assumption as λhj(t) = λhj( t −

TN(t−)). 

Assumptions on the population 

Until this moment, we considered the same model equations for all subjects. In real applications, though, every 

subject i with i = 1, … , M of the population under study is complemented with a specific set of covariates, and 

therefore generates a process {Xi(t), t ∈ T}. In order to make inference, we must assume each subject to evolve on 

the same states, and to experience time with the same meaning. Therefore t shall be the time passed from an event 

which has a particular meaning for the clinical setting, called the birth of the process. In epidemiology, t would 

often be the age of the subject, and the birth of the process would coincide with the birth of the individual; in 

clinical trials the birth of the process would often be the start of a therapy; in the case of diseases with a fast varying 

incidence, such as COVID-19 in spring 2020 or the HIV infection in the1980s, calendar time could be the best 

option. 

Even with the same process structure and time definition for the entire study population, subjects may still 

experience different transition intensities between states due to subject-specific characteristics. Even though it may 

be reasonable for subgroups of a heterogeneous population, e.g., males and females, the assumption of a 

homogenous population is very strict. Heterogeneity is usually expressed in terms of explanatory variables 𝐙𝐢 

with i = 1, … , M, and the transition intensities as λhj
i (t) = λhj(t, 𝐙𝐢). The study population is considered 

homogenous conditionally on the 𝐙𝐢 with i = 1, … , M, meaning that the subjects share the same function λhj(. , . ) 

for every h, j ∈ S. A substantial simplification to the model that leads to a much easier inference is the proportional 

hazards assumption, which asks the subject-specific intensities to be proportional to a baseline hazard, i.e., 

λhj(t, 𝐙𝐢) = λ0hj(t) ∙ f(𝐙𝐢). Moreover, the baseline hazard may remain completely unspecified as in the Cox 

proportional hazards model for survival analysis, or it may be assumed to be piecewise constant as in the Poisson 

regression models. In both cases, inference will be based on the likelihood. Sometimes the function of the 

covariates f(𝐙𝐢) is assumed to take the form of an exponential, and therefore λhj(t, 𝐙𝐢) = λ0hj ∙ exp (𝛃𝐡𝐣
′ 𝐙𝐢). 
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Assumptions on the observations 

When working with MSMs, we must come to terms with the inevitable incompleteness if observations. First, 

subjects are drawn from the target population, and may be prone to truncation. Moreover, the process is subdued 

to censoring, a problem shared by all longitudinal studies.  

Truncation is manifestation of the mechanisms that lead to the inclusion of subjects into the study, especially when 

depending on a particular condition. Left truncation happens when subjects are selected for the study only if they 

did not experience a particular event for a sufficient time and are missed otherwise. Right truncation is present 

when the subjects are included only if they experienced a particular event within a precise period of time. The 

chance of a truncation must be considered when designing the study. 

Censoring happens when we cannot observe on a continuous time, but rather on a finite number of distinct times, 

and is distinguished between three schemes: left, right, or interval censoring. Left censoring happens when we 

know that the event of interest happened before a particular time, but not exactly when, while in right censoring 

we know the state of the subject only up to a particular time. In the majority of situations, the state of a process 

Xi(t) for an individual i is observed not on a continuous interval T, but rather in a finite number of times 

ti0, ti1, … , tipi
: this is the case of interval censoring, and describes the situation in which we do not know the exact 

time of transition between two states, but we know the time intervals within which the transitions occurred. 

In order to write reasonably simple likelihoods, we should assume independence between the mechanism leading 

to incomplete observations and the process itself.   



25 

 

3 Results 

3.1 Baseline characteristics 

After applying our exclusion criteria, we included in the statistical analysis 32,442 participants without history of 

relevant diseases and with information on all five lifestyle exposures (Figure 3.1). 

Figure 3.1 Cohort selection 

 

Sex-specific demographic characteristics are reported in Table 3.1, overall and stratified by tertiles of the HLI 

score. At baseline, the included participants were aged on average 49.4 years and two-thirds were females. Around 

21% of participants had completed at most compulsory education (in line with 22% in the general Swedish 

population in 1997, according to Statistics Sweden) and 35% held a university degree, with similar education 

levels between males and females. Age and education were similar by tertiles of the HLI score. The proportion of 

current smokers was lower compared to the 19.2% in the general Swedish population in 1997, both in males (7.0%) 

and females (8.4%). The average alcohol consumption was higher in males (12 grams of ethanol per day) than in 

females (5 g/day). The median weight (24.1 kg/m2) for participants corresponded to a healthy BMI. The median 

METs indicated moderate or vigorous leisure time physical activity levels for at least half of the participants and 

the median MDP score for diet was 4, without noticeable differences between males and females.  
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Table 3.1 Selected baseline characteristics of male and female participants, overall and categorized in tertiles of the 

HLI score 

 Total HLI score in tertiles  

 HLI 0-9 HLI 10-12 HLI 13-20 Overall 

Number of participants 9,086 11,155 12,201 32,442 

Males 4,433 3,728 2,790 10,951 

Age, mean (SD) 50.3 (15.1) 50.9 (16.9) 51.6 (18.7) 50.8 (16.7) 

Higher education completed, n (%)     

Compulsory school or below 1,009 (22.8%) 828 (22.3%) 672 (24.2%) 2,509 (23.0%) 

High school 1,996 (45.2%) 1,635 (44.0%) 1,140 (41.1%) 4,771 (43.7%) 

University/PhD 1,414 (32.0%) 1,250 (33.7%) 964 (34.7%) 3,628 (33.3%) 

Cigarette smoking, n (%)      

Current 648 (14.6%) 102 (2.7%) 13 (0.5%) 763 (7.0%) 

Former 2,305 (52.0%) 1,369 (36.7%) 528 (18.9%) 4,202 (38.4%) 

Never 1,480 (33.4%) 2,257 (60.5%) 2,249 (80.6%) 5,986 (54.7%) 

Alcohol (g/day), median (IQR) 18.6 (10.2-30.9) 11.4 (4.8-20.5) 4.1 (0.6-9.6) 11.7 (4.4-22.8) 

BMI (kg/m2), median (IQR) 26.1 (24.4-28.0) 24.4 (22.9-26.0) 23.0 (21.6-24.4) 24.7 (22.9-26.6) 

Phys. act. (METs), median (IQR) 3.7 (2.3-5.3) 5.7 (4.0-7.7) 7.3 (5.6-9.4) 5.3 (3.3-7.3) 

MDP score, median (IQR) 3 (2-4) 4 (3-5) 5 (3-6) 4 (2-5) 

Females 4,653 7,427 9,411 21,491 

Age, mean (SD) 47.6 (13.4) 49.2 (14.6) 48.8 (15.9) 48.7 (14.9) 

Higher education completed, n (%)     

Compulsory school or below 887 (19.1%) 1,476 (19.9%) 1,872 (20.0%) 4,235 (19.8%) 

High school 2,149 (46.3%) 3,308 (44.6%) 3,958 (42.2%) 9,415 (43.9%) 

University/PhD 1,608 (34.6%)   2,630 (35.5%) 3,555 (37.9%) 7,793 (36.3%) 

Cigarette smoking, n (%)      

Current 1,078 (23.2%) 553 (7.5%) 179 (1.9%) 1,810 (8.4%) 

Former 2,239 (48.1%) 2,905 (39.1%) 2,235 (23.8%) 7,379 (34.3%) 

Never 1,336 (28.7%) 3,969 (53.4%) 6,997 (74.4%) 12,302 (57.2%) 

Alcohol (g/day), median (IQR) 10.7 (4.9-20.2) 6.5 (1.8-13.1) 2.6 (0.5-7.0) 5.1 (1.1-11.7) 

BMI (kg/m2), median (IQR) 26.2 (24.0-28.7) 24.2 (22.3-26.5) 22.4 (20.9-24.1) 23.7 (21.8-26.1) 

Phys. act. (METs), median (IQR) 3.3 (2.2-4.6) 4.7 (3.3-6.2) 6.4 (4.9-8.1) 5.1 (3.4-6.9) 

MDP score, median (IQR) 3 (2-4) 4 (3-5) 5 (4-6) 4 (3-5) 

HLI: Healthy Lifestyle Index; SD: Standard Deviation; IQR: Interquartile Range; BMI: Body Mass Index; MDP: 

Mediterranean Dietary Pattern; Phys. act.: physical activity. 
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3.2 Incidence rates and transition to multimorbidity 

During an average follow-up time of 18.2 years the number of incident cases of one among the four selected groups 

of diseases was 6,458, with an average age at diagnosis of 70.3 for GIT and RT cancers, 72.1 years for COPD, 

72.9 for IHD, stroke, and HHD, and 80.3 for Alzheimer’s disease and other dementias. Transition to 

multimorbidity occurred for 946 people at an average age of 79.7 years, with the highest incidence rates for those 

already diagnosed with COPD (64.8 per 1,000 person-years), and the lowest for those diagnosed with a 

cardiovascular condition first (20.1 per 1,000 person-years) (Figure 3.2). In total we observed 4,441 deaths. For 

each transition a Royston-Parmar parametric models with three degrees of freedom was selected (Figure 3.3).  

Figure 3.2 Transitions between baseline, the four diseases groups considered separately, multimorbidity, and death 

 

Between brackets: incidence rates per 1,000 person-years. IHD: ischemic heart disease; HHD: hypertensive heart disease; 

GIT: gastrointestinal tract; RT: respiratory tract; COPD: chronic obstructive pulmonary disease.  
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Figure 3.3 AIC comparison for model selection 

 

 

  

 

 

  

 

3.3 HLI score 

We found that the partial continuous HLI components performed better in terms of goodness of fit compared with 

the total HLI score, either continuous or categorical. 

A one-unit increase in the partial HLI score for smoking was associated with a decreased risk (HR [95% CI]) of 

transitioning to morbidity of 0.81 (0.79-0.83) (Table 3.2). Higher scores for smoking also decreased the risk of 

further transitioning to multimorbidity, with a stronger effect in females (for +1 unit: 0.71 [0.65-0.77]) than in 

males (0.79 [0.72-0.87]). Consuming more alcohol was associated with lower risk of morbidity (for +1 unit of the 

partial HLI score for alcohol: 1.05 [1.03-1.07]) but it was not statistically significantly associated with 

multimorbidity, and neither were physical activity and BMI. The positive effect of physical activity on morbidity 

decreased over time, with an HR (95% CI) at 5 years of 0.90 (0.86-0.94) for one unit increase in the partial HLI 

score, 0.95 (0.91-0.98) at 10 years and 0.98 (0.94-1.02) at 15 years. The BMI score was also positively associated 
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Table 3.2 Association between HLI score and the probability of transitioning from baseline to morbidity and from morbidity to multimorbidity, overall and 

stratified by sex 

 From baseline to morbidity  From morbidity to multimorbidity   

 Overall Males Females p* Overall Males Females p* 

Model HR (95% CI) HR (95% CI) HR (95% CI)  HR (95% CI) HR (95% CI) HR (95% CI)  

Continuous HLI score 

+1 unit 0.96 (0.95-0.97) 0.95 (0.94-0.96) 0.96 (0.95-0.97) 0.21 0.94 (0.92-0.96) 0.94 (0.91-0.97) 0.95 (0.92-0.98) 0.49 

HLI score in five categories 

HLI 5-9 vs. 0-4 0.72 (0.61-0.86) 0.77 (0.63-0.95) 0.63 (0.46-0.87) 0.01 0.47 (0.34-0.67) 0.48 (0.31-0.73) 0.42 (0.23-0.76) <0.01 

HLI 10-12 vs. 0-4 0.62 (0.52-0.74) 0.69 (0.56-0.85) 0.53 (0.39-0.74)  0.33 (0.23-0.46) 0.38 (0.24-0.58) 0.25 (0.14-0.45)  

HLI 13-15 vs. 0-4 0.56 (0.47-0.67) 0.59 (0.48-0.74) 0.49 (0.36-0.67)  0.36 (0.25-0.51) 0.36 (0.23-0.57) 0.31 (0.17-0.55)  

HLI 16-20 vs. 0-4 0.51 (0.42-0.61) 0.47 (0.36-0.61) 0.46 (0.33-0.64)  0.35 (0.24-0.52) 0.35 (0.20-0.63) 0.30 (0.16-0.56)  

Partial HLI score components 

Smoke (+1 unit) 0.81 (0.79-0.83) 0.80 (0.77-0.83) 0.81 (0.79-0.84) 0.31 0.74 (0.69-0.78) 0.79 (0.72-0.87) 0.71 (0.65-0.77) 0.02 

Alcohol (+1 unit) 1.05 (1.03-1.07) 1.05 (1.02-1.08) 1.05 (1.03-1.08) 0.78 0.97 (0.92-1.02) 0.97 (0.90-1.04) 0.97 (0.91-1.04) 0.92 

Phys. act. (+1 unit) 

at 5 years 

at 10 years 

at 15 years 

 

0.90 (0.86-0.94) 

0.95 (0.91-0.98) 

0.98 (0.94-1.02) 

 

0.90 (0.85-0.96) 

0.97 (0.92-1.02) 

1.00 (0.94-1.07) 

 

0.90 (0.84-0.96) 

0.94 (0.89-0.99) 

0.96 (0.91-1.02) 

 

0.93 

0.41 

0.32 

0.97 (0.93-1.02) 0.94 (0.88-1.01) 0.99 (0.93-1.06) 0.26 

BMI (+1 unit) 0.92 (0.91-0.94) 0.89 (0.87-0.92)  0.94 (0.92-0.97)  <0.01 1.03 (0.98-1.08) 1.03 (0.95-1.11) 1.03 (0.97-1.10) 0.93 

Diet (+1 unit) 1.00 (0.98-1.02) 1.01 (0.98-1.03) 1.00 (0.98-1.03) 0.83 0.96 (0.91-1.00) 0.93 (0.86-1.00) 0.98 (0.92-1.05) 0.25 

HLI: Healthy Lifestyle Index; HR: hazard ratio; CI: confidence interval; BMI: body mass index; Phys. act.: physical activity. All models are adjusted for age, sex, and 

education. *: p-value for the heterogeneity of the estimates between males and females. 
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with morbidity (for +1 unit: 0.92 [0.91-0.94]), with a stronger effect in males (0.89 [0.87-0.92]) than females (0.94 

[0.92-0.97]) (p-value for heterogeneity: 0.002). Finally, the diet score seemed to have no effect on morbidity, 

whereas a healthier diet seemed to be protective against multimorbidity (HR [95% CI] for +1 unit of the diet HLI: 

0.96 [0.91-1.00]).In general, for values of the partial HLI scores corresponding to healthier lifestyles we observed 

a reduction in the risk of morbidity (difference in probability [95% CI] for partial HLI scores 4 vs. 0-1 estimated 

at 15 years, for males: -0.02 [-0.04; 0.01], and for females: -0.07 [-0.10; -0.04]), multimorbidity (males: -0.08 [-

0.10; -0.05], females: -0.06 [-0.08; -0.04]), and mortality (males: -0.20 [-0.23; -0.16], females: -0.15 [-0.18; -0.13]) 

(Figure 3.4, Table 3.3).  

Figure 3.4 Sex-specific stacked plot of the transition probabilities for participants aged 65 at baseline by increasing 

values of all partial HLI scores 
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One unit increase in the continuous HLI score corresponded to 4% reduction in the risk of morbidity (HR [95% 

CI]: 0.96 [0.95-0.97]) and 6% in the risk of multimorbidity (0.94 [0.92-0.96]), similarly for both males and females 

(Table 3.2). Having an HLI score between 16 and 20 halved the risk of morbidity compared to an HLI between 0 

and 4 and reduced by almost two thirds the risk of multimorbidity. In both cases, the effect was slightly stronger 

for females. 

Table 3.3 Sex-specific transition probabilities for participants aged 65 at baseline, by increasing values of all partial 

HLI scores 

   Partial HLI scores 0-1 Partial HLI scores 2-3 Partial HLI scores 4 

 Time (years) Prob. (95% CI) Prob. (95% CI) Prob. (95% CI) 

Males Morbidity 5 0.14 (0.13-0.16) 0.08 (0.07-0.09) 0.05 (0.04-0.06) 

  10 0.24 (0.22-0.26) 0.17 (0.15-0.18) 0.12 (0.11-0.13) 

  15 0.25 (0.22-0.28) 0.23 (0.22-0.25) 0.19 (0.18-0.21) 

 Multimorbidity 5 0.01 (0.00-0.01) 0.00 (0.00-0.00) 0.00 (0.00-0.00) 

  10 0.04 (0.03-0.06) 0.01 (0.01-0.01) 0.00 (0.00-0.01) 

  15 0.08 (0.06-0.11) 0.02 (0.02-0.03) 0.01 (0.01-0.01) 

 Death 5 0.05 (0.05-0.06) 0.03 (0.02-0.03) 0.02 (0.02-0.03) 

  10 0.18 (0.16-0.20) 0.10 (0.09-0.11) 0.07 (0.06-0.08) 

  15 0.36 (0.32-0.39) 0.22 (0.20-0.24) 0.16 (0.14-0.18) 

 Disease-free survival 5 0.79 (0.77-0.81) 0.89 (0.88-0.90) 0.93 (0.92-0.94) 

  10 0.54 (0.51-0.57) 0.72 (0.71-0.74) 0.80 (0.79-0.82) 

  15 0.31 (0.28-0.34) 0.53 (0.5-0.55) 0.64 (0.62-0.67) 

Females Morbidity 5 0.09 (0.08-0.10) 0.05 (0.05-0.06) 0.03 (0.03-0.04) 

  10 0.17 (0.15-0.19) 0.12 (0.11-0.13) 0.08 (0.07-0.09) 

  15 0.20 (0.18-0.23) 0.18 (0.17-0.19) 0.13 (0.12-0.15) 

 Multimorbidity 5 0.01 (0.00-0.01) 0.00 (0.00-0.00) 0.00 (0.00-0.00) 

  10 0.03 (0.02-0.04) 0.01 (0.00-0.01) 0.00 (0.00-0.00) 

  15 0.07 (0.05-0.09) 0.02 (0.02-0.03) 0.01 (0.01-0.01) 

 Death 5 0.04 (0.03-0.04) 0.02 (0.02-0.02) 0.01 (0.01-0.01) 

  10 0.12 (0.10-0.13) 0.06 (0.06-0.07) 0.04 (0.04-0.05) 

  15 0.25 (0.23-0.28) 0.14 (0.13-0.16) 0.10 (0.09-0.11) 

 Disease-free survival 5 0.86 (0.04-0.85) 0.93 (0.02-0.92) 0.96 (0.01-0.95) 

  10 0.68 (0.12-0.65) 0.81 (0.06-0.80) 0.87 (0.04-0.86) 

  15 0.47 (0.25-0.44) 0.66 (0.14-0.64) 0.76 (0.10-0.74) 

HLI: Healthy Lifestyle Index; CI: confidence interval; Prob.: probability 
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3.3.1 Sensitivity analysis 

As a sensitivity analysis, we removed one component at a time from the total HLI score (Table 3.4). We found 

that smoking was the most influent factor for both morbidity and multimorbidity. Smoking was followed by 

physical activity and BMI for morbidity, while on multimorbidity physical activity had no effect, and BMI had an 

inverse effect. Increasing alcohol consumption showed a protective effect on morbidity, whereas on 

multimorbidity the effect was detrimental. Diet did not seem to be significantly influencing the effect of the HLI 

score. 

Table 3.4 Sensitivity analysis on the association between the continuous HLI score and the probability of transitioning 

from baseline to morbidity and from morbidity to multimorbidity, removing one component 

 From baseline  

to morbidity 

From morbidity  

to multimorbidity 

Model HR (95% CI) HR (95% CI) 

Reference   

+1 unit in the HLI score 0.96 (0.95-0.97) 0.94 (0.92-0.96) 

Removing smoking   

+1 unit in the modified HLI score 0.98 (0.97-0.99) 0.98 (0.96-1.01) 

+1 unit in the smoking score 0.82 (0.80-0.85) 0.73 (0.69-0.78) 

Removing alcohol   

+1 unit in the modified HLI score 0.94 (0.93-0.95) 0.95 (0.92-0.97) 

+1 unit in the alcohol score 1.02 (1.00-1.04) 0.93 (0.89-0.98) 

Removing physical activity   

+1 unit in the modified HLI score 0.96 (0.95-0.97) 0.93 (0.91-0.95) 

+1 unit in the phys. act. score 

at 5 years 

at 10 years 

at 15 years 

 

0.94 (0.92-0.96) 

0.96 (0.95-0.98) 

0.98 (0.96-1.00) 

0.99 (0.94-1.03) 

Removing BMI   

+1 unit in the modified HLI score 0.97 (0.96-0.98) 0.92 (0.90-0.94) 

+1 unit in the BMI score 0.92 (0.90-0.94) 1.05 (1.00-1.10) 

Removing diet   

+1 unit in the modified HLI score 0.95 (0.94-0.96) 0.94 (0.92-0.97) 

+1 unit in the diet score 0.99 (0.98-1.01) 0.95 (0.90-0.99) 

HLI: Healthy Lifestyle Index; HR: hazard ratio; CI: confidence interval; BMI: body mass index; phys. act.: physical activity. 

All models are adjusted for age, sex, education, and the removed partial HLI score. 
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4 Discussion 

In this large cohort of 43,865 adult participants, we found that healthy lifestyle habits, summarized by the HLI 

score, were inversely associated with morbidity and multimorbidity of cardiovascular diseases, gastrointestinal 

and respiratory cancers, dementia, and COPD. Smoking was the risk factor most strongly associated with both 

progression towards morbidity and to multimorbidity. High BMI and low levels of physical activity were 

associated with a higher risk of morbidity. High alcohol consumption was associated with a higher risk of 

multimorbidity, but a lower risk of morbidity. Adherence to the Mediterranean Dietary Pattern was associated with 

a decreased risk of multimorbidity. 

Public health implications 

Despite many studies having already been published on lifestyle and multimorbidity, the cumulative effect of five 

relevant lifestyle habits on morbidity, multimorbidity and death has remained unclear. When we stratified our 

study population by lower, medium, and higher partial HLI scores, we observed a reduction in the cumulative 

probabilities of developing the outcomes as the scores increase. For example, over 15 years of follow-up, a man 

aged 65 years at baseline with an excellent lifestyle (all partial scores 4) would have a 33% reduction in the 

cumulative probability of morbidity, multimorbidity, and death combined compared to another man with same 

characteristics but a poor lifestyle (all partial scores 0-1). In case of women, the cumulative probability would be 

reduced by 29%.  

When we analyzed the total HLI score, we found that it was strongly associated with morbidity and multimorbidity, 

each increasing point in the score reducing the risk of morbidity by 4% and the risk of multimorbidity by 6%. 

Moreover, when categorizing the total HLI score in five categories, a linear relationship described the effect of 

this variable on morbidity well. However, this was not true for multimorbidity, where we observed a similar effect 

of the last three categories compared to the reference. 

Our results in the context of previous studies   

Our results add on to several other studies on lifestyle and multimorbidity, although direct comparison is 

complicated by widely differing definitions for multimorbidity (Willadsen et al. 2016). We defined multimorbidity 

as only chronic diseases with a high probability of reducing life expectancy (Global Burden of Disease 

Collaborative Network. Seattle, United States: Institute for Health Metrics and Evaluation (IHME) 2020), while 

previous studies used different rationales to define multimorbidity: some authors chose an arbitrary and limited 

set of diseases (Freisling et al. 2020; Han et al. 2021; Li et al. 2020); others allowed a broad definition of 

multimorbidity (either by choosing a numerous set of chronic diseases or using chronic medications as proxy of 

chronic diseases (Dhalwani et al. 2017; Franken et al. 2022; Aminisani et al. 2020; Geda, Janzen, and Pahwa 2021; 

Mounce et al. 2018; Lee et al. 2022)); and one selected the five most frequent chronic conditions in the population 

(Wikström et al. 2015). While our conservative definition of multimorbidity allowed us to establish the role of 
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lifestyle factors in preventing the occurrence of clinical outcomes in a well-defined group of patients, 

comparability of our study with others is reduced.  

Our findings support previous evidence that smoking, low physical activity levels, and high BMI are directly 

associated with multimorbidity. While for smoking, physical activity, and BMI similar findings were reported 

consistently across studies, different results have been reported on the direction and strength of the association 

between alcohol consumption and multimorbidity. In a study on a Swedish population-based cohort of people aged 

60 years or more (SNAC-K), the authors assessed how alcohol consumption, among other risk factors has different 

distributions depending on the cluster of multimorbidity considered (Marengoni et al. 2020). This can partially 

justify why alcohol has been found to be either inversely (Aminisani et al. 2020; Geda, Janzen, and Pahwa 2021) 

or positively associated with the risk of multimorbidity (Lee et al. 2022; Li et al. 2020), depending on the definition 

of multimorbidity used in the study.  

Moreover, a few studies (Dhalwani et al. 2017; Han et al. 2021) assumed a U-shaped effect for alcohol exposure, 

collapsing the categories of no alcohol consumption and heaviest alcohol use (Marmot et al. 1981). Whether or 

not to study the effect of alcohol on a quadratic scale has been subject of discussion in the scientific community 

since the 1980s (“Alcohol and Mortality: The Myth of the U-Shaped Curve” 1988). The  idea that no alcohol 

consumption might be detrimental towards morbidity (in particular towards cardiovascular disease) and overall 

mortality has been losing traction due to the argument that abstainers are often former heavy drinkers rather than 

lifelong nondrinkers, and their lifestyle included habits that put them at a higher risk of morbidity and mortality 

(“Alcohol and Mortality: The Myth of the U-Shaped Curve” 1988). A recent study further disproved the idea, 

stressing that “any reduction in alcohol consumption is in fact beneficial in terms of general health” (Chudzińska 

et al. 2022).  

Diet was the lifestyle factor least considered in the literature and, when studied, remained inconclusive (Freisling 

et al. 2020; Wikström et al. 2015); we observed a possible inverse relationship with multimorbidity.  

Strengths and limitations  

Our study is strengthened by almost 20 years of follow-up and the linkage of our cohort of 43,865 adult participants 

to the virtually complete Swedish national registers (Ludvigsson et al. 2011). We considered five lifestyle 

exposures jointly, measured with self-reported but high quality information (Trolle Lagerros et al. 2016), and 

studied chronic diseases that are known to lead to death. Additionally, the use of multistate models gave us insights 

on how our composite lifestyle exposure might affect clinical progression between different states.  

Among limitations, having participants on average healthier than the general Swedish population could lead to 

biased estimates of the associations between exposures and outcomes. Such bias could be in either direction, but 

is believed to be weak (Pizzi et al. 2011).  Exposures were self-reported, leading to possible misclassification, 

although misclassification should be non-differential due to the prospective design. Exposures were also only 
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measured once (at baseline) and therefore we could not account for lifestyle changes during the follow-up. Lastly, 

as the nature of this study is observational, residual confounding cannot be excluded. 

Conclusions 

To conclude, we determined that being a never smoker or quitting smoking, having a low alcohol consumption, 

high physical activity levels, a low BMI, and following the Mediterranean Diet recommendations can lower the 

probability of morbidity and multimorbidity of death-accelerating diseases and death. This effect is particularly 

evident when all the healthy lifestyles are combined. 
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5 Other works on lifestyle 

During my last year of PhD, I continued the collaboration, already active during my second year, with the 

International Agency for Research on Cancer (IARC). The purpose of the research was to study another important 

aspect of lifestyle on human health, i.e., lifestyle changes.  

Using data from the EPIC cohort, we could determine the trajectories of lifestyle between two questionnaires, 

administered to participants at two timepoints, and the impact of changes in lifestyle on the risk of malignant 

cancer at any site. In particular, we first conducted a pilot study on colorectal cancer, and then we progressed to 

analyze all cancers. As a third but not less important outcome, all-cause mortality was also considered.  

These three studies lead to novel and important results highlighting not only the necessity of conducting a healthy 

lifestyle from a young age, but that an improvement in lifestyle later in life still brings benefits in terms of all 

named outcomes. 

The first study on colorectal cancer, entitled “Changes in lifestyle and risk of colorectal cancer in the European 

Prospective Investigation into Cancer and Nutrition” has recently been published on the American Journal of 

Gastroenterology (Botteri et al. 2022), while the other two are currently in writing. 
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