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Abstract: Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several
diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used
to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR)
emerged as a complementary and accurate detection method. When dealing with gene expression,
the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for
RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of
steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the
detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR
in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is
able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human
plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial
infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion,
our results show the suitability of the extraction-free quantification of circulating miRNAs as disease
markers by direct dPCR.
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1. Introduction

MiRNAs are small endogenous non-coding RNAs involved in the regulation of gene
expression by the modulation of messenger RNAs (mRNAs) translation and stability. They
influence vital cellular processes such as responses to external stimuli, proliferation, differen-
tiation, and apoptosis [1], and their dysregulation is associated with various pathologies [2].
In recent years, miRNAs emerged as possible specific biomarkers of several conditions
because of their stable expression in almost all body fluids and due to the development of
accurate and quantitative techniques for their detection [3]. In particular, several groups
investigated the potential use of circulating miRNAs in the diagnostic and/or prognostic
setting of cardiovascular diseases in order to formulate tailored therapeutic approaches [4].
However, the use of circulating miRNAs as biomarkers can be hypothesized only if reliable
and accurate methods for quantification are devised. Quantitative reverse transcription
PCR (RT-qPCR) represents, to date, the method of choice for nucleic acid quantification.
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Nevertheless, one of the major drawbacks of this technique is the normalization issue.
Indeed, there is a lack of consensus about both normalization methods and the choice of
reliable endogenous reference miRNAs [5,6]. Digital PCR (dPCR) is a recent technology that
allows nucleic acid measurement based on the segregation of the sample into thousands of
separate micro-reactions of defined volume [7]. After PCR, each partition is analyzed for
amplicon presence/absence, and the number of molecules in each reaction is estimated by
applying the Poisson distribution [8]. When compared to RT-qPCR, the dPCR technique
was described as being able to perform absolute quantification, thus bypassing normaliza-
tion issues [9–11]. Moreover, when coping with low amounts of nucleic acids, it presents
higher precision [12] and sensitivity [13], possibly because of its increased resistance to
PCR inhibitors [14].

Interestingly, several works comparing dPCR performance with RT-qPCR in eval-
uating circulating miRNAs expression indicated an almost equal sensitivity for the two
methods. At the same time, though, there was an almost undisputed consensus about the
superior accuracy and precision of dPCR [15–17]. In addition to detection efficiency, one of
the most important steps in mRNA (and miRNA) expression experiments is nucleic acid
extraction. This step is usually conducted by means of specific kits and/or chemicals, and
the selection of one specific method can greatly affect the following results [18–21].

In the present study, we assessed the reliability of chip-based dPCR in detecting
circulating miRNAs with high accuracy and precision by evaluating six differently ex-
pressed plasma miRNAs, which we previously found to have low, medium, and high
expression levels [22], in samples from healthy subjects. In addition, we tested if chip-
based dPCR could be applied to a clinical setting evaluating miR-133a in non-ST-segment-
elevation-myocardial-infarction (NSTEMI) patients, previously found to be upregulated
upon myocardial infarction in human plasma samples [23,24].

2. Materials and Methods
2.1. Human Specimens

The Institutional Review Board and the Ethical Committee of Centro Cardiologico
Monzino IRCCS (university hospital) approved this study (CCM 1068). The investigation
conformed to the principles outlined in the Declaration of Helsinki (1964).

Peripheral blood samples were collected into EDTA-coated tubes (Vacutainer Systems,
Becton Dickinson, Franklin Lakes, NJ, USA), kept on ice, and centrifuged at 3000× g for
10 min at 4 ◦C within 30 min after being drawn. Plasma was separated, centrifuged again to
precipitate remaining cells, aliquoted, and stored at −80 ◦C until analyses were performed.

2.2. RNA Extraction and miRNA Reverse Transcription

Total RNA extraction was performed from 200 µL of plasma/sample using the Total
RNA Purification Plus Kit (Norgen Biotek Corp., Thorold, ON, USA). Final elution was
performed using 50 µL of Elution Solution A, as indicated by the manufacturer’s protocol.
In the case of the “no-extraction” protocol, 200 µL of plasma from the same samples were
incubated at room temperature with proteinase K (200 µg/mL, final concentration) for
15 min with occasional flicking, followed by 5 min at 75 ◦C in agitation.

Since the quantification of circulating miRNAs is not possible due to the technological
limitations of actual tools, 2 µL of RNA from each sample were used for two-step PCR
amplification with the TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA; A28007) following the manufacturer’s instructions, regard-
less of “extraction” or “no-extraction” protocols. In brief, we followed the described steps
without modifications. (1) Poly(a) tailing addition: polyadenylation at 37 ◦C for 45 min
followed by incubation at 65 ◦C to stop the reaction. (2) 5′-end Adaptor ligation: 16 ◦C for
1 h. (3) Reverse transcription (RT): 42 ◦C for 15 min, using a universal RT primer included in
the kit, followed by incubation at 85 ◦C for 5 min to stop the reaction. (4) miRNAs universal
pre-amplification (using proprietary primers included in the kit): enzyme activation at
95 ◦C for 5 min, denaturation at 95 ◦C for 3 s and annealing/extension at 60 ◦C for 30 s
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(14 cycles), and finally, incubation at 99 ◦C for 10 min to stop the reaction. cDNA samples
were stored at −80 ◦C until PCR further analyses. A synthetic miRNA from C. elegans,
cel-miR-54-3p, which is not present in human samples, was used as a spike-in control to
assess dPCR efficiency.

2.3. Chip-Based Digital PCR

Chip-based dPCR was performed on a QuantStudio 3D Digital PCR System plat-
form composed of the QuantStudio 3D Instrument (Thermo Fisher Scientific; 4489084),
the Dual Flat Block GeneAmp PCR System 9700 (Thermo Fisher Scientific; 4484078), and
the QuantStudio 3D Digital PCR Chip Loader (Thermo Fisher Scientific; 4482592). dPCR
was performed according to the manufacturer’s instructions. In particular, enzyme ac-
tivation was performed at 96 ◦C for 10 min, denaturation at 98 ◦C for 30 s, followed by
annealing/extension at 56 ◦C for 2 min (40 cycles), and then final extension at 60 ◦C for
2 min. Analysis was executed with the online version of the QuantStudio 3D AnalysisSuite
(Thermo Fisher Cloud, Waltham, MA, USA). The evaluated copy numbers for each miRNA
are expressed as the mean of Log10 of the copy number/µL within a 95% confidence
interval (CI). Upper and lower limits of the 95% CI are indicated within square brackets.

Primers and probes purchased from Thermo Fisher Scientific were labelled with FAM
dyes and used to evaluate the expression of candidate miRNAs (Supplementary Table S1).

2.4. Statistical Analysis

We compared each gene expression technique using a correlation analysis: Pearson’s
correlation coefficient (R), the R2 coefficient, and the p-value were computed. We performed
this kind of analysis on the averaged expression values across all samples, and each value
was previously “mean-centered”. The analysis in the clinical setting, comparing healthy
subjects and cardiovascular disease patients, was performed using the Student’s t-test.

3. Results
3.1. Assessment of dPCR Efficiency

As a first step, we assessed dPCR efficiency in detecting a synthetic miRNA designed
from nematode C. elegans cel-miR-54-3p at different dilutions (105 to 101 copies/µL). Linear
regression analysis between expected and assessed copy numbers for miR-54-3p showed an
R2 of 0.999 (p < 0.0001; Figure 1A), thus indicating the suitability of dPCR in assessing with
precision the expression of selected miRNAs, even in a “very-low abundance” setting. Next,
we assessed whether extraction-free RNA from human plasma could be used for direct
miRNA detection by dPCR. To this aim, we analyzed miRNA expression in undiluted,
1:10, and 1:100 dilutions of “no extraction” plasma samples. Three miRNAs were selected
(miR-223-3p, miR-15b-5p, and miR-128-3p) because of their high, intermediate, and low
expression levels in human plasma based on our previous experiences (not shown). Our
experiments showed that all miRNAs were detectable regardless of dilution conditions by
dPCR (Figure 1B).

3.2. Optimization of dPCR Conditions for Plasma miRNAs Detection in the Absence of
RNA Extraction

The process of miRNAs expression assessment involves an amplification step (preAmp)
after the conversion of RNA to cDNA, followed by dilution. Since we did not perform
RNA extraction, we decided to evaluate whether different dilution settings could affect
miRNA detection. Thus, after assessing the suitability of undiluted “no extraction” plasma
miRNAs for dPCR, we investigated the detection of plasma miRNAs usually presenting
expression levels ranging from low to high in standard conditions. Thus, we evaluated
the copy number/µL of six different circulating miRNAs (miR-1180-3p, miR-128-3p, miR-
186-5p, miR-451a, miR-15b-5p, and miR-223-3p). Different serial preAmp dilutions for
each miRNA (1:100, 1:1000, and 1:10,000) were prepared in order to identify those most
suitable for each specific target. As depicted in Figure 2A, our results showed very high
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overlap in terms of copies/µL, regardless of dilution, for all evaluated miRNAs. Given
its low expression, miR-1180-3p was not tested beyond the 1:1000 dilution. The selected
working conditions, based on chip quality (i.e., threshold = 0.6; Supplementary Figure S1)
and precision (the lowest value; Supplementary Table S2), for each miRNA were identified
as: 1:100 for miR-186-5p, miR-128-3p, miR-451a, and miR-1180-3p; 1:1000 for miR-15b-5p
and miR-223-5p.
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Figure 1. Digital PCR capability to detect miRNA in a wide range of concentrations. (A) Regression
analysis between expected (x-axis) and dPCR-assessed (y-axis) expression of serial dilutions (105 to
101 copies/µL) of synthetic cel-miR-54-3p in triplicate. The data are expressed as Log10 (miRNA
copies/µL of the sample), and the bars represent the 95% confidence interval. (B) Expression levels
of undiluted, 1:10, and 1:100 dilutions of miR-223-3p, miR-15b-5p, and miR-128-3p in one healthy
subject in triplicate. No RNA extraction was performed on the plasma sample. The data are expressed
as Log10(miRNA copies/µL of the sample), and error bars represent the 95% confidence interval.

Following the evaluation of dPCR-mediated detection of extraction-free plasma miR-
NAs, we investigated whether we could obtain consistent results in terms of reproducibility.
Hence, we assessed the expression of miR-1180-3p, miR-128-3p, miR-186-5p, miR-451a,
miR-15b-5p, and miR-223-5p in plasma samples from 10 healthy donors. As shown in
Figure 2B, we obtained good results in terms of reproducibility and consistency for all
miRNAs, none of which presented a widely sparse distribution. Consistently with previous
results, miR-1180-3p showed the lowest expression, while miR-223-5p was the one with the
highest copy number/µL. Further analyses conducted on all evaluated miRNAs indicated
a very good correlation between the expression levels of all miRNAs in all samples, with a
mean Pearson coefficient of 0.97 (Figure 2C).

To further corroborate our analyses, we evaluated the consistency of our detection
method upon three different technical replicates executed at different times. We focused
on the two low-expression miRNAs, namely miR-1180-3p and -186-5p, in five no-RNA-
extraction samples upon three distinct dPCR runs conducted on different days. The results
were highly reproducible for both miRNAs, with miR-186-5p presenting a mean coefficient
of variation (CV) of 3.1%, while miR-1180-3p demonstrated an even higher accuracy, with
a mean CV of 2.9% for the three runs (Supplementary Table S3).
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Figure 2. Digital PCR settings for miRNA detection in human plasma without RNA extraction.
(A) Expression levels of miR-1180-3p, miR-128-3p, miR-186-5p, miR-451a, miR-15b-5p, and miR-
223-5p at different dilutions in a plasma sample without RNA extraction. The data are expressed
as Log10 (miRNA copies/µL of the sample), and error bars represent the 95% confidence interval.
Each color and shape indicate the different dilution conditions. (B) Dot plot depicting the expression
levels of miR-1180-3p, miR-128-3p, miR-186-5p, miR-451a, miR-15b-5p, and miR-223-5p in ten plasma
samples without RNA extraction. The data are expressed as Log10 (miRNA copies/µL of the sample).
Horizontal bars represent mean values. (C) Correlation matrix conducted on the expression of levels
of miR-1180-3p, miR-128-3p, miR-186-5p, miR-451a, miR-15b-5p, and miR-223-5p in no-extraction
samples from ten healthy subjects (HS). Green-shade intensity is directly proportional to the mean
Pearson correlation coefficient.

3.3. Evaluation of RNA Extraction Influence on Plasma miRNA Expression

RNA-based studies usually involve nucleic acid extraction from a specific substrate
as a starting point. Total RNA extraction can be achieved by means of different methods,
which can consist of lysis followed by either nucleic acid precipitation or binding to affinity
columns or magnetic beads. Each of the listed methods presents advantages and disadvan-
tages, but all have different impacts on the final composition of the RNA “populations”
obtained. Since column-based extraction is one of the most adopted approaches in the
case of liquid samples, we decided to compare its outcome in terms of plasma miRNA
expression with the “no-extraction” approach (proteinase K). In particular, we assessed
the plasma expression of miR-1180-3p, miR-128-3p, miR-186-5p, miR-451a, miR-15b-5p,
and miR-223-5p by dPCR in a plasma sample obtained from a healthy subject undergoing
either column-based extraction or “no-extraction” protocol. Figure 3A depict the results in
terms of Log10 of copy number/µL for all evaluated miRNAs. Both “conditions” showed
the same hierarchic order in terms of miRNAs expression (ordered from lowest to highest
expression), although some discrepancies seem to present. However, the difference in
terms of yield when looking at the detected levels of miRNAs upon column-based RNA
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extraction vs. the no-extraction protocol is negligible. Indeed, the mean miRNAs Log10
expression ratio between the two protocols is 1.08, indicating a good relationship between
the two approaches. However, two miRNAs, namely miR-128-3p and miR-223-3p, showed
slightly different results when comparing the two protocols with a ratio of 1.21 and 1.12,
respectively. Nevertheless, we observed a very good correlation (p = 0.003) between the
results obtained in terms of expression from the two protocols (Figure 3B).
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3.4. No-Extraction dPCR-Based miRNA Detection in the Clinical Setting

After demonstrating the suitability of dPCR to detect even low-abundance circulating
miRNAs in healthy subjects, we decided to challenge the “clinical arena”. Thus, we investi-
gated the expression levels of cardiac disease-related miR-133a-3p in no-RNA-extraction
plasma of NSTEMI patients (n = 6) in comparison to healthy subjects (n = 6). As shown
in Figure 4, in keeping with the literature, our data demonstrated a higher expression for
miR-133-3p in NSTEMI patients (2.07 [2.02, 2.13] copies/µL) vs. controls (1.33 [1.21, 1.46]
copies/µL, p = 0.002).
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4. Discussion

This is, to the best of our knowledge, the first work reporting on the extraction-free
detection of circulating miRNAs by dPCR. We think that our data can lead to at least two
important conclusions. The first is that we were able to demonstrate that the extraction-free
approach is viable and valid for dPCR even in a context where the quantity of miRNAs
present in the substrate is very low, as in the case of plasma. The second relies on the fact
that dPCR is a suitable tool for the direct and rapid quantification of circulating miRNAs in
the clinical setting. Indeed, previous studies already demonstrated the suitability of dPCR
to assess the modulation of circulating miRNAs and their possible use as biomarkers in the
disease context [25,26].

A recent work by Su and colleagues [27] described the application of an extraction-free
method to assess the expression of circulating miRNAs by “canonical” RT-qPCR in coronary
artery disease. However, it was demonstrated that droplet-digital PCR has greater precision
and improved day-to-day reproducibility over RT-qPCR with similar sensitivity [15]. In
addition, the end-point approach employed by dPCR could offer better performances
being less prone to suffer from differences in sample quality and more resilient to PCR
inhibitors [15].

In keeping with previous literature, we showed that RNA extraction could be avoided
without affecting the sensitivity of dPCR in detecting even the lowest-abundant miRNAs.
Indeed, our data clearly indicate that, upon a proper assessment of the best conditions
for each miRNA, dPCR is a suitable tool to analyze the expression of poorly expressed
miRNAs in plasma samples even without RNA extraction. We also observed a negligible
overall difference in terms of yield when looking at the detected levels of miRNAs upon
column-based RNA extraction vs. the no-extraction protocol. Nevertheless, two miRNAs
showed slightly different results when comparing the two protocols. This discrepancy
could be explained by a different “compartmentalization” of the analyzed miRNAs in the
plasma. Indeed, the use of proteinase K in the no-extraction protocol led to the release of
protein-bound miRNAs but could be less effective on other plasma-miRNA vehicles, such
as extracellular vesicles and lipoproteins and other known transporters [28]. However,
an advantage of avoiding the extraction steps is represented by the reduction in terms of
expense (i.e., not using extraction reagents or RNA affinity columns, which adds to the
total cost of miRNA evaluation) and working time (i.e., jumping directly to the PCR mix
step saving about 30 min per batch). It is clear that dPCR is unquestionably far from being
a high throughput method. Nevertheless, the combination of absolute quantitation with
high reproducibility, without the generation of a standard curve, and lack of extraction
could allow the detection of miRNAs by dPCR even in the clinical setting.

We must also consider that the emerging role of miRNAs as potential biomarkers for
clinical applications requires the standardization of miRNA processing [29]. To date, the
most controversial issue related to miRNA level quantification is represented by the nor-
malization step since it is well known that this step could greatly influence the results [29].
Our data indicate that the evaluation of miRNA levels in human plasma via direct and
absolute dPCR quantification could be obtained without a normalizer. Indeed, we could
see a significant increment in miR-133a-3p levels in plasma obtained from NSTEMI patients
without normalizing it to any other miRNA, exogenous or endogenous [23,24]. In addition,
it was shown that in NSTEMI patients, miR-133a-3p was only detected in serum and not
in plasma by RT-qPCR, indicating a different pattern of circulating miRNA expression in
these patients [30]. However, our data, showing the detection of this specific miRNA in
the plasma of NSTEMI patients, corroborate the hypothesis that the use of a high precision
technique (i.e., dPCR) could be implemented in clinical laboratory analyses.

A major limitation of our study is represented by the small sample size while setting
up dilution conditions pre-, post-RT, pre-amp, and validation. However, we must point out
that on many occasions, different conditions led to overlapping results and that inter-day
reproducibility was very high. In addition, once characterization was finished, we were
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able to assess the expression of several miRNAs in plasma both with and without extraction
with success and covering results.

5. Conclusions

Our results showed that dPCR is able to detect, with high accuracy, low-copy-number
as well as highly expressed miRNAs in human plasma samples without the need for RNA
extraction. Moreover, the ability to assess a known myocardial infarction-related miRNA
in acute myocardial infarct patients vs. healthy subjects without the use of a normalizer
encourages the use of this high precision technique in the clinical setting. In conclusion,
our results show the suitability of extraction-free quantification of circulating miRNAs as
disease markers by direct dPCR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10061354/s1, Supplementary Figure S1: miRNA
detection in human plasma by digital PCR; Supplementary Table S1: miRNA used with respective
mature sequence and manufacturer codes; Supplementary Table S2: Digital PCR settings for miRNA
detection in human plasma without RNA extraction; Supplementary Table S3: Detection of expression
levels of low-abundance miR-186-5p, and miR-1180-3p is highly consistent at different times across
multiple samples.
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