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Abstract: Sharing data and services in the Internet of Things (IoT) can give rise to significant security
concerns with information being sensitive and vulnerable to attacks. In such an environment, objects
can be either public resources or owned by humans. For this reason, the need of monitoring the
reliability of all involved actors, both persons and smart objects, assuring that they really are who they
claim to be, is becoming an essential property of the IoT, with the increase in the pervasive adoption
of such a paradigm. In this paper, we tackle this problem by proposing a new framework, called
H2O (Human to Object). Our solution is able to continuously authenticate an entity in the network,
providing a reliability assessment mechanism based on behavioral fingerprinting. A detailed security
analysis evaluates the robustness of the proposed protocol; furthermore, a performance analysis
shows the feasibility of our approach.

Keywords: IoT; Human to Object Network; behavioral fingerprint; reliability

1. Introduction

In this new era where pervasiveness and ubiquity of smart things is becoming part
of our every day life, the need of security mechanisms for protecting users and objects
increases as well. Classical Internet of Things (hereafter, IoT) is characterized by heteroge-
neous and connected devices sharing data and providing services to fit people needs. From
connected fridges, cars, and so forth to wearable devices for health-care, the IoT creates
opportunities in numerous domains.

With the adoption of this new paradigm the network can gain the capabilities of
sensing information about the environment, collecting physiological measurements or
operational data from sensors and identifying actors, such as: users, animals, events or
other things in the environment. Moreover, as a result of the capability of handling data,
new ways of processing, communicating and converting them into automated instructions
enhance the power and autonomy of the IoT, eliminating the need of constant human
interventions [1].

Clearly, in such a diverse, complex and heterogeneous ecosystem, numerous chal-
lenges arise. A crucial topic, which is currently interesting a lot of researchers, is entity
continuous authentication to ensure reliable and secure communications between objects
to humans, objects to objects and human to human [2]. Each entity in the IoT must be able
to clearly identify and authenticate other entities to assess that neither a user has been
impersonated nor an object hacked, corrupted or stolen before staring any interaction.

This is also important, in order to provide trust, confidentiality, integrity and availabil-
ity of the information exchanged. Indeed, data sharing in IoT applications raises significant
security concerns, with information being sensitive and vulnerable to attacks. For example,
in an opportunistic trading scenario [3], sensitive personal information such as user loca-
tion, mobility patterns and preferences may be used for marketing. Whereas, in healthcare
applications [4,5] very sensitive medical information about people are aggregated, analysed
and exchanged by smart objects. In critical or monitored workplace environments, con-
tinuous surveillance can breach the privacy of employees [6,7]. Therefore, the guarantee
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to communicate with a reliable entity can protect the actors of the system from major
security threats.

However, this process can be very challenging because of the heterogeneous nature of
the entities involved in the IoT, including people, devices with low capabilities in term of
processors, memory and data storage and devices with higher capabilities.

Typically, low-power devices differ from smarter ones also because they lack conven-
tional user interfaces in the form of keyboards, mice, and touchscreens. This is due to
reduce their cost, but also because often this kind of conventional interfaces are not suitable
for the intended applications (think for instance to a smart fabric). Therefore, how objects
are conceived and, consequently, how they behave in the IoT is peculiar of their capabilities
and equipment and this increases the complexity of the above stated problem.

To make some examples, wearable devices equipped with an inertial measurement
unit (IMU) can support biometric authentication based on how people move their limbs
throughout the time the device is used. Through machine learning techniques these
patterns could be learnt and applied to continuously authenticate the user. In this way,
a device could monitor its owner continuously and authenticate the person’s legitimacy
before allowing him to perform operations. Similarly, user echocardiogram (ECG) signals
can be exploited by devices containing photoplethysmogram (PPG) sensor [8]. Others more
traditional biometrics-based user identification techniques rely on uniquely personalized
features, such as: fingerprint [9], iris [10], or face [11,12]; and perform pattern recognition
on these features to allow resources access to a user.

Others object-to-human techniques to continuously identify persons leverage the way
people interact with their smartphones and the available applications. Most users have
regular behavioral patterns that can be modeled and exploited for continuous recognition
of behavioral signatures [13,14]. Therefore, behavioral characteristics of mobile users can
allow continuous authentication of a user on a personal device.

On the other hand, also object-to-object communications should be continuously
authenticated in the IoT in order to prevent security issues. Typically, remote attestation is
a security service through which an object can ascertain the current state of a potentially
compromised remote device before interacting with it. Remote attestation includes a variety
of algorithms that range from heavy-weight secure hardware-based techniques, to light-
weight software-based ones (e.g., control-flow integrity) [15]. Previous works leverage
cryptographic primitives or authentication mechanisms [16–18], but, typically, they are
computational demanding and rely on the robustness and validity of cryptographic keys.

Also in the field of human-to-human communications, the problem of fake identities
and identity theft are issues whose relevance is increasing, especially in the social network
domain [19]. Researchers often refer to this branch of security as trust and reputation
management, essential for establishing an efficient collaboration among a network of
participants that might not have sufficient prior knowledge about each other [20].

Due to these intrinsic differences of IoT entities, an effective method to provide objects
and humans with the possibility to continuously and unobtrusively authenticate each
others in the network is a demanding task and, to the best of our knowledge, a unique
approach for all the entities to assess the reliability of an object or a person owning an
object has not been found yet.

To tackle the above issues, we designed a complete framework, called H2O (Human
To Object). The environment of our system is a classical IoT network, where persons
interact with objects (with low or high computational capabilities) to exchange information
or get services. The IoT network can be divided in some subgroups, namely the PAN (the
personal area network of a user, composed of all the objects owned by the user himself) and
the PU (the set of smart public things). Moreover, the objects can be divided also according
to their computational capabilities.

All the objects of the network have a profile describing what they usually do (how
they interact with the environment) and some patterns of communication (both with other
objects and humans). The recent scientific literature in the context of IoT contains several
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approaches to computing behavioral fingerprints [8,21–23]. Fingerprint is used to analyze
the current behavior of an object and to assess whether it is congruent with the expected
one. Moreover, our approach is collaborative, hence if a node wants to create a new
relationship with another one for which it has no fingerprint, it can rely on the knowledge
of its neighbors. In particular, it can query its peers to receive information about the new
node. According to (i) the number of answers received from them, (ii) the expressed
opinions, and (iii) the relationship the querying node has with each of them, a reliability
assessment towards the unknown node can be performed. Following this evaluation, the
node can decide whether to interact or not with the new node.

In our approach, also human-to-human interactions can be certified with a certain
degree of reliability. This step is performed through continuous authentication techniques
an object can provide to its owner. Therefore, when a human wants to interact with a
person he has never met before, at the start of the communication, he will need some
evidence of his identity. This proof can be produced by the objects held by the second
person. Moreover, the objects belonging to a PAN can cooperate to provide a score for their
owner in case of need. Indeed, if an object is not equipped with a way to authenticate its
owner through a biometric mechanism, it can rely on the members of the PAN network
it belongs to. Of course, the reliability of the object, providing the information about its
owner identity, can be assessed through the aforementioned object-to-object solution.

Therefore, in our approach, the intrinsic heterogeneity of a IoT network turns out to be
a strength rather than a limitation, and it can be exploited to find a homogeneous solution
to certify the real identity of a network entity.

In summary, we can list the main contributions and the novelty of our approach
as follows:

• we provide a unified network, called H2O, in which each entity, either an object or a
human, can estimate the reliability of its/his contacts.

• we provide an approach leveraging state-of-the-art behavioral fingerprint techniques
allowing an object to assess if another one (which it usually interacts with) has been
hacked or is corrupted, before starting a communication.

• we provide a consensus-based collaborative approach to allow an object to assess if
another object (never met before) is reliable.

• we provide a strategy based on a combination of object-to-object fingerprinting and
human-to-object biometrics techniques to allow a human to assess if another human
(never met before) is who he claims to be.

This paper is organized as follows. Section 2 presents the works related to our
approach. Section 3 describes the general model underlying H2O framework. Section 4
provides the detail of the proposed strategy for computing objects and humans reliability
through the behavioral fingerprint of objects. Section 5 sketches the experimental campaign
carried out to evaluate the performance of our approach, whereas Section 6 is devoted
to illustrate the security model conceived for our framework, along with the analysis of
the corresponding security properties. Finally, Section 7 concludes the work and outlines
future directions.

2. Related Works

This section is devoted to the analysis of the scientific literature related to our H2O
framework. Many works have been proposed in the context of reliable human-to-human,
human-to-object and object-to-object interactions. Hence, for the sake of clarity, we divide
this section in four parts. The former is related to human-to-object approaches devoted
to the assessment of people reliability by leveraging object capabilities. In this context, re-
search on continuous authentication based on biometrics is analysed in details. The second
subsection, instead, deals with reliability in network of objects and surveys the scientific
literature about remote attestation, device fingerprinting, and approaches relying on the
Blockchain technology. The third part of this section focuses on the approaches tackling
the problem of assessing the reliability of a person in a network of humans. In particular,
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we analyze proposals in the context of reliability and trust in Social Networks. Finally,
we list in Table 1 the capabilities of the related approaches, in terms of the relationships
considered to define a reliability measure, and compare them with our strategy.

2.1. Human-to-Object Approaches

Although continuous authentication is a relatively new type of verification, it is
gaining attention of researchers and companies seeking new forms to protect sensitive
data for unauthorized access [2]. Basically, continuous authentication performs an ongoing
monitoring of user interactions with objects and builds a behavior or biometrics profile
leveraging Machine Learning (ML) technology to re-verify the legitimacy of the connected
nodes and assure cybersecurity protection.

The application of this new form of authentication is advantageous also when tradi-
tional forms of verification do not fit the appropriate level of security. Indeed, (i) single-
factor authentication, which provides protection at login, and (ii) two-factor authentication,
which adds a second device for security check at the login phase, do not offer continuous
validation of a user’s identification.

With the aim to balance security and usability, biometric approaches are gaining
momentum. Given the nature of IoT devices and their closeness to users, using them
for continuous authentication purposes is specially attractive [24]. For example, smart
mobile devices like smartphones and tablets are equipped with various built-in sensors
like camera for iris recognition, heart-bit sensor, fingerprint scanner and microphone for
voice recognition among others. But if on one hand, they are more secure, since biometric
traits like iris or face are difficult to be reproduced, on another this type of authentication
may provide also false positives and true negatives [25].

The authors of [26] identify two categories of biometric identification: physiological
identification and behavioral one. The former includes facial, voice and fingerprint recogni-
tion, which are mostly device dependent mechanisms and require costly processing units.
The latter is a form of continuous identification which is based on behavioral traits and is
less intrusive, because it relies on human habitual patterns like typing [27,28], walking [29],
social interactions and communication.

In [8] the authors describe WifiU, a Wi-Fi based human authentication system which
recognizes users extracting unique biometrics information from Wi-Fi signals and uses it to
perform human authentication. In particular, it is based on user gait. Indeed, the authors
start from the consideration that, Wi-Fi signal reflected by the human body generates
unique, although small, variations in wireless channel metrics on the receiver, due to the
well-known multipath effect of wireless signals.

A recent trend analysed by a number of researchers deals with continuous identifica-
tion of users on mobile devices within the social IoT paradigm [13,14]. In particular, in [14]
the authors propose a scheme based on online behaviometrics of mobile users collected via
smartphones. This scheme is able to extract features from smartphone sensors and users’
social network interactions. In [13], instead, the authors propose a mobile behaviometric
framework that assesses users’ social activity, and introduce sociability metrics to generate
signatures of users’ activities.

The papers cited above aim at continuously authenticating the user by exploiting his
interactions with IoT devices or against third parties. With respect to these approaches,
our proposals has a more extended objective. Indeed, with the aim of enabling reliable
human-to-human interactions, our framework leverages some of the strategies described
in this section to obtain continuous authentication of humans with their objects. Moreover,
we develop an advanced mechanism to constantly verify whether the identity of an object
or a human is unchanged.

2.2. Object-to-Object Approaches

Typically, we refer to remote attestation as the security service through which an
object can ascertain the current state of a potentially compromised remote device before
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interacting with it. The aim of remote attestation is to allow a remote system (i.e., challenger)
to check the level of trust of another system (i.e., attestator). In [30], the authors present a
Multiple-Tier Remote Attestation protocol, called MTRA, verifying program integrity in IoT
devices. In particular, more powerful devices are monitored by means of trusted hardware
through a Trusted Platform Module (TPM), while less capable ones are verified leveraging
a software-based attestation. Still in this context, the paper presented in [31] describes a
many-to-one attestation scheme for device swarms, which reduces the possibility of single
point of failure verifier typical of architectures in which a single node (i.e., the verifier) has
to attest the reliability of multiple IoT devices.

Other works focusing on object-to-object interaction study a way to address the
challenge of IoT device identification [8,21–23,32,33]. These works leverage the concept of
device fingerprinting, that is a way to identify an object not relying on its classical network
identities, such as IP or MAC address, but exploiting the information from the packets
which the device exchanges over the network. In particular, the work presented in [21]
tackles this issue by analyzing a sequence of packets from high-level network traffic and
extracting from it a set of unique flow-based features to create a fingerprint for each device
through machine learning techniques. The authors of [23] have the same goals, but they
base their proposal on deep learning techniques. Whereas, the authors of [22] present an
approach called IoT Sentinel able to automatically identifying vulnerable devices being
connected to an IoT network and enforcing mitigation measures for them, so as to minimize
damage resulting from their compromise. Also the proposal presented in [32] provides
an IoT device identification method that models the behavior of the network packets
communicated by the devices.

In the context of object-to-object interaction, a related concept is the definition of
reliability and trust among things. However, due to the highly dynamic nature of the
network and the large number of entities with heterogeneous computation abilities in-
volved, it is difficult to directly apply to IoT classical approaches thought for sensor or P2P
networks [16,34–36].

In particular, works leveraging cryptographic primitives [16,17,36] are computational
demanding and they are not secure against internal malicious nodes having the valid
cryptographic keys. On the other hand, nodes can be hacked or compromised, but they
can also have hardware faults, and relying only on cryptographic mechanisms does not
lead to the exclusion of these nodes from the network.

In [35], the authors describe an approach based on cryptographic primitives in which
each entity has a unique and trustworthy identity. In addition, a trusted device evaluates the
behavior and the performance of the nodes comparing a saved trust metric and the indirect
information from a third node. In [37], the authors present IoTrust a trust architecture with
a middleware layer performing authorization. The main drawback of these two schemes is
that they are based on an external and reliable level that computes node reputation score.
Furthermore, they defend only against some kind of attacks, such as: modification, replay,
and message dropping attacks.

The proposals of [38–40] are based on Blockchain technology to provide forms of
trust or authentication in a IoT network. In particular, in [38] the authors describe an
Obligation Chain containing obligations generated by a number of nodes, called Service
Consumers, which are first locally accepted by Service Providers and, then, shared to the
rest of the network. This kind of framework is based on Islands of Trust, portion of the
network where the trust is regulated by a full local PKI and Certification Authority. Also the
approach in [40] relies on the security advantages provided by Blockchains, creating secure
virtual zones (bubbles) where things can identify and trust each other. Moreover, although
Blockchain technology provides decentralized security and privacy, it involves significant
energy, delay, and computational overhead, not suitable for most resource-constrained
IoT devices.

A new perspective of Internet of Things is provided by [41], that introduces the Social
Internet of Things (hereafter, SIoT). This paradigm redefines the relationships among
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objects putting into evidence objects autonomy. Things can navigate through the network
to find resources and services of their interest, provided by other things, without human
intervention. The formalization of methods and technologies allowing an object to crawl
the network for finding other (possibly heterogeneous) objects and the analysis of the
new social graphs thus obtained are two aspects analyzed in [42]. A step forward is done
by [43], in which the authors investigate the trustworthiness management of a SIot starting
from the concepts coming from P2P and social networks. They combine two models,
such as a subjective and an objective one. In the former model, each node computes the
trustworthiness of its friends on the basis of its own experience and on the opinion of the
friends in common with the potential service providers. In the latter model, the information
about each node is distributed and stored making use of a distributed hash table structure,
so that any node in the network can make use of the same information.

Finally, the approach proposed in [44] deals with object reliability in a Multiple Internet
of Things, defining also a profile for an object. Differently from our approach, the principle
underlying the reliability of an instance in a MIoT is that it is directly proportional to: (i)
the fraction of successful transactions performed by the instances, and (ii) the reliability of
the corresponding objects.

It is worth observing that, our proposal exploits some of the concepts and strate-
gies proposed by the approaches presented in this section. However, while these related
solutions leverage direct interactions to compute objects reliability, our H2O scheme en-
hances machine-learning based fingerprinting with a consensus-based strategy to enable a
wisdom-of-crowd attestation of objects behavior. In our paper, we define an object profile
made up by different properties. These properties are object features related to how it
usually interacts with other entities, the environment or its owner. A profile can be used as
input of a machine learning solution, which computes a behavioral fingerprint for an object.
This is the former step of our scheme, whose goal is to provide a complete framework
equipping all entities involved (both objects and humans) with a mechanism to compute
the reliability of their peers.

2.3. Human-to-Human Approaches

The problem of assessing reliability on a network of humans is a crucial task both
in real and virtual world [45,46]. Typical solutions for identity deception attacks rely on
legitimate community members and administrators, who are called to manually identify
malicious accounts or persons [47]. The approach presented in [19] aims at computing
a level of trust for each node of a network of humans on the basis of neighborhood
recognition and behavioral biometric support. It describes keystroke dynamics as solution
for continuous authentication for enhancing trust in social networks, in particular, biometric
data are exploited as a feedback to a trust model to measure the trustworthiness of an
online profile.

Trust in social networks is an extremely discussed topic, and often the boundaries
between the real and virtual world are blurred in such a way that some approaches
useful to compute trust between two persons in the real world can benefit measures and
techniques coming from the virtual world, and vice-versa [48]. Indeed, authors of [49] state
that the trust results in different communication behaviors among persons, this means
that trusted communications are statistically different from random ones, and detecting
trust-like behaviors allows researchers to develop a quantitative measure of who trusts
whom in the network. In this context, the authors of [50] describe a model of a trust-based
recommendation system which has the goal of filtering information for agents based on
the agents’ social network and trust relationships, thus providing recommendations for
real entities through virtual ones.

Differently from these approaches, our work provides human-to-human reliable
communications, by ensuring a degree of reliability. Therefore, when a human wants to
interact with a peer never met before, he will need some evidence of his identity, at the start
of the communication. This proof can be produced by the combination of the assessment
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of an object owned by the second person and the continuous authentication technique an
object can provide its owner with.

2.4. Comparison with Related Approaches

In this subsection, we summarize in Table 1 the comparison with all the works intro-
duced in the previous sections. Specifically, we evaluate and compare all the approaches
on the basis of the typology of relationship that they consider, namely:

• H-O: the cited article deals with an approach to compute the reliability of a person
through an object or in the communication with an object;

• O-O: the considered paper proposes a method to assess the reliability of an object
towards another object or in a network of objects.

• H-H: the cited approach proposes a scheme to assess the reliability of human-to-
human communication;

The symbol ‘x’ denotes that the cited paper provides the corresponding property.

Table 1. Comparison of our approach with related ones.

Approach Approach Type H-O O-O H-H

Our approach Fingerprint, Biometrics, Consensus x x x
[8,27–29] Biometrics x - -
[13,14] Behaviometrics x - -
[30,31] Remote Attestation - x -
[21–23,32,44] Device Fingerprint - x -
[16,17,35–37] Cryptographic - x -
[38–40] Blockchain - x -
[43] Social Network - x -
[19] Social Network and Biometrics - - x
[50] Social Network and Agent - - x

3. General Model

In this section, we describe the general model adopted by our approach and the main
actors involved in. Table 2 reports the abbreviations used throughout this paper.

Table 2. Notation used throughout this paper.

Parameter Meaning

N set of nodes of the network
E set of edges of the network
ni ith node of the network
Γ(ni) the neighbors of ni
NPAN subset of nodes belonging to a Personal Area Network (PAN)
NPU subset of public nodes of the network
NPPAN subset of nodes belonging to a PAN with high computational capabilities
NLPAN subset of nodes belonging to a PAN with low computational capabilities
NPPU subset of public nodes with high computational capabilities
NLPU subset of public nodes with low computational capabilities
Pni ,nj profile of object ni respect to object nj
S set of features
r redundancy parameter

In the classical definition of the Internet of Things (hereafter, IoT) the network is
represented as a graph G = 〈N, E〉, where N is a set of nodes representing objects and E
is a set of edges representing relationships between pairs of objects. An edge is built if
two objects got in touch somewhere in the past and exchanged some messages. Usually
a directed graph is considered, so that an edge direction identifies the destination of the



Future Internet 2021, 13, 117 8 of 29

communication. We can define the set of neighbors of a node ni as the set Γ(ni) = {nj ∈
G : (ni, nj) ∈ E}.

In our model, N is partitioned into two subsets:

• The set of objects belonging to a person (denoted by NPAN). All the objects belonging
to this group maintain permanent physical contact with the same user during usage.
This set is composed of various personal devices, that can form groups with each
other when they are equipped with the short-range communication and sensing
modules. Some examples are, for instance, mobile phones, PDAs and wearable
devices, such as: human activity trackers, ECG readers, smartwatches, and semi-
permanent insulin pumps.

• The set of nodes of public use in the environment (denoted by NPU). This kind of ob-
jects are not related to humans, but can be accessed by anyone in the environment (e.g.,
printers or video surveillance cameras, smart multimedia object, and so forth [51]).

Moreover, a further classification, based on the processing and memory capabilities of
an object, is possible. Therefore, we can divide the network in the following two groups:

• The set of nodes with high processing and memory capabilities. If these objects are of
public use in the environment, they will be denoted as NPPU , whereas, if they belong
to a PAN, they will be denoted as NPPAN . These nodes can process machine learning
models and/or train classifiers for various tasks. Also smart devices that can leverage
Cloud solutions to handle complex algorithms [52] belong to this category.

• The set of nodes with low capabilities. If these objects are of public use in the envi-
ronment, they will be denoted as NLPU , whereas, if they belong to a PAN, they will
be denoted as NLPAN . These devices have low computational resources and are not
suitable to work with machine learning solutions. Some examples are intelligent ther-
mostats, remotely controllable household equipment, and weather-based automated
lawn irrigation systems.

Figure 1 shows a graphical representation of our scenario with the above subgroups
involved. In particular, two users, namely Hope and Chad and their PANs, are depicted.

Figure 1. A representation different nodes’ groups in H2O Network.
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Smart objects, even belonging to the different groups, can communicate with each
other. Transactions can be performed to share data or to require measures/services offered
by target smart objects. Figure 2 shows a graphical representation of possible communica-
tions in our scenario deployed in a smart office.

Figure 2. A representation of H2O Network with entity operations.

The main idea underlying our approach is that an object in the H2O network, when
getting in touch with another object, can compare its behavior by exploiting a behavioral
model [53]. Through this comparison, it can state if the object it wants to communicate
with is reliable or not.

From the IoT scientific literature, we know that objects can have three different levels of
sensing capabilities, namely: user awareness, ambient awareness, and social awareness [54].
In our context, the definition of such capabilities can be declined as follows:

• Owner awareness refers to the smart object ability to understand personal contexts and
behavioral patterns (e.g., human mobility, human activity, preferences, etc.) referred
to its owner. Observe that, for the NPPU and NLPU groups, we can use the term Human
awareness instead of Owner awareness, because these objects can be used by more than
one person in the network.

• Environment awareness concerns the capability of smart objects to derive information
of a particular environment through their equipment (e.g., temperature or humidity if
the object is a sensor, etc.).

• Social awareness represents the ability of smart objects to participate and exchange
information with communities.

All these sensing capabilities can be translated to measurements and properties.
Starting from them, an object profile, including a behavioral fingerprint, can be built.
A fingerprint is a complex model considering different dynamics related to the object
activities, such as: (i) how the object interacts with the other objects in the network,
(ii) how the owner of the object interacts with it and (iii) the value of the metrics about the
environment that the object can compute.

As stated in the Introduction, our approach leverages behavioral fingerprinting as a
mean to build a mechanism to improve communication reliability in an IoT. Therefore, the
first step concerns the construction of object profiles including such behavioral fingerprints.
Due to the fully distributed nature of our application context, these models are built by
objects with high computational capabilities, on the basis of interaction data among pair of
nodes. To do so, we define a safe starting phase, in which all the interactions are considered
safe and no malicious node is involved in the environment. During this phase, each node
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is in charge of (i) acquiring interaction data with its peers and (ii) proceeding with the
computation of the object profile and the behavioral fingerprint. In general, only nodes
belonging to NPPU or NPPAN can build complex models; however, delegation strategies
can be adopted to extend the approach also to nodes belonging to NLPPU or NLPAN . The
details about the behavioral fingerprinting for H2O objects are described in Section 4.

After the safe starting phase, the network moves to a fully operational mode. During
this second phase, network participants can leverage behavioral models trained in the
previous phase. Each model refers to the relationship between the participant itself and
one of its neighbors. Through these models, a node can continue to check if the actions
performed by its neighbors are still compliant with the behavior observed during the
previous phase. In the negative case, a peer can be assumed to be damaged or attacked
and, therefore, no more reliable.

The H2O network can grow over time. This means that new nodes can be added
and new edges can be created. If new nodes are added to the network after the safe
starting phase, no information about their behavior recorded during a safe period (with
total absence of attacks) is available. In this case, unless a new training phase is carried out,
the reliability level for new nodes has to be set to a default value. Whereas, to support the
possible evolution of the H2O network in terms of new interconnections between nodes,
our approach relies on a collaborative mechanism. In particular, given an object, say ni,
which wants to communicate with a peer, namely nj, if no interconnection between these
two nodes has occurred during the safe starting phase, ni can ask the set of its neighbors
opinions about the reliability of nj. If some past interactions between nj and the latter
set occurred, ni will receive a number of responses from its neighbors. At this point, a
reliability score about nj can be computed by ni, by averaging the obtained results. The
details about how this reliability score is computed are described in Section 4.2.

In our scenario, also humans participate in the network by means of their personal
devices (the objects belonging to NPAN). Interestingly, by leveraging reliability scores
derived from object interactions also human-to-human inter-communications can be made
more secure (see Section 4.4). Indeed, let us suppose that a person, namely hi, wants to
communicate with another person, say hj. If hi has never met hj in the past, sending private
documents through its smartphone via NFC to hj could result in security issues. To make
this step more robust, our approach provides a mechanism which works as follows. First
off, we refer to the sender’s smartphone as ni and to the receiver’s smartphone as nj. Before
starting the file exchange, ni can request to nj the evidence that hi is who he claims to be.
Continuous authentication and biometrics solutions are acquiring a lot of attention from the
scientific community (see Sections 2 and 4.3 for details about it). These strategies ensure the
possibility of providing human identity confirmation and protection on an ongoing basis.
Many approaches deal with the implementation of these security mechanisms through
personal smart objects (such as smartphones, smartwatches, etc.) [55]. By leveraging such
solutions, the object nj can prove its owner identity, through biometrics mechanism. All the
details about object-to-human interactions are described in Section 4.3. Observe that, if nj is
a low power device it can rely on a more powerful object belonging to its PAN to perform
this task. Of course, before relying on nj’s answer, ni has to check the reliability of nj in
the H2O network. It can do so, by performing the steps of the object-to-object interaction
explained above and detailed in Section 4.2. Figure 3 summarizes the steps of our approach
through an example of a human-to-human interaction in full operational mode. Observe
that, this includes also the steps for the corresponding object-to-object interaction.
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Figure 3. The steps of our approach for a human-to-human interaction.

4. Behavioral Fingerprint for Reliability

In this section, we present the main concepts underlying our approach and we detail
all the steps of the main phases of our scheme. In particular, in Section 4.1, we describe how
the behavioral fingerprint is computed for an object in the H2O network. This behavioral
fingerprint will be used during all the object-to-object interactions of our H2O network,
whose steps are detailed in Section 4.2. After that, in Section 4.3, we survey on some
biometrics algorithms our scheme can rely on in order to assess persons authenticity. Finally,
Section 4.4 is devoted to the description of the way our approach can make communications
reliable, also in the context of human-to-human interactions.

4.1. Fingerprint Computation

In this section we deep dive in the description of the behavioral fingerprint computa-
tion. Behavioral fingerprint is a very timely research subjects and several investigations are
already available in the scientific literature [8,21–23]. Most of the existing works deal with
the problem of identifying general features that can be applied to any existing IoT device,
but, such that, together can unequivocally represent a single specific object. Generally, two
categories of fingerprinting strategy are adopted, namely: (i) non-behavioral fingerprinting
and (ii) behavioral fingerprinting [53].

The first category of approaches leverages features related to physical and link layer
characteristics [56,57]. For instance, the authors of [56] extracted 19 features from the
802.11 probe fields. The selected features have been identified by observing which varia-
tions are typically recorded when the devices are under attack or involved in anomalous
situations in their environment. In particular, this approach works as follows. In the first
phase, wireless network traffic from devices is collected, and probe request frames are
filtered out to extract the data-link layer header from the frames. After removing the
outliers, a set of unique, tamper-proof, non-reproducible features that can be used for the
device type fingerprinting are chosen. Signature has been used to generate the profile for
each device type. Finally, these profiles are then matched in the verification phase through
some similarity measures to establish if the device type is registered in the system.

In the approach described in [57], instead, the authors focused on a different set of
features related to clock characteristics and TCP timestamp. In particular, this approach is
based on thirteen clock characteristics to remotely identify different IoT device models of
various manufacturers. The authors define a set of machine learning features related to how
monotonic timestamp clocks generate TCP timestamp values, and they use these features
to detect model specific characteristics. Moreover, they compare different machine learning
algorithms and identified Random Forest as the best classifier in this setting. In general,
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non-behavioral fingerprinting can be successfully applied if the considered features can
be adapted to the characteristic of the network, in which the object is located. In this way,
particular situations in the network, like congestion or bottlenecks, do not impact on the
fingerprinting model.

Behavioral fingerprinting, instead, focuses on more application-level features to model
objects’ traits. Therefore, instead of focusing only on the physical and link layers informa-
tion, the approaches belonging to this category go further in the characteristic of the packets
generated by extracting information. Among these characteristics there are: protocols,
request-response sequences and any periodicity in specific typology of packets along with
their sizes [58–60]. In particular, the approach of [58] focuses on TCP/IP connections and
extracts features from them (such as, time-to-live, byte sent and received, etc.). With these
features, the authors trained a Random Forest model and were able to distinguish the
monitored objects from external ones with a precision of 97%.

Similarly, the approach described in [59] focuses on different typologies of traffic an
object can generate, for instance queries to DNSs, packets related to user activity on known
application (e.g., google home, maps, etc.), and interaction with known service. With these
information, the authors adopted a deep learning solution based on LSTM-CNN model.
This approach reaches a best accuracy value of 80.1%.

Very close to our application scenario is the solution described in [60]. In this paper,
the authors describe a distributed solution for behavioral IoT fingerprinting. Indeed,
because models for fingerprint must be kept updated in accordance to possible variation in
the devices’ configuration, a centralized solution would suffer from scalability issues. For
this reason, they identify some nodes, i.e. the gateways, inside the IoT that can monitor
objects using trained classification models, thus providing scalability to the solution. The
training part, instead, is performed by special controller nodes, which in this scenario are
considered as part of the ISP. Inside such an architecture, the authors identify a feature
vector with 111 dimensions. They tested the performance of their approach obtaining an
accuracy of 97% when classifying known devices.

With the evolution of the IoT technology, nowadays paradigms such as Internet of
Multimedia Things (hereafter, IoMT) have been introduced. In such settings, the devices
are assumed to have higher computational capabilities than classical sensors belonging to
the Internet of Things. With this in mind, we argue that, in modern general IoT scenarios,
we can consider that a combination of Multimedia Things and simple classical smart objects
coexists. Therefore, in our H2O network, we consider that the role of controller nodes can
be played by the top powerful devices, belonging to NPPU , which are in charge of training
the models by leveraging edge/cloud computing solutions [61]. Whereas, the monitoring
nodes can be more common objects with sufficient computational capabilities to execute
a trained model. Finally, low-power objects, belonging to NLPU or NLPAN can leverage
delegation strategies to gain reliability information about other nodes. All the controller
devices use the same algorithm to build object fingerprints and the same set of features,
say S. During the safe starting phase, objects with monitoring capabilities interact with their
peers to acquire the training set to build the corresponding models. The training set is,
hence, used by the controller nodes to fit the model. With that said, in our scenario each
monitoring node, say ni, associates and maintains a profile with each of its contacts, say
nj which were added before the safe starting phase. In particular, a profile can be defined
as follows:

Pni ,nj = 〈Netnj , Fni ,nj〉 (1)

Here, Netnj is a set containing information related to connectivity aspects (such as,
the IP address, the MAC address, and so forth), and Fni ,nj represents the fingerprint of nj
maintained by ni. In particular, the fingerprint that ni associate with nj can be defined as:

Fni ,nj = 〈mni ,nj , S〉 (2)
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where, mni ,nj represents the model built during the safe starting phase according to the data
exchanged between ni and nj. Whereas, the set S represents the set of features considered
in the model. After the safe starting phase Fni ,nj is used by the monitoring node ni to assess
whether the behavior of nj is unchanged. This information can be, then, used by the
network members to estimate a reliability score for the others. In the next section, we will
describe this aspect in more detail.

4.2. Object-to-Object Interaction

In this section, we describe how the reliability of an object is assessed by leveraging
object-to-object interactions. In order to detail all the steps of this part of our approach, we
preliminary define a redundancy parameter r, that is a positive integer representing a mini-
mum consensus level to suitably estimate the reliability of an object. Moreover, given the set
of neighbors of ni, namely Γ(ni), we denote by R(ni) ⊆ Γ(ni) the set of nodes which have
been tested by ni and whose identity is monitored (either directly or through delegation
strategies) by comparing the current interactions with their behavioral fingerprints.

As stated before, we assume that there exists a safe starting phase in which neither
fraudulent access nor physical damage to legitimate nodes can be performed. During this
phase the machine learning algorithms, described in Section 4, can be trained to produce
the fingerprints for each objects. In a subsequent non-safe phase, objects can leverage such
models referring to other nodes which they usually communicate with. Periodically, a
node ni can test one of its neighbors (whose behavior has been modeled during the safe
starting phase), to assess whether it has been corrupted or hacked. Let us denote with
nj ∈ Γ(ni) the node to be tested. To do this, ni exploits the behavioral fingerprinting model
providing data extracted from a set of transactions done with nj, as input. The output of
the model is a normalized fingerprint rate, represented as f r(ni, nj), whose values range
in (0, 1). In order to assume nj reliable, the fingerprint rate must be greater than a give
assurance threshold 0 < 1− ε ≤ 1; in other words, the fingerprint rate should be such that
1− ε ≤ f r(ni, nj) ≤ 1 to consider nj still reliable.

After this check, ni stores f r(ni, nj) in a internal table for future transactions.
Now, let us suppose that the node nj wants to interact with nz, but it has not met

nz during the safe starting phase. In this case, no information about the reliability of nz is
available, directly. To address this situation, our approach adopts a strategy based on the
consensus of a suitable portion of the neighbors of nj to compute a derived fingerprint rate.

In particular, let ∆(nj, nz) = {nx | nx ∈ Γ(nj) ∩ Γ(nz) ∧ nz ∈ R(nx)} be the set of
objects belonging to both the neighbors of nj and nz, which have computed a normalized
fingerprint rate for nz. The derived fingerprint rate for nz can be computed by nj as follows:

d f r(nj, nz) =
∑nx∈∆(nj ,nz) f r(nx, nz)∣∣∆(nj, nz)

∣∣ (3)

At this point, nz can be considered reliable by nj if the following conditions are true:
(i) d f r(nj, nz) ≥ 1− ε and (ii)

∣∣∆(nj, nz)
∣∣ ≥ r.

Therefore generalizing the above reasoning, in order to be reliable for nj, a node nz
has to match one of the following set of conditions:

• (i) nz ∈ R(nj) and (ii) f r(ni, nz) ≥ 1− ε; that is, nj holds a fingerprint model of nz and
the normalized fingerprint rate is distant from the maximum value no more than a
certain threshold ε;

• (i)
∣∣∆(nj, nz)

∣∣ ≥ r and (ii) d f r(nj, nz) ≥ 1− ε, that is at least r nodes in Γ(nj) should
have tested nz and expressed a positive check (greater than or equal to 1− ε).

We call this last property r-redundancy. It is based on the assumption that multiple
confirmation of the reliability of a node can be considered sufficient to trust the behavior
of that node [19]. Obviously, the higher the value of r, the higher the reliability about the
object behavior.
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To better understand the steps above, let us consider the example represented in
Figure 4. This figure reports a portion of an H2O network containing the nodes nj and nz
along with their neighbors. Black edges represent interactions assured by the presence
of a fingerprint model. Hence, the two nodes linked by such edges have first met during
the safe starting phase. Moreover, consider an example configuration in which ε = 0.3 and
r = 2.

Figure 4. A network portion of H2O.

Suppose again that the node nj wants to interact with nz, but it has not met nz
during the safe starting phase. The dashed edge in Figure 4 represents the possible future
interaction between nj and nz. Before starting the communication, nj checks whether
nz ∈ R(nj). If nj had a direct access to a fingerprint model for nz, it could check if
f r(nj, nz) ≥ 1− ε. However, in this example, nj has no direct access to a behavioral model
for nz. Therefore, nj contacts the objects in its neighborhood (Γnj = {na, ni, ny, nw} in
the example reported in Figure 4) to obtain information about nz. In particular, nj looks
for objects in its neighborhood, who can leverage a behavioral model of nz to assess its
reliability, which, as a consequence, belong also to the neighborhood of nz. In the example,
two nodes, namely ni and nw, belong to the interception set Γ(nj) ∩ Γ(nz) = {ni, ny, nw}
and have access to a behavioral fingerprint of nz (∆(nj, nz) = {ni, nw}). These two nodes
answer to nj with f r(ni, nz) and f r(nw, nz), respectively.

Having this two values, nj computes the formula in Equation (3), which becomes:

d f r(nj, nz) =
f r(ni, nz) + f r(nw, nz)

2
=

0.74 + 0.84
2

= 0.79

At this point, nj will consider nz reliable because d f r(nj, nz) ≥ 0.70 and r ≤ 2.
Algorithm 1 summarizes the steps of our approach for object-to-object reliability assessment.
As for the overall computational complexity of the above consensus mechanism, we

can express it in terms of number of messages sent during the object-to-object reliability
assessment. Therefore, leveraging asymptotic analysis, we can state that this solution
guarantees a linear computational complexity, O(m), in the dimension, say m, of the
number of neighbors for a node. It is worth noting that, in this analysis, we do not consider
the computational cost of the fingerprint rate f r(ni, nj), that depends on the fingerprint
algorithm used during the safe start phase (see Section 4).

4.3. Human-to-Object Interaction

This section is devoted to detail the various biometric authentication techniques
our approach can rely on, in order to make an object in the H2O network, capable of
continuously identifying its owner. As will be clearer in the next, this step is essential
to provide a mean to assess entities reliability also in human-to-human communications.
Biometric identification is defined as the mechanism to automatic identify a person through



Future Internet 2021, 13, 117 15 of 29

the analysis of his biological (physiological, anatomical) or behavioral traits. This may
happen since most of the biological and behavioral characteristics used are peculiar of an
individual and can uniquely identify him. Indeed, in the last years, the use of ID cards,
keys, passwords, or other standard systems has been replaced in lots of contexts by these
more dependable forms of authentication [62]. Obviously, not all the human characteristics
can be chosen to be used in biometric authentication. Therefore, according to the National
Institute of Standards and Technology (NIST) (https://www.nist.gov, accessed on 30 April
2021), there are some features that make a human trait distinctive and hence, eligible
for acceptance. These features are: universality, uniqueness, permanence, measurability,
performance, acceptability and circumvention [63]. Examples falling in the aforementioned
biological category of biometric mechanisms are: fingerprint, hand geometry, iris, face, and
ear. Whereas, examples of behavioral biometrics mechanisms include: gait, signature, and
keystroke dynamics.

Algorithm 1: Algorithm for object-to-object reliability computation
Result: Node reliability computation
nj wants to communicate with nz;
if nz ∈ R(nj) and f r(nj, nz) ≥ 1− ε then

nz is reliable;
else

while ni ∈ Γ(nj) ∩ Γ(nz) do
ni computes f r(ni, nz);
ni sends f r(ni, nz) to nj;

end
nj computes d f r(nj, nz);
if (d f r(nj, nz) ≥ 1− ε) and (

∣∣∆(nj, nz)
∣∣ ≥ r) then

nz is reliable;
else

nz is not reliable;
end

end

As already said, the diversity of devices and applications in the IoT universe leads to
a variety of solutions to the problem of continuous authentication of users (through biomet-
rics). Such a diversity is mostly due to the different capabilities of the devices themselves.

According to this reasoning, we can divide IoT devices that interact with humans
and which compute biometrics to authenticate their owners, into two sets. The former is
composed of objects having a permanent physical contact with the person during usage,
such as: activity trackers, smartwatches, and insulin pumps. The latter consists of devices
that do not maintain permanent contact with humans, such as: intelligent thermostats,
occupancy sensors, and smart household appliances. To the first set belong wearable
devices holding an inertial measurement unit (IMU), which are, in turn, comprised of an
accelerometer and a gyroscope, and that can verify and authenticate their owner by his gait.
The concept underneath is that humans move their limbs in unique patterns, and these
patterns can be sensed be the device. Leveraging machine learning techniques to learn
these patterns, software inside smartphones, fitbands, smartwatches and specific health
sensors can be able to verify a human through his gait.

Similarly, photoplethysmogram (PPG) sensors generate signals according to the
amount of blood that flows in a person’s veins, which depends on frequency heartbeat.
In particular, this last trait that can be analysed through echocardiogram signals (ECG)
can be monitored by smartphones, fitbands, smartwatches and specific health sensors. It
contains enough information to enable user authentication. Potentially this kind of infor-
mation can be combined with the one coming from IMU to provide a multiple-biometrics

https://www.nist.gov
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measure, more accurate and stable, that traces ECG according also to changes in speed of
user’ movements.

Always in the context of biological traits, specifically anatomical ones, distinctive
physical human characteristic are the iris, the shape and appearance of ears, the face, the
fingers and the hands’ palms. These features are invariant during the growth period of
children and in adult lifetime [62]. For instance, the visible colored rings around pupil that
compose the iris have a unique size for each individuals. Also the shape and appearance of
ears are unique and have relatively little change during the lifetime of an adult. Moreover,
also fingerprints and palms of the skin of the hands have unique pattern of ridges and
valleys. All this traits can be analysed by a camera or via specific sensors for fingerprint
installed in a laptop or smartphone.

On the other hand, there is a number of mechanisms performing continuous authen-
tication based on the analysis of human behaviour. All these approaches can be referred
as behaviometrics, that is the analysis of a person’s behavior, rather than his physical
characteristics, with the aim to identify uniquely that person. One of the most popular
is keystroke [64], which tries to identify the authenticity of a user when he is working
via a keyboard. In particular, this process analyzes the way a user types at a terminal
by monitoring the keyboard with the aim to identify users based on habitual typing
rhythm patterns.

Always in the context of behavioral biometrics, recent works rely on the particular
way a person uses the devices he usually interacts with. For instance, in [65] the authors
extracted some side-channel features from network traffic generated by smartphones.
Specifically, they state that the use of the most popular smartphone applications, such as
Facebook, WhatsApp, Skype and Dropbox generate a network traffic peculiar for a single
individual; and it can be used to reliably identify the owner’s smartphone. Also the use of
Social Networks through the smartphone can be consider characteristic for an individual.
Indeed, the works presented in [13,14] deal with this challenge, proposing some mobile be-
haviometric frameworks assessing users’ social activity, and introducing sociability metrics
to generate signatures of users’ activities. Typically, to compute behavioral biometrics a
user has to rely on powerful devices, such as smartphones or personal laptops.

In summary, the are various possibilities for IoT devices to assess, in any moment, if
their owner is who he claims to be. Specifically, in H2O network, each device can perform
continuous authentication of its owner according to its own capabilities. For instance, a
camera can rely on face recognition, whereas a fingerprint sensor on human fingerprint.
The set of possibilities for a smartphone are, surely, wider, since this kind of personal device
has a number of capabilities spanning from biological human traits to behaviometrics. The
choice of the particular mechanism for each device is orthogonal to our study, as long as a
device can provide an answer to another object about its owner identity, once requested.
Anyway, as already stated, in H2O network not all the devices are equipped with biometric
sensors able to perform a continuous authentication task. If the device belongs to a NLPAN ,
our approach leverages delegation strategies ensuring to this device the possibility to rely
on a more powerful one, always belonging to the same PAN. The whole list of steps and
the conditions for which a device can rely on another device’s to identify the common
owner, will be explained in the following section.

4.4. Human-to-Human Interaction

In this section we describe the second reliability mechanism our H2O network is
equipped with. Indeed, in Section 4.2, we detailed how the interaction between two objects
can be made more robust against attacks aiming at corrupting or damaging a node. Indeed,
our approach provides a way for a node to assess the reliability of a second node it is
interacting with. At the same time, if a node requests a service from another one for the
first time, it can rely on our approach to know what its neighbors think about that node
and assess whether it can be considered reliable or not.
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By applying a similar reasoning, our approach can be extended also to human-to-
human interactions. A sequence diagram showing our solution in this particular case is
reported in Figure 5.

Figure 5. The sequence diagram for a human-to-human communication.

In particular, if a human wants to interact with another human in the H2O network
our protocol will perform a sequence of steps useful to assess the reliability of the second
human. In particular, as showed in Figure 5, let us hypothesize that Chad wants to interact
with Hope to send a personal file. For this task, Chad relies on one of his object, let us say nc,
whereas Hope’s object, that has to receive the file, is identified with nh. In this scenario, two
cases may happen. The first possibility is that nh is an object with sufficient computational
power (i.e., it belongs to Hope’s NPPAN) and it is equipped with an algorithm for the
computation of biological or behavioral biometrics mechanisms (showed in Section 4.3).
In this case, before nc sends the file to nh, it will request the result of the biometrics
authentication mechanism nh is equipped with. At this point, our scheme provides nc with
a way to assess nh reliability, too. In order to do so, it will perform the sequence of steps
described in Section 4.2 for object-to-object reliability assessment. If nh is reliable and its
response about Hope reliability is positive, the file exchange can safely take place.

The second case happens if nh is a lower power object (i.e., it belongs to Hope’s NLPAN),
hence, it is not equipped with a way to authenticate its owner, Hope. Our approach allows
nh to rely on more powerful objects belonging to Hope’s PAN for this computation. To
do so, an approach based on consensus, similar to the one described in Section 4.2, can
be adopted. Specifically, let ∆H(nh) be the set of objects belonging to the PAN of nh,
which have the capability of computing biological or behavioral biometrics mechanisms to

authenticate their owner. Let ∆̂H(nh) ⊆ ∆H(nh) be the set of nodes of ∆H(nh) that can be
considered reliable by nh according to the strategy described in Section 4.2. To authenticate

its owner, nh can relay on any node belonging to ∆̂H(nh); moreover, nc must adopt again
the strategy described in Section 4.2 to confirm the reliability of nh’s answer. Finally, if all
the involved nodes are reliable and the response about Hope’s reliability is positive, the
file exchange can safely take place.
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Algorithm 2 summarizes the steps of our approach for human-to-human
reliability assessment.

Concerning the computational complexity of this functionality, we can consider two
contributions. The former is the cost of the continuous authentication mechanism, say
auth(hi), that strictly depends on the specific biometrics approach adopted. For these
reason, we generically refer to this cost as Cauth and we do not include it in our analysis.

The latter, which is the cost introduced by our approach, can be expressed, once again,
in terms of the number of messages exchanged by the objects involved in this task. In
particular, the human starting the communication will use one of his object for this task.
This object will exploit the object-to-object mechanism, described in Section 4.2, to assess
the reliability of the object owned by the target human. As stated before this task has a
linear computational complexity in the dimension of the number of neighbors for a node,
say m. Moreover, in the worst case, the object owned by the target human will query his
whole PAN. Assuming that the maximum size of the set of objects of a PAN is s, then this
further step will have a linear cost with respect to it. Overall, the cost of this strategy can
be estimated as O(m · s).

Algorithm 2: Algorithm for human-to-human reliability computation
Result: Human reliability computation
hi and hj are two humans;
hi wants to communicate to hj;
hi owns ni;
hj owns nj;
ni has already assessed the reliability of nj via Algorithm 1;
if nj ∈ NPPANj then

nj sends auth(hj) to ni;
else

nw ∈ Γ(nj) ∪ NPPANj sends auth(hj) to nj;
if nw ∈ R(nj) and f r(nj, nw) ≥ 1− ε then

nj sends auth(hj) to ni;
else

while nt ∈ Γ(nj) do
nt sends f r(nt, nw) to nj;

end
nj computes d f r(nj, nw);
if (d f r(nj, nw) ≥ 1− ε) and (

∣∣∆(nj, nw)
∣∣ ≥ r) then

nj sends auth(hj) to ni;
else

hj is not reliable;
end

end
end
if auth(hj) == true and nj is reliable then

hj is reliable;
else

hj is not reliable;
end

5. Evaluating the Performances of H2O Network

In this section, we describe the experimental campaign we carried out in order to test
the feasibility of our proposal. This set of experiments are also useful to tune the parameters
of our approach and determine the best configuration for the different application scenarios.
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We leveraged on the online dataset provided by [66]. This dataset is based on real IoT
objects available in the city of Santander (https://www.smartsantander.eu/, accessed on
30 April 2021). This old Spanish seaport on the north coast became one of the first smart
city in the world in 2010. During that period, indeed, 12,500 sensors have been placed in
and around the city’s downtown district, to measure and monitor a lot of things from the
number of available parking spaces to the amount of trash in containers, or crowds on the
sidewalks. In addition, sensors on public vehicles were added to measure air pollution
levels and traffic conditions.

The dataset objects are categorized following the typologies and data model intro-
duced in the FIWARE Data Models (https://www.fiware.org/developers/data-models,
accessed on 30 April 2021). This kind of data models has been thought to enable data porta-
bility for different applications in the IoT context, such as: Smart Cities, Smart Environment,
Smart Sensoring, Smart Energy, Smart Water and so on.

The dataset collects the information of both private mobile devices, which are carried
by the users during their movements, and static objects, left in a single location (e.g., the
users’ house). Among the former category of private mobile devices there are: smartphones,
cars, tablets, smart fitness devices and smartwatches. The latter category includes: personal
computers, smart printers and home sensors. Also public devices of the city of Santander
are available in the dataset, such as: environment and weather monitoring objects, trans-
portation vehicles (i.e., taxis or buses), digital indicators, garbage trucks, city street lights,
parking locations and security alarms or traffic monitoring devices. Users’ movement is
simulated through a mobility model called Small World in Motion (SWIM) [67,68]. SWIM
generates traces for ad-hoc networking having the same statistical properties of real traces.
The parameters used for this simulation along with some numeric of the dataset are shown
in the Table 3. The map in Figure 6 is a graphical representation of the objects’ positions in
the Santander city used for our experiments. For the sake of presentation, in this figure, the
object position has been scaled down to a unitary square area [66].

Figure 6. The maps of smart things of Santander used in our experiments.

To carry out our experimental evaluation of the performance and features of our
approach, we built a simulator using Python language on an Ubuntu Server equipped with
32 GB of RAM and a 8 core CPU at 5.10 GHz.

Our first experiment is devoted to the comparison of our approach with a naive one,
in terms of the load generated for the H2O, that is the number of transactions sent in
the communications. According to the naive approach, each object sends data to another
one in the network directly, without applying any strategy to assess if the target of its
communication is reliable or not.

https://www.smartsantander.eu/
https://www.fiware.org/developers/data-models
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Table 3. Information about the dataset.

Parameter Value

Total Number of objects 16,216
Number of private objects 14,600
Number of public objects 1616
Number of objects unique relation 550,939
Average objects degree 67.95
Number of persons 4000
Range of movements 2000 m
Simulation time 10 days
Number of transactions 1,101,878

This experiment gives us a better understanding of the impact of the reliability mecha-
nism introduced by our approach to the traffic generated in the H2O network during the
fully operational phase. Indeed, while the naive strategy generates only the number of
transactions related to the communication between two objects, our approach introduces
an overhead related to the assessment of objects’ reliability. The difference, in term of
percentage of transactions for a time period of 10 days and r = 2, is shown in Figure 7.

Figure 7. Different percentage of transaction between our solution and a naive approach.

Assuring reliable communications is a matter of costs and adding overhead in the
network can be tolerated if we think how valuable the data and the process exchanged
are. With that said, it is clear that such overhead in terms of number of transactions in
the network is correlated to: (i) the total number of neighbors for each nodes; and (ii) the
number of transactions created during the safe starting phase. For this experiment, we have
set the percentage of transactions in the safe starting phase to 10% of the number of total
transactions. For the results, we can see that the percentage of additional transactions has a
pick right at the beginning of the simulation. This is due to the fact that the fingerprinting
rates (and, of course, the derived fingerprint rates) are mainly computed when the first
interaction between objects takes place. Therefore, during the initial period nodes start
to interact with each other and the first set of interactions is used to test the reliability of
their peers. Later, nodes tend to communicate with the consolidated list of contacts and
can re-use the computed fingerprint rates.

To deepen the study about the tuning of the different parameters of our model, we
performed a second experiment in which we focus on the percentage of nodes for which
our approach can provide an estimation of the fingerprint rates and, therefore, of their
reliability. Of course, such percentage is strictly related to the distribution of the number
of contacts for the nodes in the network. Therefore, for starters, we report in Figure 8 the
degree distribution of the analyzed H2O network.



Future Internet 2021, 13, 117 21 of 29

Figure 8. Nodes degree distribution in H2O network.

Observe that the distribution follows a power law which is a typical distribution of
social systems [69]. According to this distribution, we can observe that most of the nodes
have a number of neighbors around 6, whereas a very small percentage of nodes have up
to 100 contacts.

With that said, we focus on the network after the safe starting phase. During this phase
some nodes can be hacked or corrupted, moreover, new transactions between nodes not
holding the fingerprint model can be established. In this experiment, we considered that
10% of the nodes was able to create fingerprint models with their acquaintances during
the safe starting phase. In this case, the r-redundancy parameter plays a fundamental role,
indeed, it imposes that at least r neighbors of a node ni must own fingerprint rates of a
target node nj to allow ni to compute a derived fingerprint rate for nj and, hence, to assess
whether it can be considered reliable or not. In Figure 9, the percentages of assessable nodes
over the total number of node in the H2O network, for different values of r parameter,
are shown. In this experiment, the r-redundancy threshold assumes integer values in the
interval [2, 20]. Observe that, when we talk about assessable nodes, we refer to nodes for
which either a direct or a derived fingerprint rate can be computed. This score can be,
hence, used to establish the reliability of nodes (i.e., a node will be considered reliable if
this rate is greater than the threshold 1− ε, see Section 4.2).

Figure 9. The percentage of assessable nodes for different values of r.

This result is useful to choose the appropriate value of the redundancy parameter r
basing on the percentage of not reliable nodes tolerated in the H2O. From this figure, we
can see that by setting r = 5, which is a value in line with the average number of neighbors
for a node in the network, with just the 10% of nodes owning a direct fingerprint model
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with others, our approach can estimate the reliability of more than the 50% of nodes in the
H2O network.

The last experiment focuses on the capability of our approach to inhibit possibly
malicious transactions originating from hacked/corrupted nodes in H2O. For this exper-
iment, we considered the following different percentages of hacked/corrupted nodes:
[1%, 2%, 4%, 10%, 20%, 50%]. Whereas, the r parameter assumes the following values:
r = [2, 5, 10].

We measured how many times a transaction towards an hacked/corrupted node has
been prevented by means of our solution.

Figure 10 shows the absolute number of prevented attacks against the number of
hacked/corrupted nodes and with different values of the r parameter.

Figure 10. Number of prevented attacks against the number of hacked/corrupted nodes with
different values of r

From the analysis of this figure, we can observe that the number of blocked attacks
increases exponentially as the percentage of hacked/corrupted nodes increases. Whereas,
the impact of r, once again, depends on the average number of neighbors for a node in
H2O. In the setting of this experiment, the best trade off between consensus robustness
and number of blocked attacks is 5, which is very near to the most probable neighborhood
cardinality in the considered H2O network.

6. Security Model of H2O Network

The IoT infrastructure is very prone to well-known security attacks that may impact
things and routing [70]. In this section, we illustrate the security model of our approach.
In particular, we present both the attack model and a security analysis, showing that our
framework addresses its objectives also in presence of threats. The security properties of
our scheme are demonstrated by leveraging the characteristic and security features of our
approach as well as the assumptions described in the attack model.

6.1. Attack Model

As a preliminary assumption, we consider a realistic scenario in which a sufficient
number of nodes is available both in the starting phase, called safe starting phase, and in
the fully operational one. Therefore, we do not consider anomalous situations, in which
the number of the nodes available in the network is less than the minimum necessary one,
preventing to implement our scheme successfully. Moreover, we include in our threat
model the following assumptions:
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A.1 At most t < r smart objects can collude to break the security properties of the protocol.
A.2 A.2 An attacker can neither take control of the whole network, nor own all the

smart objects.
A.3 A.3 There is a safe starting phase during which no node is corrupted or human imper-

sonated.

As for the first assumption, we recall that our protocol is collaborative and a node ni
can compute the reliability score of another nodes nj through the responses of the set of
its neighbors Γni . Some nodes might be corrupted, but we assume that most of them are
honest, as done in [71,72].

The list of the security properties (hereafter, SP) of our framework is the following:

SP.1 Resistance to Node Tampering Attacks.
SP.2 Resistance to Side Channel Attacks.
SP.3 Resistance to Physical Damage Attacks.
SP.4 Resistance to Sniffing Attacks.
SP.5 Resistance to Denial of Service Attacks.
SP.6 Resistance to Fake Node Attacks.
SP.7 Resistance to Sybil Attacks.

6.2. Security Analysis

In this section, we detail the security properties cited above, analysing how our
approach can guarantee each of them.

6.2.1. SP.1—Resistance to Node Tampering Attacks

This attack occurs when a malicious user has physical access to an object and can
modify its whole software/hardware or just part of it. More specifically, an adversary
physically compromises a node by inserting malicious code to the node that will give him
illegal access to the system [70]. Moreover, this type of attack can include also the altering
of some sensitive information, such as cryptographic keys or routing table [73].

Having the control of the node, the attacker can compromise the strategy adopted
by the node to gather information and allow for the computation of the fingerprint of its
contacts. This would lead to issues during the training phase of the classifiers during the
safe starting phase and, hence, to wrong fingerprint rates estimation during the subsequent
phase. The node, as breached, would provide wrong values once requested by its neighbor.
It is worth noting that, in this case, the behavior of the node would not be altered, because
the node will continue to work normally, but it will leverage wrong models to produce
fingerprint rates. However, thanks to Assumption A.3 such an attack could not happen,
because during the safe starting phase all the objects are considered safe.

Always in the context of this kind of attack, instead of jeopardizing the training
phase, an attacker could modify directly the response to a query of another object during
the operational phase. In this case, our approach enforces two protection mechanisms.
On one hand, the use of behavioral fingerprinting models would detect an anomalous
behavior of the attacked object; indeed, related literature in this setting proved that an
attacker controlling an object would alter some of the features, thus impacting the object’s
fingerprint [53]. On the other hand, this scenario does not invalidate the computation of
the reliability for any node; indeed this score is obtained by a consensus of at least r nodes
and for Assumption A.1 colluding nodes are at most t < r.

6.2.2. SP.2—Resistance to Side Channel Attacks

Related to the previous category of attacks, in this case attackers leverage low level
information like power consumption, time consumption and electromagnetic radiation
from sensor nodes to attack encryption mechanisms and have the control of the node. Since
our H2O network is made up heterogeneous devices, this attack can target only sensor
nodes for which additional information obtained from side channels can reveal encryption
mechanisms. However, the countermeasure described above for attacks based on node
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tampering (see Section 6.2.1) are valid also in this case. Therefore, thanks to Assumptions
A.3 and A.1, this attack cannot happen.

6.2.3. SP.3—Resistance to Physical Damage Attacks

The adversary can physically damage the IoT device with the aim to perform a denial
of service for that node. If an attacker damage only a node, the reasoning underneath the
resistance to this type of attack is the same of the one explained in Section 6.2.1 for Node
Tampering Attacks. Hence, once again, thanks to Assumptions A.3 and A.1 these attacks are
contrasted. Whereas, if the attacker tries to damage all the IoT devices providing a certain
services or all the nodes belonging to a neighborhood of a node, the mechanism to assess
the reliability could be invalidate for loss of responses. However, for Assumption A.2 an
attacker cannot take control of all the smart objects. Moreover, as already said above, for
Assumption A.1, colluding nodes can be at most t < r.

6.2.4. SP.4—Resistance to Sniffing Attacks

An adversary can place a sensor near a simple IoT object (i.e., an object of NLPPU
or NLPAN) to sense the connectivity/identity (RFID tag) information exchanged and to
act as a man-in-the-middle. In this way, he can send fake data on behalf of the original
object and compromise the system [74]. As said, this attack targets only those devices
belonging to NLPPU or NLPAN , that are low power devices for either public or personal use.
This kind of devices are not directly involved in the construction of fingerprint models,
whose construction is instead pursued by objects belonging to NPPU and NPPAN based
on the information obtained by other nodes. However, during the safe starting phase for
Assumption A.3, no such attacks can occur, thus guaranteeing the integrity of these models.

As for the subsequent phase, attacked objects will be detected through the available
models; moreover, by properly tuning the r parameter, as described in the experimental
campaign section, our mechanism can be fully robust to any corrupted node.

6.2.5. SP.5—Resistance to Denial of Service Attacks

Classically, this attack may happen when a malicious user overburdens the network
with traffic above its capacity and makes it unavailable for legitimate services. To do so, an
adversary can execute the attack from a single node (classical DoS [75]) or from multiple
nodes (Distributed DoS [76]).

A particular category of DoS attacks, very popular in an IoT scenario, are the Sleep
Deprivation Attacks. The objective of the attacker is to cause great consumption of power
for a target node to reduce its lifetime. Providing a solution to classical DoS attacks is
orthogonal to our proposal. However, any existing strategy, such as those described
in [77–79], could be included in our approach. However, it is worth nothing that, in case
the attacker should exploit a node for which a behavioral model has been built during
the safe starting phase to perform DoS attacks against others, the victims can leverage our
approach to quickly identify any change in its behavior and, hence, isolate it. Although,
this would not solve classical DoS attacks against the network, for which existing state-
of-the-art approaches can be adopted, our strategy would provide a solution to Sleep
Deprivation ones.

6.2.6. SP.6—Resistance to Fake Node Attacks

An attacker can add a fake node to the system. He could do this for a number of
reasons, the classical one is injecting malicious data through this fake node in the network,
thus making low power devices busy and consuming their energy. If a malicious user
wants to perform this kind of attack, he has to add the node during the safe starting phase,
so that the other nodes can built a fingerprint model for it. But this cannot happen because
of the Assumption A.3, indeed during the safe starting phase all the objects are assumed
not malicious.
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By contrast, if the attacker tries to add the node during the subsequent phase no object
will have a model for it and, consequently, the other nodes cannot evaluate its reliability. In
this case, contacting this object may be considered a risk and, therefore, it could be either
isolated or not involved in critical applications.

6.2.7. SP.7—Resistance to Sybil Attacks

In this kind of attack, an adversary can control a single node, in such a way that this
node claims the identity of many nodes and pretends to be them, thus distributing false
routing information and/or trying to attack the consensus approach for the reliability
assessment. However, thanks to Assumption A.3, this attack can happen only in the fully
operational phase. At this point, objects will have fingerprint models to evaluate the
behavior of their peers. According to the Sybil attack strategy, the malicious node must
pretend to be several nodes and, therefore, it cannot maintain a stable behavior. As a
consequence, our approach is resistant to this typology of attack.

7. Conclusions

In the last years, IoT devices have gained great autonomy and have become pervasive
in everyday tasks. IoT incorporates heterogeneous hardware, communication protocols,
and services. In such a diverse and complex ecosystem, numerous security challenges
arise. The huge number of devices deployed and connected to the Internet can be hacked,
corrupted or stolen. Moreover, also humans, owning smart devices or interacting with
them, can be considered actors of the IoT network, especially, in according to the new SIoT
paradigm. In such a scenario, each entity must be able to clearly identify and authenticate
other entities to assess, before a communication, that neither the user has been imper-
sonated nor the object corrupted. To tackle this issue, in this paper, we have presented a
complete framework, called H2O (Human to Object) that provides a mechanism to assess if
an object or a human are really who they claim to be. During a safe starting phase, the nodes
interacting with each others, participate to the construction of suitable fingerprint models.
Nodes having access to such models can continue to assess their neighbors reliability also
in fully operational state. The other nodes can leverage the knowledge coming from their
reliable peers to compute a derived score for nodes that they do not directly know. We
evaluate the performances of our approach through an experimental campaign, useful
also to tune the system parameters. Moreover, we report the attack model along with the
security analysis of our solution, which, ultimately, shows that our framework addresses
its objectives also in presence of attacks.

The research issues addressed in this paper can be considered only a starting point for
further efforts that we want to perform in the future. For instance, we plan to include in
H2O a mechanism to generalize stereotypical fingerprints for specific typology of attackers.
In this way, even in the absence of a direct model for a specific object, it could be possible
to predict, according to the known attacker stereotypes, whether the node is a genuine or it
roughly behaves as a possible attacked node.
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Abbreviations
The following abbreviations are used in this manuscript:

DoS Denial of Service
ECG Electrocardiogram
H2O Human To human and Object to object
IMU Inertial Measurement Unit
IoT Internet of Things
MIoT Multiple Internet of Things
ML Machine Learning
NFC Near Field Communication
NIST National Institute of Standards and Technology
P2P Peer to Peer
PAN Personal Area Network
PDA Personal Digital Assistant
PKI Public Key Infrastructure
PPG Photoplethysmogram
SIoT Social Internet of Things
SP Security Property
SWIM Small World in Motion
RFID Radio Frequency Identification
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