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Abstract
Among the properties describing the behavior of centrality measures with respect to network modifications, score monoto-
nicity means that adding an arc increases the centrality score of the target of the arc; rank monotonicity means that adding 
an arc improves the importance of the target with respect to the remaining nodes. It is known (Boldi and Vigna Intern Math 
10:222–262, 2014, Boldi et al. Netw Sci 5(4):529–550, 2017) that score and rank monotonicity hold in directed graphs for 
almost all the classical centrality measures. In undirected graphs one expects that the corresponding properties hold when 
adding a new edge—in this case, both endpoints of the new edge should enjoy the increase in score/rank. However, recent 
results (Boldi et al. in Netw Sci 11(3):1–23, 2023) have shown that this is not true: for many centrality measures, it is possible 
to find situations in which adding an edge reduces the rank of one of its two endpoints. In this paper we introduce a weaker 
property for undirected networks, semi-monotonicity, in which just one of the two endpoints of a new edge is required to 
enjoy score or rank monotonicity. We show that this property is satisfied by closeness centrality, by a large class of distance-
based centralities, and (somehow surprisingly) by betweenness centrality. In the last two cases, we prove in fact a stronger 
property, basin dominance, which is of independent interest.
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1  Introduction

Centrality measures are a well-established tool for the analy-
sis of complex networks. They are used to identify the most 
important nodes in a graph and to understand the structure of 
the network itself. In the last decades, many centrality meas-
ures have been proposed, and they have been used in a wide 
range of applications, from social network analysis to biol-
ogy, from computer networks to the study of the World Wide 
Web. To gain a formal understanding as to which extent a 
centrality mimics the intuitive concept of importance it is 
useful to provide a set of axioms that a centrality measure 
should (or should not) satisfy.

Previous work (Boldi and Vigna 2014, 2019; Boldi 
et al. 2017)  has identified two important properties that a 

centrality measure should capture: score monotonicity and 
rank monotonicity. The former states that adding an arc to 
the network should increase the score of the target of the arc, 
while the latter requires that adding an arc increases the rank 
of the target of the arc with respect to the other nodes in the 
network. In the case of directed networks, it is known that 
almost all classical centrality measures satisfy both proper-
ties (Boldi et al. 2017). In the case of undirected networks, 
though, the situation is different: while again score monoto-
nicity is satisfied by almost all classical centrality measures, 
rank monotonicity is not (Boldi et al. 2023), meaning that it 
is possible to find situations where adding an edge reduces 
the rank of one of its two endpoints. In particular:

•	 Degree centrality and Seeley’s index (Seeley 1949) are 
score and (strictly) rank monotone;

•	 Closeness (Bavelas 1948, 1950), harmonic centrality 
(Beauchamp 1965), and Katz’s index (Katz 1953) are 
score monotone but not rank monotone;

•	 Betweenness (Anthonisse 1971; Freeman 1977), eigen-
vector centrality (Landau 1985; Berge 1958), and PageR-
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ank (Page et al. 1999) are neither score nor rank mono-
tone.

In terms of real-world networks, this means that getting 
a new follower is always a good thing, whereas getting a 
new friend might even be detrimental to one’s importance.

One of the questions left open in Boldi et al. (2023) is 
whether the addition of an edge could result in a decrease 
in the rank of both endpoints. Said otherwise: if a new 
edge is added to an undirected network, does the impor-
tance of at least one of its two endpoints increase?

In this paper we provide a positive answer to this ques-
tion by introducing semi-monotonicity, a weaker condi-
tion than monotonicity in which we require that at least 
one endpoint of the new edge in an undirected network 
enjoys monotonicity. The main results of this paper are 
that closeness centrality, distance-decay centralities (e.g., 
harmonic centrality) and betweenness do satisfy rank 
semi-monotonicity.

The paper is organized as follows. In Sect. 2, we intro-
duce the concept of score semi-monotonicity and (strict) 
rank semi-monotonicity. Then, in Sect. 3, we introduce 
the concept of �-monotonicity and �-semi-monotonicity, 
providing connections between these two notions and rank 
(semi-)monotonicity. Finally, in Sect. 4 we introduce an 
even stronger property, basin dominance, which is the 
property we will prove to hold for almost all the centrali-
ties we consider.

We then show in Sect. 5 that basin dominance holds 
also for distance-decay centralities satisfying a (discrete) 
convexity condition on their decay function. The condition 
is necessary and sufficient, thus characterizing basin domi-
nance for those centralities. From the characterization, we 
immediately obtain results for closeness, harmonic cen-
trality, and for centralities with exponential or power-law 
decay functions. Finally, in Sect. 6 we show that between-
ness is basin dominant. Along the way, we show that the 
semi-monotonicity of closeness and betweenness is not 
strict, contrarily to what happens for harmonic centrality, 
echoing similar results for the directed case. In Sect. 7, we 
end the paper by drawing some conclusions and interpreta-
tions of our results.

With respect to the conference paper (Boldi et al. 2024), 
the definitions of �-(semi-)monotonicity are new; all 
results about distance-decay centralities (in particular, the 
characterization of basin dominance in terms of convexity 
of the decay function) are also new, and so is the proof 

of basin dominance for betweenness. We have discussed 
several detailed properties of basin dominance that were 
not mentioned in the conference paper. We fixed a minor 
mistake—closeness centrality is rank semi-monotone, but 
not basin dominant, and we provide a counterexample. The 
definitions and results about exponential/power-law decay 
functions are new. We added several relevant references to 
previous literature.

2 � Score and rank semi–monotonicity

Although this paper is focused on undirected graphs, we 
will sometimes present definitions for both directed and 
undirected graphs, as the directed case is sometimes used 
for comparison; the following definitions about graphs 
are standard (see, for instance, Berge (1958)). A directed 
graph is a pair G = (VG,AG) where VG is a set of nodes and 
AG ⊆ VG × VG is a set of ordered pairs, called arcs; we will 
denote the existence of an arc from x to y with the notation 
x → y . An undirected graph is a directed graph such that 
x → y iff y → x ; when this happens, we say that there is an 
edge between x and y, denoted by the notation x — y, or, 
equivalently, we say that x and y are adjacent.

We denote with G + x → y the graph obtained by adding 
the arc x → y to a directed graph G, and with G + x — y 
the graph obtained by adding the edge x — y to an undi-
rected graph G.

A (simple) path of length k from x to y in an undirected 
graph G is a sequence of distinct vertices x0, x1 , …, xk such 
that x0 = x , xk = y , and xi−1 − xi for every 1 ≤ i ≤ k . The 
distance dG(x, y) between x and y in G is the length of a 
shortest path from x to y in G; if there is no such path, we 
set dG(x, y) = ∞ . We will use the notation dxy to denote the 
distance between x and y in the undirected graph G when 
the graph is clear from the context.

A centrality measure is a function c ∶ VG → R , assign-
ing real values, which we also refer to as scores, to all the 
vertices of a graph G, where vertices with larger scores 
should be interpreted as having a greater structural impor-
tance in the network. We assume all centrality measures to 
be invariant under isomorphism.

We start by recalling the definition of score and rank 
monotonicity on undirected graphs, which were introduced 
in Boldi et al. (2023) as a natural extension of score and 
rank monotonicity on directed graphs (Boldi and Vigna 
2019, Boldi et al. 2017). Score monotonicity requires that 
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when adding an edge to a graph, both endpoints enjoy an 
increase in score. Formally:

Definition 2.1  (Score monotonicity) Given an undirected 
graph G, a centrality c is said to be score monotone on G if 
for every pair of distinct,1 non-adjacent vertices x and y we 
have that

where c′ is the value of the centrality on the graph G + 
x — y.

Note that, in general, we will give definitions of proper-
ties for a centrality c on a graph G, and we will say that the 
same property holds on a set of graphs if it is true on all the 
graphs from the set.

A score increase does not imply that the rank relations 
between the two vertices involved in the new edge and the 
other vertices in the network remain unchanged. This obser-
vation motivates the definition of rank monotonicity (Boldi 
et al. 2017, 2023): this property requires that every vertex 
that used to be dominated by two non-adjacent vertices x and 
y is still dominated after the addition of the edge x — y.2 For-
mally, we can consider two versions of rank monotonicity:

Definition 2.2  (Rank monotonicity) Given an undirected 
graph G, a centrality c is said to be rank monotone on G if 
for every pair of distinct, non-adjacent vertices x and y the 
following two statements hold:

•	 for all vertices z ≠ x, y : 

•	 for all vertices z ≠ x, y : 

where c′ is the value of the centrality on the graph G + x — y.

c(x) < c�(x) and c(y) < c�(y),

c(z) < c(x) implies c�(z) < c�(x) and

c(z) = c(x) implies c�(z) ≤ c�(x),

c(z) < c(y) implies c�(z) < c�(y) and

c(z) = c(y) implies c�(z) ≤ c�(y).

A strict (in fact, simpler) version of the previous definition 
can be introduced, requiring that adding the new edge breaks 
all ties in favor of the two endpoints of the new edge itself:

Definition 2.3  (Strict rank monotonicity) Given an undi-
rected graph G, a centrality c is said to be strictly rank mono-
tone on G if for every pair of distinct, non-adjacent vertices 
x and y the following two statements hold:

•	 for all vertices z ≠ x, y : 
c(z) ≤ c(x) implies c�(z) < c�(x),

•	 for all vertices z ≠ x, y : 
c(z) ≤ c(y) implies c�(z) < c�(y).

where c′ is the value of the centrality on the graph G + x — y.
Semi-monotonicity is a weaker condition than monotonic-

ity, originating from the observation that in undirected net-
works some centrality measures do not satisfy score or rank 
monotonicity. Indeed, adding an edge to a graph can reduce 
the score or the rank of one of the two endpoints of the edge 
(Boldi et al. 2023). Thus, we just require that adding a new 
edge increases the score of at least one of the two endpoints:

Definition 2.4  (Score semi-monotonicity) Given an undi-
rected graph G, a centrality c is said to be score semi-mono-
tone on G if for every pair of distinct, non-adjacent vertices 
x and y we have that

where c′ is the value of the centrality on the graph G + 
x — y.

Similarly, rank semi-monotonicity means that adding a 
new edge increases the rank of at least one of the two end-
points, and as before comes in two versions:

Definition 2.5  (Rank semi-monotonicity) Given an undi-
rected graph G, a centrality c is said to be rank semi-mono-
tone on G if for every pair of distinct, non-adjacent vertices 
x and y at least one of the following two statements holds:

•	 for all vertices z ≠ x, y : 

•	 for all vertices z ≠ x, y : 

where c′ is the value of the centrality on the graph G + x — y.

c(x) < c�(x) or c(y) < c�(y).

c(z) < c(x) implies c�(z) < c�(x) and

c(z) = c(x) implies c�(z) ≤ c�(x),

c(z) < c(y) implies c�(z) < c�(y) and

c(z) = c(y) implies c�(z) ≤ c�(y).

1  It is unfortunate that the assumption x ≠ y was not stated explic-
itly in the definition of score monotonicity given in Boldi and Vigna 
(2014), although being part of Sabidussi’s original definition (Sabi-
dussi 1966); the same restriction is necessary for strict rank mono-
tonicity (Boldi et al. 2017). Indeed, adding loops cannot change the 
value of any centrality depending on shortest paths, so no such cen-
trality could be score monotone or strictly rank monotone without the 
assumption x ≠ y . On the other hand, the results in Boldi and Vigna 
(2019), Boldi et  al. (2017) show that spectral centralities satisfy a 
stronger definition of strict rank monotonicity that includes the pos-
sibility of adding loops.
2  The original definition of rank monotonicity for directed graphs 
was given in Chien et al. (2003).
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Again, the strict version is simpler:

Definition 2.6  (Strict rank semi-monotonicity) Given an undi-
rected graph G, a centrality c is said to be strictly rank semi-
monotone on G if for every pair of distinct, non-adjacent vertices 
x and y at least one of the following two statements holds:

•	 for all vertices z ≠ x, y : 
c(z) ≤ c(x) implies c�(z) < c�(x),

•	 for all vertices z ≠ x, y : 
c(z) ≤ c(y) implies c�(z) < c�(y).

where c′ is the value of the centrality on the graph G + x — y.

3 � ı–monotonicity and ı–semi–
monotonicity

When proving rank monotonicity of a centrality measure, 
working purely on order relationship on the whole graph can be 
tricky: it is often easier to prove a stronger but more amenable 
property that provides a sufficient condition for rank monoto-
nicity based on value differences, rather than on order: indeed, 
the authors of Boldi et al. (2017) used such a property to prove 
rank monotonicity for closeness centrality, harmonic centrality, 
PageRank, and Katz’s index, without explicitly naming it.

This observation motivates us to introduce the concepts of �
-monotonicity and �-semi-monotonicity, and to show that they 
indeed provide a sufficient condition for, respectively, rank 
monotonicity and rank semi-monotonicity. The idea underlying 
�-monotonicity is that the score increase of the target of a new 
arc should be at least as large as the score increase of all other 
vertices. This approach formalizes the idea underlying the proofs 
of Boldi et al. (2017) and factors out the common structure of 
the proofs of rank semi-monotonicity in the rest of the paper.

We start with the definition of �-monotonicity for directed 
graphs:

Definition 3.1  (�-monotonicity (directed)) Given a directed 
graph G, a centrality c is said to be �-monotone on G if for 
every pair of distinct vertices x and y such that x ↛ y the 
following holds:

where c′ is the value of the centrality on the graph G + x → y . 
It is said to be strictly �-monotone if the inequality is strict.

The undirected version of �-monotonicity follows the same 
pattern of the monotonicity properties of the previous section:

Definition 3.2  (�-monotonicity (undirected)) Given an undi-
rected graph G, a centrality c is said to be �-monotone on 

c�(z) − c(z) ≤ c�(y) − c(y) for every z ≠ y.

G if for every pair of distinct, non-adjacent vertices x and y 
the following holds:

where c′ is the value of the centrality on the graph G + x 
— y. It is said to be strictly �-monotone if the inequalities 
are strict.

Finally, only for undirected graphs we define �-semi-
monotonicity, whose definition parallels the weakening of 
monotonicity we discussed in the previous section:

Definition 3.3  (�-semi-monotonicity) Given an undirected 
graph G, a centrality c is said to be �-semi-monotone on G if 
for every pair of distinct, non-adjacent vertices x and y the 
following holds:

where c′ is the value of the centrality on the graph G + x — 
y. It is said to be strictly �-semi-monotone if the inequalities 
are strict.

We now prove that �-monotonicity implies rank mono-
tonicity, and �-semi-monotonicity implies rank semi-
monotonicity. This is intuitive, as the score increase of 
the target of a new arc (or of the endpoints of a new edge, 
in the undirected case) is at least as large as the increase 
in score of all other vertices, so its order relationship with 
other vertices can only improve.

Theorem 3.1  If a centrality measure is (strictly) �-monotone 
on a (directed or undirected) graph then it is (strictly) rank 
monotone on the same graph.

Proof  We prove this result for a directed graph: a similar 
proof can be obtained for the undirected case. By the defini-
tion of �-monotonicity, we know that when adding an arc 
x → y to G, the inequality

holds for every z ≠ y , the inequality being strict in the strict 
case. Adding this inequality to the left-hand sides of the 
implication appearing in the definition of rank monotonic-
ity, we obtain

The proof for the strict case is analogous. 	�  ◻

c�(z) − c(z) ≤ c�(x) − c(x) for every z ≠ x, y and

c�(z) − c(z) ≤ c�(y) − c(y) for every z ≠ x, y.

c�(z) − c(z) ≤ c�(x) − c(x) for every z ≠ x, y or

c�(z) − c(z) ≤ c�(y) − c(y) for everyz ≠ x, y.

c�(z) − c(z) ≤ c�(y) − c(y)

c(z) < c(y) implies c�(z) < c�(y) for every z ≠ y,

c(z) = c(y) implies c�(z) ≤ c�(y) for every z ≠ y.
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Theorem 3.2  If a centrality measure is (strictly) �-semi-
monotone on a graph then it is (strictly) rank semi-monotone 
on the same graph.

The proof can be straightforwardly derived as for Theo-
rem 3.1 using the appropriate hypotheses and definitions.

4 � Basin dominance

Finally, we introduce an even stronger property than �
-semi-monotonicity, basin dominance: this property is 
related to the notion of distance in a graph, and it will be 
instrumental in the proofs of rank semi-monotonicity for 
centralities based on shortest paths in the next sections.

We start with the notion of basin, formalizing the idea 
that given two vertices x, y in an undirected graph we can 
classify the vertices of the graph depending on whether 
they are closer to x or to y, with possibly an overlap for 
the vertices that are equidistant from x and y. This concept 
appeared implicitly in some recent works (Brandes et al. 
2022; Skibski 2023) where graph distances are used to 
determine winners of pairwise comparisons, in a graph-
as-an-election fashion. In particular, between two candi-
date vertices x and y of a graph, voters give their prefer-
ence to the one whom they are strictly closer to. In fact, 
we can trace the notion back at least to [Entringer et al. 
(1976), Property 2.2] (albeit in Entringer et al. (1976), 
Brandes et al. (2022), Skibski (2023) equidistant vertices 
are not considered).

Definition 4.1  (Basin) Given an undirected graph G with 
vertex set VG and two vertices x and y, we define the basin 
of x (with respect to y) Bxy and the basin of y (with respect 
to x) Byx as

Figure 1 shows an example of a graph with the basins 
of two vertices; the vertices that are equidistant from x and 
y are included in both basins. We note a few useful facts:

•	 if x is not adjacent to y, adding the edge x — y to the 
graph leaves the basins unchanged; moreover, the 
shortest paths between x and the vertices in its basin 
Bxy do not change (the same is true for y);

•	 if z is equidistant from x and y and they are non-adja-
cent, the shortest paths between z and other vertices do 
not change because of the addition of the edge x — y; 
as a consequence, the score of z will remain the same 

Bxy ={ u ∈ VG | dux ≤ duy }

Byx ={ u ∈ VG | duy ≤ dux }

after the addition of x — y in any centrality depending 
only on shortest paths;

•	 let u be a vertex in the basin of x; then, a shortest path 
between u and x passes exclusively through vertices 
in the basin of x; the same holds symmetrically for 
a shortest path between v ∈ Byx and y; moreover, a 
shortest path between u and y passes first exclusively 
through the basin of x, and then exclusively through the 
basin of y; again, everything holds symmetrically for a 
shortest path between v ∈ Byx and x;

•	 shortest paths between arbitrary vertices can zig-zag 
between basins multiple times (see Fig. 2);

•	 if x — y, the difference of the sum of distances from x 
and from y is the opposite of the difference of the sizes 
of their basins (Entringer et al. 1976): 

Given the notion of basin, we can define the basin domi-
nance property, which requires that the increase in score 
of x and y is at least as large as (or larger than, in the strict 
case) the increase in score of all other vertices in their cor-
responding basin:

Definition 4.2  (Basin dominance) A centrality c is said to be 
basin dominant on an undirected graph G if for every pair of 
distinct, non-adjacent vertices x and y we have that

where c′ is the value of the centrality on the graph G + x — 
y. It is strictly basin dominant if both inequalities are strict.

∑

z

dzx −
∑

z

dzy =
||Byx

|| − ||Bxy
||.

c′(u) − c(u) ≤ c′(x) − c(x) for every u ∈ Bxy ⧵ {x}and
c′(v) − c(v) ≤ c′(y) − c(y) for every v ∈ Byx ⧵ {y}.

Fig. 1   An undirected graph G, with Bxy (the basin of x w.r.t. y) shown 
in dark grey and Byx (the basin of y w.r.t. x) in light grey. Note that z is 
equidistant from x and y, and thus it is included in both basins
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At first glance, this property might seem weaker than �
-semi-monotonicity, as it requires a larger increase only for a 
subset of the vertices. However, it is immediate to notice that 
either x or y has the largest increase, and with respect to that 
vertex c will be �-semi-monotone. Combining this observa-
tion with the results of the previous section we have that:

Theorem  4.1  If a centrality measure is (strictly) basin 
dominant on a graph then it is (strictly) �-semi-monotone. 
Hence, if a centrality measure is (strictly) basin dominant 
on a graph then it is (strictly) rank semi-monotone on the 
same graph.

As it will become apparent in the following section, 
basins will enable us to reason about the score increase of a 
vertex in a more geometric way.

5 � Distance–decay centralities

Conventions. In this section, and in the following ones, we 
will often be in a situation where x and y are distinct, non-
adjacent vertices of an undirected graph G: we will then 
uniformly use c for the value of a centrality on G, and c′ for 

the value of the same centrality on the graph G + x — y. 
Analogously, we will denote distances in G with duv and in 
G′ with d′

uv
 . More in general, we will use the prime symbol 

on quantities and functions related to G′.
Our first goal, now, is to prove that a large class of cen-

trality measures are basin dominant, and thus �-semi-mono-
tone (hence, rank semi-monotone). In fact, we will be able 
to characterize basin dominance in terms of a discrete con-
vexity condition. As a bonus, we will obtain indirectly that 
closeness centrality is rank semi-monotone.3

A geometric centrality (Boldi and Vigna 2014) is a cen-
trality measure that depends only on distances between 
vertices. A special class of geometric centralities is the 
following:

Definition 5.1  (Distance-decay centrality) A distance-
decay centrality is a centrality measure c for which there 
exists a nonincreasing decay function � ∶ N ⧵ {0} → R 
such that4

The idea that the influence of a vertex on the centrality 
of another is computed additively on some nonincreasing 
function of its distance is very natural and it appeared 
several times in the literature (Beauchamp 1965; Cohen 
et al. 2014; Dangalchev 2006; Jackson 2008; Harris 1954; 
Pan 2011, just to cite a few), but there is no standard 
definition. We took the name and definition used from 
Cohen et al. (2014), where it is declined as “distance-
decay closeness”, but given that closeness does not satisfy 
the definition (see Sect. 5.1), we prefer to use “distance-
decay centrality”.5

To state our results, we need to recall the definition of the 
discrete derivative operator Δ (Graham et al. 1994), which 
given a function f ∶ N → R returns the function N → R 
defined by

c(v) =
∑

u ≠ v

duv < ∞

𝛼(duv).

(Δf )(i) = f (i + 1) − f (i).

Fig. 2   A family of graphs where the shortest path between i and 
j can change basin k + 1 times, for k ≥ 2 . Bxy is shown in dark grey 
and Byx is shown in light grey. Each squiggly line with label � rep-
resents a path of length � between its two endpoints. Tuning the 
parameter h we can make the shortest path between i and j change 
basin k + 1 times even after the addition of the edge x — y. For exam-
ple, choosing h = k − 1 we get dij = d�

ij
= k + 1 (where d′

uv
 is the dis-

tance between u and v after the addition of the edge x — y ); moreo-
ver, dix + dxj = diy + dyj = d�

ix
+ 1 + d�

yj
= 2k + 1 . On the other hand, 

choosing h = 0 , the shortest path between i and j after the addition of 
the edge x — y will pass through x and y 

3  After submitting this paper, we noticed that some of the results 
of this section were previously and independently obtained in Kishi 
(1981).
4  In the directed case we have a positive and a negative (distance-
decay) centrality, the latter being usually that of interest, depending 
on whether we use dvu or duv in the definition.
5  The reader should not confuse the term distance-decay central-
ity with decay centrality (Jackson 2008; Dangalchev 2006), a meas-
ure that became popular in the economic literature. Note that, in 
Sect.  5.3, we will identify decay centrality as a special case of dis-
tance-decay centrality exhibiting exponential decay.
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The operator can be iterated, and we denote with Δk the k-
th iteration of the operator. As in the case of the standard 
derivative, Δf ≤ 0 if and only if f is nonincreasing.6

While the operator is normally defined for functions 
with domain N , we will use it for functions with domain 
N ⧵ {0} to avoid shifting the input of decay functions. For 
instance, the condition on the decay function is just that 
Δ� ≤ 0 . Observe that when adding an edge x — y all dis-
tances decrease, so no score can decrease. Thus, the con-
dition of the derivative of � being nonnegative is fairly 
natural; otherwise, adding a new edge might decrease the 
score of some vertex—a quite counterintuitive behavior.

By the same considerations, if we further require that 
(Δ𝛼)(1) < 0 we have the following result:

Theorem 5.1  A distance-decay centrality measure c is score 
monotone on connected undirected graphs iff the first deriva-
tive of its decay function � is negative at 1, that is, iff � satis-
fies (Δ𝛼)(1) < 0.

Proof  For the right-to-left implication, we have 
𝛼(1) > 𝛼(2) ≥ 𝛼(k) for all k ≥ 2 . Thus, when adding the edge 
x — y to the graph, for all z ≠ x, y we have �

(
d�
xz

)
≥ �(dxz) , 

and 𝛼
(
d�
xy

)
> 𝛼(dxy) . For the reverse, assume by contradiction 

�(1) = �(2) and consider the graph x — u — y : when adding 
an edge x − y we have c�(x) = 2�(1) = �(1) + �(2) = c(x) . 	
� ◻

The reader could be puzzled by the fact that a condi-
tion at a single point is equivalent to score monotonicity. 
However, the gap between �(1) and �(2) has a special role 
because when adding an edge x — y there is exactly one 
distance that turns into 1, that is, dxy . Since in the graph 
x — u — y that distance is 2, the gap between �(1) and �(2) 
must be larger than zero for score monotonicity to happen. 
On the other hand, since all other coefficients are smaller 
than or equal to �(2) by definition, the nonzero gap between 
�(1) and �(2) induces a nonzero gap between �(1) and all 
other coefficients, which makes the condition sufficient. We 
will observe a similar phenomenon with strictness in basin 
dominance.

Interestingly, the second derivative gives us further 
insights into the inner workings of the centrality. As in 
the continuous case, a convex function f is a function such 
that Δ2f ≥ 0 . Convexity gives us information about what 
happens when a distance changes because of the addition 
of an edge.

Indeed, since (Δ2f )(i) = f (i + 2) − 2f (i + 1) + f (i) , we 
have that Δ2f ≥ 0 if and only if

that is, shortening a distance from i + 2 to i + 1 provides an 
increase in score that is not larger than the one given by a 
distance shortening from i + 1 to i. We can generalize this 
fact by making the shortened distances more far apart, and 
the gap in the shortenings different:

Lemma 5.1  If f ∶ N ⧵ {0} → R is convex, then for every 
i ≤ j , k ≥ 0 , and 0 ≤ � ≤ j − i we have

Moreover, if i < j , k > 0 , and 
(
Δ2f

)
(i) > 0 (i.e., f is strictly 

convex at i), then the inequality is strict.

Proof  By telescoping,

where the second inequality is strict if f is strictly convex 
at i, as

	�  ◻

We remark that if � is strictly convex at 1, that is, (
Δ2𝛼

)
(1) > 0 , we have that 𝛼(1) − 𝛼(2) > 𝛼(2) − 𝛼(3) ≥ 0 by 

definition, so (Δ𝛼)(1) = 𝛼(2) − 𝛼(1) < 0 ; we just proved that

Theorem 5.2  If the decay function � of a distance-decay cen-
trality is strictly convex at 1, that is, 

(
Δ2𝛼

)
(1) > 0 , then c is 

score monotone on connected undirected graphs.

This is not all: convexity will give us results about basin 
dominance, and thus about rank monotonicity. This hap-
pens because Lemma 5.1, when read in the context of a 
decay function, tells us that when adding an arc from x to 
y, if some distance shortens from j to i, then it provides an 
increase in score that is at least the one given by a distance 
shortening from j + k to j + k − � , and in fact more in the 
strict case. Thus, x will benefit of a new edge x — y more 
than any other vertex in the basin of x with respect to y, and 
analogously for y.

Using this observation, we can prove the following result:

Theorem 5.3  If the decay function � of a distance-decay cen-
trality c is convex, then c is basin dominant on connected 

(1)f (i) − f (i + 1) ≥ f (i + 1) − f (i + 2) for every i,

f (i + k) − f (j + k − �) ≤ f (i) − f (j).

f (i) − f (j) =
= f (i) − f (i + 1) + f (i + 1) − f (i + 2) + f (i + 2)−
⋯ − f (j − 1) + f (j − 1) − f (j)

≥ f (i + k) − f (i + k + 1) + f (i + k + 1) − f (i + k + 2)
−⋯ − f (j + k)

= f (i + k) − f (j + k) ≥ f (i + k) − f (j + k − �),

f (i) − f (i + 1) > f (i + 1) − f (i + 2) ≥ ⋯ ≥ f (i + k) − f (i + k − 1).

6  For a function f ∶ N ⧵ {0} → R , we write f ≤ 0 ( f ≥ 0 , 
respectively) if f (x) ≤ 0 ( f (x) ≥ 0 , respectively) holds for every 
x ∈ N ⧵ {0}.
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undirected graphs. Thus, it is �-semi-monotone and rank 
semi-monotone. If it is furthermore strictly convex at 1, that 
is, 

(
Δ2𝛼

)
(1) > 0 , then c is strictly basin dominant. Thus, it 

is strictly �-semi-monotone and strictly rank semi-monotone.

Proof  Let c be a distance-decay centrality, and let x and y 
be two distinct non-adjacent vertices. We have to prove that 
c�(u) − c(u) ≤ c�(x) − c(x) for every vertex u ∈ Bxy (or <, if (
Δ2𝛼

)
(1) > 0 ); we have that

We now consider each term of the summation, assuming 
without loss of generality that c�(u) − c(u) > 0 (the case 
c�(u) = c(u) yields obviously the result we want, using Theo-
rem 5.2 in the strict case).

If d�
uz
= duz then �

(
d�
uz

)
− �

(
duz

)
= 0 ≤ �

(
d�
xz

)
− �

(
dxz

)
 

(because adding a new edge cannot make the distance 
increase, and � is nonincreasing).

If instead d′
uz
< duz , then d�

uz
= d�

ux
+ d�

xz
> d�

xz
 . Moreover, 

duz ≤ dux + dxz and dux = d�
ux

 , so subtracting duz ≤ dux + dxz 
from d�

uz
= d�

ux
+ d�

xz
 we obtain

We now note that by the convexity of � , we can apply Lemma 
5.1 with i = d�

xz
 , j = dxz , k = d�

uz
− i and � = j + k − duz , 

obtaining

where the inequality is strict if 
(
Δ2𝛼

)(
1
)
> 0 and z = y.

Hence, by combining the two cases we have

where, once again, inequality is strict if 
(
Δ2𝛼

)
(1) > 0 , as it 

is strict when z = y . 	�  ◻

We can also prove the converse of Theorem 5.3, showing 
that basin dominance and convexity conditions are tightly 
coupled:

Theorem 5.4  If a distance-decay centrality c is basin domi-
nant, then its decay function is convex. If it is strictly basin 
dominant, its decay function is further strictly convex at 1, 
that is, 

(
Δ2𝛼

)
(1) > 0.

Proof  By contradiction, assume that for some i ≥ 1 we 
have 𝛼(i) − 𝛼(i + 1) < 𝛼(i + 1) − 𝛼(i + 2) . For the case 

c�(u) − c(u) =
∑

z≠u

�
(
d�
uz

)
−
∑

z≠u

�
(
duz

)
=
∑

z≠u

(
�
(
d�
uz

)
− �

(
duz

))
.

d�
uz
− duz ≥ d�

xz
− dxz.

�
(
d�
uz

)
− �

(
duz

)
≤ �

(
d�
xz

)
− �

(
dxz

)
,

c�(u) − c(u) =
∑

z≠u,x

(
�
(
d�
uz

)
− �(duz)

)
+ �

(
d�
ux

)
− �(dux)

≤
∑

z≠x,u

(
�
(
d�
xz

)
− �(dxz)

)
+ �

(
d�
xu

)
− �(dxu)

= c�(x) − c(x),

i ≥ 2 , consider the graph on the left in Fig. 3. We have 
that after the addition of the edge x — y, the variation of 
the centrality of x is of the form tx + k ⋅ (�(i) − �(i + 1)) , 
whereas the variation of the centrality of u is of the form 
tu + k ⋅ (�(i + 1) − �(i + 2)) . For k sufficiently large, the lat-
ter is greater than the former.

For the case i = 1 , assume again by contradiction 
𝛼(1) − 𝛼(2) < 𝛼(2) − 𝛼(3) and consider the graph on the 
right in Fig. 3. We have

so c�(x) − c(x) = 𝛼(1) − 𝛼(2) < 𝛼(2) − 𝛼(3) = c�(u) − c(u).
The last statement is easily proved using the same 

argument we just used for i = 1 , but assuming by con-
tradiction �(1) − �(2) = �(2) − �(3) and concluding 
c�(x) − c(x) = c�(u) − c(u) as a consequence. 	�  ◻

In the next few sections, we will apply our characteri-
zation of basin dominance to a few geometric centrality 
measures.

5.1 � Closeness centrality

Closeness centrality (Bavelas 1948, 1950) is one of the old-
est centrality measures in the literature. It was shown to be 
score monotone but not rank monotone on connected undi-
rected networks (Boldi et al. 2023). Moreover, in the latter 
paper it was left as an open problem whether closeness was 
(in our terminology) rank semi-monotone or not. In the rest 
of this section, we will solve this open problem by showing 
that closeness is in fact rank semi-monotone, but not in a 
strict way.

Recall that the peripherality of a vertex x is the sum of the 
distances between v and all the other vertices of G:

As usual, in the directed case there is a positive and a nega-
tive peripherality, but we will be concerned with the con-
nected, undirected case only, for which the two notions coin-
cide. The closeness centrality of v is just the reciprocal of 
its peripherality:

To prove rank semi-monotonicity for closeness, we will have 
to pass through the centrality defined by negated peripheral-
ity. This is because

c(x) = 2�(1) + �(2) c�(x) = 3�(1)

c(u) = �(1) + �(2) + �(3) c�(u) = �(1) + 2�(2)

p(v) =
∑

u

duv.

C(v) =
1

p(v)
.

−p(v) < −p(u) ⟺ C(v) < C(u),
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so negated peripherality is (strictly) semi-rank monotone if 
and only if closeness is.

Lemma 5.2  Negated peripherality is basin dominant on con-
nected undirected graphs. Thus, it is �-semi-monotone and 
rank semi-monotone on the same graphs.

Proof  By Theorem 5.3, since negated peripherality is a dis-
tance-decay centrality with decay function �(i) = −i , which 
satisfies Δ2� = 0 . 	�  ◻

We thus obtain

Theorem 5.5  Closeness centrality is rank semi-monotone on 
connected undirected graphs.

Note that, maybe counterintuitively, closeness central-
ity is not basin dominant. An erroneous statement to this 
effect appears in [Boldi et al. (2024), Lemma 1], but the 
counterexample in Fig. 4 shows that this is not the case, as

for all k ≥ 3 . The main statement of [Boldi et al. (2024), The-
orem 3], however, is correct: closeness is rank semi-mono-
tone, as we have just stated.

The lack of basin dominance is part of the counterin-
tuitive behavior of closeness: it is not strictly rank mono-
tone, not even on directed graphs (Boldi et al. 2023); it is 
not score monotone, either, on directed graphs unless the 
graph is strongly connected (Boldi and Vigna 2014).

The problem lies in the reciprocation used to make 
closeness increase when peripherality decreases: because 
of reciprocation, when we add an edge x — y the distances 
that are shortened by a certain amount d have the same 
influence on peripherality, but the effect on scores will 
depend on the original score of the vertex. In the example, 
u has a greater centrality than x, and thus benefits more 
than x by the reduction of 1 of peripherality.

C�(u) − C(u) =
1

k + 5
−

1

k + 6
>

1

2k + 3
−

1

2k + 4
= C�(x) − C(x)

Harmonic centrality (see the next section) solves this 
problem by reciprocating distances instead of the whole 
sum.

We conclude this section by showing that:

Theorem 5.6  Closeness centrality is not strictly rank semi-
monotone on (an infinite family of) connected undirected 
graphs.

Proof  Consider the graphs in Fig. 5, where u ∈ Bxy . This 
is an infinite family of graphs with a parameter k which 
controls the sizes of the two stars around vertices w and y. 
Computing the peripheralities of u, x and y before and after 
the addition of x — y, we obtain

For all k ≥ 10 , we have that

showing that closeness is not semi-monotone at y (because 
y used to be at least as central as u, but it is less central 
after the addition of the edge) and not strictly rank semi-
monotone at x (it is always as central as x, before and after 
adding the edge). 	�  ◻

Note how the counterexample shows a graph where y has 
a smaller basin than x but a greater score, losing rank after 
the addition of the edge (see the last fact we reported about 
basins in Sect. 4). Moreover, note that the degree of y can 
become arbitrarily large, while the degree of x and u are 
fixed. Nevertheless, x and u have a greater score than y in G′ 
for k ≥ 10 , notwithstanding its degree.

We will see that harmonic centrality behaves very differ-
ently for the graph in Fig. 5, yet showing some counterintui-
tive results.

p(u) = 2 ⋅ (k + 4) + 4 ⋅ k + 13 p′(u) = 2 ⋅ (k + 4) + 3 ⋅ k + 12

p(x) = 3 ⋅ (k + 4) + 3 ⋅ k + 9 p′(x) = 3 ⋅ (k + 4) + 2 ⋅ k + 8

p(y) = 4 ⋅ (k + 4) + k + 15 p′(y) = 4 ⋅ (k + 4) + k + 12.

p(x) = p(u), p�(x) = p�(u), p(y) ≤ p(u), p�(y) > p�(u),

Fig. 3   Graphs used in the proof of Theorem 5.4: the one on the right 
is used for the case i = 1 , whereas the left one covers i ≥ 2 . Note that, 
when i = 2 , the vertices labeled with y and z on the left graph col-
lapse to the same vertex. Each squiggly line with label � represents a 
path of length � between its two endpoints

Fig. 4   A graph showing that closeness centrality is not basin domi-
nant. For all k ≥ 3 , the closeness centrality of u increases more than 
that of x when we add the edge x — y 
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5.2 � Harmonic centrality

Harmonic centrality (Beauchamp 1965) solves the issue of 
unreachable vertices in closeness centrality. In particular, if 
we assume ∞−1 = 0 , we can define it as

so that unreachable vertices have no impact on the sum-
mation and, thus, on the final centrality score of the node. 
On undirected graphs, it is score monotone but not rank 
monotone, as shown in Boldi et al. (2023), where the same 
counterexample disproving rank monotonicity for closeness 
centrality also shows that harmonic centrality fails at satis-
fying this axiom. We can however leverage our results on 
distance-decay centralities to prove strict basin dominance:

Theorem 5.7  Harmonic centrality is strictly basin dominant 
on connected undirected graphs. Thus, it is strictly �-semi-
monotone and strictly rank semi-monotone on the same 
graphs.

Proof  By Theorem 5.3, as harmonic centrality is a distance-
decay centrality with decay function �(i) = 1∕i , which is 
strictly convex, as 1∕i − 1∕(i + 1) > 1∕(i + 1) − 1∕(i + 2) . 
The rest follows by Theorem 4.1. 	�  ◻

The stronger result we can give for harmonic centrality 
should be compared to the fact that on strongly connected 
graphs harmonic centrality is strictly rank monotone, 
whereas closeness centrality is just rank monotone (Boldi 
et al. 2023). Following the example in Fig. 5, we can show 
different behaviors for harmonic centrality as k varies. Com-
puting the harmonic centrality of u, x and y before and after 
the addition of x — y as a function of k, we have:

h(v) =
∑

u≠v

1

duv
,

Note that for such a graph, the increase in score of y is a 
constant, while the increase in score of x and u is a function 
of k. For k ≥ 2 , we have that h�(y) − h(y) ≤ h�(x) − h(x) . In 
particular, for k = 4 , h(y) = h(x) hence h�(y) < h�(x) , even 
if the size of the neighborhood of y is larger than that of x. 
For k ≥ 5 , h�(y) > h�(x) even if y increase its score less than 
x. Finally, for k ≥ 8 , h�(y) > h�(u) . This example shows how 
the behavior of harmonic centrality can be quite tricky to 
predict.

5.3 � Further distance–decay centralities

As we already mentioned, other decay functions have been 
considered, for example exponential decay, where �(i) = �i 
for some 0 < 𝜉 < 1 (Jackson 2008; Dangalchev 2006). One 
can also consider power-law decay, where �(i) = 1∕ik for 
some k > 0 (note that the case k = 1 is harmonic centrality). 
Armed with our results, we can easily prove the following 
theorem:

Theorem 5.8  Distance-decay centralities with exponen-
tial decay or power-law decay are score monotone, strictly 
basin dominant, strictly �-semi-monotone, and strictly rank 
semi-monotone.

Proof  By Theorem 5.2 and Theorem 5.3, as

and

so in both cases the decay function is strictly convex every-
where. 	�  ◻

6 � Betweenness centrality

Betweenness centrality (Anthonisse 1971; Freeman 1977) 
tries to capture the idea that a vertex is central if it lies on 
many shortest paths between other vertices. It does not 

h(u) = 1
2
⋅ (k + 4) + 1

4
⋅ k + 13

3
h′(u) = 1

2
⋅ (k + 4) + 1

3
⋅ k + 9

2

h(x) = 1
3
⋅ (k + 4) + 1

3
⋅ k + 6 h′(x) = 1

3
⋅ (k + 4) + 1

2
⋅ k + 13

2

h(y) = 1
4
⋅ (k + 4) + k + 4 h′(y) = 1

4
⋅ (k + 4) + k + 29

6
.

𝜉i − 𝜉i+1 > 𝜉
(
𝜉i − 𝜉i+1

)
= 𝜉i+1 − 𝜉i+2

1
ik

− 1
(i + 1)k

=
(i + 1)k − ik

ik(i + 1)k
=
(

( i + 1
i

)k
− 1

)

1
(i + 1)k

>
(

( i + 2
i + 1

)k
− 1

)

1
(i + 2)k

=
(i + 2)k − (i + 1)k

(i + 1)k(i + 2)k

= 1
(i + 1)k

− 1
(i + 2)k

,

Fig. 5   A counterexample to strict rank semi-monotonicity for close-
ness centrality. For all k ≥ 10 , u and x have the same score before and 
after the addition of the edge x — y. Moreover, u has the same score 
of y (or smaller) before the addition, but a higher score after the addi-
tion, breaking strict rank semi-monotonicity
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focus on the length of shortest paths but on how many of 
them involve a given node, trying to estimate the amount of 
flow passing through nodes in a network. For this reason, 
betweenness is not a geometric measure.

Formally, if we call �ij the number of shortest paths 
between two vertices i and j and �ij(v) the number of such 
paths passing through a vertex v, then we can define the 
betweenness centrality of v as

A few variants of this definition appear in the literature:

•	 Contrarily to Anthonisse’s original definition (Antho-
nisse 1971), which was stated on directed graphs in the 
form above, Freeman’s later definition (Freeman 1977) 
was stated on undirected graphs using unordered pairs, 
and indeed his summations have the condition i < j . 
The form above, however, is the one usually found in 
current literature. With respect to Freeman’s defini-
tion, however, the value is doubled; this difference is 
irrelevant as far as score and rank monotonicity are 
concerned.

•	 Some authors exclude explicitly the case i = j , oth-
ers do not. Since �ii = 1 and �ii(v) = 0 for all v ≠ i , 
the resulting value does not change, and we will thus 
assume i ≠ j in our proofs.

•	 Some authors give the definition without the condi-
tion 𝜎ij > 0 , in which case the definition applies only 
to (strongly) connected graphs. In the undirected case, 
however, the resulting definition is equivalent to defin-
ing the centrality on each connected component sepa-
rately, so we will consider the connected case only, and 
drop the condition 𝜎ij > 0 in the proofs.

As in the previous sections, we denote with � and �′ the 
number of shortest paths before and after the addition of 
an edge x — y, and with b and b′ the betweenness central-
ity before and after the addition of the edge.

We know from Boldi et al. (2023) that betweenness 
is neither rank nor score monotone. Nonetheless, we 
can show that the betweenness of two vertices can never 
decrease after we link them with a new edge: this result 
was also proved in [Bergamini et al. (2018), Theorem 5.2], 
although with a slightly weaker statement; we thus provide 
a full proof here for the sake of completeness:

Lemma 6.1  The following property holds when adding the 
edge x — y:

b(v) =
∑

i, j ≠ v

𝜎ij > 0

𝜎ij(v)

𝜎ij
.

As a consequence, b�(x) ≥ b(x) . The same statements are 
true for y.

Proof  Given vertices i, j ≠ x , let us call p
x
 ( p

x̄
 , respectively) 

the number of shortest paths between i and j passing (not 
passing, resp.) through x in G. As usual, let us refer to the 
same quantities in G′ with p′

x
 ( p′

x̄
 , resp.). We have to show 

that the following holds:

Summing over all i, j ≠ x proves the second part of the 
statement.

We consider two cases:

•	 if d′
ij
< dij , all shortest paths in G′ between i and j pass 

through the edge x — y (hence, through x). Thus, we 
obtain: 

 which is clearly true.
•	 if d�

ij
= dij , then all shortest paths between i and j in G are 

still shortest paths in G′ , but there may be some new ones 
passing through x, so p�

x̄
= p

x̄
 and p′

x
≥ p

x
 . Letting 

� = p�
x
− p

x
≥ 0 , we obtain: 

 which is again true, concluding the proof.
	�  ◻

Incidentally, observe that we can always tell if the 
betweenness centrality of a vertex is zero without actually 
computing it. In fact, denoting with NG(v) the neighborhood 
of v in G, that is, the set of vertices z such that v − z , we 
have:

Lemma 6.2  Let G be a connected undirected graph and v a 
vertex of G. Then b(v) = 0 iff v is simplicial, that is, iff the 
subgraph induced by NG(v) is a clique.

Proof  If b(v) = 0 no shortest paths are passing through v: 
but then any two neighbors of v must be adjacent, or other-
wise they would have distance 2, and there would be a path 
through v of length 2. Conversely, suppose that v is simpli-
cial and consider vertices i, j ≠ v . A shortest path between i 

��
ij
(x)

��
ij

−
�ij(x)

�ij
≥ 0 for all i, j ≠ x.

𝜎�
ij
(x)

𝜎�
ij

−
𝜎ij(x)

𝜎ij
=

p�
x

p�
x
+ p�

x̄

−
p
x

p
x
+ p

x̄

≥ 0.

1 −
p
x

p
x
+ p

x̄

≥ 0,

p
x
+ 𝛼

p
x
+ 𝛼 + p

x̄

−
p
x

p
x
+ p

x̄

=
p2
x
+ p

x
p
x̄
+ 𝛼p

x
+ 𝛼p

x̄
− (p2

x
+ 𝛼p

x
+ p

x
p
x̄
)

(p
x
+ 𝛼 + p

x̄
)(p

x
+ p

x̄
)

=
𝛼p

x̄

(p
x
+ 𝛼 + p

x̄
)(p

x
+ p

x̄
)
≥ 0,
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and j cannot involve v, otherwise it would touch two neigh-
bors of v, say i′, j′ , and we might shorten it by skipping v. 	
� ◻

An immediate consequence is the following result:

Theorem 6.1  Betweenness centrality is neither score semi-
monotone, nor strictly rank semi-monotone on (an infinite 
family of) connected undirected graphs.

Proof  Consider the family of graphs shown in Fig. 6, in 
which we have a clique connected to three vertices u, x and 
y (the unnamed nodes form a clique of arbitrary size k, in 
the picture we show the case k = 4 ). Since they all have the 
same neighborhood, and that neighborhood is a clique, their 
betweenness is zero. But when we add the edge x — y this 
property is still true, so their betweenness remains zero. 	
� ◻

We now prove a sufficient condition for the betweenness 
of x and y to remain unchanged when adding the edge x — y:

Lemma 6.3  Let x and y be two distinct non-adjacent verti-
ces of G. If NG(x) ⧵ {x} = NG(y) ⧵ {y} then b�(x) = b(x) and 
b�(y) = b(y).

Proof  Assume by contradiction, without loss of generality 
(see Lemma 6.1), that b�(x) > b(x) . Then, there must be at 
least one pair of distinct vertices i, j with a shortest path 
linking them passing through both x and y via the new edge 
x — y. Thus, dij ≥ d�

ij
= diu + 2 + dyj for some neighbor u of 

x. However, at the same time dij ≤ diu + 1 + dyj because u is 
also a neighbor of y, leading to a contradiction. 	�  ◻

Note that we remove x and y from their neighborhoods to 
avoid that loops prevent the application of the lemma.

We are now going to show that betweenness centrality 
is rank semi-monotone on connected undirected graphs. In 
fact, we show that it even enjoys basin dominance, which is 
rather surprising given that basin dominance depends on the 
length of shortest paths, while betweenness depends on the 
fraction of shortest paths passing through a vertex. Moreo-
ver, it is rather hard to find interesting axioms satisfied by 
betweenness (Boldi and Vigna 2014).

We start by proving a technical lemma that relates cer-
tain products of numbers of shortest paths. There are several 
cases to consider, but the most interesting one is depicted 
in Fig. 7. Consider a situation where i is strictly closer to x 
than to y, and j is strictly closer to y than to x. Moreover, fix 
some (arbitrary) subset of vertices � in the basin of x that 
we need to go through, and some subset of vertices � in the 
basin of x that we need to avoid. The dotted line represents 

a (generic) path from7 i to j satisfying these traversal condi-
tions and passing through x, whereas the dashed line repre-
sents a (generic) shortest path from i to j passing through x.

The key observation is that when we add the edge x — y, 
the only part of shortest paths going from i to j and passing 
through x that can change is the part from x to j (regardless 
of whether we are looking at the paths of dotted or dashed 
type). So the number of dashed/dotted paths in G or G′ , 
given that they are all nonzero, is the product of the number 
of the paths from i to x by the number of the paths from x to 
j, and only the second factor changes when we add the edge 
x — y. Moreover, this second factor is the same for both 
counts. Thus, if we multiply the counts of the dashed and 
dotted paths, as long as one count is taken in G and the other 
is taken in G′ the product is the same—we’re just pairing the 
paths from i to x and from x to j in different ways, or, with a 
slogan, we can “move the prime”:

Lemma 6.4  Let G be a connected undirected graph, 
x, y ∈ VG two non-adjacent vertices and i, j ∈ VG two verti-
ces. Let also 𝛼,𝜇 ⊆ Bxy ⧵ {x} be two subsets of the basin of 
x not containing x. Call p

x
 ( p

x̄
 , respectively) the number of 

shortest paths from i to j in G passing through x (not passing 
through x, resp.). Let also p

𝛼𝜇̄x
 be the number of paths from 

i to j passing through all the vertices of � and then through 
x, but never passing through any of the vertices of � before 
reaching x, and p

𝛼𝜇̄x̄
 the number of paths from i to j passing 

through all the vertices of � but never passing through x or 
any of the vertices of � . Define similarly p′

x
 , p′

x̄
 p′

𝛼𝜇̄x
 , and 

p′
𝛼𝜇̄x̄

 for the paths satisfying the same conditions, but in G′ . 
Then, the following properties hold:

Fig. 6   Simple counterexample for score semi-monotonicity and strict 
rank semi-monotonicity for betweenness centrality. The dashed edge 
is the x — y edge that we add to G, obtaining G′ . The betweenness 
score of vertices x, y and u is 0 both in G and G′ . This is true regard-
less of the size k of the clique (in the picture, k = 4)

7  Note that paths are sequences of vertices, so they have a direction 
also in an undirected graph. Of course, any path from i to j can be 
reversed in an undirected graph, obtaining a path from j to i.
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Proof  We can assume w.l.o.g.  that i ∈ VG⧵Byx and 
j ∈ VG⧵Bxy , otherwise everything holds trivially because 
the new edge x — y does not create new shortest paths from 
i to j, hence all the counts of shortest paths from i to j in G 
and in G′ are the same.

We now prove separately each of the four statements.
(1.) If p

x
= 0 then p

𝛼𝜇̄x
= 0 , so the statement holds, and 

the same happens for p�
x
= 0 , so we can assume p

x
, p′

x
≠ 0 , 

and in particular dij = dix + dxj , d�ij = d�
ix
+ d�

xj
 , and d�

ix
= dix , 

as shortest paths between i and x are not affected by the new 
edge.

Thus, p
𝛼𝜇̄x

≠ 0 iff there is a path in G from i to x of length 
dix that passes through � but not through � , but since d�

ix
= dix 

this is true iff there is a path in G′ from i to x of length d′
ix

 
that passes through � but not through � , that is, iff p′

𝛼𝜇̄x
≠ 0 . 

Thus, we can also assume p
𝛼𝜇̄x

, p′
𝛼𝜇̄x

≠ 0.
Now let s be the number of shortest paths in G from i to x, 

and s𝛼𝜇̄ the number of such paths that pass through vertices 
of � and do not pass through any of the vertices of � (see 
Fig. 7): these values do not change in G′ because the new 
edge x — y can only shorten the paths from x to j. Let also 
t and t′ be the number of shortest paths from x to j in G and 
G′ , respectively. Then,

(2.) For the shortest paths not passing through x, there are 
two possibilities:

•	 If d�
ij
= dij then p�

𝛼𝜇̄x̄
= p

𝛼𝜇̄x̄
 and p�

x̄
= p

x̄
 , since all the 

shortest paths in G are also shortest in G′ , and more are 
possibly added but they all pass through x.

•	 If d′
ij
< dij then p�

𝛼𝜇̄x̄
= 0 = p�

x̄
 , because in G′ all the 

shortest paths between i and j must pass through x.

In both cases, the equality holds.
(3.) When we add x — y, we have two possibilities:

(1.) p�
𝛼𝜇̄x

p
x
= p

𝛼𝜇̄x
p�
x

(2.) p�
𝛼𝜇̄x̄

p
x̄
= p

𝛼𝜇̄x̄
p�
x̄

(3.) p�
𝛼𝜇̄x̄

p
x
≤ p

𝛼𝜇̄x̄
p�
x

(4.) p�
𝛼𝜇̄x

p
x̄
≥ p

𝛼𝜇̄x
p�
x̄

p�
𝛼𝜇̄x

p
x
= s𝛼𝜇̄t

�st = s𝛼𝜇̄tst
� = p

𝛼𝜇̄x
p�
x
.

•	 If d�
ij
= dij then p�

𝛼𝜇̄x̄
= p

𝛼𝜇̄x̄
 and p

x
≤ p′

x
;

•	 If d′
ij
< dij then p�

𝛼𝜇̄x̄
= 0.

In both cases, the inequality holds.
(4 . )  Mul t ip ly ing  (1 . )  and  (2 . )  we  have 

p�
𝛼𝜇̄x

p
x
p�
𝛼𝜇̄x̄

p
x̄
= p

𝛼𝜇̄x
p�
x
p
𝛼𝜇̄x̄

p�
x̄
 , and dividing by (3.) we obtain 

the statement.	�  ◻

We are now ready to prove basin dominance for between-
ness centrality: the proof goes through a case-by-case analy-
sis of the contribution of each summand to the difference in 
centrality, with the main case being covered by Lemma 6.4:

Theorem 6.2  Betweenness centrality is basin dominant on 
connected undirected graphs. Thus, betweenness centrality 
is �-semi-monotone and rank semi-monotone on connected 
undirected graphs.

Proof  Let us call Δu = b�(u) − b(u) the score difference for a 
vertex u and for every pair of distinct vertices i ≠ j , let also

Obviously

We want to show that Δu ≤ Δx for every u ∈ Bxy . For vertices 
u being equidistant from x and y, everything holds trivially 
because the new edge x — y does not create any shortest 
path between i and j passing through u. Then, we can restrict 
our attention to the case where u is strictly closer to x than 
to y, that is, u ∈ VG⧵Byx.

The two summations giving Δu and Δx happen on a dif-
ferent set of pairs of indices, and we treat the common and 
non-common pairs separately.

The easiest case is that of pairs i, j that appear in the 
summation of Δx but not in the summation of Δu , because 
we know from Lemma  6.1 that those summands are 
non-negative.

Then we consider the pairs i, j that appear in the sum-
mation of Δu but not in the summation of Δx , that is, those 
where either i or j are equal to x; without loss of general-
ity let us assume j = x . We want to show that in this case, 
instead, we have

When i ∈ Bxy , the new x — y edge does not create any new 
shortest path between i and x, so Δu(i, x) = 0 . Conversely, 

Δu(i, j) =
��
ij
(u)

��
ij

−
�ij(u)

�ij
.

Δu =
∑

i,j≠u

Δu(i, j).

Δu(i, x) =
��
ix
(u)

��
ix

−
�ix(u)

�ix
≤ 0.

Fig. 7   A graph showing the main case of Lemma 6.4
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when i ∉ Bxy new shortest paths cannot pass through u 
(remember that u ∈ Bxy ); thus,

•	 if dix = d�
ix

 then �ix ≤ �′
ix

 and �ix(u) = ��
ix
(u);

•	 if dix > d′
ix

 then ��
ix
(u) = 0.

We are now left with the pairs i, j that appear in both sum-
mations, that is, i, j ≠ u and i, j ≠ x . In this case, we want 
to prove a term-by-term bound, that is:

Note that if i and j belong to the same basin the edge x — y 
does not create any new shortest path between i and j, so 
(2) holds because both sides are zero; this includes the case 
in which i and j are in the intersection of the basins, so we 
can assume, without loss of generality, that i ∈ VG⧵Byx and 
j ∈ VG⧵Bxy.

The case Δu(i, j) ≤ 0 is trivial because of Lemma 6.1; we 
now analyze the case Δu(i, j) > 0.

Since i, u ∈ VG⧵Byx and j ∈ VG⧵Bxy , we can state two 
facts:

•	 all shortest paths in G and G′ from i to j passing through 
x and y must pass through x before y;

•	 all shortest path in G and G′ from i to j passing through 
u and x must pass through u before x.

As mentioned in Sect. 4, a shortest path between i and y 
passes exclusively through vertices in the basin of x and 
then exclusively through vertices in the basin of y, until it 
reaches y. Moreover, a shortest path between j and y passes 
exclusively through vertices in the basin of y. Combining 
these two facts is enough to show that the first statement 
holds.

The second one, instead, can be proven by contradiction: 
if u is after x in a shortest path from i to j, then u is neces-
sarily between x and y. This means that d′

ij
< dij since we 

might shorten the path from x to y passing through u by 
taking x — y. Hence ��

ij
(u) = 0 and thus Δu(i, j) < 0 —a 

contradiction.
We now define a few counters of shortest paths from i to 

j in G satisfying certain conditions:

•	 px : passing through x;
•	 p

x̄ : not passing through x;
•	 p

ux : passing through u and then through x;
•	 p

ūx : passing through x but not through u;
•	 p

ux̄ passing through u but not through x;
•	 p

ūx̄ passing through neither.

(2)Δu(i, j) =
��
ij
(u)

��
ij

−
�ij(u)

�ij
≤

��
ij
(x)

��
ij

−
�ij(x)

�ij
= Δx(i, j).

The same notations are used for G′ , but we use p′ instead 
of p.

With these notations, we can write the single terms 
appearing in (2) as follows:

which makes us able to rewrite (2) as

which is equivalent to

Multiplying both sides by �′
ij
�ij , we obtain

Now, it is enough to show that the two following inequali-
ties hold:

for which, in turn, it is sufficient to show that the following 
four statements hold:

The latter are immediate by Lemma 6.4 if we set appropri-
ately � and � to ∅ or {u} . 	�  ◻

7 � Conclusions and future work

This paper answers positively some questions raised in Boldi 
and Vigna (2014), Boldi et al. (2017, 2023)  about close-
ness, harmonic centrality and betweenness. Table 1 puts the 
positive results about rank semi-monotonicity of this paper 
in context with the positive results of the directed case. It is 
interesting to note that rank semi-monotonicity is in fact the 
only property of this kind that is true for betweenness, both 
in the directed and in the undirected case. All the results are 
consequences of a stronger result of a similar type about 
basin dominance.

However, we also proved results about basin dominance, 
score monotonicity, and rank semi-monotonicity for dis-
tance-decay centralities whose decay function is convex; 

𝜎ij(u) = p
ux
+ p

ux̄
𝜎�
ij
(u) = p�

ux
+ p�

ux̄
𝜎ij = p

x
+ p

x̄

𝜎ij(x) = p
ux
+ p

ūx
𝜎�
ij
(x) = p�

ux
+ p�

ūx
𝜎�
ij
= p�

x
+ p�

x̄

p�
ux
+ p�

ux̄

𝜎�
ij

−
p
ux
+ p

ux̄

𝜎ij
≤

p�
ux
+ p�

ūx

𝜎�
ij

−
p
ux
+ p

ūx

𝜎ij
,

p�
ux̄
− p�

ūx

𝜎�
ij

≤
p
ux̄
− p

ūx

𝜎ij
.

p�
ux̄
⋅ 𝜎ij − p�

ūx
⋅ 𝜎ij ≤ p

ux̄
⋅ 𝜎�

ij
− p

ūx
⋅ 𝜎�

ij
.

p�
ux̄
⋅
(
p
x
+ p

x̄

)
≤ p

ux̄
⋅
(
p�
x
+ p�

x̄

)

p�
ūx
⋅
(
p
x
+ p

x̄

)
≥ p

ūx
⋅
(
p�
x
+ p�

x̄

)
,

p�
ux̄
p
x
≤ p

ux̄
p�
x

p�
ux̄
p
x̄
= p

ux̄
p�
x̄

p�
ūx
p
x
= p

ūx
p�
x

p�
ūx
p
x̄
≥ p

ūx
p�
x̄
.
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this result enabled us to prove rank semi-monotonicity for 
other centralities defined in the literature.

Our negative results are about the strictness of rank 
semi-monotonicity, in particular of closeness and between-
ness, and lack of score semi-monotonicity for betweenness. 
For all the negative results, we have an infinite family of 
counterexamples.

The notion of basin dominance turned out to be the key 
idea in all proofs of semi-monotonicity. It would be interest-
ing to investigate whether basin dominance applies to other 
geometric measures, or even other centrality measures based 
on shortest paths, as in that case one gets immediately rank 
semi-monotonicity.

Proving or disproving score and (strict) rank semi-mono-
tonicity for other measures (in particular, for the spectral 
ones that were shown not to be rank monotone in Boldi et al. 
(2023), such as PageRank) remains an open problem.
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