
Role Mining Under User-Distribution Cardinality Constraint

Carlo Blundoa, Stelvio Cimatob

aDipartimento Scienze Aziendali - Management & Innovation Systems, Universita“‘a degli Studi di Salerno Italy
bDipartimento di Informatica, Universit“‘a degli Studi di Milano Italy

Abstract

Role-based access control (RBAC) defines the methods complex organizations use to assign their users permis-
sions for accessing restricted resources. RBAC assigns users to roles, where roles determine the resources each
user can access. The definition of roles, especially when there is a large number of users and many resources
to handle, can be a very difficult and time consuming task. The class of tools and methodologies to elicit roles
starting from existing user-permission assignments are referred to as role mining. Sometimes, to let the RBAC
model be directly deployable in organizations, role mining can also take into account various constraints, like car-
dinality and separation of duty. Typically, these constraints are enforced to ease roles’ management and their use
is justified as role administration becomes convenient. In this paper, we focus on the User-Distribution cardinality
constraint which places a restriction the number of users that can be assigned to a given role. In this scenario, we
present a simple heuristic that improves over the state-of-the-art. Furthermore, to address a more realistic situation,
we provide the User-Distribution model with the additional constraint that avoids the generation of roles sharing
identical set of permissions. Similarly, within this context, we describe a heuristic enabling the computation of a
solution in the new model. Additionally, we assess both heuristics’ performances using real-world datasets.

Keywords: RBAC, access control, heuristics, constrained role mining

1. Introduction

To protect enterprises from users misbehaving, it
is always useful to restrict users’ access only to the
resources required to accomplish the tasks they are as-
signed to. Usually, this is achieved relying on an access
control infrastructure where users have only the per-
missions needed to do their work. However handling
user’s permissions one by one has as a consequence a
very high administrative cost. For this reason, Role
Based Access Control (RBAC) has been introduced
as a powerful mechanism to rule access to restricted
resources and provide authorization to users. RBAC
has been proposed in [38] and formalized in [14], and,
since then, has attracted a considerable amount of at-
tention. The basic idea is that permissions, describ-
ing the type of authorized interaction a subject (e.g., a
user) can have with an object (i.e., a resource), are not
directly assigned to users but collected in roles. Users
obtain the permissions according to the roles assigned
to them. In this way, RBAC eases access control man-
agement, handling complexity and reducing the related
administrative costs.

In general, permissions granted to users can be dis-
tributed among, eventually overlapping, roles through

Email addresses: cblundo@unisa.it (Carlo Blundo),
stelvio.cimato@unimi.it (Stelvio Cimato)

either a top-down or a bottom-up approach. In a top-
down approach [36], [42], and [34], a domain expert
creates roles exploiting the knowledge about an enter-
prise (e.g., its organizational structure, the processes
adopted within the enterprise, and users’ skills and du-
ties). The expert detects the access permissions needed
to accomplish given duties mainly by analyzing the
business processes. This manual process, known as
Role Engineering, is time-consuming and demands a
significant amount of work. In a bottom-up approach,
the existing user-permission assignments (represented
as a Boolean matrix denoted as UPA) are automatically
analyzed to elicit roles (see, [44], [31], [40], and [13]).
This process is referred to as Role Mining and mining
algorithms have been designed to automatically form
roles from such user-permission assignments. Role
mining algorithms receive as input a matrix UPA and
output two binary matrices, a user-assignment matrix
UA and a permission-assignment PA representing, re-
spectively, the roles assigned to users and the permis-
sions assigned to roles.

Given a user-permission assignments matrix UPA,
finding a UPA decomposition UA and PA minimizing
some metrics, for instance the number of roles, can
be computationally hard. Indeed, for a given user-
permission assignments matrix UPA and an integer k,
the problem of determining whether there exists a set
of roles of size at most k (named the Role Mining Prob-

Preprint submitted to Elsevier September 12, 2023



lem) was proved to be NP-complete in [44]. The cor-
responding optimization problem is NP-hard. For this
reason, researches proposed heuristic solutions to this
problem. The computational complexity of the Role
Mining Problem (and of some of its variants) was also
considered in several other papers (see, [13], [10], and
[45]).

One can also consider role mining under several
constraints like separation of duty or cardinality con-
straints [38]. The separation of duty constraint estab-
lishes a mutually exclusive relationship between two or
more roles. This constraint ensures that a user cannot
be assigned a combination of roles that pose a risk to
the business. For example, if a sensitive task consists
of multiple steps, each step should be performed by
different users to maintain separation and mitigate po-
tential risks. In other words, the roles enabling the ex-
ecution of the multiple steps cannot be assigned to the
same user. On the other hand, cardinality constraints
are enforced to ease roles’ management and their use
is justified as role administration becomes convenient.
Cardinality constraints are applied, for example, to the
number of roles that can be assigned to a user, or to the
number of permissions a role can have, and so on.

In a cardinality constraints setting, Harika et al.
[19] classified role mining algorithms according the
way roles are computed. They considered two frame-
works, namely the post-processing framework and the
concurrent framework. Such frameworks differ on how
the constraint is enforced. In the post-processing frame-
work, any known role mining algorithm is initially used
to mine roles without considering the constraint. Then,
starting from the computed decomposition UA and PA,
each role is examined to verify whether the constraint
is satisfied. If not, the heuristic tries to fix the cases
where the constraint is violated. Conversely, in the
concurrent framework, the constraint is imposed dur-
ing the role mining procedure. Any heuristic within
such a framework takes as input the user-to-permission
assignment matrix UPA and generates roles satisfying
the cardinality constraint. When multiple constraints
are imposed, a solution to the role mining problem
could not exist at all.

In this paper, we analyze the User-Distribution Car-
dinality Constraint problem (UDCC problem, for short).
This problem assumes that each role can be assigned
to no more than a fixed number of users. Within the
post-processing framework, we present a simple and
effective heuristic converting any solution for the un-
constrained role mining problem into a solution for the
UDCC problem. We obtain such a result assuming, as
usually done in the literature, that a solution for the
UDCC problem can include duplicate roles. When we
enforce the condition that the solution can exclusively
comprise distinct roles, we demonstrate that the UDCC
problem may not have a feasible solution. In this un-
explored scenario, we introduce a heuristic within the

concurrent framework. In order to showcase the effec-
tiveness of our solutions, we conduct an extensive se-
ries of experiments using established datasets from the
existing literature. We report the results for each avail-
able dataset, considering a range of values for the con-
straint parameter (the maximum number of users that
can receive any given role). For the first heuristic, these
experiments serve to assess the performance of our so-
lutions in comparison to state-of-the-art heuristics, as
presented in [20] and [7]. For the second heuristic,
in the absence of previous results in the literature, our
evaluation compares the outputs produced by differ-
ent variants of our proposed solution. In summary, the
main contributions of the paper are:

- A comprehensive definition of the UDCC prob-
lem and its variant.

- Design of two heuristics for effectively solving
the UDCC problem within the post-processing
and concurrent frameworks.

- Extensive experiments on benchmark datasets to
evaluate heuristics’ performance under different
metrics.

Roadmap In Section 2, we briefly summarize previous
works relevant to our problem. In Section 3, we recall
the basic definitions for the Role Mining and UDCC
problem. In Section 4, we describe the two heuristics
for the UDCC problem. The first heuristic calculates a
set of roles, including duplicate roles, within the post-
processing framework. The second heuristic generates
a set of distinct roles within the concurrent framework.
In Section 5, we present a selection of experiments
conducted to assess the efficacy of the heuristics in-
troduced in this paper. For the full set of experiments,
please refer to the supplemental material [4]. Finally,
in Section 6, we draw some conclusions.

2. Related works

The role mining problem along with its several vari-
ants and the corresponding solution strategies has been
the subject of a complete survey in [30]. For a re-
cap on the existing definitions of role mining, and the
methods used to assess role mining results we refer
the reader to [16]. Previous studies [15], [11], and
[18] have presented hybrid approaches that combine
Role Engineering and Role Mining techniques. Ad-
ditionally, [17] proposed a generic Role Mining Pro-
cess Model (RMPM) by dividing the task of role min-
ing into several sub-phases. Moreover, [17] provided
a classification of role mining approaches based on the
RMPM framework. A semi-automatic RBAC main-
tenance process was proposed in [1]. This process is
triggered when exceptions or violations of the current

2



state are detected. It relies on the generation of a Max-
SAT problem instance and utilizes standard solvers to
find solutions.

RBAC systems have been exploited in different con-
text, as in the case of wireless sensor networks, where
the assignment of correct roles to existing nodes is an
important and challenging task, that directly impacts
on the security of the communication. A reputation-
based role assigning scheme for RBAC is presented in
[28], where roles are assigned to each node evaluat-
ing its past behavior, its bootstrap time and its energy
level, with the goal of increasing the throughput of the
network and preventing unauthorized access to data.
RBAC systems have also been deployed in dynamic
environments, where user role assignments need to be
changed according to different criteria. The work in
[35] presents a role recommendation model aiming to
optimize user-role assignments on the basis of user be-
haviour patterns.

As we outlined before, several variants of cardi-
nality constraints have been considered in the past. In
[21], the authors introduced the Role-Usage Cardinal-
ity Constraint, where an upper limit on the number of
roles assigned to any user is imposed. Other heuristics
handling the same kind of constraint can be found in
[25], [26], [19], and [7]. The Permission-Distribution
Cardinality Constraint (i.e., the dual of the role-usage
cardinality constraint) was proposed in [19], where the
upper limit is imposed on the number of roles a permis-
sion can be assigned to. The constraint considering an
upper bound on the number of permissions associated
to any role is referred to as Permission-Usage Cardi-
nality Constraint. A heuristic addressing this case has
been proposed in [22] and successively improved in
[3]. Finally, [20] defined the User-Distribution Cardi-
nality Constraint requiring a restriction on the number
of users assigned to any given role. They justified this
kind of constraint on the basis of the advantages re-
sulting for role administration. Moreover, some orga-
nizations are naturally structured in such a way where
a role can be played only by a limited number of users
(e.g., the number of directors or managers could be
fixed a priori). Organizations may also impose mul-
tiple constraints on roles simultaneously (e.g., there is
a upper bound on the permissions that can be assigned
to any role and a user cannot handle more than a fixed
number of roles). Multiple constraints on roles have
been considered in some papers as [5], [19], [23], [27],
[6], and [8]. All cardinality constrained role mining
problems previously described have been shown to be
NP-complete (their optimization versions are NP-hard)
[44], [45], [3], [19], and [7].

3. Definitions

Role-Based Access Control (RBAC) manages and
controls access to system resources according to the

roles assigned to individual users within an organiza-
tion. Each user is associated with permissions repre-
senting what operations the user can perform on which
system resources. To simplify the management of an
organization, RBAC groups permissions into roles defin-
ing specific job functions or responsibilities within the
organization itself. As in [39] and [14], we denote the
set of users byU = {u1, . . . , un}, and the set of permis-
sions by P = {p1, . . . , pm}. We represent the assign-
ments of permissions to users as a relation UPA ⊆
U × P. Hence, (u, p) ∈ UPA means that the user
u ∈ U has the permission p ∈ P (e.g., (u, p) de-
notes that the user u has been granted the authoriza-
tion to use the printer, if p represents the permission to
print a file). Each role r represents one or more per-
missions denoting that all the permissions associated
to r are granted altogether. Roles are represented by
R = {r1, . . . , rk}, where each role r is a subset of P, as
to simplify the notation.

Given a user-permission assignment relationUPA,
the role mining process aims to elicit roles that can be
assigned to users in order to fulfill the relation UPA.
Roles are represented by a role-permission assignment
relation PA ⊆ R × P. Analogously, the assignment of
users to roles is represented by a user-role assignment
relation UA ⊆ U × R. The relations UA and PA
have to satisfy

{p : (u, r) ∈ UA, (r, p) ∈ PA}= {p : (u, p) ∈ UPA},

for any u ∈ U (i.e., all the roles assigned to u comprise
all and only permissions assigned to u throughUPA).

In this paper, we are interested in user constrained
role mining. The assignment of mined roles to users
has to satisfy a predefined constraint. Specifically, the
number of users assigned to any given role cannot ex-
ceed a fixed threshold µ. This scenario is referred to
as User-Distribution Cardinality Constraint prob-
lem (UDCC, for short) and it is formally defined in
Problem 1. Given a user-permission assignmentUPA,
a solution (UA,PA) to the (constrained) role mining
problem is referred to as aUPA decomposition.

Problem 1. (UDCC) Given a set of users U, a set of
permissions P, a user-permission assignment UPA,
and a positive integer µ, are there a set of roles R, a
user-role assignment UA, and a role-permission as-
signment PA such that {p : (u, p) ∈ UPA} is equal to
{p : (u, r) ∈ UA, (r, p) ∈ PA}, for any user u ∈ U,
and |{u : (u, r) ∈ UA}| ≤ µ, for any r ∈ R?

We point out that Problem 1’s formulation does not
rule out the existence of duplicate roles. That is, the
set of roles R could contain the roles r and r′ such that
{p : (r, p) ∈ PA} = {p : (r′, p) ∈ PA}. For the econ-
omy of the roles’ administration, it is more convenient
to have easily distinguishable roles and then avoid so-
lutions including duplicate roles. In this context, we

3



will denote a set of roles that lacks duplicate roles as a
strict set of roles. Anyway, if we allow duplicate roles
as in [20], then the UDCC problem always admits a
solution, for any µ ≥ 1. A trivial solution is formed by
considering a role for each user (i.e., R = {ru : u ∈ U})
and the assignment relations PA = {(ru, p) : (u, p) ∈
UPA} and UA = {(u, ru) : ru ∈ R}. Hence, the role
ru comprises all and only the permissions assigned to
user u and only the role ru is assigned to u. It is imme-
diate to verify that, the above defined set of roles and
assignment relations are a solution to the UDCC prob-
lem, for any µ ≥ 1. On the other hand, if we impose
that duplicate roles are not allowed, then a solution to
the UDCC problem could not exist at all. To simplify
the description of a solution, we represent the relations
UPA,UA, and PA by the binary matrices1 UPA, UA,
and PA, respectively. Consider the matrix UPA, on a set
of three permissions, depicted in Figure 1.

p1 p2 p3

u1 1 0 0
u2 1 0 0
u3 0 1 0
u4 0 1 0
u5 0 0 1
u6 0 0 1
u7 1 1 0
u8 1 1 0
u9 1 0 1
u10 1 0 1
u11 0 1 1
u12 0 1 1
u13 1 1 1
u14 1 1 1
u15 1 1 1

Figure 1: User-permission matrix UPA not admitting a solution

If we do not allow duplicate roles, then all the possible
roles on {p1, p2, p3} that could concur to the solution
are described by the matrix PA in Figure 2.

p1 p2 p3

r1 1 0 0
r2 0 1 0
r3 0 0 1
r4 1 1 0
r5 1 0 1
r6 0 1 1
r7 1 1 1

Figure 2: All roles on three permissions

Assume µ = 2. From the partial matrix UA given in
Figure 3, it is immediate to see that, the maximum

1The matrix UPA has n rows (one for each user) and m columns
(one for each permission) and satisfies UPA[i][ j] = 1 if and only if
(ui, p j) ∈ UPA. The n × k matrix UA and the k × m matrix PA are
defined in a similar way. The definition of decomposition extends to
UPA, UA, and PA, as well.

number of users whose permissions can be covered us-
ing the roles in Figure 2 is 14. If we try to cover the
permissions granted to user u15 with any of the roles
described in Figure 2, then there will be at least a role
assigned to more than two users, thus violating the
UDCC constraint. Hence, requiring a strict set of roles
could prevent the existence of a solution.

r1 r2 r3 r4 r5 r6 r7

u1 1 0 0 0 0 0 0
u2 1 0 0 0 0 0 0
u3 0 1 0 0 0 0 0
u4 0 1 0 0 0 0 0
u5 0 0 1 0 0 0 0
u6 0 0 1 0 0 0 0
u7 0 0 0 1 0 0 0
u8 0 0 0 1 0 0 0
u9 0 0 0 0 1 0 0
u10 0 0 0 0 1 0 0
u11 0 0 0 0 0 1 0
u12 0 0 0 0 0 1 0
u13 0 0 0 0 0 0 1
u14 0 0 0 0 0 0 1
u15 - - - - - - -

Figure 3: Partial UA matrix

If we do not allow a solution to contain duplicate role,
for any given µ ≥ 1, we can easily generalize previ-
ous example by devising a role-permission assignment
relationUPA for which the UDCC problem does not
admit any solution.

The decisional version of the UDCC problem can
be defined as follows.

Problem 2. (Decisional UDCC) Given a set of users
U, a set of permissions P, a user-permission assign-
ment UPA, and two integers k > 0 and µ > 1, are
there a set of roles R, a user-role assignmentUA, and
a role-permission assignment PA such that

i) |R| ≤ k,

ii) {p : (u, r) ∈ UA and (r, p) ∈ PA} =
{p : (u, p) ∈ UPA}, for any user u ∈ U, and

iii) |{u : (u, r) ∈ UA}| ≤ µ, for any r ∈ R?

The DecisionalUDCC problem looks for the existence
of a solution comprising at most k roles. In the prob-
lem’s formulation we excluded the case µ = 1, as for
k < |U| there is no solution at all (we need as many
roles as the users); while, the trivial solution solves the
problem, for any k ≥ |U|. The Optimization UDCC
problem can be defined as follows.

Problem 3. (OptimizationUDCC) Given a set of users
U, a set of permissions P, a user-permission assign-
ment UPA, and an integer µ > 1, find the smallest

4



integer k for which there are a set of roles R, a user-
role assignment UA, and a role-permission assign-
ment PA such that: |R| = k; for any user u ∈ U,
{p : (u, r) ∈ UA and (r, p) ∈ PA} = {p : (u, p) ∈
UPA}; and |{u : (u, r) ∈ UA}| ≤ µ, for any r ∈ R.

In [7] it was proved that the DecisionalUDCC prob-
lem is NP-Complete and that the Optimization UDCC
problem is NP-hard and cannot be approximated within
any constant factor in polynomial time unless P=NP.

4. Heuristics for the UDCC Problem

Since computing an optimal solution for the UDCC
problem is NP-hard, we have to resort to some heuris-
tics to compute an approximation to the optimal solu-
tion. In [19], two frameworks for constrained role min-
ing have been formalized, denoted as post-processing
and concurrent-processing, respectively. In the post-
processing framework, whose basic idea was set forth
in [21], roles are mined without considering any con-
straint, using any known role mining algorithm. Then,
the matrices UA and PA are properly modified in such
a way that the constraints are satisfied. Instead, in the
concurrent-processing framework, the constraints are
imposed during the steps executed by the role mining
procedure.

In this section we describe two heuristics for the
UDCC problem. The first one, defined in the post-
processing framework, returns as solution a set of roles
that can include duplicate roles, while the second heuris-
tics, defined in concurrent-processing framework, com-
putes a strict set of roles. To simplify the description
of our heuristics, we introduce the following notation:

• AsgndUsers(r j) = {ui : (ui, r j) ∈ UA} is the set
of users assigned to role r j ∈ R.

• AsgndPrms(r j) = {pi : (r j, pi) ∈ PA} is the set
of permissions included in role r j ∈ R.

• AsgndRoles(ui) = {r j : (ui, r j) ∈ UA} is the set
of roles assigned to user ui ∈ U.

The heuristics presented in the following do not
necessarily return roles representing some semantics.
Knowing only the user-permission relation and the con-
straint to satisfy, as usual in the literature, one can
only solve the problem of generating an RBAC system
equivalent to the user-permission relation while hav-
ing minimum system complexity. The approach where
roles are not just a collection of permissions but also
have some semantics is an important research direction
we plan to pursue in future work.

4.1. A heuristic generating duplicate roles
The simple heuristic for the UDCC problem within

the post-processing framework starts considering a de-
composition UA and PA of a UPA matrix obtained run-
ning some heuristic for the unconstrained role min-
ing problem (e.g., [13], [43], [24], and [2]). A triv-
ial solution for the UDCC problem consists in gener-
ating as many roles as the number of 1s in the UA ma-
trix. In particular, for any user ui and role r j such that
UA[i][ j] = 1, the heuristic generates a new role r j,i hav-
ing the same permissions as r j and assigns it to user ui.
This trivial solution is described by the following very
simple heuristic named trivialUDCC.

HEURISTIC 1: trivialUDCC
input : A decomposition UA and PA of the n × m

matrix UPA and the constraint value µ
output: Matrices newUA and newPA satisfying the

UDCC constraint
1 k = 1
2 for i = 1 to n do // For each user ui

3 // For each role rt assigned to ui

4 foreach rt ∈ AsgndUsers(ui) do
5 for j = 1 to m do // Create new role rk

6 newPA[k][ j] = PA[t][ j]
7 newUA[i][k] = 1 // Assign rk to ui

8 k = k + 1
9 return newUA, newPA

We can improve on the previous trivial solution by
slightly changing the way we generate roles and assign
them to users. We first unassign redundant2 roles from
UA, then we remove unused roles from PA. Finally, we
generate a new role-set with duplicate roles by modi-
fying the matrices UA and PA to meet the UDCC con-
straint. Next heuristic DuplicateUDCC implements the
previous approach building on the idea laid out in heuris-
tic trivialUDCC. Redundant and unused roles are han-
dled by the functions removeRedundantRoles and re-
moveUnassignedRoles. Since both functions are triv-
ial, we omit their pseudo-code.
Heuristic DuplicateUDCC first cleans in lines 1 and
2 the initial UA and PA matrices from redundant and
unassigned roles, respectively. Then, it continues by
examining all roles (lines 4–17) in PA. If a role, say
r j, is assigned to more than µ users (line 5), then r j

is unassigned from such users (line 10) while a new
one (i.e., rtoAdd), having the same permissions as r j,
is assigned (line 11) to them. A new role is gener-
ated (see line 13) when the previous one has already
been assigned to µ users. Hence, roles assignment
does not change (see line 6), for the first µ users in
AsgndUsers(r j). The variable nu keeps track of the

2For a user u, a role r ∈ AsgndRoles(u) is redundant if
u also possesses another role r′ such that AsgndPrms(r) ⊂
AsgndPrms(r′). Moreover, a role r is unused if AsgndUsers(r) = ∅.

5



HEURISTIC 2: DuplicateUDCC
input : A decomposition UA and PA of the n × m

matrix UPA and the constraint value µ
output: A new decomposition UA and PA of the

matrix UPA satisfying the UDCC constraint
1 UA = removeRedundantRoles(UA, PA)
2 PA = removeUnassignedRoles(UA, PA)
3 k = number of rows in PA // Number of initial

roles

4 for j = 1 to k do // For each role r j

5 if |AsgndUsers(r j)| > µ then
6 toAdd = j
7 nu = 0
8 // For all users possessing r j

9 foreach ui ∈ AsgndUsers(r j) do
10 UA[i][ j] = 0 // Remove role r j

11 UA[i][toAdd] = 1 // Add role rtoAdd

12 nu = nu + 1
13 if nu % µ == 0 and

nu < |AsgndUsers(r j)| then
// Generate a new role

14 k = k + 1
15 toAdd = k
16 for ℓ = 1 to m do // Add rk to PA

17 PA[k][ℓ] = PA[ j][ℓ]
18 return UA, PA

number of users the role rtoAdd has been assigned. When
nu is a multiple of µ, the role rtoAdd has been assigned
to µ users. If nu < |AsgndUsers(r j)|, then there are
still some other users to whom assign a new role. Hence,
the new role is generated and added to the PA matrix
(line 16).

Considering the heuristic DuplicateUDCC, given a
decomposition UA and PA and a constraint value µ, it is
easy to see that

k∑
i=1

⌈
|AsgndUsers(ri)|

µ

⌉
is an upper bound on the number of roles returned

by DuplicateUDCC. This upper bound is tight if the
initial decomposition does not contain redundant and
unused roles.

Despite its simplicity, heuristic DuplicateUDCC is
quite effective. In Section 5.3 we will compare it with
four heuristics described in [20] and [7]. Starting from
decompositions obtained running existent heuristics for
the unconstrained role mining problem, we will show
that heuristic DuplicateUDCC produces role-sets hav-
ing better parameters (to be defined later on) than the
ones obtained running the heuristics in [20] and [7].

The heuristic DuplicateUDCC was not designed to
handle roles representing some semantic. Since it has
been developed within the post-processing framework,
it starts with a set of predefined roles that are modi-
fied in order to meet the UDCC constraint. If these
roles represented some semantic, then, to some extent,

the heuristic preserves it. Indeed, the only modifica-
tion used to generate new roles is renaming, since the
roles added to the solution are identical, except for
their name, to existing ones. Moreover, if a group of
users had the same set of roles in the beginning, they
still have the same set of roles (possibly renamed) at
the end of the heuristic.

4.2. A heuristic generating strict set of roles
In this section, we present StrictUDCC, a heuris-

tic generating a strict set of roles. To the best of our
knowledge, our heuristic is the only one handling such
a constraint. In Section 3, we have seen that a solution
to the UDCC problem could not exist at all, if dupli-
cate roles are not allowed. To this aim, we added a
fail-safe feature to StrictUDCC. If it cannot arrange
user’s permissions into roles due to the UDCC con-
straint violation, our heuristic handles all such permis-
sions through a direct user-permission assignment re-
lation DUPA [31] and [33]. Although this approach
differs from recognized RBAC models [14] and [39],
where permissions can be assigned only to roles, it is
more generic and can cope with exceptional circum-
stances (e.g., handle noisy UPA data [32], overcome
cardinality constraint [22], and express assignments that
do not fit well into the role structure [16]). In general,
DUPA relation considers the permission assignments
that cannot be represented by roles. When our heuris-
tic returns a not empty DUPA relation, nothing can
be affirmed about the existence of a solution not al-
lowing duplicate roles. A not empty DUPA relation
returned by StrictUDCC means only that the heuristic
has not found a solution to the UDCC problem cov-
ering all the permissions in UPA by roles in R (i.e.,
a complete solution). In Section 5.4, we will use the
number of direct user-permission assignments to eval-
uate (the smaller the better) the quality of the returned
solution.

In general, to form a role in a role mining pro-
cess, heuristics select a user according to some strategy
(e.g., choose a user with the minimum/maximum as-
signed permissions, choose a user whose permissions
are also assigned to the minimum/maximum number
of other users, choose a user that has been assigned the
minimum/maximum number of mined roles so far, ...).
Once a user u has been selected, a role is formed con-
sidering a subset of uncovered permissions associated
to u. Heuristic StrictUDCC selects the user that has
assigned either the minimum or the maximum number
of permissions. The set of permissions is chosen either
among the ones assigned to u throughUPA or among
the ones assigned to u that have not been covered yet
by some roles. When considering the permissions in
UPA, the heuristic attempts to discover roles from
the knowledge of the whole set of user-permissions
assignment. On the other hand, referring only to un-
covered permissions, the heuristic considers a reduced

6



instance of the problem (each time a new role is mined
and it is associated to some users, the overall number
of uncovered permissions decreases). Hence, heuris-
tic StrictUDCC forms roles according to either of the
following four variants.
• Omin: select a user with the minimum number

of original permissions
• Omax: select a user with the maximum number

of original permissions
• Umin: select a user with the minimum number

of uncovered permissions
• Umax: select a user with the maximum number

of uncovered permissions
Heuristic StrictUDCC follows a pattern similar to

other role mining heuristics. That is, it keeps gener-
ating roles, satisfying the constraint of the considered
role mining problem, assigning them to users until no
user having uncovered permissions is left.

HEURISTIC 3: StrictUDCC
input : The n × m matrix UPA, the constraint value

µ, and the heuristic variant vr
output: A decomposition UA and PA of the matrix

UPA satisfying the UDCC constraint and a
direct user-permission assignment DUPA

1 for i = 1 to n do // All users are uncovered

2 UC = UC ∪ {ui}

3 original[ui]=uncPrms[ui]= {p j :UPA[i][ j]=1}
4 while UC , ∅ do
5 u, roles = pickRole(vr, µ)
6 if roles , ∅ then
7 minedRoles = minedRoles ∪ roles
8 foreach r ∈ roles do
9 UA, PA, U = updateDEC(UA, PA, u, r, µ)

10 // Delete covered perm. and

users

11 foreach u ∈ U do
12 uncPrms[u]=

uncPrms[u]\AsgndPrms(r)
13 if uncPrms[u] == ∅ then

UC = UC\{u}
14 else // No role has been found

15 DUPA[u] = uncPrms[u]
16 UC = UC\{u}
17 return UA, PA, DUPA

The variables original and uncPrms represent per-
missions assigned to users. More precisely, for any
user ui ∈ U, original[ui] denotes the set of permis-
sions assigned to ui throughUPA, while uncPrms[ui]
represents the set of permissions assigned to ui that are
not covered by roles mined so far. With UC we denote
the set of users still having uncovered some of their
permissions. When StrictUDCC starts, since no role
has been mined yet, UC contains all users and, for all
ui ∈ U, we have that original[ui] = uncPrms[ui],
(lines 3 and 2 of StrictUDCC). The set of roles mined
so far is represented by the variable minedRoles. At

the beginning of the heuristic, it is an empty set, while
at the end of heuristic’s executions, it will contain all
mined roles that are represented by the matrix PA, as
well. In our heuristic, most of the details are hidden
in function pickRole (line 5), where a set of roles sat-
isfying the UDCC constraint is formed. In lines 8–13,
each generated role is assigned to users through the
function updateDEC (line 9). The function updateDEC
modifies the matrices UA and PA in such a way that the
UDCC constraint is not violated (more details later).
Once a role has been assigned to users, the variables
uncPrms and UC are modified consequently (see lines
11–13). It could happen that the function pickRole is
not able to find any new role (more details later). In
this case, it returns a user u having uncovered permis-
sions and an empty set. This situation is addressed by
lines 15–16 where u’s permissions are handled as di-
rect user-permission assignments. Please note, that to
simplify the description, the variables original, UC,
and uncPrms are considered global by the functions
executed by the heuristic itself.

FUNCTION 1: pickRole
input : The heuristic variant vr and the constraint

value µ
output: A user u and a, possibly empty, set of roles

roles to assign to u
1 if vr == Omin or vr == Omax then // Set up

permissions used to determine the roles

2 permissions = original

3 else
4 permissions = uncPrms

5 if vr == Omin or vr == Umin then // Set up

selection criterion

6 selection = min

7 rs = ∞ // Temporary minimum

8 else
9 selection = max

10 rs = −∞ // Temporary maximum

11 foreach usr ∈ UC do
12 t = selection(rs, |permissions[usr]|)
13 if t , rs then // There is a better

selection

14 rs = t
15 u = usr
16 r = uncPrms[u]
17 if r < FR then // r has been assigned to

less than µ users

18 roles = {r}
19 else
20 if |AsgndPrms(r)| == 1 then // cannot

split r
21 roles = ∅
22 else
23 roles = split(r, µ)
24 return u, roles

The function pickRole manages roles’ generation.
This function receives as input the heuristic’s variant

7



vr (i.e., one of Omin, Omax, Umin, and Umax) and the
constraint’s value µ and returns a user u having uncov-
ered permissions and a (possibly empty) set of roles
covering them. The function relies on the global vari-
able FR containing forbidden roles. We say that a role
is forbidden if it has already been assigned to µ users,
so the heuristic cannot assign it to other users. The
function pickRole selects a user u according to the cho-
sen variants (see, lines 11–15). Then, in line 16 it
forms a potential role r using u’s uncovered permis-
sions. If r is not forbidden, the set of returned roles just
contains r (lines 17–18). Otherwise, using the function
split, the function pickRole tries to redistribute its per-
missions between two roles (lines 19–23). We decided
to rearrange the permissions assigned to r into other
two roles (line 23), but any number of roles could be
used. The experiments reported in Section 5.4 show
that our choice produces quite good results. Note that,
the role r cannot be split if just one permission is as-
signed to it. In this case, the function pickRole returns
an empty set of roles (lines 20–21).

The function split stores in the global variable AR

the number of users a role has been assigned to. Hence,
according to this definition, for any ri ∈ FR, we have
that AR[i] = µ.

FUNCTION 2: split
input : A role r and the constraint value µ
output: Either two roles covering r or an empty set

1 roles = ∅, usefulRoles = ∅, toCheck = ∅
2 // Select not forbidden roles covering r
3 foreach ri, r j ∈ minedRoles do
4 if r == ri ∪ r j ∧ AR[i] < µ ∧ AR[ j] < µ then
5 toCheck = toCheck∪{(ri, r j, AR[i]+AR[ j])}
6 // Partition r if no pair covers it

7 if toCheck == ∅ then
8 foreach ri ∈ minedRoles ∧ ri ⊂ r do
9 if AR[i] < µ ∧ r\ri < FR then

10 toCheck = toCheck ∪ {(ri, r\ri, AR[i])}
11 min = ∞
12 if toCheck , ∅ then
13 foreach (ri, r j, v) ∈ toCheck do
14 if v < min then
15 roles = {r j, r j}, min = v
16 else
17 for i = 1 to runs do // Partition r into

18 ri = random(r) // two random subsets

19 r j = r\ri

20 if {ri, r j} ∩ minedRoles = ∅ then
21 roles = {ri, r j}

22 return roles

The idea behind the function split is quite simple. In-
deed, given a role r that has already been assigned to
µ users, the function split selects, if possible, two not
forbidden roles3, say ri and r j, covering all r’s permis-

3To simplify split’s description, any role referred by split’s com-

sions (i.e., ri, r j < FR and r = ri ∪ r j). We select ri

and r j in such a way that AR[i] + AR[ j] is minimized
(i.e., such pair is overall assigned to the least number
of users). We experimentally verified that this strategy
constructs smaller set of roles, in general. First, split
searches a pair of not forbidden roles covering r that
have already been mined (lines 3–5). If no such pair
exists (line 7), split tries to partition r’s permissions
into an already mined role ri assigned to less than µ
users and a not forbidden role r\ri (see lines 8–10). If
the set toCheck contains at least a pair of roles, then
split computes and returns the pair overall assigned to
the least number of users (see lines 11–15 and 22). In
lines 17-21, split tries to partition r into two new (see
line 20) roles ri and r j, where ri is chosen at random
and r j = r\ri. The function split returns an empty
set when it fails to find a pair of not forbidden roles
covering r. Notice that, lines 17-21, split does not ex-
haustively search for a partition of r, as this approach
could take exponential (in the size of r) time. Indeed,
if t permissions are assigned to a role r, then there are
2t − 2 different potential roles strictly contained in r.
Therefore, split stops after runs iterations. In the ex-
periments described in Section 5.4, to limit the running
time of function split, we set runs to 10.

We would like to point out that, despite the heuris-
tic StrictUDCC has not been designed to mine roles
with semantic meaning, the function split preserves
role’s semantic, to some extent. Indeed, a role r, vi-
olating the UDCC constraint, is substituted for a set
of roles (two according to split’s definition) covering
all r’s permissions. In some sense, we assume that
the semantic associated to a role r could also be rep-
resented through two distinct roles whose permissions
corresponds to r’s ones. Moreover, if r would be as-
signed to a set U of users then the covering roles will
be assigned to the same set of users provided that the
UDCC constraint is not violated.

Once a user u and a set R of roles have been se-
lected by the functions pickRole and split, the heuristic
StrictUDCC assigns each role r ∈ R to u. Each role
r ∈ R is also assigned to any user ui whose original
permissions contain the ones associated to r and r cov-
ers some of ui’s uncovered permissions, provided that
the assignments do not violate the UDCC constraint.
That is, r is assigned to user ui if r ⊆ original[ui],
r ∩ uncPrms[ui] , ∅, and AR[ui] < µ. Such assign-
ments are managed through the function updateDEC
whose pseudo-code is omitted due to its simplicity.
This function, assigning roles to users, updates the ma-
trix UA and the counter AR. It adds a role to the set FR
of forbidden roles when it is assigned to µ users. For
any new role r ∈ R, the function updateDEC adds r to
the matrix PA.

putations is represented by the set of its permissions. That is, we use
r to denote AsgndPrms(r).

8



5. Experimental Evaluation

In this section, we report some of the experiments
that we run to to assess the effectiveness the heuristics
introduced in this paper. All heuristics have been tested
using real-world datasets [13]. In particular, for the
post-processing scenario, we compare DuplicateUDCC
with the state-of-the-art heuristics proposed in [20] and
[7]. We show that our simple heuristic provides better
solutions than the state-of-the-art ones, in terms of the
metrics we introduce in Section 5.2. To the best of our
knowledge, the heuristic StrictUDCC is the only one
generating a strict set of roles. Hence, we evaluate the
impact of its four variants Omin, Omax, Umin, and Umax
on the quality of the returned solution. All heuristics
have been implemented in Python 3.9 and are available
online [4]. We run the experiments on a MacBook Pro
running OS X 13.0 on a 2.3 GHz Intel Core i9 8 core
CPU having 16 GB 2667 MHz DDR4 RAM.

5.1. Dataset
In Table 1, we report the characteristics of the real-

world datasets considered in this paper. We filled in
such table with data extracted from [13]. The first four
columns of are self-explanatory. The fifth column rep-
resents UPA density, that is the number of entries dif-
ferent from zero in UPA with respect to its size (i.e.,
the product |U| × |P|). The column indexed by |R|
contains the size of the smallest set of roles covering
UPA when no constraints at all are imposed on the
solution to the role mining problem. With the the ex-
ception of the dataset Customer, the optimal decompo-
sitions, along with the starting UPA relations, were
available on the web page at HP Labs of one of the au-
thors of [13]. The second-last (resp., last) column con-
tains the minimum (resp., maximum) number of users
assigned to a role in the optimal decomposition. Since
for the dataset Customers we do not know an optimal
decomposition, in the last two columns we report, in

boldface, an upper bound to
min
upr and

max
upr. We set such

upper bounds to the minimum and the maximum num-
ber of users sharing the same permission. Note that
all entries of the second-last column are equal to one.
This means that, in the optimal decomposition, there is
at least one role that is assigned to only one user.

5.2. Metrics
For a given a set of users U, a set of permissions

P, and user-permission assignment relation UPA, a
solution of the associated role mining problem is de-
noted by γ = ⟨R,UA,PA,DUPA⟩ and is referred to
as state of (U,P,UPA). The state comprises, the set
of roles R, the user-to-role and the role-to-permission
assignment relationsUA and PA, and the direct user-
permission assignment relation DUPA. In the fol-
lowing, as usual in the literature, to compare the qual-
ity of the states γ returned by different heuristics, we

use three measures: the size of the mined roles, the
Weighted Structural Complexity (WS C, for short), and
the heuristics’ running time. Since in this paper we do
not consider hierarchical RBAC (i.e., RBAC systems
where a partial order relation is defined over the roles
representing an inheritance relation among them), we
adapt the WS C definition in [31] as follows.

Definition 5.1. For wr,wu,wp,wd ∈ Q+ ∪ {∞}, given
W = ⟨wr,wu,wp,wd⟩, the Weighted Structural Com-
plexity of a state γ = ⟨R,UA,PA,DUPA⟩, denoted
by wsc(γ,W), is computed as follow.

wsc(γ,W) = wr · |R| + wu · |UA| +

wp · |PA| + wd · |DUPA|

where | · | denotes the size of the set or relation.

To limit the RBAC states to consider, one can set dif-
ferent values for the weights wr,wu,wp, and wd. So,
different weight vectors encode different mining objec-
tive and minimization goals. For instance, if we were
interested in comparing heuristics with respect to the
size of the set of generated roles and at the same time
we want to forbid both direct user-permission assign-
ments, we set wr = 1, wu = wp = 0, and wd = ∞.
In this paper, we are interested in comparing heuristics
with respect to the overall state’s complexity; for this
reason we set wr = wu = wp = wd = 1, as usual in the
literature.

5.3. Evaluation of Heuristic DuplicateUDCC
In this section we compare the heuristic described

in Section 4.1 with the heuristics Algorithm 1 and Al-
gorithm 2 presented in Section IV of [20] (referred in
the experiments as A1 and A2, respectively) and with
the heuristics CRM−UDCC1 and CRM−UDCC2 proposed in
Section IV.D of [7] (referred in the experiments as C1
and C2, respectively).

In [20], following the technique proposed in [13],
the user-permission relation is represented as a bipar-
tite graph G, where a vertex set represents the users and
another vertex set represents the permissions. There is
an edge between a user u and a permission p iff (u, p) ∈
UPA. As in [13], the three heuristics proposed in
[20] cover G’s edges using bicliques (i.e., complete bi-
partite graphs). The heuristic Algorithm 1 selects the
user u with the minimum number of uncovered inci-
dent edges. This choice determines the permissions as-
sociated to a role r (i.e., all the permissions connected
to u through an edge). The role r is then assigned to
at most µ users possessing such permissions (users are
selected in descending order w.r.t the number of un-
covered incident edges). The selected users and per-
missions form a biclique representing a role and its
assignment to users. In the heuristic Algorithm 2, a
vertex with the minimum number of uncovered edges
is selected. If the selected vertex is a user, then a role

9



Dataset |U| |P| |UPA| Density |R|
min
upr

max
upr

Americas Large 3485 10127 185294 0.53% 398 1 2777
Americas Small 3477 1587 105205 1.61% 178 1 2809
Apj 2044 1164 6841 0.29% 453 1 278
Customer 10021 277 45427 1.64% 276 1 4184
Domino 79 231 730 4.00% 20 1 51
Emea 35 3046 7220 6.77% 34 1 2
Firewall 1 365 709 31951 12.35% 64 1 203
Firewall 2 325 590 36428 19.00% 10 1 239
Healthcare 46 46 1486 70.23% 14 1 27

Table 1: Characteristics of the real-world datasets considered in this paper

r is formed as in Algorithm 1 and assigned to at most
µ users, each possessing all r’s permissions (no order
on the users is assumed). If the selected vertex is a
permission p, then at most any µ users connected to
p are selected (again, this choice is done without con-
sidering any particular order on the users). The role
is formed by considering the permissions shared by all
the selected users (the role contains at least the per-
mission p). Finally, the heuristic Algorithm 3 selects
one permission at a time starting from the one assigned
to the minimum number of users (say, ν users). If
ν < µ, all these ν users are selected, otherwise the
heuristic Algorithm 3 selects the users combination
sharing the maximum number of permissions (among
all the combinations of µ users out of those ν users).
Since the number of such combinations could be huge
(i.e., O((ν/µ)µ), we did not implement Algorithm 3
(neither [20] did). This heuristic is computationally ex-
pensive and can be only tested on very small datasets.
The heuristic CRM−UDCC1 in [7] forms a role similarly
to heuristic Algorithm 1 in [20]. The main difference
is that it operates using the original user-permission
relation not just the permissions left uncovered dur-
ing the mining steps. The heuristic CRM−UDCC1 selects
the user u having the minimum number of permissions
originally assigned to u. Such permissions form the
role r that, differently from heuristic Algorithm 1, is
assigned to u and to at most any other µ − 1 users pos-
sessing, at the beginning of the heuristic, the permis-
sions associated to r. Instead, the heuristic CRM−UDCC2
selects the user as in heuristic Algorithm 1. Then, to
form the role, it proceeds as in heuristic CRM−UDCC1.

For any given user-permission assignment matrix
UPA, the heuristic DuplicateUDCC described in Sec-
tion 4.1 receives as input an unconstrained decompo-
sition UA and PA of UPA. There are several methods
to obtain such a decomposition, the most common are
summarized in Table 2. The three columns of the table
describe the name of the heuristic, a reference to the
paper explaining it, and an id we use to denote it in
this paper. We only point out that D1 uses the optimal
decomposition available from HP Labs [13]. SMAUR

and SMAUC were not described in [2], but they are just
a simple modification of SMAR and SMAC . Indeed, SMAR

and SMAC form the roles by selecting the permission in
UPA, while the corresponding SMAUR and SMAUC form
the roles considering the permissions left uncovered
during the mining process. This very simple modifica-
tion was suggested in [9], however, we ascribe it to [2].
We exploited such an approach of selecting the permis-
sions either from the original ones (i.e., from UPA) or
from the uncovered ones also in the four variants of
heuristics StrictUDCC in Section 4.2.

Heuristic Paper id

Optimal [13] D1
SMAR [2] D2
SMAUR [2] D3
SMAC [2] D4
SMAUC [2] D5
FastMiner [43] D6
FastMiner v2 [43] D7
OBMD [24] D8
Biclique [13] D9

Table 2: Starting decompositions used in the experiments

In the following, we report the results of the ex-
periments we run to compare the heuristic Duplica-
teUDCC with the state-of-the-art ones. To test the
heuristics, for each dataset except Emea, we varied the
parameter µ across twelve values, spanning from 10%
to 120% of

max
upr given in Table 1. All µ’s values are

summarized in Table 3. Regarding the Emea dataset,
as the maximum number of users assigned to a role in
the optimal decomposition is equal to two, we varied µ
within the set {1, 2, 3, 4}.

Dataset µ values

Americas Large 278, 556, 834, 1111, 1389, 1667
1944, 2222, 2500, 2777, 3055, 3333

Americas Small 281, 562, 843, 1124, 1405, 1686
1967, 2248, 2529, 2809, 3090, 3371

Apj 28, 56, 84, 112, 139, 167
195, 223, 251, 278, 306, 334

Customer 419, 837, 1256, 1674, 2092, 2511
2929, 3348, 3766, 4184, 4603, 5021

Domino 6, 11, 16, 21, 26, 31
36, 41, 46, 51, 57, 62

Emea 1, 2, 3, 4
Firewall 1 21, 41, 61, 82, 102, 122, 143, 163, 183, 203, 224, 244
Firewall 2 24, 48, 72, 96, 120, 144, 168, 192, 216, 239, 263, 287
Healthcare 3, 6, 9, 11, 14, 17, 19, 22, 25, 27, 30, 33

Table 3: µ values used in the experiments

In the Tables 4, 5, and 6, we report the results for

10



the dataset Apj. In all three tables, for each dataset,
the best results are highlighted in boldface. In Ta-
ble 4, the entries associated to heuristics D1-D9 con-
tain two values. The first value represents the number
of unsatisfied constraints in the starting decomposition
and the second one is the size of the returned set of
roles. According to Table 4, we see that heuristic D5 al-
ways returns the smallest set of roles, while, D1 returns
the smallest set of roles in five cases out of twelve.
Finally, heuristic A2 attains the minimum in just one
case (which is obtained by D5, as well). Considering
the Weighted Structural Complexity, the results in Ta-
ble 5 state that the minimum value is obtained by the
heuristic D1. Note that, an optimal solution to the un-
constrained role mining problem could not be always
available for any given user-permission assignment re-
lation UPA. Hence, one should consider the second
best solution. For the dataset Apj, the second best so-
lution is obtained by heuristic D4. Finally, considering
the running time of the heuristics (expressed in mil-
liseconds), we see from Table 6 that DuplicateUDCC
is far more efficient than state-of-the-art heuristics. In-
deed, in several instances, it is from 4 to 6 times faster
than the state-of-the-art methods.

To emphasize the superiority of heuristic Dupli-
cateUDCC over the state-of-the-art ones, in Table 7
we summarize the results of all our experiments. We
list the heuristics achieving the minimum value for the
measures |R|, WS C, and running time. In parentheses,
we report the number of times each heuristic reaches
such a minimum over the twelve values for µ. A heuris-
tic without an accompanying number in parentheses
indicates that it attains the best solution for all the val-
ues assumed by µ. For a complete experimental evalu-
ation across all datasets listed in Table 1, we direct the
reader to the online resources [4]. From Table 7 one
can easily deduce that heuristic DuplicateUDCC pro-
vides a better solution than the state-of-the-art ones.
In few cases, state-of-the-art heuristics have the same
performances as DuplicateUDCC. For instance, for the
dataset Firewall 2 both heuristics A2 and D2 always re-
turn the smallest set of roles. In some cases, the best
solution is obtained when DuplicateUDCC receives in
input the Optimal decomposition. Anyway, as already
noticed for the dataset Apj, the second best solution
is obtained from DuplicateUDCC having in input an-
other decomposition (e.g., D3 and D4 for the datasets
Americas Large and Americas Small, respectively). Fi-
nally, we point out the singularity of the dataset Emea.
Such a dataset has 35 users: two users have the same
set of permissions and the other 33 users have assigned
each a different set of permissions. It is immediate to
see that, for µ = 1, the optimal solution comprises 35
roles (the set of all permissions associated to a user de-
termines the unique role assigned to the user); while,
when the threshold µ is larger than one, the optimal so-
lution is formed by 34 roles (one for each different set

of permissions induced by UPA). From Table 7, we
see that all heuristics, with the exception of D4 and D7,
compute the minimum (optimal) solution.

The main reason why the heuristic DuplicateUDCC
is more efficient than existing ones depends on the dif-
ferent frameworks they operate. The state-of-the-art
heuristics are designed to work within the concurrent-
processing framework. Thus, they try to minimize the
role set size while satisfying the constraint. Instead,
our heuristic operates within the post-processing frame-
work. Hence, the heuristic begins with a set of roles
that may not be significantly distant from the minimal
configuration. According to our experiments, for the
UDCC problem, it is not convenient to compute a so-
lution from scratch. It is worth modifying an existing
unconstrained solution to meet the UDCC constraint.

5.4. Evaluation of Heuristic StrictUDCC
In this section, we present the results of our ex-

perimental evaluation of Heuristic StrictUDCC. As in
Section 5.3, we use the datasets listed in Table 1. To
the best of our knowledge, heuristic StrictUDCC is
the only one available generating a strict set of roles.
Hence, in this section we compare the results obtained
executing its four variants Omin, Omax, Umin, and Umax
described in Section 4.2. Recall that in all variants,
roles could be formed by randomly choosing permis-
sions from a given set (see, lines 16–21 of function
split). So, to reduce any bias due to random choices,
we have run the heuristics five times, reporting the av-
erage over all runs. In the experiments, we also tested
our heuristic in an unconstrained setting, as well (i.e.,
for µ equal to the number of users in the dataset). Such
results are reported in Table 9.

In Table 8, we summarize the results of the experi-
ments run on the dataset Apj. Note that, in some cases,
the average value of WS C does not exactly correspond
to the sum of the average values |R|, |UA|, |PA|, and
|DUPA| (see, for instance, the values for variant Omax
when µ = 139). This incongruence is due to the fact
that we compute the integer part of the average of each
single measure. For instance, |R| is computed as

|R| =


#runs∑

i=1

|Ri|

 /#runs

 ,
where Ri is the set of roles computed during i-th run.

Instead, we compute the average WS C as:
#runs∑

i=1

|Ri| + |UAi| + |PAi| + |DUPAi|

 /#runs

 .
Considering the data in Table 8, except for |DUPA|, it
seems that forming a role using the permissions asso-
ciated to users through UPA generates solutions not
much different from the ones obtained when a role is
composed by uncovered permissions. For instance, if

11



µ A1 A2 C1 C2 D1 D2 D3 D4 D5 D6 D7 D8 D9
28 489 468 630 581 12, 477 14, 484 15, 485 12, 485 11, 468 31, 571 31, 600 15, 471 15, 485
56 466 458 573 510 4, 460 4, 477 5, 464 2, 469 1, 456 21, 565 21, 591 5, 463 3, 464
84 462 457 552 472 3, 458 4, 476 4, 461 2, 467 1, 455 21, 564 21, 590 5, 462 2, 460

112 458 457 532 460 1, 455 2, 476 2, 458 2, 467 1, 454 8, 564 8, 590 2, 462 2, 459
139 457 456 487 457 1, 454 1, 475 1, 457 2, 467 1, 454 4, 564 4, 589 1, 462 2, 458
167 456 456 478 457 1, 454 1, 475 1, 456 0, 465 1, 454 4, 564 4, 589 1, 461 2, 458
195 456 456 477 456 1, 454 1, 475 1, 456 0, 465 0, 453 4, 564 4, 589 1, 461 2, 458
223 456 456 476 456 1, 454 1, 475 1, 456 0, 465 0, 453 4, 564 4, 589 1, 461 1, 457
251 456 456 476 456 1, 454 1, 475 1, 456 0, 465 0, 453 4, 564 4, 589 1, 461 0, 456
278 456 456 476 456 0, 453 1, 475 1, 456 0, 465 0, 453 4, 564 4, 589 1, 461 0, 456
306 455 456 475 455 0, 453 0, 475 0, 455 0, 465 0, 453 0, 564 0, 589 0, 461 0, 456
334 455 456 475 455 0, 453 0, 475 0, 455 0, 465 0, 453 0, 564 0, 589 0, 461 0, 456

Table 4: Role-set size for dataset Apj

µ A1 A2 C1 C2 D1 D2 D3 D4 D5 D6 D7 D8 D9
28 5278 5270 9364 8472 4945 5485 5157 5563 5268 6150 5885 5253 5847
56 5206 5232 9929 8051 4881 5464 5086 5506 5227 6134 5848 5227 5789
84 5191 5227 10181 6269 4872 5459 5071 5498 5222 6129 5843 5222 5778

112 5121 5227 9431 5471 4857 5459 5059 5498 5217 6129 5843 5222 5774
139 5062 5222 7437 5256 4852 5454 5054 5498 5217 6129 5838 5222 5772
167 5169 5222 6772 5358 4852 5454 5049 5490 5217 6129 5838 5217 5772
195 5141 5222 6656 5248 4852 5454 5049 5490 5212 6129 5838 5217 5772
223 5113 5222 6517 5234 4852 5454 5049 5490 5212 6129 5838 5217 5768
251 5085 5222 6526 5218 4852 5454 5049 5490 5212 6129 5838 5217 5766
278 5058 5222 6540 5199 4847 5454 5049 5490 5212 6129 5838 5217 5766
306 5045 5222 6391 5115 4847 5454 5044 5490 5212 6129 5838 5217 5766
334 5045 5222 6391 5115 4847 5454 5044 5490 5212 6129 5838 5217 5766

Table 5: WS C values for dataset Apj

we consider |R|, we see that Omax and Umax return a
set of roles having the same size, while Omin, except
for µ = 28, returns a set of roles slightly smaller than
the one returned by Umin. This effect is partially con-
firmed by the experiments we run on the other datasets,
although there are few cases where the variants behave
differently. For the dataset Americas Small, from Fig-
ure 4 we see that variant Omin generates a smaller set
of roles than Omax; while, for the dataset Customer,
from Figure 5 we see that variant Omax generates a
smaller set of roles than Umax. From Table 8, we see
that variants Omin and Umin return a set of roles about
20% smaller than variants Omax and Umax. In general,
for datasets with high density UPA (e.g., Firewall
2 and Healthcare), variants Omax and Umax generate
smaller set of roles; while, variants Omin and Umin re-
turn better results for low densityUPA.

In most cases, for all datasets, we get that the size
of the set of roles returned by variants Omax and Umax

is the same. This effect is due to the way the roles
are formed and assigned to users. Considering the un-
constrained case, recall that each role is formed by se-
lecting the largest set of permissions assigned to users.
Then, the newly formed role is assigned to all users
having the same set of permissions. In this way, all the
permissions assigned to a user throughUPA are cov-
ered at once. Hence, users’ permissions are all either
covered or uncovered. This implies that original[u] =
uncPrms[u], for each uncovered user u. So, both vari-
ants Omax and Umax select roles from identical ma-
trices. In the constrained scenario, if a role has al-
ready been assigned to µ users, then its permissions
are covered by a pair of roles returned by the func-

tion split. Therefore, if the function split is never in-
voked, then the generated roles are identical for both
Omax and Umax. This event happens when the thresh-
old µ is larger than the maximum number of users pos-
sessing an identical set of permissions. The above de-
scribed behaviour does not show up in variants Omin

and Umin as the role r, formed selecting the smallest
set of permissions assigned to users, is also assigned to
users possessing a super-set of r’s permissions, possi-
bly leaving some permissions uncovered. Hence, vari-
ants Omin and Umin select roles from different sets
of permissions (i.e., there are some uncovered users u
such that original[u] , uncPrms[u]).

When examining the measures |UA| and |PA|, we
observe that for the Apj dataset, the behavior of vari-
ants Omin and Umin contrasts with that of the variants
Omax and Umax (see Figures 6 and 7). This behavior
can be explained by examining how the variants con-
struct roles. In Omax and Umax roles are large (e.g.,
they are formed by selecting the largest set of permis-
sions assigned to users) and each one of them is as-
signed to all users having the same set of permissions
(in general few users). This implies a small |UA| value
and a large |PA| value. Conversely, variants Omin and
Umin exhibit an opposite pattern, where the heuristic
starts by generating small roles, resulting in a small
PA. Subsequently, the heuristic assigns these roles
to any user whose permissions encompass the permis-
sions of the generated roles. As a result, typically, the
same role is assigned to multiple users, all while ad-
hering to the UDCC constraint. This leads to a large
UA.

Considering the number of direct user-permission

12



µ A1 A2 C1 C2 D1 D2 D3 D4 D5 D6 D7 D8 D9
28 107 174 172 170 37 30 29 29 28 52 65 31 29
56 100 176 149 160 39 31 28 28 28 49 45 32 45
84 100 171 141 158 28 28 39 31 28 48 45 30 28
112 99 186 136 151 29 29 28 28 38 52 45 31 28
139 97 179 134 165 28 29 28 31 29 49 61 31 29
167 98 172 137 153 28 41 28 29 28 49 47 33 41
195 103 172 128 150 28 29 28 41 28 48 45 30 28
223 100 188 126 150 28 29 28 28 28 62 45 30 28
251 97 178 130 164 27 29 28 30 29 49 45 43 29
278 100 169 131 148 27 39 30 28 27 48 46 33 29
306 110 171 125 151 27 29 28 40 31 49 45 30 28
334 100 171 149 149 29 29 27 28 27 61 46 30 28

Table 6: Execution times (milliseconds) for dataset Apj

Dataset |R| WS C time
Americas Large D1 D4 D1(1), D3(9), D5(2)

Americas Small D1 D3 D1(1), D2(3), D3(8), D9(2)

Apj A2(1), D1(5), D5 D1 D1(8), D2(1), D3(7), D4(3), D5(8), D9(4)

Customer A1(9), A2, C2(8), D3(9)
D2 D3(6), D4(6)

D4, D5, D9(9)

Domino
A1(6), A2(11), C1(5), C2(5)

D6 D1, D2, D3, D4(9), D5(9), D8(11), D9D1(8), D2(10), D3(6), D5(10)
D6(1), D8(10), D9(6)

Emea A1, A2, C1, C2, D1 A1, A2, C1, C2, D1 D1(3), D2(3), D3(3)
D2, D3, D5, D6, D8, D9 D2, D3, D5, D6, D8, D9 D4(3), D5(3), D7(1)

Firewall 1 D5(4), D8 D1 D1, D3(3), D9(3)

Firewall 2
A1(5), A2, C1(5), C2(5)

D1(10), D4(2) D3(8), D9D1(10), D2, D3(5), D4(11)
D5, D6(1), D8, D9(5)

Healthcare A2(10), D1(3), D2(1)
A1(7), D1(5) D1(10), D3(10), D4(9)

D4(11), D5(5), D8(11) D5(4), D9

Table 7: Synthesis of our experiments

M V 28 56 84 112 139 167 195 223 251 278 306 334 2044

WS C

Omin 5363 5519 5295 5235 5191 5157 5129 5102 5074 5046 5039 5039 5039
Omax 6188 6152 6129 6129 6129 6129 6129 6129 6129 6129 6129 6129 6129
Umin 5343 5489 5438 5240 5195 5168 5140 5112 5084 5057 5044 5044 5044
Umax 6188 6152 6129 6129 6129 6129 6129 6129 6129 6129 6129 6129 6129

|R|

Omin 486 471 464 459 457 455 455 455 456 455 454 454 454
Omax 570 566 564 564 564 564 564 564 564 564 564 564 564
Umin 484 472 466 460 458 456 456 456 456 456 455 455 455
Umax 570 566 564 564 564 564 564 564 564 564 564 564 564

|UA|

Omin 3394 3623 3411 3370 3331 3302 3274 3246 3219 3191 3188 3188 3188
Omax 2087 2061 2044 2044 2044 2044 2044 2044 2044 2044 2044 2044 2044
Umin 3382 3592 3557 3379 3341 3321 3293 3265 3237 3210 3198 3198 3198
Umax 2087 2061 2044 2044 2044 2044 2044 2044 2044 2044 2044 2044 2044

|PA|

Omin 1482 1425 1420 1406 1402 1399 1399 1399 1399 1399 1397 1397 1397
Omax 3531 3525 3521 3521 3521 3521 3521 3521 3521 3521 3521 3521 3521
Umin 1476 1425 1414 1400 1396 1391 1391 1391 1391 1391 1391 1391 1391
Umax 3531 3525 3521 3521 3521 3521 3521 3521 3521 3521 3521 3521 3521

|DUPA|

Omin 351 9 0 0 0 0 0 0 0 0 0 0 0
Omax 26 0 0 0 0 0 0 0 0 0 0 0 0
Umin 388 31 32 6 9 0 0 0 0 0 0 0 0
Umax 26 0 0 0 0 0 0 0 0 0 0 0 0

time

Omin 191 150 148 144 145 140 143 142 140 144 138 141 142
Omax 270 256 254 255 256 256 249 253 252 256 253 253 256
Umin 185 146 144 140 141 141 139 136 146 139 138 135 139
Umax 262 259 255 256 255 253 252 253 249 252 253 251 250

Table 8: Experiment’s results for dataset Apj

assignments, from Table 8, we see that all variants, for
large value of µ, compute solutions with |DUPA| = 0.
This effect is not particularly surprising because if we
permit a role to be assigned to a large number of users,

it becomes easier to cover all UPA entries without re-
sorting to direct user-permission assignments. The op-
posite of this effect is more evident in Figure 8 when
considering small values for the parameter µ. In such

13



Figure 4: Dataset Americas Small: Number of roles

Figure 5: Dataset Customer: Number of roles

Figure 6: Dataset Apj: UA size

Figure 7: Dataset Apj: PA size

cases, since each role can be assigned to very few users
(at most five), the heuristic StrictUDCC has to resort
to several direct user-permission assignments. More-
over, from Figure 8, one can see that, regardless of
the variant, the number of direct assignments decreases

when µ increases.
Finally, if we analyze the heuristic’s running time

we notice that in general our heuristic is quite fast re-
gardless of the considered variant. According to the
online data on the running time [4], it results that for

14



Figure 8: Dataset Apj: Number of DUPA assignments

the last five datasets there are no large differences be-
tween the four heuristics (the largest running time is
about 200 ms). For the first three datasets, we have that
variants Omax and Umax are from 65% to 85% slower
than variants Omin and Umin (being the largest run-
ning time about 1300 ms). Finally, for the dataset Cus-
tomer the variants Omax and Umax take from 20 to 25
seconds (on Customer they are quite slow compared
the other datasets); while, variants Omin and Umin take
from about 6 s to about 600 ms. In conclusion, we can
deduce that the running time is mainly influenced, as
expected, by the number of users in the dataset.

To conclude our experiments, we tested the four
StrictUDCC’s variants relaxing the UDCC constraint
(we set µ equal to the number of users in the dataset).
In Table 9, for the measure |R|, we report both the re-
sults of this last experiment and the size of the set of
roles derived from the optimal decomposition (see Ta-
ble 1). In the unconstrained scenario, StrictUDCC is
quite effective in returning a set of roles as small as
possible. Indeed, for five datasets out of nine, it com-
putes a set of roles of minimum size. For the datasets
Apj and Firewall 1, the returned roles are just one more
than the ones in the optimal solution. Finally, for the
datasets Americas Large and Americas Small, the com-
puted sets of roles contain 4% and 10% more roles
than the optimal solution, respectively. Variant Omin
returns the best solution, except for the dataset Cus-
tomer where it is more effective variant Umin.

6. Conclusions

In the literature, various constrained RBAC frame-
works have been introduced, each considering differ-
ent types of constraints. Several role mining heuris-
tics have been described to identify sets of roles sat-
isfying the constraints imposed by policy within an
organization. In this, paper we focused on the User-
Distribution Cardinality Constraint problem, where the
restriction is on the maximum number of users that
can be assigned to a role. In addition to the cases
previously explored in the literature, we have intro-
duced an additional constraint. Specifically, all the

roles generated by the heuristics cannot include two or
more roles sharing identical permissions. To address
this challenge, we have introduced two distinct heuris-
tics. The first one is implemented within the post-
processing framework for the classical scenario, while
the second one is tailored for the novel model and im-
plemented within the concurrent framework. To assess
their efficacy, we conducted a comprehensive set of ex-
periments using benchmark datasets and compared the
results, whenever possible, to previous studies. The
publicly available results, as detailed in [4], demon-
strate that our first heuristic outperforms existing state-
of-the-art methods across various metrics, including
WSC (Weighted Structural Complexity) and running
time. As for the second heuristic, since there are no
comparable results to reference, we evaluated the im-
pact of its four variants Omin, Omax, Umin, and Umax

on the quality of the resultant solution.
As future work, we have in mind different research

directions. One possibility involves exploring mining
approaches where the returned roles have some seman-
tics or, in any case, they mantain some descriptive func-
tion. Furthermore, we plan to extend the results in [12],
presented for in the context of unconstrained RBAC, to
the UDCC scenario. We aim to use genetic program-
ming, as in [37], to solve the UDCC problem, and to
add the temporal dimension as in [41] and [29].
Availability of data and material: In this paper we
used publicly available datasets from HP labs [13]. The
datasets used during the current study are available in
the figshare repository,
https://figshare.com/s/526f4dbe55536db8e6c7
Funding: This work was partially supported by project
SERICS (PE00000014) under the MUR National Re-
covery and Resilience Plan funded by the European
Union - NextGenerationEU.
Acknowledgements: We thank the anonymous review-
ers for their valuable time and effort in evaluating our
manuscript. Following their insightful suggestions and
constructive comments, we improved the paper’s qual-
ity.

15



Decomposition Americas Americas Apj Customer Domino Emea Firewall 1 Firewall 2 HealthcareLarge Small
Optimal 398 178 453 276 20 34 64 10 14
Omin 415 196 454 279 20 34 65 10 14
Omax 432 259 564 5655 23 34 90 11 18
Umin 415 207 455 276 20 34 68 10 14
Umax 432 259 564 5655 23 34 90 11 18

Table 9: Size of the set of roles in the unconstrained setting

References

[1] M. Benedetti and M. Mori. On the use of Max-SAT
and PDDL in RBAC maintenance. Cybersecurity, 2(1):1–
25, 2019. doi: https://doi.org/10.1186/s42400-019-0036-9.
URL https://link.springer.com/article/10.1186/

s42400-019-0036-9.
[2] C. Blundo and S. Cimato. A simple role mining algorithm.

In Proceedings of the 2010 ACM Symposium on Applied Com-
puting (SAC), pages 1958–1962, Sierre, Switzerland, March
22-26 2010. ACM, New York.

[3] C. Blundo and S. Cimato. Constrained role mining. In Secu-
rity and Trust Management - 8th International Workshop, STM
2012, Revised Selected Papers, volume 7783 of Lecture Notes
in Computer Science, pages 289–304, Pisa, Italy, September
13-14 2012. Springer.

[4] C. Blundo and S. Cimato. Additional Material for Role
Mining Under a User-Distribution Cardinality Con-
straint, https://figshare.com/s/526f4dbe55536db8e6c7,
May 2022. URL https://figshare.com/s/

526f4dbe55536db8e6c7.
[5] C. Blundo, S. Cimato, and L. Siniscalchi. PRUCC-RM:

permission-role-usage cardinality constrained role mining. In
41st IEEE Annual Computer Software and Applications Con-
ference, COMPSAC 2017, pages 149–154, Volume 2, Turin,
Italy, July 4-8 2017. IEEE Computer Society.

[6] C. Blundo, S. Cimato, and L. Siniscalchi. Postprocess-
ing in constrained role mining. In Intelligent Data En-
gineering and Automated Learning - IDEAL 2018 - 19th
International Conference, Madrid, Spain, November 21-23,
2018, Proceedings, Part I, pages 204–214, 2018. doi: 10.
1007/978-3-030-03493-1\ 22. URL https://doi.org/

10.1007/978-3-030-03493-1_22.
[7] C. Blundo, S. Cimato, and L. Siniscalchi. Managing con-

straints in role based access control. IEEE Access, 8:140497–
140511, 2020. doi: 10.1109/ACCESS.2020.3011310. URL
https://doi.org/10.1109/ACCESS.2020.3011310.

[8] C. Blundo, S. Cimato, and L. Siniscalchi. Role Mining
Heuristics for Permission-Role-Usage Cardinality Constraints.
The Computer Journal, 65(6):1386–1411, 2022. doi: 10.
1093/comjnl/bxaa186. URL https://doi.org/10.1093/

comjnl/bxaa186.
[9] C. Blundo, S. Cimato, and L. Siniscalchi. Heuristics for con-

strained role mining in the post-processing framework. Jour-
nal of Ambient Intelligence and Humanized Computing, pages
1–13, 2022. doi: 10.1007/s12652-021-03648-1.

[10] L. Chen and J. Crampton. Set covering problems in role-
based access control. In Computer Security - ESORICS 2009,
14th European Symposium on Research in Computer Security,
2009. Proceedings, volume 5789 of Lecture Notes in Computer
Science, pages 689–704, Saint-Malo, France, September 21-23
2009. Springer.

[11] A. Colantonio, R. D. Pietro, and A. Ocello. A cost-driven ap-
proach to role engineering. In R. L. Wainwright and H. Had-
dad, editors, Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC), pages 2129–2136. ACM, 2008.
doi: 10.1145/1363686.1364198. URL https://doi.org/

10.1145/1363686.1364198.
[12] L. Dong, K. Wu, and G. Tang. A data-centric approach to qual-

ity estimation of role mining results. IEEE Transactions on

Information Forensics and Security, 11(12):2678–2692, Dec
2016. ISSN 1556-6013. doi: 10.1109/TIFS.2016.2594137.

[13] A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber,
and R. E. Tarjan. Fast exact and heuristic methods for role min-
imization problems. In 13th ACM Symposium on Access Con-
trol Models and Technologies, SACMAT 2008, Proceedings,
pages 1–10, Estes Park, CO, USA, June 11-13 2008. ACM.
ISBN 978-1-60558-129-3.

[14] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based ac-
cess control. ACM Transaction on Information System Secu-
rity, 4(3):224–274, 2001.

[15] M. Frank, A. P. Streich, D. A. Basin, and J. M. Buhmann.
A probabilistic approach to hybrid role mining. In E. Al-
Shaer, S. Jha, and A. D. Keromytis, editors, Proceedings
of the 2009 ACM Conference on Computer and Communi-
cations Security, CCS 2009, pages 101–111. ACM, 2009.
doi: 10.1145/1653662.1653675. URL https://doi.org/

10.1145/1653662.1653675.
[16] M. Frank, J. M. Buhmann, and D. A. Basin. On the definition

of role mining. In 15th ACM Symposium on Access Control
Models and Technologies, SACMAT 2010, Proceedings, pages
35–44, Pittsburgh, Pennsylvania, USA, June 9-11 2010. ACM.

[17] L. Fuchs and S. Meier. The role mining process model -
underlining the need for a comprehensive research perspec-
tive. In Sixth International Conference on Availability, Re-
liability and Security, ARES 2011, pages 35–42. IEEE Com-
puter Society, 2011. doi: 10.1109/ARES.2011.12. URL
https://doi.org/10.1109/ARES.2011.12.

[18] L. Fuchs and G. Pernul. Hydro - hybrid development of roles.
In R. Sekar and A. K. Pujari, editors, Information Systems
Security, 4th International Conference, ICISS 2008, volume
5352 of Lecture Notes in Computer Science, pages 287–302.
Springer, 2008. doi: 10.1007/978-3-540-89862-7\ 24. URL
https://doi.org/10.1007/978-3-540-89862-7_24.

[19] P. Harika, M. Nagajyothi, J. C. John, S. Sural, J. Vaidya, and
V. Atluri. Meeting cardinality constraints in role mining. IEEE
Trans. Dependable Sec. Comput., 12(1):71–84, 2015. doi: 10.
1109/TDSC.2014.2309117. URL http://dx.doi.org/10.

1109/TDSC.2014.2309117.
[20] M. Hingankar and S. Sural. Towards role mining with re-

stricted user-role assignment. In Wireless Communication, Ve-
hicular Technology, Information Theory and Aerospace Elec-
tronic Systems Technology (Wireless VITAE), 2011 2nd Inter-
national Conference on, pages 1–5, Chennai, India, 28 Feb.-3
March 2011. IEEE.

[21] J. C. John, S. Sural, V. Atluri, and J. Vaidya. Role mining un-
der role-usage cardinality constraint. In Information Security
and Privacy Research - 27th IFIP TC 11 Information Security
and Privacy Conference, SEC 2012. Proceedings, volume 376
of IFIP Advances in Information and Communication Technol-
ogy, pages 150–161, Heraklion, Crete, Greece, June 4-6 2012.
Springer.

[22] R. Kumar, S. Sural, and A. Gupta. Mining RBAC roles under
cardinality constraint. In Information Systems Security - 6th
International Conference, ICISS 2010. Proceedings, volume
6503 of Lecture Notes in Computer Science, pages 171–185,
Gandhinagar, India, December, 17-19 2010. Springer.

[23] R. Li, H. Li, X. Gu, Y. Li, W. Ye, and X. Ma. Role mining
based on cardinality constraints. Concurrency and Computa-
tion: Practice and Experience, 27(12):3126–3144, 2015. doi:

16

https://link.springer.com/article/10.1186/s42400-019-0036-9
https://link.springer.com/article/10.1186/s42400-019-0036-9
https://figshare.com/s/526f4dbe55536db8e6c7
https://figshare.com/s/526f4dbe55536db8e6c7
https://doi.org/10.1007/978-3-030-03493-1_22
https://doi.org/10.1007/978-3-030-03493-1_22
https://doi.org/10.1109/ACCESS.2020.3011310
https://doi.org/10.1093/comjnl/bxaa186
https://doi.org/10.1093/comjnl/bxaa186
https://doi.org/10.1145/1363686.1364198
https://doi.org/10.1145/1363686.1364198
https://doi.org/10.1145/1653662.1653675
https://doi.org/10.1145/1653662.1653675
https://doi.org/10.1109/ARES.2011.12
https://doi.org/10.1007/978-3-540-89862-7_24
http://dx.doi.org/10.1109/TDSC.2014.2309117
http://dx.doi.org/10.1109/TDSC.2014.2309117


10.1002/cpe.3456. URL http://dx.doi.org/10.1002/

cpe.3456.
[24] H. Lu, J. Vaidya, and V. Atluri. Optimal boolean matrix de-

composition: Application to role engineering. In Proceed-
ings of the 24th International Conference on Data Engineer-
ing, ICDE 2008., pages 297–306, Cancún, Mexico, April 7-12
2008. IEEE Computer Society.

[25] H. Lu, Y. Hong, Y. Yang, L. Duan, and N. Badar. Towards
user-oriented RBAC model. In Data and Applications Security
and Privacy XXVII - 27th Annual IFIP WG 11.3 Conference,
DBSec 2013. Proceedings, volume 7964 of Lecture Notes in
Computer Science, pages 81–96, Newark, NJ, USA, July 15-
17 2013. Springer.

[26] H. Lu, Y. Hong, Y. Yang, L. Duan, and N. Badar. Towards
user-oriented RBAC model. Journal of Computer Security, 23
(1):107–129, 2015. doi: 10.3233/JCS-140519. URL https:

//doi.org/10.3233/JCS-140519.
[27] X. Ma, R. Li, H. Wang, and H. Li. Role mining based

on permission cardinality constraint and user cardinality con-
straint. Security and Communication Networks, 8(13):2317–
2328, 2015. doi: 10.1002/sec.1177. URL http://dx.doi.

org/10.1002/sec.1177.
[28] S. Misra and A. Vaish. Reputation-based role assignment

for role-based access control in wireless sensor networks.
Computer Communications, 34(3):281–294, 2011. ISSN
0140-3664. doi: https://doi.org/10.1016/j.comcom.2010.02.
013. URL https://www.sciencedirect.com/science/

article/pii/S0140366410000885. Special Issue on Infor-
mation and Future Communication Security.

[29] B. Mitra, S. Sural, V. Atluri, and J. Vaidya. The generalized
temporal role mining problem. Journal of Computer Security,
23(1):31–58, 2015.

[30] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. A survey of role
mining. ACM Comput. Surv., 48(4):50:1–50:37, Feb. 2016.
ISSN 0360-0300. doi: 10.1145/2871148. URL http://doi.

acm.org/10.1145/2871148.
[31] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B.

Calo, and J. Lobo. Mining roles with semantic meanings. In
13th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT, 2008, Proceedings, pages 21–30, Estes
Park, CO, USA, June 11-13 2008. ACM.

[32] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Eval-
uating role mining algorithms. In 14th ACM Symposium on
Access Control Models and Technologies, SACMAT 2009, Pro-
ceedings, pages 95–104, Stresa, Italy, June 3-5 2009. ACM.

[33] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B.
Calo, and J. Lobo. Mining roles with multiple objectives. ACM
Trans. Inf. Syst. Secur., 13(4):36:1–36:35, 2010. doi: 10.1145/
1880022.1880030. URL http://doi.acm.org/10.1145/

1880022.1880030.
[34] G. Neumann and M. Strembeck. A scenario-driven role engi-

neering process for functional RBAC roles. In R. S. Sandhu
and E. Bertino, editors, 7th ACM Symposium on Access Con-
trol Models and Technologies, SACMAT 2002, pages 33–42.
ACM, 2002. doi: 10.1145/507711.507717. URL https:

//doi.org/10.1145/507711.507717.
[35] K. R. Rao, A. Nayak, I. G. Ray, Y. Rahulamathavan,

and M. Rajarajan. Role recommender-rbac: Optimizing
user-role assignments in rbac. Computer Communi-
cations, 166:140–153, 2021. ISSN 0140-3664. doi:
https://doi.org/10.1016/j.comcom.2020.12.006. URL
https://www.sciencedirect.com/science/article/

pii/S0140366420320120.
[36] H. Roeckle, G. Schimpf, and R. Weidinger. Process-oriented

approach for role-finding to implement role-based security ad-
ministration in a large industrial organization. In K. Rebens-
burg, C. E. Youman, and V. Atluri, editors, Fifth ACM Work-
shop on Role-Based Access Control, RBAC, pages 103–110.
ACM, 2000. doi: 10.1145/344287.344308. URL https:

//doi.org/10.1145/344287.344308.
[37] I. Saenko and I. V. Kotenko. Genetic algorithms for role min-

ing problem. In Proceedings of the 19th International Euromi-
cro Conference on Parallel, Distributed and Network-based
Processing, PDP 2011, pages 646–650, Ayia Napa, Cyprus,
9-11 February 2011. IEEE Computer Society.

[38] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. Computer, 29(2):38–47,
Feb. 1996. ISSN 0018-9162. doi: 10.1109/2.485845. URL
http://dx.doi.org/10.1109/2.485845.

[39] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST
model for role-based access control: towards a unified stan-
dard. In Fifth ACM Workshop on Role-Based Access Control,
RBAC 2000, pages 47–63, Berlin, Germany, July 26-27 2000.
ACM.

[40] J. Schlegelmilch and U. Steffens. Role mining with ORCA.
In 10th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2005, Proceedings, pages 168–176, Stock-
holm, Sweden, June 1-3 2005. ACM.

[41] S. D. Stoller and T. Bui. Mining hierarchical temporal roles
with multiple metrics. Journal of Computer Security, 26(1):
121–142, 2018.

[42] M. Strembeck. Scenario-driven role engineering. IEEE Secur.
Priv., 8(1):28–35, 2010. doi: 10.1109/MSP.2010.46. URL
https://doi.org/10.1109/MSP.2010.46.

[43] J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles
using subset enumeration. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS
2006, pages 144–153, Alexandria, VA, USA, October 30 -
November 3 2006. ACM.

[44] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem:
finding a minimal descriptive set of roles. In 12th ACM Sym-
posium on Access Control Models and Technologies, SACMAT
2007, Proceedings, pages 175–184, Sophia Antipolis, France,
June 20-22 2007. ACM.

[45] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem: A
formal perspective. ACM Trans. Inf. Syst. Secur., 13(3), 2010.

17

http://dx.doi.org/10.1002/cpe.3456
http://dx.doi.org/10.1002/cpe.3456
https://doi.org/10.3233/JCS-140519
https://doi.org/10.3233/JCS-140519
http://dx.doi.org/10.1002/sec.1177
http://dx.doi.org/10.1002/sec.1177
https://www.sciencedirect.com/science/article/pii/S0140366410000885
https://www.sciencedirect.com/science/article/pii/S0140366410000885
http://doi.acm.org/10.1145/2871148
http://doi.acm.org/10.1145/2871148
http://doi.acm.org/10.1145/1880022.1880030
http://doi.acm.org/10.1145/1880022.1880030
https://doi.org/10.1145/507711.507717
https://doi.org/10.1145/507711.507717
https://www.sciencedirect.com/science/article/pii/S0140366420320120
https://www.sciencedirect.com/science/article/pii/S0140366420320120
https://doi.org/10.1145/344287.344308
https://doi.org/10.1145/344287.344308
http://dx.doi.org/10.1109/2.485845
https://doi.org/10.1109/MSP.2010.46

	Introduction
	Related works
	Definitions
	Heuristics for the UDCC Problem
	A heuristic generating duplicate roles
	A heuristic generating strict set of roles

	Experimental Evaluation
	Dataset
	Metrics
	Evaluation of Heuristic DuplicateUDCC
	Evaluation of Heuristic StrictUDCC

	Conclusions

