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We consider quantum systems with a Hamiltonian containing a weak perturbation i.e. H = H0 + λ · H̃ ,
λ = {λ1, λ2, ...}, H̃ = {H1, H2, ...}, |λ| ≪ 1, and address situations where H̃ is known but the values
of the couplings λ are unknown, and should be determined by performing measurements on the system. We
consider two scenarios: in the first one we assume that measurements are performed on a given stationary state
of the system, e.g., the ground state, whereas in the second one an initial state is prepared and then measured
after evolution. In both cases, we look for the optimal measurements to estimate the couplings and evaluate
the ultimate limits to precision. In particular, we derive general results for one and two couplings, and analyze
in details some specific qubit models. Our results indicates that dynamical estimation schemes may provide
enhanced precision upon a suitable choice of the initial preparation and the interaction time.

I. INTRODUCTION

It is often the case that relevant physical phenomena cor-
respond to weak perturbations to a stable unperturbed situ-
ation. This happens in a wide range of disciplines, ranging
from applied mathematics [1], biology [2] to chemistry [3]
and physics [4]. In these situations, the nature of the perturba-
tions is usually known, whereas the strenghts of the perturba-
tions are the quantities of interest. The Hamiltonian of those
systems may be generally written as

H = H0 + λ · H̃ , (1)

where H0 and H̃ = {H1, H2, ...} are known Hamiltonian
operators and λ = {λ1, λ2, ...} with |λ| ≪ 1 is a vector of
small unknown coupling parameters, whose values are un-
known, and should be determined by performing measure-
ments on the system. To achieve this goal, there are two
paradigmatic approaches, which will be referred to as static
and dynamical estimation schemes throughout the paper. In
the first one, the system may be prepared in a given stationary
state, usually the ground state, which is measured to gain in-
formation about the value of the parameters. In a dynamical
scenario, the system is instead prepared in a certain state, left
to evolve for a given interaction time and finally measured.
In a dynamical estimation scheme, the initial state, as well as
interaction time, may be optimized and thus the overall preci-
sion may be enhanced compared to a static scheme, though the
practical implementation may be more challenging. Besides
the case of small perturbations to a given Hamiltonian H0,
the Hamiltonian in Eq. (1) may also describe systems where
the couplings have some target values λ0 and the scope of the
measurement is to monitor the system [5–7], i.e. to estimate
possible deviations λ = λ0 − λ0 from those values.

A convenient framework to investigate the precision achiev-
able by static and dynamical estimation schemes is that of
quantum estimation theory [8–13], which provides a set of
tools to determine the measurement that has to be performed
on the system, i.e. to find the observable that is most sensitive
to tiny variations of the parameters [14–25], and to optimize
the initial preparation of the probe [26–35].

In particular, if the value of a single parameter is encoded in
the family of quantum states {|ψλ⟩} (usually referred to as the
quantum statistical model), one may prove that the ultimate
precision achievable in estimating λ is obtained by measuring
the observableLλ, known as symmetric logarithmic derivative
(SLD), which is the self-adjoint operator given by

Lλ = 2
[
|∂λψλ⟩ ⟨ψλ|+ |ψλ⟩ ⟨∂λψλ|

]
. (2)

Upon collecting the result of M repeated measurements on
identical preparations of the system and suitably processing
data (e.g. by maxlik [36–39]or Bayesian analysis [40, 41])
the uncertainty in the determination of λ, i.e., the precision of
the estimation scheme, is given by

Varλ ≃ 1

M H(λ)
(3)

where H(λ) is the so-called Quantum Fisher information of
the quantum statistical model {|ψλ⟩}, i.e.,

Qλ = 4
[
⟨∂λψλ|∂λψλ⟩ − |⟨∂λψλ|ψλ⟩|2

]
, (4)

(notice that ⟨ψλ|∂λψλ⟩ is a purely imaginary c-number, i.e.,
⟨ψλ|∂λψλ⟩∗ = ⟨∂λψλ|ψλ⟩ = −⟨ψλ|∂λψλ⟩).

The generalization to the estimation of more than one pa-
rameter can be obtained by introducing the so-called quantum
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Fisher information matrix (QFIM) Q, which is a real symmet-
ric matrix with entries

Qµν = 4 [Re ⟨∂µψ|∂νψ⟩+ ⟨∂µψ|ψ⟩ ⟨∂νψ|ψ⟩] (5)

The QFIM provides a bound on the covariance matrix (CM)
of the estimates

Cov(λ) ≥ 1

M
Q−1 . (6)

This is a matrix inequality, and it cannot, in general, be sat-
urated. Physically, this corresponds to the unavoidable quan-
tum noise that originate when the SLDs corresponding to dif-
ferent parameters do not commute [42]. In those cases, the to-
tal variance

∑
µ V (λµ) (or a weighted combination of the CM

elements) is a more interesting quantity to study, and since the
µth diagonal entry of the covariance matrix is just the variance
of the parameter λµ, the bound on the total variance is given
as ∑

µ

V (λµ) ≥
B

M
B = Tr

[
Q−1

]
. (7)

The incompatibility between the parameters can be quantified
by the so-called asymptotic incompatibility [43–46], also re-
ferred to as the quantumness of the quantum statistical model.
This is defined as

R := ∥iQ−1D∥∞ (8)

where ∥A∥∞ is the largest eigenvalue of the matrix A and

Dµν = − i

2
⟨ψλ|[Lµ, Lν ]|ψλ⟩ = 4 Im ⟨∂µψ|∂νψ⟩ (9)

is the Uhlmann curvature of the statistical model. The quan-
tity R is a real number in the range 0 ≤ R ≤ 1 with the
equality R = 0 satisfied for compatible parameters, i.e., when
⟨ψλ|[Lµ, Lν ]|ψλ⟩ = 0. For just two parameters, one may
write

R =

√
detD

detQ
. (10)

A tighter scalar bound, known as the Holevo-Cramer-Rao
bound

∑
µ V (λµ) ≥ CH/M , with CH ≥ B, may also be de-

rived (see [47] for details), and the quantumness R provides
a bound to the normalized difference between CH and B as
follows

CH −B

B
≤ R . (11)

In the following Sections, we aim at finding general for-
mulas for B and R for estimation problems involving the pa-
rameters of weakly perturbed systems in both the static and
the dynamical estimation scenarios. We also analyze some
specific models involving qubits, qutrits and harmonic oscil-
lators, and where the Holevo-Cramer-Rao bound is known
analitically, we check whether the inequality in Eq. (11) is

tight. More precisely, Section II is devoted to static estima-
tion schemes, with Section II A reporting general results and
Sections II B, II C, and II D devoted to specific models involv-
ing qubit, qutrit, and oscillatory systems, respectively. Section
III is devoted to dynamical estimation schemes, with Section
III A reporting general results and Sections III B, III C, and
III D discussing specific results for qubit, qutrit, and oscilla-
tory systems, also comparing the performance of dynamical
schemes to that of the corresponding static ones. Section IV
closes the paper with some concluding remarks.

II. STATIC ESTIMATION OF WEAK PERTURBATIONS

In this Section, we address estimation of weak perturba-
tions in systems descibed by one- and two-parameter (time-
independent) Hamiltonians of the form H = H0 + λH1 and
H = H0 + λ1H1 + λ2H2. In particular, we assume that the
system may be prepared in a given state (e.g, the ground state)
and that repeated measurements may be performed on the sys-
tem. We derive general expressions for the QFI Q and the
quantumness R and discuss specific models involving qubit,
qutrit and oscillator systems.

A. General results for one and two parameters

Let us consider a system with Hamiltonian H = H0 +
λH1 where λ ≪ 1. The n-th eigenstate |ψn⟩ of H may be
obtained perturbatively to first-order in λ as follows

|ψn⟩ =
∣∣ψ0

n

〉
+ λ

∣∣ψ1
n

〉
+O(λ2), (12)

where
∣∣ψ0

n

〉
are eigenstates of H0 and

∣∣ψ1
n

〉
=
∑
m ̸=n

〈
ψ0
m

∣∣H1

∣∣ψ0
n

〉
E0

n − E0
m

∣∣ψ0
m

〉
is the first-order correction to the n-th eigenstate. In gen-
eral

〈
ψ1
∣∣ψ1
〉

= N ̸= 1, and it is thus convenient to in-
troduce the state

∣∣ψ1
〉
=

√
N
∣∣ϕ1〉 and write the first-order

corrected eigenstate |ψ⟩ as a combination of two orthonormal
states

∣∣ψ0
〉

and
∣∣ϕ1〉. The subscript n is omitted to simplify

notation. The perturbed state and its derivative are thus given
by

|ψ⟩ =
∣∣ψ0
〉
+ λ

√
N
∣∣ϕ1〉 (13a)

|∂λψ⟩ =
√
N
∣∣ϕ1〉 . (13b)

According to Eq. (2), the SLD of this general model may
be written, up to first order in λ as

Lλ = 2
√
N
[ ∣∣ψ0

〉〈
ϕ1
∣∣+∣∣ϕ1〉〈ψ0

∣∣+2λ
√
N
∣∣ϕ1〉〈ϕ1∣∣ ] ,

(14)
and the corresponding QFI as

Q(λ) = 4N +O(λ2) . (15)
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The QFI is independent on the perturbation (up to second-
order) and proportional to the norm of the first-order correc-
tion

∣∣ψ1
〉
. This is a remarkably intuitive results, linking the

estimability of a perturbation to its physical effect on the sys-
tem. The same result may be also obtained expressing the QFI
in terms of fidelity [48] [49]. Notice also that the λ-dependent
term in the SLD leads to negligible (second order) contribu-
tions to the QFI and may be dropped. The optimal measure-
ment is thus given by

L = 2
√
N

(
0 1
1 0

)
. (16)

This expression makes it clear that the optimal measure-
ments set coincides with the Pauli matrix σx over the basis
{
∣∣ψ0
〉
,
∣∣ϕ1〉}, i.e. a detection scheme that senses the coher-

ence of the perturbed state in that basis.
Let us now address the case of systems with Hamiltonian

of the formH = H0+λ1H1+λ2H2 whereH1 andH2 are in
general non commuting operators, [H1, H2] ̸= 0. In this case
the pertubations depend in a non trivial way on two different
parameters λ1 and λ2, which should be jointly estimated. For
weak perturbations, the the n-th eigenstate of H |ψn⟩ may be
written, in terms of the eigenbasis of H0, as follows

|ψn⟩ =
∣∣ψ0

n

〉
+ λ1

∑
m ̸=n

〈
ψ0
m

∣∣H1

∣∣ψ0
n

〉
E0

n − E0
m

∣∣ψ0
m

〉
+λ2

∑
l ̸=n

〈
ψ0
l

∣∣H2

∣∣ψ0
n

〉
E0

n − E0
l

∣∣ψ0
l

〉
=
∣∣ψ0

n

〉
+ λ1

√
N1

∣∣ϕ1n,1〉+ λ2
√
N2

∣∣ϕ1n,2〉
(17)

where
∣∣ϕ1n,µ〉 are states, i.e. the normalized version of the

first-order corrections
∣∣ψ1

n,µ

〉
=
√
Nµ

∣∣ϕ1n,µ〉 having squared
norms Nj (with µ = 1, 2 the index of the parameter λµ). As
we have done before, we drop the index n in order to sim-
plify the notation. These states are not orthogonal one to each
other but both are orthogonal to the unperturbed eigenspace
of H0, hence, we can express the perturbed state |ψ⟩ in an or-
thonormal basis spanned by the triplet {

∣∣ψ0
〉
, |j⟩ , |k⟩}, with

⟨j|k⟩ = δjk. Upon writing the states
∣∣ϕl〉} as∣∣ϕ1〉 = sin

θ1
2
|j⟩+ eiγ cos

θ1
2
|k⟩∣∣ϕ2〉 = sin

θ2
2
|j⟩+ ei(γ+φ) cos

θ2
2
|k⟩ ,

the perturbed state and its derivatives
∣∣∂λµ

ψ
〉
=
∣∣ψ1

µ

〉
may be

written as

|ψ⟩ =
∣∣ψ0
〉
+

(
λ1
√
N1 cos

θ1
2

+ λ2
√
N2e

iγ cos
θ2
2

)
|j⟩

+

(
λ1
√
N1 sin

θ1
2

+ λ2
√
N2e

i(γ+φ) sin
θ2
2

)
|k⟩ , (18)

|∂λ1
ψ⟩ =

√
N1

(
cos

θ1
2
|j⟩+ sin

θ1
2
|k⟩
)
, (19)

|∂λ2ψ⟩ =
√
N2 e

iγ

(
cos

θ2
2
|j⟩+ eiφ sin

θ2
2
|k⟩
)
. (20)

In order to quantify the orthogonality between the two pertur-
bations, we consider the overlap ω =

〈
ϕ11
∣∣ϕ12〉 between the

two first-order corrections, i.e.,

ω = cos
θ1
2
cos

θ2
2
eiγ + sin

θ1
2
sin

θ2
2
ei(γ+φ) (21)

The SLD operators L1 and L2 for the two parameters λ1
and λ2 may be calculated according to Eq. (2). The explicit
expressions are reported in Appendix A. The corresponding
QFIM Q and Uhlmann curvature D are given by

Q =

(
4N1 4

√
N1N2 Reω

4
√
N1N2 Reω 4N2

)
, (22)

D =

(
0 4

√
N1N2 Imω

−4
√
N1N2 Imω 0

)
. (23)

The ultimate bound B and the quantumness R thus read as
follows

B =
N1 +N2

4N1N2

[
1− Re2 ω

] , (24)

R =

√
Im2 ω

1− Re2 ω
. (25)

As expected, the overlap between the perturbations is involved
in all the quantities of interest. In particular, a real overlap
(Imω = 0) always provides maximum compatibility (R = 0)
between the parameters to estimate. Moreover, if the overlap
is zero (both Reω = 0 and Imω = 0), i.e. perturbations are
orthogonal, the QFI matrix is diagonal, meaning that parame-
ters are uncorrelated. On the other hand, if the overlap is a just
a phase factor, we have Re2 ω + Im2 ω = 1, and thus R = 1,
i.e. maximal incompatibility between the parameters. This
may happen also when the dimension of the probing system
is insufficient to estimate a certain number of parameters , as
it will be illustrated in the next Section by means of a qubit
statistical model.

B. Qubit models

Let us consider a qubit system described by the orthonormal
basis states {|0⟩ , |1⟩} of the unperturbed Hamiltonian H0 =
σz with eigenenergies E0 = 1 and E1 = −1. The perturbed
Hamiltonian is given by H = σz + λσx, where σz and σx
are standard Pauli matrices, and λ is the small perturbation
parameter that we want to estimate. The first-order perturbed
ground state is given by

|ψ⟩ = |0⟩+ λ

2
|1⟩ , (26)

and the first-order corrected state is
∣∣ψ1
〉

= 1
2 |1⟩ with

(squared) norm N = 1/4. The corresponding SLD is Lλ =
σx and the QFI is given by

Q = 1 +O(λ2) (27)
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confirming the general results in Eqs. (15) and (2).
Let us now consider the more interesting case of a two-

parameter perturbation, which highlights the issues arising
from using an under-dimensioned (compared to the number
of parameters) probe system. The perturbed Hamiltonian is

H = σz + λ1σx + λ2(cosασx + sinασy) ,

where λi (with i = 1, 2) are the perturbation parameters and
α denotes a mixing angle which governs the orthogonality of
the two perturbations. The first-order perturbed ground state
of the system is given by

|ψ⟩ = |0⟩+ 1

2

(
λ1 + λ2 e

iα
)
|1⟩ . (28)

Looking at the above equation, it is clear that the two perturba-
tions cannot, in general, generate two orthogonal states where
information about the two parameters is encoded [44]. In fact,
the first-order corrected states corresponding to λ1 and λ2 are
the same state except for a phase factor. In other words, the
two perturbations lead to two degenerate states proportional to
|1⟩. Referring to the Bloch sphere representation introduced
above, we have θ1 = θ2 = 0 and γ = α. The overlap in
(21) is given by ω = eiα and the QFIM displays off-diagonal
elements. In order to make the two parameters compatible,
a probe system with larger dimension should be necessarily
employed (see the next Section).

C. Qutrit models

Let us consider a three-dimensional spin-1 system with
a perturbed Hamiltonian given by H = Sz + λ1Sx +
λ2(cosαSx + sinαSy), where {Sz, Sx, Sy} denote the ir-
reducible representation of spin-1 operators in the z-basis:

Sz =

1 0 0
0 0 0
0 0 −1

 , Sx =
1√
2

0 1 0
1 0 1
0 1 0

 ,

Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 ,

(29)

with |ms⟩, m1 = {1, 0,−1} being the standard eigenvectors
and eigenvalues of Sz . This Hamiltonian is the direct gen-
eralization of that considered in the previous Section, and a
comparison will reveal the role of system dimension.

For the eigenstate
∣∣ψ0
〉
= |0⟩, the first-order correstions are

given by∣∣ψ1
1

〉
=

|1,−1⟩ − |1, 1⟩√
2

=
∣∣ϕ11〉 (30a)

∣∣ψ1
2

〉
=

eiα |1,−1⟩ − e−iα |1, 1⟩√
2

=
∣∣ϕ12〉 , (30b)

with squared norms given by N1 = N2 = 1. It is easy to
see that these perturbation states live in two-level subsystem
spanned by |j⟩ = |1⟩ and |k⟩ = |−1⟩, and that they may

be expressed as in Eq. (18) by setting θ1 = θ2 = 3π/2,
γ = −α and φ = 2α. The resulting overlap is real and given
by ω = cosα. In this case, the resulting QFI matrix Q and
the ultimate bound B are

Q = 4

(
1 cosα

cosα 1

)
B =

csc2 α

2
, (31a)

whereas the mean Uhlmann curvature is vanishing and the
quantumness is zero R = 0. Moreover, the two perturbed
states become orthogonal for α = π/2, which corresponds
to apply non-overlapping perturbations. The QFI matrix be-
comes diagonal, meaning that the two parameters to be esti-
mated are uncorrelated, and the ultimate bound B = 1/2 is
minimal and coincides with the Holevo bound CH . Notice
that perturbing a different eigenvector, say |1, 1⟩, the situation
is dramatically different, since he two perturbations Sx and
Sy generate the same first-order perturbed state |1, 0⟩ and the
resulting overlap is ω = eiα.

Summarizing, a two-parameter perturbation cannot be suit-
ably characterized (with maximum precision and compatibil-
ity) using a qubit system, whereas the use of a qutrit system
allows one to achieve the ultimate limits to precision, via a
proper choice of the encoding Hamiltonian terms and of the
initial unperturbed state.

D. A quantum anharmonic oscillator model

An relevant class of models that may be treated in our for-
malism is that of a quantum oscillator weakly perturbed by
anharmonic terms. Here the anharmonic couplings are the
quantities to be estimated, e.g., because they may represent
a resource [50]. The Hilbert space of the system is infinite
dimensional and may offer an ideal playground to encode as
much information as needed.

For the sake of simplicity, we choose natural units (ℏ = 1)
and set the frequency and the mass of the oscillator to one
m = ω = 1. The position and momentum operators can be
expressed in terms of ladder operators as x = (a + a†)/

√
2

and p = i(a†−a)/
√
2 and hence the unperturbed hamiltonian

can be expressed as H0 = (p2 + x2)/2 = a†a + 1/2 with
corresponding eigenenergies E0

n = n + 1/2. We consider
anharmonic perturbations to the harmonic potential such that
the perturbed Hamiltonians read

H =
1

2

(
p2 + x2

)
+ ϵ1x

3 + ϵ2x
4, (32)

where we introduced the two anharmonic couplings ϵ1 and ϵ2
as the unknown parameters to be estimated. The perturbed
ground state of the system may be obtained as in Eq. (17),
where the two first order corrections are given by

∣∣ψ1
1

〉
= −1

2

(
3√
2
|1⟩+ 1√

3
|3⟩
)

(33a)

∣∣ψ1
2

〉
= −1

2

(
3√
2
|2⟩+ 1

2

√
3

2
|4⟩

)
, (33b)
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with squared norms N1 = 29
24 and N2 = 39

32 . The two per-
turbed states (33) are orthogonal and the same happens for
any eigenstate of the perturbed Hamiltonian. The QFI (22)
matrix reads

Q = 4

(
N1 0
0 N2

)
, (34)

leading to B = 466/1131 ≃ 0.41. The Uhlmann curvature
(23) vanishes, corresponding to a zero quantumness (25). In
conclusion, preparing a quantum oscillator in its vacuum state,
is an efficient strategy to precisely sense the amplitude of an-
harmonic perturbations.

III. SENSING PERTURBATIONS BY DYNAMICAL
PROBES

In this Section, we address detection of weak perturbations
by performing measurements on an evolved state |ψ(t)⟩ =
e−iHt

∣∣ψ0
〉

where
∣∣ψ0
〉

is a (non stationary) given initial state
and H is the perturbed Hamiltonian under investigation.

A. General results for one and two parameters

Let us start with a perturbation described by a single param-
eter Hamiltonian. In order to obtain the QFI it is convenient
to move into the interaction picture (with respect to the un-
perturbed Hamiltonian H0), where the state vector is given
by the unitary transformation |ψI(t)⟩ = U†

0 (t) |ψ(t)⟩, being
U0(t) = e−iH0t. The whole time evolution is expressed by

|ψI(t)⟩ = UI(t)
∣∣ψ0
〉
, (35a)

UI(t) = T
[
exp{−iλK(t)}

]
, (35b)

K(t) =

∫ t

0

dsU†
0 (s)H1U0(s) , (35c)

where I denotes the identity matrix, T [...] denotes time-
ordering and the operator K(t) = K†(t) is hermitian. Up
to first order in λ we have

UI(t) ≃ I − iλK(t) , (36)

Going back to the Schröedinger picture the evolved state and
its derivative with respect to the unknown parameter may be
written as

|ψλ(t)⟩ = U0(t) [I − iλK(t)]
∣∣ψ0
〉

(37a)

|∂λψλ(t)⟩ = −iU0(t)K(t)
∣∣ψ0
〉
. (37b)

The leading-order behaviour corresponds to a λ-independent
(zero-th order) expression of the QFI

Q(t) = 4
[〈
ψ0
∣∣K2(t)

∣∣ψ0
〉
−
〈
ψ0
∣∣K(t)

∣∣ψ0
〉2]

. (38)

Despite it may appear as a rough approximation, this expres-
sion of the QFI allows us to grab the main features of the dy-
namical case and to made a comparison to the static one. The

QFI in Eq. (38) depends on time and is independent on λ. In
other words, for weak perturbations the evolution introduces
a time dependence, whereas it does not affect the covariant
nature of the estimation problem.

Analogously, in the case of a two-parameter Hamiltonian
H = H0 + λ1H1 + λ2H2, the time evolution operator in
the interaction picture can be approximated at first-order as
UI(t) ≃ I − i

∫ t

0
dsU†

0 (s) (λ1H1 + λ2H2)U0. Upon intro-
ducing the operators

K1(t) =

∫ t

0

dsU†
0 (s)H1U0(s) , (39)

K2(t) =

∫ t

0

dsU†
0 (s)H2U0(s) , (40)

the leading order of the elements of the QFI matrix may be
evaluated as follows

Q11 = 4
[〈
ψ0
∣∣K2

1

∣∣ψ0
〉
−
〈
ψ0
∣∣K1

∣∣ψ0
〉2]

Q12 = 4
[
Re
〈
ψ0
∣∣K1K2

∣∣ψ0
〉
−
〈
ψ0
∣∣K1

∣∣ψ0
〉〈
ψ0
∣∣K2

∣∣ψ0
〉]

Q21 = 4
[
Re
〈
ψ0
∣∣K2K1

∣∣ψ0
〉
−
〈
ψ0
∣∣K2

∣∣ψ0
〉〈
ψ0
∣∣K1

∣∣ψ0
〉]

Q22 = 4
[〈
ψ0
∣∣K2

2

∣∣ψ0
〉
−
〈
ψ0
∣∣K2

∣∣ψ0
〉2]

, (41)

where we omitted the time dependence. The matrix elements
of the Uhlmann curvature are given by

D12 = 4 Im
〈
ψ0
∣∣K1K2

∣∣ψ0
〉
= −D21 (42)

and the quantumness parameter R reads as follows

R = 4

∣∣Im 〈ψ0
∣∣K1K2

∣∣ψ0
〉∣∣

√
detQ

. (43)

Now that the general framework has been set, in the following
we re-examine some of the examples of the previous Sections
in order to compare the performance of static and dynamical
estimation schemes.

B. Qubit models

Let us consider a single qubit, initially prepared in generic
state

∣∣ψ0
〉

= cos( θ2 ) |0⟩ + eiϕsin( θ2 ) |1⟩. Given the results
of Section II B, we consider a single-parameter perturbation.
The system evolves according to the unitary U = exp(−itH)
where t is the interaction time and H = σ3 + λσ1 is the per-
turbed Hamiltonian with λ small. Using Eqs. (35c) and (38)
we have

K(t) = eit sin t |0⟩⟨1|+ e−it sin t |1⟩⟨0| (44a)

Q(t) = 4 sin2 t
[
1− cos2(t+ ϕ) sin2(θ)

]
. (44b)

In order to compare this result with the QFI obtained in the
static case, we set |0⟩ as the initial (unperturbed) state at t = 0,
i.e. θ = 0. The dynamical QFI is given by Q(t) = 4 sin2 t,
and achieves a maximum at t = π/2, where it is four times
greater than the corresponding static QFI.
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C. Qutrit models

We consider the same spin-1 system as in Section II C and
the same Hamiltonian. In order to compare results with the
static scenario, we set the initial state to

∣∣ψ0
〉
= |1, 0⟩, the

QFI and the bound B reads:

Q = 16 sin2
t

2

(
1 cosα

cosα 1

)
, D = 0 (45)

B =
(
8 sin2 t/2 sin2 α

)−1
R = 0 . (46)

The D matrix and the R parameter vanish, i.e. we have com-
patibility between the two parameters. The bound B is mini-
mized for orthogonal perturbations α = π/2, and for t = π.
As it happens with qubits, in the dynamical scenario the bound
is improved by a factor four.

D. Anharmonic oscillator

We consider the same system of Section II D, prepare the
oscillator in the unperturbed ground state and let it evolve ac-
cording to the perturbed Hamiltonian. Using Eqs. (39) and
(40) we evaluate the QFIM, which is a diagonal matrix with
entries (see Appendix B for details)

Q11 =
29

3
− 9 cos t− 2

3
cos 3t (47)

Q22 = 3 (7 + cos 2t) sin2 t (48)
Q12 = Q21 = 0 , (49)

whereas the quantumness R vanishes.
In Fig. 1 we show the bound B as a function of time (B

is a periodic function) compared to the static bound. As it is
apparent from the plot, the dynamical scheme beats the static
one in the range t ∈ (0.721, 2.79). The absolute minimum is
obtained for t ≃ 2.0, where we have B ≃ 0.14, clearly lower
than the corresponding static value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0

B

Figure 1. B bound on the total variance for the joint estimation of
the anharmonicity parameters as a function of the interaction time.
The red solid line is the dynamical bound and the dashed black line
denotes the static one.

We conclude that preparing the oscillator in the unperturbed
ground state and performing measurements after a relatively

short interaction time is an effective way to reveal the presence
of anharmonic perturbations and to estimate their amplitudes.

IV. CONCLUSIONS

In this paper, we have addressed the estimation of weak
quantum perturbations analyzing two estimation scenarios: a
static one, where the parameters are inferred by performing
measurements on a stationary state, and a dynamical one,
where the system is prepared in a suitably optmized initial
state and measurements are performed after a given interac-
tion time, which itself may be optimized to enhance precision.

We have found general formulas for the relevant quantities
to assess precision (i.e. the SLD, the QFIM, the scalar bound
B on the total variance, and the quantumness R) up to the
leading order in the perturbation parameters, and analyzed in
some details few quantum statistical models involving qubit,
qutrit and oscillatory systems.

Our results indicate that dynamical estimation schemes
generally improve precision, although only for specific prepa-
rations of the system and values of the interaction time. Ul-
timately, the choice between one scheme and the other does
depend on the specific features of the involved system, and on
the experimental difficulties related to the preparation of the
initial state and the modulation of the interaction time. Our
results provide solid tools to compare the two approaches in a
generic situations.
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Appendix A: Explicit expressions of the SLDs for a
two-parameter perturbations

Starting from the perturbed state in Eq. (18) and its deriva-
tives in Eqs. (19-20), the matrix elements αjk = [L1]jk of the
SLD operator relative to the parameter λ1 reads:

α11 = 0 (A1)

α22 = 4
(
λ1N1c

2
1 + λ2

√
N1N2c1c2 cos γ

)
(A2)

α33 = 4
(
λ1N1s

2
1 + λ2

√
N1N2s1s2 cos(γ + φ)

)
(A3)

α12 = α21 = 2
√
N1c1 (A4)

α13 = α31 = 2
√
N1s1 (A5)

α23 = α∗
32 = 4λ1N1c1s1 (A6)

+ 2λ2
√
N1N2

(
c1s2e

−i(γ+φ) + c2s1e
iγ
)
,
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whereas βjk = [L2]jk, i.e. those of the SLD operator relative
to the parameter λ2 are given by

β11 = 0 (A7)

β22 = 4
(
λ2N2c

2
2 + λ1

√
N1N2c1c2 cos γ

)
(A8)

β33 = 4
(
λ2N2s

2
2 + λ1

√
N1N2s1s2 cos(γ + φ)

)
(A9)

β12 = β21 = 2
√
N2c2e

−iγ (A10)

β13 = β∗
31 = 2

√
N2s2e

−i(γ+φ) (A11)

β23 = β∗
32 = 4λ2N2c2s2e

−iφ (A12)

+ 2λ1
√
N1N2

(
c1s2e

−i(γ+φ) + c2s1e
iγ
)

where Nj is the squared norm of the perturbation vector∣∣ψ1
n,j

〉
, cj = cos

θj
2 , and sj = sin

θj
2 , with j = 1, 2.

Appendix B: K1 and K2 for the anharmonic oscillator

In this Section, we present the explicit expressions of K1

and K2 in Eqs. (39) and (40) and their use in evaluating
the elements of the QFIM. The calculations are tedious but
straightforward, upon writing the nonlinear Hamiltonians in
normal order as follows [51–53]

xn =
1

2n/2
(a+ a†)n

=
n!

2n/2

[n/2]∑
k=0

n−2k∑
l=0

a†lan−2k−l

2k k! l! (n− 2k − l)!
, (B1)

where [n] denotes the integer part of n. We also use the fact
that for a generic function f(a, a†) of the bosonic operators
one has

eiya
†af(a, a†)e−iya†a = f(ae−iy, a†eiy) (B2)

We thus have

K1 =

1∑
k=0

3−2k∑
l=0

∫ t

0

dy e−iy(3−2k−2l)

× 3!

23/2
a†la3−2k−l

2k k! l! (3− 2k − l)!
, (B3)

= t

1∑
k=0

3−2k∑
l=0

e−i t
2 (2k+2l−3)sinc

[
t

2
(2k + 2l − 3)

]
× 3!

23/2
a†la3−2k−l

2k k! l! (3− 2k − l)!
, (B4)

and

K2 =

2∑
k=0

4−2k∑
l=0

∫ t

0

dy e−iy(4−2k−2l)

× 4!

22
a†la4−2k−l

2k k! l! (4− 2k − l)!
, (B5)

= t

2∑
k=0

4−2k∑
l=0

e−i t
2 (2k+2l−4)sinc

[
t

2
(2k + 2l − 4)

]
× 4!

22
a†la4−2k−l

2k k! l! (4− 2k − l)!
. (B6)

If we take the unperturbed ground states (the vacuum state
of the harmonic oscillator) we have ⟨0|K1|0⟩ = 0 and
⟨0|K2|0⟩ = 3

4 t.
In order to calculate the expectation values ⟨0|K2

1 |0⟩,
⟨0|K2

2 |0⟩, and ⟨0|K1K2|0⟩ and evaluate the QFIM using Eqs.
(41) we need to calculate expectations values of the form
⟨0|a†l′an′−2k′−l′a†lan−2k−l|0⟩. In particular, in order to cal-
culate ⟨0|K1K2|0⟩, we need

⟨0|a†l
′
an

′−2k′−l′a†lan−2k−l|0⟩

= δl′,0δl,n−2k⟨0|an
′−2k′

a†n−2k|0⟩

= δl′,0δl,n−2kδk′,k+n′−n
2

√
(n′ − 2k′)!(n− 2k)!

= 0 if n′ = n± 1 . (B7)

We conclude that ⟨0|K1K2|0⟩ = 0 and the same happens for
the quantumness R. To calculate the diagonal elements of the
QFIM we use

⟨0|a†l
′
an−2k′−l′a†lan−2k−l|0⟩ = (n−2k)! δl′,0δl,n−2kδk,k′ ,

such that

Q11 = 4 ⟨0|K2
1 |0⟩

= 4

(
3!

23/2−1

)2 1∑
k=0

sin2[ t2 (3− 2k)]

(3− 2k)2 22k (k!)2 (3− 2k)!

=
29

3
− 9 cos t− 2

3
cos 3t (B8)

and

Q22 =4
(
⟨0|K2

2 |0⟩ − ⟨0|K2|0⟩2
)

=4

{(
4!

24/2−1

)2
[

1∑
k=0

sin2[ t2 (4− 2k)]

(4− 2k)2 22k (k!)2 (4− 2k)!

+ lim
k→2

sin2[ t2 (4− 2k)]

(4− 2k)2 22k (k!)2 (4− 2k)!

]
−
(
3

4
t

)2
}

=3 (7 + cos 2t) sin2 t (B9)
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