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Abstract
Weanalyze the role of disease containment policy in the form of treatment in a stochas-
tic economic-epidemiological framework in which the probability of the occurrence
of random shocks is state-dependent, namely it is related to the level of disease preva-
lence. Random shocks are associated with the diffusion of a new strain of the disease
which affects both the number of infectives and the growth rate of infection, and the
probability of such shocks realization may be either increasing or decreasing in the
number of infectives. We determine the optimal policy and the steady state of such
a stochastic framework, which is characterized by an invariant measure supported
on strictly positive prevalence levels, suggesting that complete eradication is never a
possible long run outcome where instead endemicity will prevail. Our results show
that: (i) independently of the features of the state-dependent probabilities, treatment
allows to shift leftward the support of the invariant measure; and (ii) the features of
the state-dependent probabilities affect the shape and spread of the distribution of
disease prevalence over its support, allowing for a steady state outcome characterized
by a distribution alternatively highly concentrated over low prevalence levels or more
spread out over a larger range of prevalence (possibly higher) levels.
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1 Introduction

Infectious diseases have historically played a major role in shaping the prospects of
economic development both in industrialized and developing countries through a vari-
ety of microeconomic and macroeconomic channels (Acemoglu and Johnson 2007;
Adda 2016; Bloom et al. 2022; Boucekkine et al. 2009; Lopez et al. 2006). The ongo-
ing COVID-19 pandemics has shown more clearly than ever that understanding how
to contain the spread of communicable diseases is essential not only to protect human
lives but also to preserve economic prosperity (McKee and Stuckler 2020; World
Bank 2020). The economic epidemiology literature has extensively discussed the role
of disease containment policies, mainly in the form of pharmaceutical interventions
(generally classified as either preventive or treatment measures), in both limiting the
spread of epidemic diseases (Anderson et al. 2010; Federico et al. 2022; Goldman and
Lightwood 2002; Gersovitz and Hammer 2004; Philipson 2000) and supporting eco-
nomic activity (Fabbri et al. 2023; Goenka and Liu 2012, 2019; Goenka et al. 2014; La
Torre et al. 2020). The issue has become even more popular following the COVID-19
outbreak, when a huge and growing number of works has analyzed from a normative
perspective the optimal policy response to balance the economic and health trade-off
involved in non-pharmaceutical interventions, such as social distancing, lockdowns
and travel bans (Acemoglu et al. 2021; Alvarez et al. 2021; Eichenbaum et al. 2021;
La Torre et al. 2021). Despite the high level of uncertainty associated with epidemic
dynamics most of the studies have assumed that disease spreading is entirely deter-
ministic, and very limited are those exploring the implications of stochasticity on the
determination of the optimal containment policy (Federico and Ferrari 2021; Hong
et al. 2021; Shevchenko et al. 2021). Federico and Ferrari (2021) analyze how random-
ness in the disease transmission rate aswell as in the timehorizon impact policymakers’
optimal response. Hong et al. (2021) shows that accounting for stochasticity in disease
transmission yields richer optimalmitigation strategies than those derived in determin-
istic contexts. Shevchenko et al. (2021) discuss how stochastic epidemic shocks affect
economic and environmental conditions analyzing their impact on optimal climate
change policies. In all these works the probability of shocks affecting disease spread-
ing is constant and thus completely independent of the level of disease prevalence.
This is a strong simplification of reality where prevalence determines the likelihood
of epidemic-related shocks by influencing disease incidence and individuals’ behav-
ioral responses. Our paper tries contributing to this scant literature by exploring how
the optimal containment policy is related to stochastic shocks under state-dependent
probabilities, that is the probability of shock realization depends on disease preva-
lence. State-dependent probabilities are a straightforward generalization of constant
probabilities which allow to account for the mutual relation between epidemic shocks
and epidemic dynamics.
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Specifically, we develop a stylized economic-epidemiological framework in which
the social planner needs to choose the optimal mitigation policy to limit the spread of
an infectious disease by determining the intensity of treatment measures, accounting
for the effects of stochastic shocks. Random shocks are associated with the diffusion
of a new strain of the disease, which affects disease prevalence both additively (by
increasing the number of infectives) and multiplicatively (by modifying the growth
rate of infection), and the probability of shocks realization is state-dependent. In par-
ticular, we allow the shocks probability to be either increasing or decreasing in the
number of infectives to account for the eventual presence or absence of individuals’
behavioral changes in an attempt to reduce their disease exposure, respectively. Such
two alternative setups may be well suited to describe individuals’ response to different
types of infections (common diseases vs. potentially deadly diseases), and thus allow
us to characterize from a normative perspective how the optimal policy may change
according to the specific features of the epidemic threat. In this context we explicitly
derive the optimal policy by solving in closed-form the Bellman equation associated
with our stochastic framework with state-dependent probabilities. This allows us to
analyze its stochastic steady state which is represented by an invariant distribution
of disease prevalence, with support on strictly positive values meaning that complete
eradication is never a possible outcome.

We also characterize how the properties of the invariant distribution are related to the
characteristics (in terms of monotonicity and steepness) of the probability function.
We derive two interesting sets of conclusions. First, the optimal policy is indepen-
dent of the features of the state-dependent probabilities, and independently of them
treatment allows to shift leftward the support of the invariant measure. This suggests
that the disease containment efforts are effective in reducing the possible endemic
prevalence levels associated with the steady state outcome. Second, the features of
the state-dependent probabilities do matter as they affect the distribution of disease
prevalence (in particular its shape and spread) over its support. In particular, their
monotonicity property determines the shape of the invariant distribution: whenever
the probability function is decreasing the steady state outcome is characterized by a
skewed distribution highly concentrated over extremely low or high prevalence levels,
while whenever it is increasing the disease outcome is associated with epidemic waves
giving rise to a distribution more evenly spread out over a large range of prevalence
(possibly higher) levels. The steepness property of the state-dependent probabilities
instead determines where most of the mass is concentrated, that is whether the prob-
ability of low prevalence levels is higher or lower; however, the likelihood of low
prevalence depends in a nontrivial way on the interactions between the monotonic and
steepness characteristics of the state-dependent probability function. Moreover, we
present a new result, more general than those discussed in extant literature (Mitra et al.
2003; Shmerkin 2014), determining sufficient conditions for the invariant measure to
be either singular or absolutely continuous with respect to the Lebesgue measure,
showing that this ultimately depends on the relative magnitude of the net infectivity
rate, the extent to which the shock realization affects the net infectivity rate and sus-
ceptibles, and the weight attached to potential infections in the objective function. By
extending the analysis to account for multiple shock realizations, we show that under-
standing the implications of the features of several state-dependent probabilities on
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the invariant distribution is more complicated as in this case we can no longer isolate
the separate role played by each state-dependent probability function. Nevertheless,
in a specific probabilities configuration allowing for comparability with our baseline
framework, we can show that our conclusions regarding how the characteristics of the
state-dependent probability function affect the steady state distribution apply also in
more general contexts.

By introducing state-dependent probabilities in the determination of the optimal
disease containment policy, our paper makes some interesting contributions in two
different branches of the literature. With respect to the economic epidemiology lit-
erature (Goldman and Lightwood 2002; Gersovitz and Hammer 2004; Goenka et al.
2014; La Torre et al. 2020) which discusses that the economy may converge to a
situation of eradication or endemicity according to the effectiveness of disease con-
tainment policies, we show that complete eradication is not possible and the steady
state outcome is represented by an endemic state in which the distribution of disease
prevalence may be more or less concentrated around lower or higher levels accord-
ing to the characteristics of the shock probabilities. Methodologically, instead, we
rely on the theory of iterated function systems with state-dependent probabilities
to characterize the long run properties of the dynamic system associated with our
economic-epidemiological framework. Iterated function systems (IFS) with constant
probabilities have been extensively employed in economic applications to characterize
the fractal properties of the steady state in stochastic optimal growthmodels (Montruc-
chio and Privileggi 1999; Mitra et al. 2003; Mitra and Privileggi 2009; La Torre et al.,
2015), while iterated function systems with state-dependent probabilities (IFSSDP)
have been frequently employed in the mathematics literature (Barnsley and Demko
1985; Stenflo 2002) and only seldom in economics (La Torre et al. 2019). Differ-
ent from La Torre et al. (2019) who analyze how state-dependent probabilities affect
the long run outcome in a purely dynamic context, we determine their implications
on the optimal policy in a normative framework where the social planner specifically
accounts for the role of state-dependent probabilities in its policy decisions. To the best
of our knowledge, ours is the first attempt to address a stochastic dynamic optimization
problem under state-dependent probabilities in economics.

The paper proceeds as follows. Section2 introduces our stochastic epidemiological
framework where random shocks associated with the diffusion of a new disease strain
occur with state-dependent probabilities. Section3 introduces our economic frame-
work in which the social planner determines the optimal treatment policy accounting
for the state-dependency of such probabilities. Section4 explicitly derives the opti-
mal solution discussing the role of the optimal policy in determining the steady state
outcome and the role of state-dependent probabilities. Section5 discusses the char-
acteristics of the invariant measure in terms of singularity vs absolute continuity.
Section6 presents an extension of our baseline model to allow for shocks to take on
any finite number of values. Section7 as usual presents concluding remarks and high-
lights directions for future research. A brief review of the IFS theory and in particular
on the theory of IFSSDP is presented in “Appendix A”, while the proofs of our main
results are reported in “Appendices B and C”.
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2 The epidemiological model

We start discussing the epidemiological context abstracting completely from contain-
ment policies in order to clarify our setup and the role of state-dependent probabilities.
We develop a very simple framework to characterize the spread of a communicable
disease, which may be either a common disease (i.e., the seasonal flu, the common
cold) or a potentially deadly infection (i.e., SARS, COVID-19). Different from tradi-
tional epidemiological setups in which the interactions between different population
groups (i.e., susceptibles and infectives) drive the epidemic dynamics, we focus only
on the determinants of disease prevalence. In such a simplistic context we account
for the uncertainty associated with infection diffusion by considering the role played
by the arise of a new disease strain and by endogeneizing the likelihood with which
random shocks occur assuming that the their probability is state-dependent.

The population size, which is constant and normalized to unity without loss of
generality, N ≡ 1, is composed by healthy individuals who are susceptible to the
disease, St , and the infectives who have already contracted the disease and can transmit
it to susceptibles, It , thus at any moment in time we have that 1 = St + It . We assume
that the disease dynamics is described by the following equation:

It+1 = ηzt �̃It + θ zt St , (1)

where �̃ > 0 measures the net infectivity rate (i.e., the infectivity rate net of the
recovery rate) of the mainstream strain of the disease, zt denotes random shocks that
can take one of two values, r1 or r2, such that 0 < r1 < r2, while η > 0 and
θ > 0 quantify the extent to which the shock realization affects the net infectivity
rate and susceptibles, respectively. The equation above states that the dynamics of
disease prevalence crucially depends on the biological features of the disease (�̃) and
the realization of random shocks (zt ). Biological factors combined with the disease
prevalence determine the disease incidence �̃It which characterizes the pace of disease
diffusion in the presence of only one strain of the disease. The random shock term
captures the twofold impact of a new disease strain on the evolution of the disease. (i)
A new strain is discovered when a susceptible individual is found to be infected with a
genetic variant of the microorganism (i.e., a virus or bacterium) causing the infectious
disease. Thus, the diffusion of a new strain gives rise to some new infections not related
to the single-strain disease incidence, captured by the additive term +zt St . (ii) A new
strain is characterized by different infectivity and recovery rates with respect to the
original strain of the disease, such that the biological disease parameters change from
one strain to the next. Thus, with the origin of a new strain the average biological
parameters of the disease between strains change, such that the net infectivity rate
may become higher or lower following the discovery of a new strain, captured by
the multiplicative term zt �̃It . Such two effects associated with the diffusion of a new
disease strain areweighted by parameters η and θ , whichmeasure the impact generated
on the multiplicative (i.e., disease incidence) and additive (i.e., new infections) terms
in the equation above. By exploiting the fact that St = 1− It and, under the assumption
that η�̃ > θ , by defining � = η�̃ − θ > 0 as the overall infectivity rate (i.e., the
net infectivity rate adjusted for the effects of shocks both on disease incidence and
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susceptibles), we can rewrite the dynamics in (1) as follows:

It+1 = �zt It + θ zt , (2)

which clearly shows that disease prevalence ultimately depends on disease incidence,
the realization of random shocks, biological factors of the disease and the intensitywith
which shocks affect incidence and induce new infections. Despite the linear structure
of (2), the additive term characterizing the new infections generated by the diffusion
of a novel disease strain allows our model above to give rise to epidemic dynam-
ics similar to those occurring in traditional mathematical epidemiology frameworks.
Indeed, a typical implication of mathematical epidemiology settings which drives dis-
ease spreading and is fully restored in our model is that the growth rate of infection is
positive at zero prevalence and monotonically decreases with disease prevalence con-
verging to a negative value at full prevalence. The main peculiarity of our setup deals
with the magnitude of the infection growth rate, which turns out to be infinitely large
at zero prevalence.1 Such a difference is due to the effects of random shocks: since the
diffusion of a new disease strain affects prevalence by acting on susceptibles, the shock
realization generates a larger effect on the infection growth rate whenever the disease
is close to eradication, which thus will never be achieved because new disease strains
will continually arise giving rise to new epidemic waves. Different from traditional
mathematical epidemiology models in which diseases prevalence shows monotonic
dynamics, as we shall clarify later, our setup can give rise to a broad variety of possible
outcomes including non-monotonic dynamics, and random shocks in this context play
a key role.

In particular, in our framework the probability of the realization of random shocks
is not constant but state-dependent, that is it depends on the level of disease prevalence
p(It ). Specifically, {zt }∞t=0 is a Bernoulli process such that at each date t :

zt =
{

r1 with probability p (It )

r2 with probability 1 − p (It )
, (3)

where either p′ < 0, that is the probability that the smaller shock value, r1, (larger
shock value r2) is decreasing (increasing) in the number of infectives, or p′ > 0, that
is the probability that the smaller shock value, r1, (larger shock value r2) is increasing
(decreasing) in the number of infectives. The former case represents a situation in
which individuals do not automatically implement behavioral changes in response to
increases in disease prevalence, and this in turn expands the spread of the disease

1 More precisely, in our model the infection growth rate is given by
It+1−It

It
= �zt It +θ zt −It

It
= �zt −

1 + θ zt
It

, which diverges to +∞ for It → 0+ and converges to �zt − 1 + θ zt = η�̃zt − 1 as It → 1−,

where η�̃zt − 1 ≤ 0 provided that condition (8) which we shall introduce later holds true. Similarly, the
deterministic epidemiological dynamic in a standard SIS framework, which read as It+1 = (1 − δ)It +
αSt It = (1 − δ)It + α(1 − It )It where α > 0 and δ > 0 denote the infectivity and recovery rates

respectively, shows an infection growth rate given by
It+1−It

It
= (1−δ)It +α(1−It )It −It

It
= α − δ − α It ,

which, provided that the condition α > δ ensuring disease spreading (i.e., the basic reproduction number is
larger than unity) holds true, is positive and finite for It → 0+ and converges to the negative value −δ < 0
as It → 1−.

123



Stochastic disease spreading and containment policies…

and thus also the eventual diffusion of a new strain. The latter case instead describes
a situation in which individuals do automatically implement behavioral changes in
response to increases in disease prevalence by reducing their possible exposure to the
disease and this in turn limits the spread of the disease and thus also the likelihood of
diffusion of a new strain.We believe that both scenarios are realistic conceptualizations
of how a disease may spread following individuals’ behavioral response, because such
a response may largely depend on the biological features of specific diseases. For
example, when dealing with common diseases (such as the seasonal flu) individuals
rarely implement behavioral changes to limit their exposure thus the p′ < 0 case
may apply, while when dealing with potentially deadly diseases (such as COVID-19)
behavioral changes may become predominant thus the p′ > 0 case may apply instead.
In the following we shall consider both scenarios and analyze how the features of the
probability function p(·) may affect our conclusions.

In the traditional compartmental models employed in mathematical epidemiology
the presence of a newdisease strain is generally characterized by adding a newgroup of
infectives in order to keep track of the number of individuals infected by the different
disease strains (Martcheva 2015; Meehan et al. 2018). However, as we have learned
from the ongoing COVID-19 epidemic, the microorganism causing the disease may
mutate frequently; thus, in reality it is often not possible to distinguish infectives
according to the variant of the disease they have been affected by. In order to account
for this issue, our setup adds together all the individuals infected by different variants
of the pathogen in a unique group of infectives. In particular equation (2) describes
the evolution of the prevalence level of the disease accounting for all its existing
strains based on the idea that there exists some universality in the features of epidemic
dynamics independently of the specific epidemiological model underlying disease
spreading (i.e., SI, SIS, SIR, SIRS...). A similar setup is frequently used in empirical
applications to perform estimation and forecasting of the evolution of the number of
infectives without specifying a particular epidemiological model, since often the only
data available are those related to disease prevalence (Wang et al. 2021; Zakharov
et al. 2020).

The idea of modeling epidemic outcomes in stochastic contexts without relying
on traditional compartmental frameworks has been employed also in other works
both in economics and epidemiology (Chakraborty et al. 2010; Ming et al. 2016). For
example, even if not relying onmathematical epidemiology settings, Chakraborty et al.
(2010) show that itmay be possible to restore some of their epidemiological features by
requiring the (exogenous) probability infection function to satisfy particular properties.
Our approach is similar to theirs in the sense that the characteristics of the (endogenous)
state-dependent probability functionwill allowus to enrich epidemicdynamics in order
to give rise not only to results qualitatively similar to those traditionally discussed in
mathematical epidemiology but also to a broader variety of possible outcomes. Indeed,
in our setting the overall infectivity rate determines the growth factor of infection and
if this is large enough disease prevalence will tend to increase over time, while if
it is small prevalence will tend to decrease. By affecting the magnitude of such a
growth factor, the state dependency of shocks realization may give rise to periods
of positive and negative prevalence growth, resulting eventually in the occurrence of
different disease waves. Specifically, in the p′ > 0 case when prevalence is low the
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probability of the larger shock value is high and this tends to increase prevalence
giving rise to an expansionary period of infection, but as prevalence increases also
the probability of the smaller shock value rises and this tends to lower prevalence
giving rise to a contractionary period of infection. Overall, periods of growing and
shrinking prevalence may alternate one another over time characterizing multiple
epidemic waves. In the p′ < 0 case instead when prevalence is low the probability
of the larger shock value is low and this tends to decrease prevalence giving rise to a
contractionary period of infection, deterring the possibility of fast infection growth.
Overall, periods of shrinking (or growing) prevalence may tend to persist over time
characterizing monotonic epidemic dynamics. Note that if the probability of shocks
were constant (i.e., p′ = 0) such alternative outcomes would not be possible because
the evolution of infection would resemble a random walk.

Despite the simplicity of (2) in describing epidemic dynamics, we believe that
its ability to characterize endogenously the occurrence of periods characterized by
monotonic epidemic dynamics or by multiple epidemic waves makes it a good bench-
mark to understand the working mechanisms of disease containment policies. Indeed,
traditional mathematical epidemiological models cannot account endogenously for
such alternative outcomes, as they are generally characterized by monotonic epidemic
dynamics inwhich there is no room formultiplewaves, and in order to explain alternate
periods of growing and shrinking infections they usually rely on ad-hoc assumptions,
such as the exogenous introduction of a periodic term to capture some cyclicality in
disease transmission (Grassly and Fraser 2006; Jodar et al. 2008). Thus, the ability
of our setup to describe within the same stylized framework monotonic epidemic
dynamics and multiple epidemic waves, whose alternative occurrence depends on the
specific features of the probability function, represents a novel approach to conceptu-
alize disease spreading which may help us to better understand the role of containment
policies in limiting the spread of infectious diseases. In particular we wish to clarify
how the characteristics of the state-dependent probability function impacts epidemic
dynamics and policymakers’ optimal policy response.

A central role in our analysis needs thus to be placed on the features of the state-
dependent probabilities. In this context, note that as the number of infectives It in each
period t must lie in the interval [0, 1], also the state-dependent probabilities have the
same domain, that is, p : [0, 1] → [0, 1]. In order to analyze explicitly the role of
state-dependent probabilities, we introduce the following hyperbolic forms for p(·),
defined for I ∈ [0, 1]:

p (I ) = 1

B I 2 + 1
and 1 − p (I ) = B I 2

B I 2 + 1
, or (4)

p (I ) = B I 2

B I 2 + 1
and 1 − p (I ) = 1

B I 2 + 1
, (5)

where B > 0 is a parameter. Note that p (I ) and 1 − p (I ) according to (4) actually

have values in
[

1
B+1 , 1

]
⊂ (0, 1] and

[
0, B

B+1

]
⊂ [0, 1) respectively, while p (I ) and

1 − p (I ) according to (5) have values in
[
0, B

B+1

]
⊂ [0, 1) and

[
1

B+1 , 1
]

⊂ (0, 1]
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respectively.Moreover, p (I ) in (4) is such that p′ (I ) < 0, so that the probability of the
smaller shock value, r1 (larger shock value, r2) is decreasing (increasing) in the number
of infectives; conversely, p (I ) in (5) is such that p′ (I ) > 0, so that the probability
of the smaller shock value, r1 (larger shock value, r2), is increasing (decreasing)
in the number of infectives. Therefore, (4) defines two (Lipschitz) continuous state-
dependent probability functions satisfying 0 < p (I ) ≤ 1 and 0 ≤ 1 − p (I ) < 1 for
all 0 ≤ I ≤ 1, and (5) defines two (Lipschitz) continuous state-dependent probability
functions satisfying 0 ≤ p (I ) < 1 and 0 < 1 − p (I ) ≤ 1 for all 0 ≤ I ≤ 1.

The dynamics in (1) can be rewritten in terms of the following IFSSDP:

It+1 =
{

r1�It + θr1 with probability p (It )

r2�It + θr2 with probability 1 − p (It ) ,
(6)

which canbe analyzedby relying on the IFS theory (see “AppendixA” for a brief review
of the main tools and results needed for our analysis), which ensures the existence
of a unique stationary distribution μ for such an IFSSDP supported on the interval[
I st
1 , I st

2

] ⊂ [0, 1], where the endpoints are the steady states of the two affine maps in
(6) respectively:

I st
1 = θr1

1 − r1�
and I st

2 = θr2
1 − r2�

. (7)

In order to keep the dynamics of It defined by IFSSDP (6) inside the interval [0, 1]
and rule out the trivial case r1 = 0, the steady states of the above maps must satisfy
the following parameter condition:

0 < r1 < r2 ≤ 1

η�̃
. (8)

Note that (8) imposes an upper limit to the larger shock value in order to ensure that the
dynamics in (6) remains trapped in a subset of [0, 1], and such an upper limit for r2 can
be either lower or larger than unity, depending on the values of the positive parameters
η and �̃. This implies that the diffusion of a newdisease strainmay increase or decrease
the growth rate of infection of the mainstream disease strain according to the specific
parametrization, thus the total number of infectives could increase or decrease over
time following the shock realizations. Moreover, note that, since the smaller shock
value needs to be strictly larger than zero, the steady states of the maps in (7 ), which
determines the left endpoint of the support of the invariant measure, do not include
I = 0, which suggests that full eradication will never be possible. Since the diffusion
of new disease strains affects additively epidemic dynamics, some new infectives will
always be adding to the existing stock of infectives precluding the possibility for full
eradication.

It is also interesting to observe that the characteristics of the probability function do
not affect the support of the invariant measure, but they may affect the distribution of
disease prevalence over its support. Unfortunately, characterizing this explicitly is not
possible thus in the following we shall present some numerical example to illustrate
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the implications of different shapes of the probability function on the steady state
distribution of disease prevalence. Specifically, we shall numerically approximate the
time evolution of a given probability density according to the affine IFSSDP (6 ). To
this purpose, in order to have a qualitative idea on what the limiting invariant measure
may look like we apply a Maple algorithm2 that approximates successive iterations of
the Markov operator associated with our IFSSDP (see “Appendix A” for the definition
of the Markov operator, given in (46)), based on Algorithm 1 in La Torre et al. (2019).

In the following numerical examples, we assume that the initial density is uniform
and given by μ0 (I ) ≡ 1

I st
2 −I st

1
, and we set the parameter values arbitrarily as follows:

η = 3, �̃ = θ = 1, r2 = 1

η�̃
= 1

3
, r1 = r2

2
= 1

6
, (9)

such that � = η�̃ − θ = 3 − 1 = 2. We consider the two alternative values
B = {3.571, 14.286} in order to perform some comparative dynamics and to allow
comparability with what we will present later when we determine the optimal disease
containment policy. Indeed, as it will become clearer in Sect. 4, our goal is to obtain a
closed-form solution for a planning problem and for this to be possible some parameter
restrictions are required, and in particular the constant B needs to take on one of the
specific values we have considered in our parametrization. Figure1 plots probabilities
p (I ) (left panels) and 1 − p (I ) (right panels) defined as in (4) for B = 3.571 (top
panels) and B = 14.286 (bottom panels): clearly, p (I ) is decreasing in Fig. 1a, c
while 1 − p (I ) is increasing in Fig. 1b, d; the difference between the top and bottom
figures is related to the more pronounced steepness in the bottom panels.

Under the parametrization in (9), our IFSSDP (6) reads as follows:

It+1 =

⎧⎪⎨
⎪⎩

�r1 It + r1 = 1

3
It + 1

6
with probability p(It )

�r2 It + r2 = 2

3
It + 1

3
with probability 1 − p(It ),

(10)

and it has
[
I st
1 , I st

2

] = [0.25, 1] as trapping interval (the fixed point of the upper map
is 1 due to our choice on the larger shock to be exactly its admissible upper bound:
r2 = 1

η�̃
). As the fixed point of the lower map, I st

1 = 0.25, is bounded away from 0,

both p (It ) and 1 − p (It ) are such that 0 < p (It ) < 1 and 0 < 1 − p (It ) < 1 for
all I ∈ [0.25, 1]. Hence, the dynamics of It will always remain trapped in the proper
sub-interval [0.25, 1] ⊂ [0, 1].

We consider first the scenario in which p (I ) is decreasing and specifically p(It )

takes the form in (4). The support of the invariant measure is [0.25, 1] (due to Corol-
lary 1 in “Appendix A”); because the left endpoint of the trapping interval [0.25, 1] is
bounded away from 0, the values of both p (I ) and 1− p (I ) will always be bounded
away from 0 and 1 (as required by Theorem 3 in “Appendix A” to establish existence
and uniqueness of the invariant measure). Figure2 shows the initial uniform density
μ0 (I ) ≡ 1

I st
2 −I st

1
(left panels), the 1st (mid panels) and 6th (right panels) iterations

2 The detailed code is available upon request.
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Fig. 1 State-dependent probabilities, a, c p (I ) = 1
B I2+1

and b, d 1 − p (I ) = B I2

B I2+1
, associated to

shocks r1 = 1
6 and r2 = 1

3 respectively, as defined in (4) for B = 3.571 (top) and B = 14.286 (bottom)

of our Maple algorithm for the IFSSDP (10) whenever B = 3.571 (top panels) or
B = 14.286 (bottom panels). As convergence toward the unique invariant measure
is geometric, i.e. very fast, Fig. 2c, f can be considered as good approximations of
the invariant measure itself. As 1

3 + 1
6 = 1

2 = 2
3
1
4 + 1

3 , the images of the two affine
maps in (10) almost do not overlap, having in common the only point 1

2 so that the
invariant measure has the full interval [0.25, 1] as support. In the case of a small B,
Fig. 2b shows that the IFSSDP concentrates a large probability mass of the uniform
density in Fig. 2a close to the lower fixed point I st

1 = 0.25, and this process is being
reinforced after each iteration so to obtain, after 6 iterations, Fig. 2c, in which the
mass concentrated in the vicinity of I st

1 has become predominant. In the case of a
large B, Fig. 2e shows that the IFSSDP concentrates a large probability mass of the
uniform density close to the higher fixed point I st

2 = 1, such that after 6 iterations in
Fig. 2f larger mass is concentrated in the vicinity of I st

2 . Therefore, whenever p(It )

is decreasing, in the medium-long run the epidemic dynamics are characterized by a
monotonic variation in infections. If B is small (large) such a monotonic dynamic is
associated with a reduction (increase) in infections which may increase only (also)
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Fig. 2 Initial uniform density over [0.25, 1] (left), 1st (mid) and 6th (right) iterations of our Algorithm
to approximate the Markov operator (46) associated to the IFSSDP (10) whenever p (I ) = 1

B I2+1
with

B = 3.571 (top) or B = 14.286 (bottom)

because of the additive shock induced by the diffusion of a new disease strain, such
that the level of disease prevalence tends to be concentrated to a large extent near the
lower (upper) extreme of the support of the invariant measure and the steady state
outcome is represented by an endemic state with low (high) prevalence.

We consider now the scenario in which p (I ) is increasing and specifically p(It )

takes the form in (5). Because the trapping interval is still [0.25, 1], again the values of
both p (I ) and 1− p (I ) are bounded away from 0 and 1 (Theorem 3 in “Appendix A”
still applies). Figure3 shows the initial uniform density μ0 (I ) ≡ 1

I st
2 −I st

1
(left panels)

and the 1st (mid panels) and 6th (right panels) iterations of our Maple algorithm
for the IFSSDP (10) whenever B = 3.571 (top panels) or B = 14.286 (bottom
panels). In the case of a small B, Fig. 3b shows that the IFSSDP concentrates a large
probability mass of the uniform density in Fig. 3a around the interval [0.4, 0.5], Such
a pattern, although scattered across all pre-fractals of the interval [0.25, 1] emerging
after each iteration, is clearly preserved in the medium-long term approximation of
the probability measure plotted in Fig. 3c. In the case of a large B, Fig. 3e shows that
the IFSSDP concentrates a large probability mass of the uniform density in Fig. 3d to
the left of 0.5, such that after 6 iterations in Fig. 3f a larger mass is concentrated close
to the lower fixed point I st

1 = 0.25. Therefore, whenever p(It ) is increasing, in the
medium-long run the epidemic dynamics are characterized by fluctuations in the level
of infections, giving rise to multiple epidemic waves: the additive shocks combined
with the higher incidence due to the diffusion of a new disease strain lead the number
of infectives to continually rise and fall. If B is small (large) such fluctuations are
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Fig. 3 Initial uniform density over [0.25, 1] (left), 1st (mid) and 6th (right) iterations of our Algorithm

to approximate the Markov operator (46) associated to the IFSSDP (10) whenever p (I ) = B I2

B I2+1
with

B = 3.571 (top) or B = 14.286 (bottom)

associated on average with a larger (lower) number of infections, such that the level
of disease prevalence tends to be dispersed but more densely concentrated toward to
upper (lower) extreme of the support of the invariant measure and the steady state
outcome is represented by an endemic state with diffuse prevalence.

By comparing Figs. 2 and 3, we can observe that, despite the fact that the support
of the invariant measure does not change with the characteristics of the probability
function, the properties of the state-dependent probability (both in terms of the sign
and size of its first derivative) critically determine the distribution of disease prevalence
over its support. The sign of the derivative of the probability function determines the
shape of the invariant distribution, and in particular whether this tends to be skewed
or more symmetric over its support. Whenever p′ < 0 the distribution tends to be
more skewed toward one of the two extremes of the support (Fig. 2), while whenever
p′ > 0 it tends to be more symmetric and evenly distributed (Fig. 3). The size of the
derivative of the probability function (i.e., the magnitude of B) instead determines
where most of the mass is concentrated, and in particular whether the probability of
low prevalence levels is higher or lower. However, the size of the derivative and its sign
jointly contribute to determine such a feature of the invariant probability.When p′ < 0
a high B leads the distribution to be more concentrated toward the upper extreme of
the support (Fig. 2), while when p′ > 0 a high B leads it to be more concentrated
toward the lower extreme (Fig. 3).

We can conclude that the monotonicity (increasingness vs. decreasingness) and
the steepness (low vs. high steepness) properties of the state-dependent probability
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function jointly contribute to determine a wide variety of possible outcomes. There
may be situations in which it is fair to expect that the steady state outcome will be
associated with positive but low levels of disease prevalence, and as the spread of the
invariant distribution is particularly small in the stochastic steady state it is almost
possible to deterministically determine the arising prevalence level (p′ < 0 and B
small—see Fig. 2, top panels). Alternatively, it may happen that the spread of the
invariant distribution is as large as its support such that in the stochastic steady state it
is almost impossible to forecast the arising prevalence level (p′ < 0 and B large—see
Fig. 2, bottom panels). But it may also happen that, despite the more limited spread,
disease prevalence is evenly spread across the support such that we cannot really
understand whether prevalence will tend to be characterized by low or high values
(p′ > 0, both with small and large B—see Fig. 3).

Our results surprisingly suggest that behavioral changes aiming at reducing individ-
uals’ exposure to the disease (p′ > 0) may not always be that desirable in improving
the long run health outcome, since people’s behavioral response to changes in disease
prevalence combined with the random diffusion of new disease strains may result in
perpetual epidemic waves characterized by eventually high prevalence. But also the
absence of behavioral changes to minimize disease exposure (p′ < 0) may not be
more desirable as in this case this may generate monotonic epidemic dynamics giving
rise to high prevalence. Therefore, whenever the probability of epidemic shocks is
state dependent it may be more important than ever to rely on public intervention to
improve the long run health outcomes. We thus now investigate the role of public
disease containment policies in shaping the invariant distribution of prevalence under
state-dependent probabilities.

3 The economic model

Wenow introduce our economic framework by analyzing how a social planner decides
the intensity of the policy measure to reduce the spread of a communicable disease,
whose evolution is characterized as in the previous section, in order to minimize the
social cost associatedwith the epidemicmanagement program. As in epidemic periods
the control of the spread of the communicable disease becomes the main priority
for policymakers, we assume that the resources available to contain the epidemic
are unconstrained, that is policymakers may always rely on international borrowing
to finance their mitigation expenditure needs. For the sake of simplicity we do not
model international borrowing, but we simply assume that the resources available for
public health policy are exogenously given and large enough to meet policymakers’
expenditure needs. The disease dynamics is characterized as in the previous section
by the following equation: It+1 = �zt It + θ zt − Xt , where the last term, Xt ≥ 0,
captures the effects of treatment measures which, by favoring recovery, reduces the
number of infectives. The social cost is the discounted sum (0 < β < 1 is the discount
factor) of the one-period losses associated with the epidemic management program.
The one-period loss function depends on the level of disease incidence, zt It , the
potential infections associated with the diffusion of a new strain of the disease, zt St

and the intensity of policy intervention, and is assumed to take the following additively

123



Stochastic disease spreading and containment policies…

separable quadratic form: �(It , St , zt ) = γ1z2t I 2t + γ2z2t S2
t + X2

t , where γ1 > 0 and
γ2 > 0 measure the relative weight of incidence and potential infection with respect to
economic policy, respectively. Note that the potential infections due to a new disease
strain depend on the share of susceptibles, since only susceptible individuals may be
subject to infection (infectives are already exposed to the disease, thus the diffusion
of a new strain may affect the economy only up to the extent that its population is
susceptible). The random shock term zt directly affects the instantaneous losses since
the diffusion of a new strain determines disease incidence and potential infections. By
recalling that St = 1− It and denoting with E0 the expectation operator at time t = 0,
the social planner’s problem can be summarized by the following stochastic dynamic
programming model:

V (I0, z0) = min{Xt }
E0

∞∑
t=0

β t
[
γ1z2t I 2t + γ2z2t (1 − It )

2 + X2
t

]

s.t.

⎧⎨
⎩

It+1 = �zt It + θ zt − Xt ,

0 ≤ It ≤ 1, Xt ≥ 0 ∀t ≥ 0,
0 ≤ I0 ≤ 1 and z0 ∈ {r1, r2} are given,

(11)

where {zt }∞t=0 is the Bernoulli process (3) taking positive values r1, r2 such that r1 < r2
with state-dependent probabilities p (It ) and 1 − p (It ) discussed in the previous
section, and where the probability function is alternatively specified as in (4) or (5).

As by assumption Xt ≥ 0 must hold for all t ≥ 0, It+1 = �zt It + θ zt − Xt ≤
�zt It + θ zt ≤ 1 holds for all t ≥ 0, where the last inequality is a consequence of
condition (8), 0 < r1 < r2 ≤ 1

η�̃
, discussed in Sect. 2. Moreover, the value It+1 =

�zt It+θ zt−Xt = 0 is always feasible for any It value and shock realization zt because
Xt can be taken large enough. Hence, we can substitute Xt = �zt It + θ zt − It+1
from the dynamic constraint into the one-period objective function so that the reduced
problem associated with (11) can be stated as follows:

V (I0, z0) = min{It }
E0

∞∑
t=0

β t
[
γ1z2t I 2t + γ2z2t (1 − It )

2 + (�zt It + θ zt − It+1)
2
]

s.t.

{
0 ≤ It+1 ≤ �zt It + θ zt , ∀t ≥ 0,
0 ≤ I0 ≤ 1 and z0 ∈ {r1, r2} are given,

(12)

where the constraint 0 ≤ It ≤ 1 for all t ≥ 0 is guaranteed by condition (8). Note
that the probability p (It ) determines the occurrence of the random shock zt at the
same time t in which the actual number of infectives is It ; hence, such a probabil-
ity, through the realization of one of the two shocks zt ∈ {r1, r2}, affects both the
instantaneous losses in the objective function at time t and the number of infectives
in the next period t + 1 through the dynamic constraint. These properties ensure that
disease prevalence follows a Markovian stochastic process, implying the validity of
the dynamic programming principle which wewill employ in the next section to deter-
mine the optimal policy, namely that the solution is time-consistent (Carpentier et al.
2012).
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Because the zt -sections of the graph G = {(It , It+1, zt ) : It+1 ∈ 
 (It , zt )} of the
optimal correspondence 
 (kt , zt ) = {It+1 : 0 ≤ It+1 ≤ �zt It + θ zt } are convex sets
and the one-period objective function is quadratic, (12) is clearly a convex problem
defined over the state space [0, 1].

4 The optimal policy and dynamics

In order to explicitly determine the optimal policy in our economic-epidemiological
model, we need to solve in closed-form the Bellman equation associated with (12),
which reads as follows:

V (I , z) = min
0≤y≤�z I+θ z

[
γ1z2 I 2 + γ2z2 (1 − I )2

+ (�z I + θ z − y)2 + βEy V
(
y, z′)] , (13)

where Ey denotes the expectation operator that depends on the probabilities of both
realizations of the random variable z′ occurring in the next period, themselves depend-
ing on the choice y, which corresponds to the number of infectives in the next period;

that is, Pr
(
z′ = r1

) = p (y) = 1
By2+1

and Pr
(
z′ = r2

) = 1 − p (y) = By2

By2+1

if probabilities are taken according to (4), or Pr
(
z′ = r1

) = p (y) = By2

By2+1
and

Pr
(
z′ = r2

) = 1 − p (y) = 1
By2+1

if probabilities are taken according to (5) (recall

that, for given y, the random variable z′ is independent of past realizations, a property
that guarantees the time-consistency of the solution, as p (·) depends only on the num-
ber of infectives y planned by policymakers for the next period). Using these closed
forms for p (y) and 1 − p (y), the expectation Ey in the Bellman equation (13) can
be directly evaluated and subsequently solved.

However, it turns out that, if we aim at keeping all the parameter values η, �̃, θ ,
r1, r2, β and γ2 fixed, the solution of the Bellman equation (13) is determined by two
different values for the critical parameter B characterizing the probabilities p (y) and
1 − p (y) (as well as, incidentally, γ1) for the decreasing probability case (4) and the
increasing probability case (5). Therefore, we must consider separately the two cases
in which the state-dependent probabilities have either the form in (4) or in (5).

4.1 The p′ < 0 case

We start by analyzing the case in which the state-dependent probability function p(y)

is decreasing. The following proposition characterizes the closed-form solution for
the Bellman equation along with the optimal policy (its proof is a special case of the
proof of Theorem 2 in Sect. 6, reported in “Appendix C”, in the case in which N = 2,
and state-dependent probabilities are defined according to (27) with a1 = 0, b1 = 1,
a2 = 1 and b2 = 0.).

Proposition 1 Let 0 < β < 1, �̃ > 0, η > 0, 0 < θ < η�̃; set � = η�̃ − θ , choose
γ2 such that 0 < γ2 < θ�, and assume that the shocks’ values satisfy the feasibility
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condition (8), 0 < r1 < r2 ≤ 1
η�̃

.Assume that the state-dependent probabilities are

defined as in (4), p (I ) = 1
B I 2+1

and 1 − p (I ) = B I 2

B I 2+1
, where

B = �

β (θ� − γ2) (� + θ) r22
. (14)

If, moreover, parameter γ1 is given by

γ1 =
[

1

β (θ� − γ2) r22
− � + θ

θ

]
γ2, (15)

then, the solution of the Bellman equation (13) is the function V (I , z) =
Az2

(
B I 2 + 1

)+ C where B is given by (14),

A = � + θ

�
γ2 and C = β (� + θ) r21

(1 − β) �
γ2. (16)

The optimal policy for the number of infectives is affine in I ∗
t and has the following

form:

I ∗
t+1 = h

(
I ∗
t , zt

) = θ� − γ2

θ
zt I ∗

t + θ� − γ2

�
zt , (17)

while the corresponding optimal policy parameter is given by:

X∗
t = γ2

θ
zt I ∗

t + γ2

�
zt = γ2

(
1

θ
I ∗
t + 1

�

)
zt . (18)

The affine optimal policy in (17) can be rewritten in terms of the following IFSSDP:

It+1 =

⎧⎪⎪⎨
⎪⎪⎩

θ� − γ2

θ
r1 It + θ� − γ2

θ
r1 with probability p (It ) = 1

B I 2 + 1
θ� − γ2

θ
r2 It + θ� − γ2

θ
r2 with probability 1 − p (It ) = B I 2

B I 2 + 1
,

(19)

where the constant B corresponds to the value in (14). There exists a unique stationary
distributionμ for such an IFSSDP supported on the interval

[
I st
1 , I st

2

] ⊂ [0, 1], where
the endpoints are the steady states of the two affine maps in (19) respectively:

I st
1 = (θ� − γ2) θr1

�
[
θ − (θ� − γ2) r1

] and I st
2 = (θ� − γ2) θr2

�
[
θ − (θ� − γ2) r2

] . (20)

It is straightforward to show that the steady states of the maps above are strictly
lower than those in the absence of policy intervention—see (7). This suggests that
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containment policy is effective as it moves leftward the support of the invariant distri-
bution, meaning that the steady state disease prevalence will tend to be characterized
by lower values than what we would observe without any containment effort. More-
over, as both expressions in (20) are increasing in � = η�̃ − θ (that is, increasing
in η and/or �̃ for θ fixed) and decreasing in γ2, the smaller � and/or the larger γ2,
the larger the leftward shift of the support. It is more difficult to isolate the effects
of the parameter θ as, after substituting � with η�̃ − θ , the expressions of I st

1 and
I st

N become more cumbersome: numerical examples show a non-monotonic pattern of
both steady states as θ increases between 0 and η�̃.

We now present a numerical example to clarify how optimal behavior by a social
planner may affect the characteristics of the invariant distribution with respect to that
approximated in Fig. 2c of Sect. 2 for the same epidemiological parameter values as
in (9), and setting the remaining economic parameters as follows:

β = 0.96, γ2 = 0.25, (21)

which from expressions (14), (15) and (16) in Proposition 1 imply that

B = 3.571, γ1 = 0.589, A = 0.375, C = 0.25.

Note that the value of the parameter B is exactly the same we have used in Sect. 2
for the first case characterized by p′ < 0, i.e., when p (It ) and 1 − p (It ) are defined
according to (4); this allows us to compare the steady state outcome arising in the
same setting with and without containment policy.

According to (19) the optimal policy is represented by the following IFSSDP:

It+1 =

⎧⎪⎪⎨
⎪⎪⎩
0.292It + 0.146 with probability p (It ) = 1

3.571I 2t + 1

0.583It + 0.292 with probability 1 − p (It ) = 3.571I 2t
3.571I 2t + 1

,

(22)

which has
[
I st
1 , I st

2

] = [0.206, 0.7] as trapping interval. As the fixed point of the
lower map, I st

1 = 0.206, is bounded away from 0, clearly both p (It ) and 1 − p (It )

are such that 0 < p (It ) < 1 and 0 < 1− p (It ) < 1 for all I ∈ [0.206, 0.7]. Figure4
shows the initial uniform densityμ0 (I ) ≡ 1

I st
2 −I st

1
and the 1st and 6th iterations of our

Maple algorithm for the IFSSDP (22), where the last plot can be considered as a good
approximation of the invariant measure in this case. Note that, as 0.292I st

2 + 0.146 =
0.35 < 0.412 = 0.583I st

1 + 0.292, the images of the two affine maps in (22) do not
overlap, so that the invariant measure is singular as it is supported on a Cantor-like
set.

By comparing Fig. 2 (top panels) with Fig. 4, exactly as we have discussed before,
we can observe that the support of the invariant probability measure in the latter is
characterized by lower extremes than those in the absence of containment policy of the
former. Moreover, we can see that the effects of the optimal mitigation policy consist
of concentrating the value of disease prevalence more closely toward to the lower
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Fig. 4 a initial uniform density over [0.206, 0.7], b 1st and c 6th iterations of our Algorithm to approximate
the Markov operator (46) associated to the IFSSDP (22)

extreme of the support, I st
1 = 0.206, as it becomes apparent by comparing directly

Figs. 2c and 4c; in fact, the latter plot exhibits a much higher spike close to I st
1 than

that in the former figure. Thus, containment policy not only reduces on average the
possible steady state values of disease prevalence, but it also increases the likelihood
that prevalence will be associated with its possible lowest values.

It will be shown in the next Proposition 2 that, in order to keep all parameters’
values—except for γ1—the same as in (9) and (21), the value of parameter B in
the expression of the value function V (I , z) = Az2

(
B I 2 + 1

) + C turns out to be
different than the expression in (14)when theprobability p (I ) is increasing.Therefore,
Proposition 1 cannot be applied for the p′ > 0 case when B = 3.571. That is, we have
no comparison between the optimal dynamics determined by containment policies
and the dynamics described in Fig. 3 (top panels). To compare the dynamics with and
without containment policies when p′ > 0 we must resort to the result in the next
Proposition 2 specifically designed for the increasing p (I ), corresponding to the value
B = 14.286.

4.2 The p′ > 0 case

We now analyze the case in the which the state-dependent probability function p(y) is
increasing. The closed-form solution for the Bellman equation and the optimal policy
are determined in the following proposition (its proof is a special case of the proof
of Theorem 2 in Sect. 6, reported in “Appendix C”, in the case in which N = 2,
and state-dependent probabilities are defined according to (27) with a1 = 1, b1 = 0,
a2 = 0 and b2 = 1).

Proposition 2 Let 0 < β < 1, �̃ > 0, η > 0, 0 < θ < η�̃; set � = η�̃ − θ , choose
γ2 such that 0 < γ2 < θ�, and assume that the shocks’ values satisfy the feasibility
condition (8), 0 < r1 < r2 ≤ 1

η�̃
. Assume that the state-dependent probabilities are

defined as in (5), p (I ) = B I 2

B I 2+1
and 1 − p (I ) = 1

B I 2+1
, where

B = �

β (θ� − γ2) (� + θ) r21
. (23)
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If, moreover, parameter γ1 is given by

γ1 =
[

1

β (θ� − γ2) r21
− � + θ

θ

]
γ2, (24)

then, the solution of the Bellman equation (13) is the function V (I , z) =
Az2

(
B I 2 + 1

)+ C where B is given by (23),

A = � + θ

�
γ2 and C = β (� + θ) r22

(1 − β) �
γ2. (25)

The optimal policies for the number of infectives I ∗
t and the corresponding parameter

X∗
t are the same as in expressions (17) and (18) in Proposition 1.

Because the optimal policy is the same as in (17) of Proposition 1 in the previous
subsection, the IFSSDP describing the optimal dynamics of the number of infectives
is the same as in (19), only with state-dependent probabilities defined by (5) instead
of (4), themselves characterized by different values of the parameter B. Note the
apparently slight—but substantial in terms of numerical values—difference in the
expressions of parameter B as in (14) and in (23), and of parameter γ1 as in (15)
and in (24). The difference is entirely driven by the shock value in the denominators,
which is r22 in Proposition 1 while it is r21 in Proposition 2. Similarly, also parameter
C—which does not affect the optimal policy—has different expressions in (16) and
in (25 ). Also in this case of an increasing state-dependent probability function p(y)

it is possible to prove the existence of a unique stationary distribution μ for such an
IFSSDP supported on the interval

[
I st
1 , I st

2

] ⊂ [0, 1], where the endpoints are the
same steady states of the two affine maps in (19) given by (20). Hence, the same
comments apply: containment policy is effective as it results in a leftward shift of the
support of the invariant distribution, meaning that steady state disease prevalence will
be characterized on average by lower values than in the absence of policy intervention.

We continue to illustrate numerically how optimal behavior by a social planner may
affect the characteristics of the invariant distribution with respect to that approximated
in Fig. 3f of Sect. 2 for the same epidemiological parameter’ values as in (9) and (21).
Expressions (23), (24) and (25) in Proposition 2 imply that:

B = 14.286, γ1 = 4.607, A = 0.375, C = 1.

Note that also in this case the value of the parameter B is exactly the same of that
used in Sect. 2 for the second case characterized by p′ > 0; this allows us to com-
pare the steady state outcome arising in the same setting with and without mitigation
policy. Now the constant B has a much larger value than in the p′ < 0 case; this
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Fig. 5 a initial uniform density over [0.206, 0.7], b 1st and c 6th iterations of our Algorithm to approximate
the Markov operator (46) associated to the IFSSDP (26)

feature translates into much steeper state-dependent probabilities. According to (17)
the optimal policy is represented by the following IFSSDP:

It+1 =

⎧⎪⎪⎨
⎪⎪⎩
0.292It + 0.146 with probability p (It ) = 14.286I 2t

14.286I 2t + 1

0.583It + 0.292 with probability 1 − p (It ) = 1

14.286I 2t + 1
,

(26)

which has the same interval,
[
I st
1 , I st

2

] = [0.206, 0.7], as the IFSSDP (22) as trapping
interval. Figure5, as usual, shows the initial uniform density μ0 (I ) ≡ 1

I st
2 −I st

1
and the

1st and 6th iterations of our Maple algorithm for the IFSSDP (26). As the affine maps
are the same as in (22), again their images do not overlap and the invariant measure is
singular as it is supported on a Cantor-like set.

By comparing Fig. 3 (bottom panels) with Fig. 5, exactly as in the p′ < 0 case,
we can observe that the support of the distribution is characterized by lower extremes
than in the absence of containment policy, and that the optimal containment policy
results in concentrating the value of disease prevalence more closely toward to the
lower extreme of the support, as it becomes apparent by comparing directly Figs. 3f
and 5c; in fact, the latter plot exhibits higher spikes close to I st

1 than those in the former
figure, although in a less pronounced fashion than in our earlier comparison between
Figs. 2c and 4c. Thus, once more, containment policy not only reduces on average the
possible steady state values of disease prevalence, but it also increases the likelihood
that prevalence will be associated with its possible lowest values.

A similar explanation as that given at the end of Sect. 4.1 applies to the p′ > 0
case: a comparison between the dynamics under optimal containment policies when
B = 14.286 and the dynamics without policies described by Fig. 3 (bottom panels) for
the p′ < 0 case is not available. Again, in order to keep all parameters’ values—except
for γ1—the same as in (9) and (21), the value B = 14.286 needs to be considered in
the p′ > 0 case according to Proposition 2. The value B = 3.571 can be applied for
the same parameters’ values only when p′ < 0, according to Proposition 1.
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5 Singularity versus absolute continuity

One important question, especially from a policy perspective, regarding the nature of
the invariant distribution μ is related to its properties in terms of absolutely continuity
or singularity. Specifically, if it is absolutely continuous then it will be represented by a
density and so it could be estimated in terms of a few parameters, while if it is singular
then there will be no convenient way to represent it and we will have to list the value of
the function for every point in its domain. Clearly, absolutely continuous measures are
easier to work with and more well-behaved than singular measures as they allow for a
more precise forecasting of future dynamics, and so it is valuable to know conditions
under which the invariant measure may be absolutely continuous. There is also a long
history of works in this area and it is still a very active area of theoretical research.
The strongest results are when the contraction factors are all the same (so-called equi-
contractive IFS). Our situation with unequal scaling factors is more delicate and so we
are only able to give an incomplete characterization. In the constant probability case,
recent work in Saglietti et al. (2018) shows that for each fixed choice of probability
the invariant measure is absolutely continuous for almost every (α, β) in the so-called
“super-critical region”. Our situation with state-dependent probabilities is quite a bit
more intricate so our result is less comprehensive. The description of the region � is
complicated and can be found in Ngai and Wang (2005). We can prove the following
result (whose proof is presented in “Appendix B”).

Theorem 1 Take the two-map IFS on R given by {αx + τ1, βx + τ2}, with α, β ∈
[0, 1) along with the two probability functions p1 (x) = p (x) and p2 (x) = 1− p (x).
Assume that δ < p(x) < 1 − δ for all x and some δ > 0 and also that p is Hölder
continuous. Let μα,β be the invariant measure of this state-dependent IFS.

1. If 0 ≤ α + β < 1 then μα,β is singular with respect to Lebesgue measure.
2. If α + β = 1 then μα,β is either singular with respect to Lebesgue measure or is

equal to the (normalized) Lebesgue measure on the closed interval with endpoints
τ1
1−α

and τ2
1−β

and p (x) = α.
3. For each α + β > 1, let hα,β be defined by

hα,β = −
∫

{p(x) ln[p(x)] + [1 − p(x)] ln[1 − p(x)]}dμα,β(x)

and

χα,β = − log(β) + [log(β) − log(α)]
∫

p(x) dμα,β(x).

Then μα,β is singular for every α, β with hα,β < χα,β .

Furthermore, there is an open subset � ⊂ {(α, β) ∈ (0, 1)2 : α + β > 1} so
that μα,β is absolutely continuous with respect to Lebesgue measure for Lebesgue
almost every (α, β) ∈ � such that hα,β > χα,β .
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Theorem 1 states that the singularity vs. absolute continuity properties of the invari-
ant measure depend ultimately on the contraction factors, which in our IFSSDPs is

given by θ�−γ2
θ

= θ
(
η�̃−θ

)
−γ2

θ
, and thus it depends on the relative magnitude of the net

infectivity rate, �̃, the extent to which the shock realization affects the net infectivity
rate and susceptibles, η and θ , and the weight attached to potential infections in the
objective function, γ2. While it is straightforward to check whether one of the first two
cases of the theorem applies, the third case is quite a bit more delicate and deserves
some further clarification. In fact, the condition hα,β > χα,β is generally difficult to
check since it involves integrals with respect to μ. Moreover, unfortunately for any
specific choice of parameters it is not a simple task to determine if μ is absolutely
continuous even if this condition holds. All we would know is that μ is absolutely
continuous for almost all choices of the parameters in some open subset. Even in the
case of equal contraction factors it would be difficult to know if a specific choice of
parameters results in an absolutely continuous invariant measure. We do know, how-
ever, that the invariant distribution is a continuous function of the parameters with
respect to the Monge-Kantorovich metric.

Returning to our epidemiological framework, all the IFSSDPs that we have ana-
lyzed, both in the case of presence and absence of optimal disease containment policies,
fit into the scheme of Theorem 1 as there are two random shocks, the IFSmaps are both
one-dimensional, and affine and the probabilities are smooth functions. The IFSSDPs
with optimal policy given in (22) and (26) are both in the first case of the theorem
(where α + β < 1) and thus their invariant measures are singular, and this is true
no matter the form of the probability function p(x). The IFSSDP without mitiga-
tion policy given in (10) is in the second case where α + β = 1. However, since
the probability functions are not constant (and equal in value to the corresponding
contraction ratios), the invariant measure is singular also in this case. While none of
our specific parametrizations have resulted in a IFSSDP fitting the third case where
1 < α + β < 2, this could be true in principle for any of our IFSSDPs, both without
optimal policy—given in (6)—and with optimal policy—given in (19) with different
probability characterizations (different values for parameter B) for either scenario,
p′ < 0 or p′ > 0, respectively.

6 Extension

In order to present the implications of state-dependent probabilities in our economic-
epidemiological framework in the most intuitive way, thus far we have assumed that
random shocks are associated with the realization of only two alternative outcomes.
This has allowed us to understand how the characteristics (in terms of monotonicity
and steepness properties) of the probability function associated with the lowest shock
value affects epidemic dynamics and the optimal containment policy. We now relax
this assumption by assuming that random shocks can take on one of a finite number
N of values, zt ∈ {r1, . . . , rN }, such that 0 < r1 < ... < rN , and thus in this context
with multiple state-dependent probabilities we can no longer isolate the separate role
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played by each state-dependent probability function, apart from some particular cases
(as for example the one that we shall discuss later).

We consider the following hyperbolic form for the probabilities pi (·), defined for
I ∈ [0, 1]:

pi (I ) = Bai I 2 + bi

B I 2 + 1
, i = 1, . . . , N , (27)

where B > 0, ai ≥ 0, and bi ≥ 0 are parameters satisfying
∑N

i=1 ai = ∑N
i=1 bi = 1.

Note that the above functional form is a generalization of the functional forms we
have previously introduced in our analysis, as it contains both our decreasing and
increasing probability functions as special cases. The above hyperbolic form (27)
defines N (Lipschitz) continuous state-dependent probability functions satisfying 0 ≤
pi (I ) ≤ 1 for all 0 ≤ I ≤ 1 and i = 1, . . . , N . As we have done in our previous
analysis, in the following we shall choose parameter values such that the dynamics
of It will always remain trapped in a proper sub-interval of [0, 1], so that the values
of pi (I ) will always be bounded away from 0 and 1 (consistent with Theorem 3 and
Corollary 1 in “Appendix A” to ensure the existence and uniqueness of the invariant
measure).

The dynamics in (2) can be written in terms of the following IFSSDP:

It+1 = �ri It + θri with probability pi (It ) , for i = 1, . . . , N (28)

The same arguments presented earlier in the N = 2 case apply, and thus it is possible to
prove the existence of a unique stationary distributionμ for such an IFSSDP supported
on the interval

[
I st
1 , I st

N

] ⊂ [0, 1], where the endpoints are the steady states of the
lowest and highest affine maps in (28) respectively:

I st
1 = θr1

1 − �r1
and I st

N = θrN

1 − �rN
. (29)

Similar to what we have discussed in our baselinemodel, in order to keep the dynamics
of It defined by IFSSDP (28) inside the interval [0, 1], the steady states of the above
mapsmust satisfy the following parameter condition, which generalizes condition (8):

0 < r1 < · · · < rN ≤ 1

η�̃
. (30)

The reduced optimization problem presented below is the same as in (12), only
with N possible realizations for the shock zt :

V (I0, z0) = min{It }
E0

∞∑
t=0

β t
[
γ1z2t I 2t + γ2z2t (1 − It )

2 + (�zt It + θ zt − It+1)
2
]

s.t.

{
0 ≤ It+1 ≤ �zt It + θ zt , ∀t ≥ 0,
0 ≤ I0 ≤ 1 and z0 ∈ {r1, . . . , rN } are given.

(31)
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Again, the zt -sections of the graph G = {(It , It+1, zt ) : It+1 ∈ 
 (It , zt )} of the opti-
mal correspondence 
 (kt , zt ) = {It+1 : 0 ≤ It+1 ≤ �zt It + θ zt } are convex sets, so
that, as the one-period objective function is quadratic, (12) is clearly a convex problem
defined over the state space [0, 1].

Its associated Bellman equation is the same as in (13), with the only difference that
now the expectation operator Ey is defined by the probabilities in (27), Pr

(
z′ = ri

) =
pi (y) = Bai y2+bi

By2+1
for i = 1, . . . , N , so that Ey can be directly evaluated and the

Bellman equation can be rewritten in the following form:

V (I , z) = min
0≤y≤�z I+θ z

[
γ1z2 I 2 + γ2z2 (1 − I )2 + (�z I + θ z − y)2

+β

N∑
i=1

pi (y) V (y, ri )

]

= min
0≤y≤�z I+θ z

[
γ1z2 I 2 + γ2z2 (1 − I )2 + (�z I + θ z − y)2

+β

N∑
i=1

(
Bai y2 + bi

By2 + 1

)
V (y, ri )

]
.

In order to search for a closed-form solution of our optimization problem, we guess
the following form for the value function in the Bellman equation:

V (I , z) = Az2
(

B I 2 + 1
)

+ C,

where A, B and C are constants to be determined; specifically, B is the same constant

in the denominator of the state-dependent probabilities pi (I ) = Bai I 2+bi
B I 2+1

. For such a
quadratic guess the Bellman equation becomes:

V (I , z) = Az2
(

B I 2 + 1
)

+ C = min
0≤y≤�z I+θ z

{
γ1z2 I 2

+γ2z2 (1 − I )2 + (�z I + θ z − y)2

+β

N∑
i=1

(
Bai y2 + bi

By2 + 1

)[
Ar2i

(
By2 + 1

)
+ C

]}

= min
0≤y≤�z I+θ z

[
γ1z2 I 2 + γ2z2 (1 − I )2 + (�z I + θ z − y)2

+β A

(
By2

N∑
i=1

air
2
i +

N∑
i=1

bir
2
i

)
+ βC

]
. (32)

The following result characterizes the closed-form solution for the Bellman equa-
tion (32) under some conditions on the model’s parameters.
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Theorem 2 Let 0 < β < 1, �̃ > 0, η > 0, 0 < θ < η�̃; set � = η�̃ − θ ,
choose γ2 such that 0 < γ2 < θ�, and assume that the N shocks’ values satisfy the
feasibility condition (30), 0 < r1 < · · · < rN ≤ 1

η�̃
. Assume that the state-dependent

probabilities are defined as in (27), pi (I ) = Bai I 2+bi
B I 2+1

, for i = 1, . . . , N, with ai ≥ 0

and bi ≥ 0 satisfying
∑N

i=1 ai = ∑N
i=1 bi = 1, where:

B = �

β (θ� − γ2) (� + θ)
∑N

i=1 air2i
. (33)

If, moreover, parameter γ1 is given by:

γ1 =
[

1

β (θ� − γ2)
∑N

i=1 air2i
− � + θ

θ

]
γ2, (34)

then, the solution of the Bellman equation (32) is the function V (I , z) =
Az2

(
B I 2 + 1

)+ C where B is defined in (33) and:

A = � + θ

�
γ2, (35)

C = β (� + θ)
∑N

i=1 bir2i
(1 − β) �

γ2. (36)

The optimal policy for the number of infectives is affine in I ∗
t and has the following

form:

I ∗
t+1 = h

(
I ∗
t , zt

) = θ� − γ2

θ
zt I ∗

t + θ� − γ2

�
zt , (37)

while the corresponding optimal policy parameter is given by:

X∗
t = γ2

θ
zt I ∗

t + γ2

�
zt = γ2

(
1

θ
I ∗
t + 1

�

)
zt . (38)

The proof of Theorem 2 is presented in “Appendix C”, where it is shown that
the expression of γ1 in (34) is strictly positive. Clearly, as the constants A and B in
(35) and (33) are strictly positive, the RHS of the Bellman equation (32) is strictly
convex in y, so that the solution characterized in Theorem 2, including the optimal
policy (37), is unique. As 0 < γ2 < θ�, clearly the optimal policy in (37) satisfies
0 < I ∗

t+1 < �zt I ∗
t + θ zt ≤ 1 for all t ≥ 0; similarly, the optimal policy parameter in

(38) satisfies 0 < X∗
t+1 < �zt I ∗

t + θ zt ≤ 1 for all t ≥ 0.
The affine optimal policy in (37) can be rewritten in terms of the following IFSSDP:

123



Stochastic disease spreading and containment policies…

It+1 = θ� − γ2

θ
ri It + θ� − γ2

θ�
ri with probability p (It ) = Bai I 2t + bi

B I 2t + 1
,

for i = 1, . . . , N (39)

where the constant B corresponds to the value in (33) and ai , bi are non-negative and
satisfy

∑N
i=1 ai = ∑N

i=1 bi = 1. Again, also with containment policy, it is possible to
prove the existence of a unique stationary distributionμ for such an IFSSDP supported
on the interval

[
I st
1 , I st

N

] ⊂ [0, 1], where the endpoints are the steady states of the
lowest and highest affine maps in (39) respectively:

I st
1 = (θ� − γ2) θr1

�
[
θ − (θ� − γ2) r1

] and I st
N = (θ� − γ2) θrN

�
[
θ − (θ� − γ2) rN

] . (40)

As I st
1 and I st

N in (40) have the same expressions as in (20), the same comments
as in Sect. 4 apply: containment policy determines a leftward shift of the support
of the invariant distribution, meaning that steady state disease prevalence will be
characterized on average by lower values than in the absence of policy intervention.
Moreover, the smaller � and/or the larger γ2, the larger the leftward shift of the
support. Exactly as before, we cannot characterize explicitly the implications of the
state-dependency of the probability functions on the steady state distribution of disease
prevalence, thus we need to proceed via numerical analysis. With multiple possible
realizations of the shock value it is generally not possible to isolate the separate role
played by each state-dependent probability function in determining the characteristics
of the invariant distribution. Therefore, in our following discussion we will focus
on a specific setup which allows us to obtain results comparable to those we have
presented in the previous sections (i.e., the examples in Sects. 4.1 and 4.2), assessing
the robustness of our previous conclusions.

Specifically, we now apply Theorem 2 to an IFSSDP characterized by three exoge-
nous shocks (i.e., with three maps) and numerically simulate the 6th iteration of the
Markov operator (46) in “Appendix A”, showing that the main qualitative traits of
the invariant measure in Figs. 2c, 3f, 4c and 5c are essentially preserved also in such
a richer scenario in which the realization of random shocks may give rise to three
alternative outcomes. To do so we keep the higher map as in (6) and (19) while we
split the lower map in both IFSSDP (6) and (19) into two new maps, distributing the
weights on each state-dependent probability defined as in (27) as follows: the higher
map is characterized by the same probability as in our baseline model while the two
lowest maps share similar probabilities as the one assumed in our baseline model for
the unique lower map, with only a small fraction of it (equal to 0.1) associated with
the third and lowest map and the remaining fraction (equal to 0.9) with the second and
intermediate map.

We rely as much as possible on parameter values employed in our previous sim-
ulations, deviating from our previous parametrization only to satisfy the restriction
imposed by Theorem 2. Hence, with N = 3 we keep η = 3, �̃ = θ = 1, so that
� = η�̃ − θ = 2, and set r3 = 1

η�̃
= 1

3 � 0.333 (i.e., the same value as for the for-

mer r2), so that condition (30) holds with equality. For the almost no-overlap property
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to hold for the images of the 3 maps defined according to (28) when there is no con-

tainment policy, we set r1 = 2−√
3

6 � 0.045 and r2 =
√
3−1
6 � 0.122; thus, according

to (29), without containment policies now the support of the invariant measure is the
interval

[
I st
1 , I st

3

] = [0.049, 1], which is larger (to the left) than that in Sect. 2 due to
the presence of a third lowest map in the IFSSDP (28), but still bounded away from
0. Therefore, under such a parameterization the IFSSDP (28) reads as follows:

It+1 =
⎧⎨
⎩
0.089It + 0.045 with probability p1 (It )

0.244It + 0.122 with probability p2 (It )

0.667It + 0.333 with probability p3 (It ) ,

(41)

with
[
I st
1 , I st

3

] = [0.049, 1] as trapping interval. By keeping the parameter’s value
γ2 = 0.25, the IFSSDP (39) defining the dynamic under the optimal containment
policy turns out to be:

It+1 =
⎧⎨
⎩
0.078It + 0.039 with probability p1 (It )

0.214It + 0.107 with probability p2 (It )

0.583It + 0.292 with probability p3 (It ) ,

(42)

having
[
I st
1 , I st

3

] = [0.042, 0.7] as trapping interval, where I st
1 and I st

3 are defined
according to (40). Again, the attractor is larger (to the left) than that in Sect. 4 due to
the presence of a third lowest map in the IFSSDP (42), but still bounded away from
0. As occurred in Sect. 4, it can be easily verified that the images of the three affine
maps in (42) do not overlap, which implies that the invariant measure is singular, as it
is supported on a Cantor-like set.

In order to extend the case with decreasing and increasing probabilities discussed
in Sects. 4.1 and 4.2 to the IFSSDP (41) and (42), our approach to distribute the
probability of the lowest map in our N = 2 case between the intermediate and lowest
maps in our N = 3 framework yields, in the first example in which both probabilities
for w1 and w2 are decreasing, the following probability functions: p1 (It ) = 0.1

B I 2t +1
,

p2 (It ) = 0.9
B I 2t +1

and p3 (I ) = B I 2

B I 2+1
. This implies that the three state-dependent

probabilities as in (27) are characterized by coefficients a1 = 0, b1 = 0.1, a2 = 0,
b2 = 0.9, and a3 = 1, b3 = 0. By maintaining also the parameter’s value β = 0.96,
according to (33 )–(36) of Theorem 2 such values for ai and bi , in turn, yield:

B = 3.571, γ1 = 0.589, A = 0.375, C = 0.122,

which are the same parameters’ values as in Sect. 4.1 except for parameter C , while:

p1 (It ) = 0.1

3.571I 2t + 1
, p2 (It ) = 0.9

3.571I 2t + 1
, p2 (It ) = 3.571I 2t

3.571I 2t + 1
.

(43)
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Fig. 6 Initial uniform density (left), 1st (mid) and 6th (right) iterations of our Algorithm to approximate
the Markov operator (46) associated to the IFSSDP (41) over [0.049, 1] (top) or the IFSSDP (42) over
[0.042, 0.7] (bottom) when probabilities are given by (43)

Conversely, in the second example in which both probabilities for w1 and w2 are
increasing, we set p1 (It ) = 0.1B I 2

B I 2t +1
, p2 (It ) = 0.9B I 2

B I 2t +1
and p3 (I ) = 1

B I 2+1
, such

that the three state-dependent probabilities as in (27) are characterized by coefficients
a1 = 0.1, b1 = 0, a2 = 0.9, b2 = 0, and a3 = 0, b3 = 1. According to (33)–(36) of
Theorem 2 such values for ai and bi , in turn, yield:

B = 29.185, γ1 = 10.194, A = 0.375, C = 1.

Note that now B and γ1 have values quite higher than those obtained in Sect. 4.2,
while A and C are the same,3 In this case:

p1 (It )= 2.919I 2t
29.185I 2t + 1

, p2 (It )= 26.267I 2t
29.185I 2t + 1

, p2 (It ) = 1

29.185I 2t + 1
.

(44)

The results of our numerical analysis are shown in Figs. 6 and 7. Figure6 focuses
on our first example in which the probabilities of the first and second maps are both
decreasing, that is B = 3.571 and probabilities pi (I )s defined according to (43).
Figure7 focuses instead on our second example in which the probabilities of the first

3 It is possible to show that even considering the higher value B = 29.185, our previous conclusions in the
case of two shock values (i.e. N = 2) still apply. Specifically, from a qualitative point of view, the invariant
distributions will look exactly like those illustrated in the previous sections.
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Fig. 7 Initial uniform density (left), 1st (mid) and 6th (right) iterations of our Algorithm to approximate
the Markov operator (46) associated to the IFSSDP (41) over [0.049, 1] (top) or the IFSSDP (42) over
[0.042, 0.7] (bottom) when probabilities are given by (44)

and second maps are both increasing, that is B = 29.185 and probabilities pi (I )s
defined according to (44). Both figures show the initial uniform density (left panels),
the 1st (mid panels) and 6th (right panels) iterations of our Maple algorithm either for
the IFSSDP (41) without optimal containment policy (top panels), or for the IFSSDP
(42) with optimal containment policy (bottom panels). Note that in the top-left panels
of both figures the initial uniform density is given by μ0 (I ) ≡ 1

I st
3 −I st

1
= 1

1−0.049 =
1.052, while in the bottom-left panels of both figures the initial uniform density is
given by μ0 (I ) ≡ 1

I st
3 −I st

1
= 1

0.7−0.042 = 1.521.

By comparing Fig. 6b, c and 6e, f with the pairs Figs. 2b, c and 4b, c respectively, or
by comparing Figs. 7b, c and 7e, f with the pairs Figs. 3e, f and 5b, c respectively, it is
apparent that the addition of a third (lower) map to which it is associated a small prob-
ability weight, while leaving the two higher maps almost the same4 as those in Sects. 2
and 4, does not substantially change the qualitative features of the invariant measure
of the disease prevalence. This conclusion equally holds true both in the context of the
IFSSDP (6), describing the infection dynamics without containment policy, and of the
IFSSDP (19), defining the epidemic dynamics subject to optimal containment. Indeed,
we can observe that the pattern of the approximated measures involving only the two
higher maps w2 and w3—i.e., excluding the lowest map w1 for values of I larger than
0.1—in Figs. 6 and 7 look quite similar to that in Figs. 2, 3, 4 and 5, where only two
maps (shocks) are considered; only the tallest spikes in Figs. 6 and 7 become (quite)

4 Recall that all parameters’ values are kept the same as in (9) and (21), except for the shocks’ realizations
ri and the corresponding values of parameters B, γ1 and C according to Theorem 2.
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higher than those in Figs. 2, 3, 4 and 5. Therefore, apart from illustrating the possible
consequences of the multiple shock realizations, our two examples with N = 3 clearly
show that a slight modification of our baseline models discussed in Sects. 2 and 4 does
not affect the main characteristics of the invariant measure, at least provided that the
additional shock value occurs with a probability that is not too large with respect to the
probabilities of the other two shocks. This suggests that our baseline model is robust
to slight parameter perturbations and our conclusions regarding the implications of
different characteristics of the state-dependent probabilities apply also inmore general
contexts.

One last point is important to stress at this stage. In order to allow for comparability
of our numerical analysis with what we have discussed in the previous sections, we
have had to make some specific assumptions regarding the monotonicity properties of
the probability functions associated with the different shock values. In particular we
have assumed that the probabilities of the two largest shock values are either increasing
or decreasing in the number of infectives, such that the probability of the smallest shock
value is either decreasing or increasing in disease prevalence, respectively. This clearly
is only one of the several possible configurations that probabilities can take across
the three different shock realizations. Some other equally plausible configurations
may involve the probabilities of the smallest and largest shock values being either
increasing or decreasing with prevalence, such that the probability of the intermediate
shock value may be either decreasing or increasing with it, respectively. Clearly, in
this alternative context analyzing the consequences of the monotonicity properties
of the state-dependent probability functions would not make much sense, and their
interpretation may be rather limited. Therefore, overall we can conclude that in a
multiple shock realizations framework understanding the implications of the features
of the state-dependent probabilities on the invariant distribution is more complicated
than what we can infer from our two-shock-realizations analysis.

7 Conclusion

The ongoing COVID-19 pandemic has brought to light the need to understand the
working mechanisms of disease containment policies in order to effectively save
human lives and preserve economic conditions. A huge number of works in literature
has analyzed from different points of view how the optimal policy should be deter-
mined in deterministic settings, but very few have attempted to relate containment
policies and stochastic epidemiological dynamics. In this context all the works have
assumed that the probability with which shocks affect epidemic dynamics are constant
and thus unrelated to disease prevalence. In this paper we contribute to this literature
by analyzing the implications of state-dependent probabilities, that is probabilities
depending on disease prevalence, for optimal policymaking. We have developed a
stylized economic-epidemiological stochastic framework in which random shocks
determine the diffusion of a new strain of the disease and the social planner needs
to choose the intensity of treatment in order to minimize the social cost of the epi-
demic management program, accounting for the state-dependency of probabilities.
Our results show that in the stochastic steady state complete eradication is never a
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possible long run outcome where instead disease will always be endemic. Moreover,
independently of the features of the state-dependent probabilities, treatment allows
to shift leftward the support of the invariant measure, reducing the possible endemic
prevalence levels associated with the steady state outcome. However, the features of
the state-dependent probabilities are not irrelevant as they affect the shape and spread
of disease prevalence over its support, allowing for a steady state outcome character-
ized by a distribution either highly concentrated over low prevalence levels or more
spread out over a larger range of prevalence (possibly higher) levels. Moreover, we
characterize the properties of the invariant self-similar measure in terms of singularity
and absolutely continuity with respect to the Lebesgue measure, showing that this
is ultimately related to the magnitude of the relative magnitude of the net infectiv-
ity rate, the extent to which the shock realization affects the net infectivity rate and
susceptibles, and the weight attached to potential infections in the objective function.
We also extend our baseline model to allow for multiple shock realizations, showing
that in this context it is more complicated to assess the implications of the features of
the state-dependent probability functions on the invariant distribution because it is no
longer possible to isolate the separate role played by each state-dependent probability
function.

We are aware that our approach has shortcomings. Indeed, the search for a closed-
form solution of the Bellman equation has required us to consider a specific setting
and some specific functional forms, which limit the explanatory power of our frame-
work. First, in modeling the dynamics of infectives we have assumed that the same
random shock associated with the diffusion of a new disease strain (even if weighted
by different parameters) affects both disease incidence and new infections, while in
reality it may be more reasonable to model these two effects as driven by different
random shocks. Second, inmodeling the state-dependency of the probability functions
we have assumed that they take some hyperbolic form, while it may be interesting to
analyze how different (i.e., linear, quadratic, non-monotonic) specifications of such
functions may affect our conclusions. However, both these alternative formulations of
disease spreading and state-dependent probabilities would not be compatible with a
closed-form characterization of the solution, meaning that the entire analysis would
need to be performed numerically. Despite the peculiarities of our model, the closed-
form solution of the Bellman equation has allowed us to determine explicitly most of
our results, such to rely on a numerical approach only to approximate the steady state
invariant distribution. Therefore, we believe that our approach is a quite sensible and
informative starting point to discuss the consequences of state-dependent probabilities.

In fact, to the best of our knowledge, ours is the first attempt to introduce
state-dependent probabilities in the analysis of the optimal policy in economic-
epidemiological frameworks. Therefore, in order to allow for the analytical tractability
needed to clarify themain arguments underlying our analysis we have relied on simpli-
fying assumptions limiting the nature of our conclusions. In particular, the abstraction
of the epidemic dynamics from the social interactions between infectives and suscep-
tibles has brought us to depart substantially from standard epidemiological models
making the comparison of our results with those traditionally discussed in literature
particularly complicated. Moreover, we have focused on containment policies taking
the form of treatment without exploring how results may change under different types
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of policies, such as preventive or social distancing measures. Extending our analysis
along these directions is currently a priority in our research agenda.
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A Iterated Function Systems

Wenowbriefly review somebasic concepts and themain results in the theory of Iterated
Function Systems (IFSs) with state-dependent probabilities. The notion of IFS was
firstly introduced by Hutchinson (1981) and then extended in different contexts (see
Kunze et al. 2012, and the references therein).

The classical definition of IFS consists of a compact metric space (X , d), and a
set of N contraction maps on X , w = {w1, . . . , wN }. Classical results prove that
this system has a unique self-similar global attracting set A in H(X), where H(X)

the space of all compact subsets of X with respect to the Hausdorff distance. When
an IFS system is equipped with a set of constant probabilities p = {p1, . . . , pN },∑N

i=1 pi = 1, then it is also possible to show the existence of a unique self-similar
attracting measure μ̄ in the space M (X) composed by all probability measures on
(Borel subsets of) X with respect to the Monge-Kantorovich metric.

The family of IFS with state-dependent probabilities extends the above definitions.
Within this framework, the probabilities pi are no longer constant but they are are
state-dependent, i.e., pi : X → [0, 1] such that:

N∑
i=1

pi (x) = 1, for all x ∈ X . (45)

The result is an N -map IFS with state-dependent probabilities (IFSSDP). The
Markov operator M : M (X) → M (X) associated with an N -map IFSSDP, (w,p),
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is defined as:

ν (S) = Mμ (S) =
∑

i

∫
w−1

i (S)

pi (x) dμ (x) , (46)

where μ ∈ M(X) and S ⊂ X is a Borel set.
The following theorem (from results in Elton 1987; and Barnsley et al. 1988) gives

conditions as to when an IFSSDP has a unique stationary distributionμ and the Chaos
Game “converges” to μ in a distributional sense.

Theorem 3 (Barnsley et al. 1988; Elton 1987) Suppose that there is a δ > 0 so that
pi (x) > δ for all x ∈ X and i = 1, 2, . . . , N and suppose further that the moduli of
continuity of the pi s satisfy Dini’s condition (see Barnsley et al. 1988; Elton 1987).
Then there is a unique stationary distribution μ̄ for the Markov operator. Furthermore,
for each continuous function f : X → R,

1

t + 1

t∑
i=0

f (xi ) →
∫

X
f (x) dμ̄ (x) . (47)

Theorem 3 can be used to show the following result.

Corollary 1 Suppose that the IFSSDP {w, pi } satisfies the hypothesis of Theorem 3.
Then the support of the invariant measure μ̄ of the N-map IFSSDP (w,p) is the
attractor A of the IFS w, i.e.,

supp μ̄ = A.

B Proof of Theorem 1

First we reduce to the case where the IFS is {αx, βx + 1− β} acting on [0, 1]. This is
possible because for any values of α, β, τ1, τ2, the closed interval with endpoints

τ1
1−α

and τ2
1−β

is invariant under the IFS and thus contains the support of μα,β . A simple
affine change of variables then gives the IFS {αx, βx + 1 − β} on [0, 1].
(1) The first conclusion is clear since whenever α + β < 1 the measure μα,β is

supported on a Cantor set with zero Lebesgue measure.
(2) By the results in Ngai and Wang (2005) the IFS {αx, βx + 1 − β} satisfies the

transversality condition for all (α, β) ∈ � and then the conclusion follows by
Theorem 1.1 in Bárány (2015).

(3) Since we have α, β fixed, we use μ rather than μα,β to avoid extraneous clutter on
our notation. With no loss of generality we assume that 0 < α ≤ β = 1− α < 1.

Recall that the “Markov operator” is given by

Mν (S) =
∑

i

∫
w−1

i (S)

pi (x) dν (x) =
∑

i

∫
S

pi

(
w−1

i (x)
)

dν
(
w−1

i (x)
)
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and that μ satisfies μ(S) = (Mμ)(S). Suppose that μ is absolutely continuous with
density function f (x). Then we obtain the equation

∫
S

f (x) dx =
∑

i

∫
w−1(S)

pi (y) f (y) dy

=
∫

S

1

α
p1(x/α) f (x/α)χ[0,α](x)

+ 1

β
p2

(
x − 1 + β

β

)
f

(
x − 1 + β

β

)
χ[1−β,1](x) dx,

where χA (x) is the characteristic function of the set A. For this to be true for all Borel
sets S we must have that, for almost every x , the two equations

f (x) = 1

α
p1(x/α) f (x/α), 0 ≤ x ≤ α;

and

f (x) = 1

β
p2

(
x − 1 + β

β

)
f

(
x − 1 + β

β

)
, α = 1 − β ≤ x ≤ 1.

Doing a simple change of variable these become for 0 ≤ y ≤ 1

f (αy) = 1

α
p1(y) f (y) �⇒ p1(y) = α f (αy)

f (y)
(48)

and

f (β y + 1 − β) = 1

β
p2(y) f (y) �⇒ p2(y) = β f (β y − 1 + β)

f (y)
. (49)

Then the condition that p1 (y) + p2 (y) = 1 implies that

f (y) = α f (αy) + β f (β + 1 − β) (50)

for Lebesgue almost every y ∈ [0, 1]. Thus f (x) is a fixed point of the operator

T (g)(x) = αg(αy) + βg(β y + 1 − y).

We show that the only fixed point of T which is a density function is the constant
function g (x) = 1. It is easy to see that T g is a density if g is a density. Suppose that
g ∈ C1 [0, 1]. Then (T g)′2g′2g′(β y+1−β) and so (since t2+(1−t)2 ≤ max(t, 1−t)
for 0 ≤ t ≤ 1) we have ‖(T g)′‖∞ ≤ β‖g′‖∞. By induction this means that

∥∥∥(T ng
)′∥∥∥∞ ≤ βn

∥∥g′∥∥∞ . (51)

123



D. La Torre et al.

Next, suppose that we have a density function g ∈ C1 [0, 1] with
∣∣g′ (x)

∣∣ ≤ m for all
x ∈ [0, 1]. Then for all x ∈ [0, 1] we have

g (0) − mx ≤ g (x) ≤ g (0) + mx

and thus, integrating over [0, 1], we have

g (0) − m/2 ≤ 1 ≤ g (0) + m/2 ⇒ |g (0) − 1| ≤ m/2

and so

|g (x) − 1| ≤ mx + m/2 ≤ 3

2
m ⇒ ‖g − 1‖∞ ≤ 3

2
m. (52)

Next for two functions f , g ∈ L1 [0, 1], integrating the inequality

|T ( f )(x) − T (g)(x)| ≤ α| f (αx) − g(αx)| + β| f (βx + 1 − β) − g(βx + 1 − β)|

over [0, 1] we get

∫ 1

0
|T ( f ) (x) − T (g) (x)| dx

≤ α

∫ 1

0
| f (αx) − g(αx)| dx + β

∫ 1

0
| f (βx + 1 − β) − g(βx + 1 − β)| dx

=
∫ α

0
| f (u) − g (u)| du +

∫ 1

α

| f (u) − g (u)| du =
∫ 1

0
| f (u) − g (u)| du,

and thus ‖T ( f ) − T (g)‖1 ≤ ‖ f − g‖1. Let f be a density function and let ε > 0
be given. Then there is some density function g ∈ C1 [0, 1] so that ‖ f − g‖1 ≤ ε/2.
Then we have

∥∥T n ( f ) − 1
∥∥
1 ≤ ∥∥T n ( f ) − T n (g)

∥∥
1 + ∥∥T n (g) − 1

∥∥
1

≤ ∥∥T n ( f ) − T n (g)
∥∥
1 + ∥∥T n (g) − 1

∥∥∞

≤ ‖ f − g‖1 + 3

2

∥∥∥(T ng
)′∥∥∥∞

≤ ‖ f − g‖1 + 3βn

2

∥∥g′∥∥∞ ≤ ε

for sufficiently large n. Thus T n f → 1 in L1 [0, 1] for any density f and so the only
density function which satisfies (50) is f (x) = 1.

From (48) we get p1(x) = α as claimed.
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C Proof of Theorem 2

As the RHS in (32) is strictly convex in y whenever the value of constant A is positive
(B in (33) is positive as γ2 < θ� by assumption), to guarantee interiority of the
minimum value of y we check the sign of the the derivative with respect to y is
negative on the left endpoint of the constraint 0 ≤ y ≤ �z I + θ z and is positive on
its right endpoint; in fact, this is the case:

∂

∂ y
(RH S) = −2 (�z I + θ z − y) + 2β ABy

N∑
i=1

air
2
i

=
{−2 (�z I + θ z) < 0 if y = 0
2β AB (�z I + θ z)

∑N
i=1 air2i > 0 if y = �z I + θ z.

The FOC with respect to y yields the unique solution

y∗ = φz (�I + θ) , with φ = 1

1 + β AB
∑N

i=1 air2i
. (53)

Substituting y∗ as in (53) into the RHS of (32) after some algebra yields

V (I , z) = Az2
(

B I 2 + 1
)

+ C = ABz2 I 2 + Az2 + C

= γ1z2 I 2 + γ2z2 (1 − I )2 + [�z I + θ z − φz (�I + θ)]2

+ β ABφ2z2 (�I + θ)2
N∑

i=1

air
2
i + β A

N∑
i=1

bir
2
i + βC

=
(
γ1 + γ2 + ��2

)
z2 I 2 + 2 (�θ� − γ2) z2 I

+
(
γ2 + �θ2

)
z2 + β A

N∑
i=1

bir
2
i + βC,

where in the fourth equality we have set � = (1 − φ)2 + β ABφ2∑N
i=1 air2i .

By equating all similar terms in both sides and setting the coefficient of z2 I equal
to 0 we find that a solution of the Bellman equation (32) is given by the constants A,
B and C that satisfy

⎧⎪⎪⎨
⎪⎪⎩

AB = γ1 + γ2 + ��2

�θ� − γ2 = 0
A = γ2 + �θ2

C = β A
∑N

i=1 bir2i + βC .

From the second equation we get � = γ2
θ�

, so that, after substituting this in the third
equation, we easily find the value of A as in (35), while, after substituting both values
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of � = γ2
θ�

and A into the first equation, we have

AB = � + θ

�
γ2B = γ1 + γ2 + γ2

θ
� = γ1 + � + θ

θ
γ2, (54)

which implies that

B =
[

γ1

(� + θ) γ2
+ 1

θ

]
�,

which in turn, after substituting γ1 with the expression in (34) and after some algebra,
yields the expression in (33). Finally, after substituting the value of A as in (35) into
the fourth equation one immediately gets the value of C as in (36).

Recalling that � = (1 − φ)2 + β ABφ2∑N
i=1 air2i and, from (53), φ =

1
1+β AB

∑N
i=1 ai r2i

, the second equation implies that γ2 is related to all other parame-

ters according to

γ2 = �θ� =
[
(1 − φ)2 + β ABφ2

N∑
i=1

air
2
i

]
θ�

=
⎡
⎢⎣
(
1 − 1

1 + β AB
∑N

i=1 air2i

)2

+ β AB
∑N

i=1 air2i(
1 + β AB

∑N
i=1 air2i

)2
⎤
⎥⎦ θ�

= β AB
∑N

i=1 air2i
1 + β AB

∑N
i=1 air2i

θ�

= β
(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
1 + β

(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
θ�, (55)

where in the last equality we used (54). Note that the last expression requires that
0 < γ2 < θ� must hold.

By further algebraic manipulation, from (55) we get the value of γ1 as in (34):

γ2 = β
(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
1 + β

(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
θ�

⇐⇒ γ2 + βγ2

(
γ1 + � + θ

θ
γ2

) N∑
i=1

air
2
i = βθ�

(
γ1 + � + θ

θ
γ2

)

×
N∑

i=1

air
2
i

⇐⇒ β (θ� − γ2)

(
γ1 + � + θ

θ
γ2

) N∑
i=1

air
2
i = γ2
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⇐⇒ β (θ� − γ2) γ1

N∑
i=1

air
2
i + β (θ� − γ2)

� + θ

θ
γ2

N∑
i=1

air
2
i = γ2

⇐⇒ β (θ� − γ2) γ1

N∑
i=1

air
2
i =

[
1 − β (θ� − γ2)

� + θ

θ

N∑
i=1

air
2
i

]
γ2

⇐⇒ γ1 = 1 − β (θ� − γ2)
�+θ

θ

∑N
i=1 air2i

β (θ� − γ2)
∑N

i=1 air2i

γ2 =
[

1

β (θ� − γ2)
∑N

i=1 air2i
− � + θ

θ

]
γ2.

Note that γ1 > 0 because the term in square brackets of the last expression is always
strictly positive. In fact, γ1 > 0 is equivalent to

β (θ� − γ2) (� + θ)

N∑
i=1

air
2
i < θ; (56)

noting that
∑N

i=1 ai = 1 together with condition (30) implies

N∑
i=1

air
2
i < r2N

N∑
i=1

ai = r2N ≤ 1(
η�̃
)2 ,

and using � = η�̃ − θ , the LHS of (56) becomes

β (θ� − γ2) (� + θ)

N∑
i=1

air
2
i = β

[(
η�̃ − θ

)
θ − γ2

] (
η�̃ − θ + θ

) N∑
i=1

air
2
i

= β
[(

η�̃ − θ
)

θ − γ2

]
η�̃

N∑
i=1

air
2
i

<β
[(

η�̃−θ
)

θ−γ2

] η�̃(
η�̃
)2=

β
[(

η�̃−θ
)

θ−γ2

]
η�̃

,

so that a sufficient condition for (56) to hold is

β
[(

η�̃ − θ
)

θ − γ2

]
η�̃

< θ ⇐⇒ βθη�̃ − βθ2 − βγ2 < θη�̃

⇐⇒ (1 − β) θη�̃ + β
(
θ2 + γ2

)
> 0,

which definitely holds true as 1 − β > 0.
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By rewriting (55) as

γ2 = β
(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
1 + β

(
γ1 + �+θ

θ
γ2
)∑N

i=1 air2i
θ�

⇐⇒
N∑

i=1

air
2
i = γ2

β (θ� − γ2)
(
γ1 + �+θ

θ
γ2
) ,

and replacing the value
∑N

i=1 air2i just obtained into (53) together with the value of
the product AB as in (54) easily yields the optimal policy as in (37):

y∗ = h (I , z) = φz (�I + θ) = z (�I + θ)

1 + β AB
∑N

i=1 air2i

= z (�I + θ)

1 + β
[
γ1 + �+θ

θ
γ2
]
γ2

β
[
γ1 + �+θ

θ
γ2
]
(θ� − γ2)

= z (�I + θ) (θ� − γ2)

θ� − γ2 − γ2
= θ� − γ2

θ�
z (�I + θ) .

Finally, as for each z ∈ {r1, · · · , rN }, the value function V (·, z) is defined over the
compact interval [0, 1] and continuous, V (I , z) = ABz2 I 2 + Az2 + C is bounded
over [0, 1]; this is enough to apply the standard verification principle and establishes
that, in fact, V (I , z) is the value function.

Note that the probabilities defined in (4) and (5) are special cases of the general

probabilities defined in (27) of Sect. 6, pi (I ) = Bai I 2+bi
B I 2+1

. Specifically, for i = 1, 2,
the probabilities defined by (4) correspond to (27) when a1 = 0, a2 = 1, b1 = 1
and b2 = 0, while the probabilities defined by (5) correspond to (27) when a1 = 1,
a2 = 0, b1 = 0 and b2 = 1. By substituting the proper values for a1, a2, b1 and b2 in
the proof above it is straightforward to prove Propositions 1 and 2 as well.
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