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Abstract

ABSTRACT: In many colloidal suspensions, the dispersed colloidal particles are

amorphous solids resulting from vitrification. A crucial open problem is understanding

how colloidal stability is affected by the intra-particle glass transition. By dealing

with the latter process from a solid-state perspective, we estabilish a proportionality

relation between the intra-particle glass transition temperature, Tg, and the Hamaker

constant, AH, of a generic suspension of nanoparticles. It follows that Tg can be used

as a convenient parameter (alternative to AH) for controlling the stability of colloidal

systems. Within DLVO theory, we show that the novel relationship, connecting Tg

to AH, implies the critical coagulation ionic strength (CCIS) to be a monotonically

decreasing function of Tg. We connect our predictions to recent experimental findings.

Suspensions of colloidal particles dispersed in a liquid solvent represent a paradigm of

complex systems where the interplay between a hierarchy of physico-chemical effects across

different length and time scales leads to fascinating mesoscopic behaviours, from fractal
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aggregation1 to phase separation and phase transitions such as colloidal gelation,2–6 vitrifi-

cation and crystallization.7

The stability of a colloidal suspension with respect to the aggregation of the dispersed col-

loidal particles (a phenomenon also known as coagulation) is explained by classic Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory8,9 in terms of a balance between attractive van

der Waals (vdW) and repulsive electrostatic double-layer forces, respectively.10 A loss of col-

loidal stability due to either addition of salt8,9 or application of shear flow11,12 can eventually

result in the suspension coagulating rapidly, and into gel formation. The presence of ions in

the solution, in particular, can lead to a compression of the double layer as a consequence of

which attractive interactions among the colloids dominate the repulsive ones. The threshold

of ionic strength above which a colloidal suspension is destabilized due to rapid particle

aggregation is known as the critical coagulation ionic strength (CCIS).13,14

Much research in the last years has concerned the role played on the stability of colloidal

suspensions by so-called non-DLVO forces which include, among others, hydration repulsion,

hydrophobic interactions and protrusion forces15. Comparatively, less attention has been

devoted to investigate the role played by the physical properties of the dispersed colloidal

particles.

Apart from a few important exceptions (e.g. colloidal nanocrystals), most widely dis-

persed colloids, such as silica and polymer nanoparticles, are amorphous solids with an

internal disordered structure. They indeed commonly result from a vitrification process, i.

e. a glass transition, with the glass-transition temperature Tg being an important material

property that characterizes the degree of mobility within the colloids16. Understanding how

the intra-particle glass transition temperature Tg affects the stability of a colloidal suspension

is a fundamental open question.

In recent experiments, Scott et al.17 investigated the effect of adding salts on the stability

of a series of suspensions of electrostatic-stabilized polymer nanoparticles spanning a wide

range of Tg values. When adding the hydrophilic KCl salt, these authors found the CCIS to
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be a decreasing function of Tg. A more intricate effect was observed when adding hydrophobic

salts. In all cases, an explanation for these findings was suggested in terms of the lifetime of

ionic structuration within mobile surface layers, i.e. chiefly in terms of non-DLVO effects.17

In this Letter, we examine this fundamental question from a theoretical point of view.

We consider a suspension (see the sketch in Fig. 1) whose dispersed colloids have a spherical

shape and consist of many polymer chains, with same length and chemical structure, vitrified

at a temperature Tg. The strength of the vdW attraction among the colloids is conveniently

taken into account by the so-called Hamaker constant AH
18, which is a material-dependent

coefficient providing quantitative information on the London dispersion forces acting among

the monomer units of the polymer chains inside each colloidal particle18,19. Following Za-

ccone and Terentjev20, we address the intra-particle vitrification process from a solid-state

perspective. We consider a temperature T < Tg where the colloids are amorphous solids

with a finite shear modulus G > 0, and identify Tg as the point at which a loss of mechanical

stability (signaled by the vanishing of G) of the polymer chains results as a consequence

of the reduction in the monomer connectivity driven by the Debye-Grüneisen thermal ex-

pansion. By supplementing this picture with basic condensed matter physics consideration

about thermal expansion, we investigate the repercussions of the intra-particle melting on

the Hamaker constant AH of the suspension. We find AH to be inversely proportional to the

thermal expansion coefficient αT and, at the same time, directly proportional to Tg. From the

latter relation it follows that the intra-particle glass transition temperature Tg can be used as

a convenient parameter (typically more easily accessible in experiments than the Hamaker

constant AH) to estimate the degree of stability of a colloidal suspension with respect to

particle coagulation. In particular, wthin DLVO theory, we find that the novel relationship

of direct proportionality between Tg and AH, implies the CCIS to monotonically decrease as

a function of Tg. We conclude the Letter discussing how our theoretical predictions can be

connected to the recent experimental findings of Scott et al.17

A lot of research activity has been devoted to the general problem of the glass transition
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Figure 1: (a) Sketch of the colloidal suspension considered in this Letter. Dispersed colloids
have a spherical shape with radius a and, as showed in the zoom (b), consist of many polymer
chains vitrified at a temperature Tg. The polymer chains have same length and chemical
structure, and the monomer units inside each chain are spheres with diameter σ. Small
magenta and light blue particles indicate positive and negative electrolytes, respectively,
which are present in the solution. In (c) a zoom on two particles is considered. While h is
the surface distance, r̃ = h+ 2a is the center-to-center separation.
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in the last decades21,22. While most available theories focus on the glass transition viewed

“from the liquid”, i.e. study the dynamical arrest occurring by further cooling a (supercooled)

liquid, for many applications it is more useful to follow the alternative approach of Zaccone

and Terentjev20, which focuses on the glass transition viewed “from the solid”, i. e. studying

the melting of an amorphous solid into a liquid. This perspective allows one to deal with

the vitrification phenomenon by means of the tools of solid state science, in particular the

nonaffine response theory of glasses,23 and to extract a (mechanical) signature of the glass

transition from the temperature dependence of the low-frequency shear modulus G. More

specifically, within nonaffine response theory, the shear modulus G of an amorphous solid

can be analytically linked to the average number of intermolecular contacts per particle (e.

g. a monomer subunit group in a polymer chain) z 24,25. In turn, z can be connected to the

absolute temperature T and the glass transition temperature Tg can be estimated by means

of a generalized Born melting criterion26 as the critical value of T at which G vanishes, i. e.

G(Tg) = 020.

In the presence of structural disorder, a solid lattice deforms under an applied strain

very differently from well-ordered centrosymmetric crystals27–30. In the latter, indeed, the

forces transmitted to every atom upon deformation by its bonded neighbors, cancel to zero.

By contrast, due to the lack of local inversion symmetry, these forces do not balance in

amorphous solids and can only be relaxed through a nonaffine displacement which adds to the

affine one dictated by the macroscopic strain. In other words, as a consequence of the lattice

disorder, atomic displacements in amorphous solids are strongly nonaffine. As nonaffine

displacements are performed at the expense of the internal energy of the solid, the free

energy of deformation of an amorphous solid under a shear strain γ, has to be expressed as

F (γ) = FA(γ)+FNA(γ), where FA(γ) and FNA(γ) are the affine contribution (provided by the

framework of Born-Huang lattice dynamics31), and the nonaffine contribution, respectively.

Starting from F (γ), an analytic expression for the shear modulus G of an amorphous lattice

can be derived by resorting to an eigenfunction decomposition of the nonaffine contribution.
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This has been done, for example, by Lemâitre and Maloney32 and the result is given by

G = GA − GNA = GA −
∑

i f
T
i

∑
j H

−1
ij fj, where Hij = (∂2Ũ/∂ri∂rj)γ→0 represents the

standard dynamical matrix of the solid33, Ũ the internal energy of the system, and fi the

force per unit strain acting on the atoms due to the shear deformation32. As shown in

Refs.20,24,25, assuming central-force interactions, G can be evaluated analytically as

G = GA −GNA =
2

5π

κ̃

R0

ϕ(z − zc), (1)

where ϕ is the packing fraction of the system, R0 is the equilibrium lattice constant in the

undeformed frame, and κ̃ is the lattice spring constant evaluated as κ̃ =
(
∂2Ũ/∂u2ij

)
R0
.

The nonaffine contribution is encoded in Eq. (1) in the term proportional to zc. More

specifically, zc is a rigidity threshold defining the critical coordination at which the system is

no longer rigid, because all the lattice potential energy is “spent” on sustaining the nonaffine

motions and no energy is left to support the elastic response to deformation. In general, zc

is proportional to the total number of degrees of freedom involved in the nonaffine energy

relaxation, i. e. for purely central interactions in a d-dimensional space zc = 2d. In the d = 3

case, it follows zc = 6, consistently with purely central forces, G ∼ (z − 6)24,27.

It is worthwhile noticing that the direct contribution of thermal phonons to the elastic

response is not included in the expression (1) of the shear modulus and will be neglected

throughout this Letter, as for many materials it is very small compared with the contribution

of nonaffinity20.

The crucial effect which controls the temperature dependence of the shear modulus G of

an amorphous solid is the change in the atomic connectivity z due to the Debye-Grüneisen

thermal expansion. Upon approaching the glass transition temperature Tg from below, this

effect is responsible for the loss of mechanical stability at z = zc. When heated, the volume

V of real molecular and atomic glasses increases. As a consequence, the atomic packing

fraction ϕ decreases, an effect mediated by the thermal expansion coefficient defined as
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αT ≡ 1
V
(∂V/∂T ) = − 1

ϕ
(∂ϕ/∂T ). Integrating this relation, ϕ can be seen to evolve with T

according to ln(1/ϕ) = αTT + c, with c an integration constant. The average intermolecular

connectivity of the monomers z, instead, can be shown20 to decrease while increasing T

according to the relation

z(T )− zc =
√
ϕc

[
eαT (Tg−T ) − 1

]
, (2)

where ϕc is the (critical) packing fraction, reached by the system at the glass transition.

Insertion of Eq. (2) into Eq. (1), reveals Tg to correspond to the temperature at which the

condition z(Tg) = zc, causing the shear modulus G to vanish, is reached. In other words, Tg

is the temperature at which the average number of total mechanical contacts on each atom z

becomes just sufficient to compensate non-affine relaxation and the glass consequently ceases

to be an elastic solid20,24.

The theory depicted above can be employed to deal with the vitrification within the

nanoparticles dispersed in a colloidal suspension. As already stated, we consider the case of

colloidal particles consisting of several polymer chains, each composed of n monomer units

with identical chemical structure. For this kind of systems, the framework of Zaccone and

Terentjev allows one to find an estimate for the glass transition temperature Tg, by accounting

for both covalent bonds along the chain and central-force London-van der Waals interactions.

As noticed in Refs.20,34, for these systems the critical packing fraction ϕc occupied by the

monomers at the glass transition can be reasonably expressed as

ϕc = ϕ∗
c − Λ · zco, (3)

where zco = 2(1−1/n) is the average connectivity due to intra-chain covalent bonds, ϕ∗
c is the

maximum packing fraction occupied by the monomers at the glass transition in the absence of

covalent bonds (i. e. in case zco = 0), and Λ is a parameter expressing the effect of topological

constraints due to covalent bonds on ϕc. It follows that, when the already mentioned relation

ln
(
1/ϕ

)
= αTT + c is evaluated at the glass transition (Tg, zc, ϕc), after linearization, one
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correctly obtains the Fox-Flory type35 relation between Tg, thermal expansion and molecular

weight:20

αTTg ≈ (1− c− ϕ∗
c + 2Λ)− 2Λ

n
. (4)

When considering the values n ≈ 200, c ≈ 0.48, Λ ≈ 0.1, αT = 2 · 10−4K−1, ϕ∗
c ≈ 0.64 (i. e.

ϕ∗
c coinciding with the random close packing of a system of hard spheres36–40) as found in

polymer glass36,37,41 and Tg = 383 K, a G(T ) profile in agreement with experimental data of

Ref.42 follows from the insertion of Eq. (4) into the relations (2) and (3), and of the resulting

expressions, in turn, into Eq. (1) (see e. g. Fig. 4 of Ref.20).

In this Letter, we show that Eq. (4) can be used to estimate how Tg affects the stability of

a colloidal suspension. We recall that DLVO theory assumes the colloidal particles dispersed

in a hosting solvent to interact through the pair potential8,9

VDLVO(h) = VvdW(h) + VR(h), (5)

where the attractive vdW energy VvdW(h) and repulsive electrostatic interaction energy VR(h)

are expressed as a function of the smallest surface separation distance h. The latter is given

by (see Fig. 1(c)) h = r̃ − 2a, where a is the radius of the spherical colloids and r̃ their

center-to-center separation. In particular, the vdW attraction acting between two spherical

colloids can be written as18

VvdW(h) =
−AH

12

(
a2

h2 + 2ah
+

a2

(a+ h)2
+ 2 log

h2 + 2ah

(a+ h)2

)
, (6)

from which it is clear that the Hamaker constant AH (being typically a positive quantity)

measures how strong the attraction is among the dispersed colloids and hence contributes

to quantifying the colloidal stability of the suspension. In the following, we prove that AH

can be quantitatively connected to the thermal expansion coefficient αT and, consequently,

derive a link between intra-particle glass transition temperature Tg and colloidal stability,
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exploiting Eq. (4).

To establish a link between αT and AH, we focus on the interaction among monomers

of different chains in each colloid and show how αT can be computed once the non-covalent

interaction pair potential U(r) between two monomers separated by a distance r, is known.

To start, we notice that αT can be written in terms of the linear thermal expansion coefficient

αl, as αT ≈ 3αl. In turn, αl can be defined as

αl ≡
1

σ

d⟨x⟩
dT

, (7)

where σ is the hard-core diameter of a single monomer (see Fig. 1(b)), and ⟨x⟩ is the

average displacement of the monomers from their equilibrium positions, i.e. ⟨x⟩ represents

the average value of the quantity x ≡ r−rmin with rmin being the bonding minimum of U(r).

Albeit belonging to a glassy out-of-equilibrium state, each monomer can be safely assumed to

be locally at thermal equilibrium, such that ⟨x⟩ can be evaluated in the Boltzmann ensemble

as

⟨x⟩ ≡
∫∞
−∞ x e−βU(x)dx∫∞
−∞ e−βU(x)dx

, (8)

where U is expressed as a function of x, and β ≡ (kBT )
−1 is the Boltzmann factor.

As shown by Kittel43, a convenient way to compute ⟨x⟩ from Eq. (8) is to consider a

Taylor expansion of U(x), which (up to fourth order) reads

U(x) = ζ2x
2 − ζ3x

3 − ζ4x
4, (9)

with ζ2, ζ3 and ζ4 real and positive coefficients. By assuming that the cubic and quar-

tic anharmonic correction terms in Eq. (9) are small compared to kBT, it is possible to

write
∫∞
−∞ x e−βU(x)dx ≈

∫∞
−∞ x e−βζ2x2

(1 + βζ3x
3 + βζ4x

4)dx ≈ (3π1/2ζ3/4ζ
5/2
2 )β−3/2 and
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∫∞
−∞ e−βU(x)dx ≈ (π/βζ2)

1/2 , respectively. As a consequence, Eq. (8) becomes

⟨x⟩ = 3

4

ζ3
ζ22
kBT. (10)

So, for a given non-covalent interaction pair potential U(r), once the coefficients ζ2 and ζ3 in

the Taylor expansion (9) are known, the average displacement of the monomers ⟨x⟩ can be

estimated through Eq. (10) and the linear thermal expansion coefficient αl can be in turn

obtained by using Eq. (7). Finally, the thermal expansion coefficient αT can be obtained as

αT = 3αl.

In this Letter we assume that, within each colloidal particle, the non-covalent interaction

pair potential U(r) acting among monomers of different chains is dominated by attractive

dispersion forces that decay as r−6. A (simple) expression, derived by London, for these

attractive dispersion forces reads as44

UL(r) ≈ −3

4

Iα2
0

r6
, (11)

where I and α0 are the first ionization potential and the (material) polarizability, respec-

tively. It follows that a good approximation for U(r) is given by the Lennard-Jones potential

ULJ(r) = 4ϵ[(σ/r)12 − (σ/r)6], where σ is the hard-core diameter of each monomer (see Fig.

1(b)) and the identification ϵ ≈ 3Iα2
0/(16σ

6) is considered.

Once the non-covalent inter-monomer interaction potential ULJ(r) is specified, we follow

the method introduced by Kittel and recalled above to compute the thermal expansion

coefficient αT .We consider a Taylor expansion of ULJ expressed as a function of x ≡ r−rmin,

with rmin = 21/6σ the single (physically meaningful) minimum of ULJ(r). Up to third order,

the expansion reads as

ULJ(x) ≈− ϵ+
36ϵ

σ2
22/3x2 − 756ϵ

σ3

√
2x3. (12)
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By comparing Eq. (12) to Eq. (9), it follows that 23/2σ2ζ2 = −36ϵ and σ3ζ3 = 756
√
2ϵ,

respectively, such that, from Eqs. (10) and (7) (and recalling αT = 3αl), one obtains

αT =
7

25/6
kBσ

6

Iα2
0

. (13)

Expression (13) can be exploited to connect αT to the Hamaker constant AH. According to

the London-Hamaker formula18, AH can be written in terms of the parameters I and α0 of

the London potential (11) as

AH =
3π2

4
Iα2

0ρ
2, (14)

where ρ is the number of monomers per unit volume in the colloidal particles. From a

comparison between Eq. (14) and Eq. (11), AH can be clarly seen to measure the strength

of attraction within the colloids. By using the definition of packing fraction of spheres

ϕ = 4
3
π(σ

2
)3ρ, insertion of Eq. (14) into Eq. (13) leads to

αT =
189

25/6
ϕ2 kB
AH

, (15)

such that, from Eq. (4) it follows

AH

kBTg
= K, (16)

with

K =
189

25/6
ϕ2
c(1− c− ϕc + 2Λ)−1. (17)

In Eq. (17) we have neglected the last term on the r.h.s. of Eq. (4) as it is small for

long (n ≈ 200) chains, and evaluated ϕ at the glass transition. We recall that a reasonable

expression for ϕc is given by Eq. (3).

Equations (15) and (16) represent the main result of this Letter. They are molecular-level

relationships, (to the best of our knowledge) never reported before, connecting αT and Tg,

respectively, to the Hamaker constant AH of a colloidal suspension. From Eq. (6), it is clear
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that AH controls the stability of a colloidal suspension as it quantifies the strength of the

vdW attraction among the dispersed colloids. The effect of Tg on colloidal stability follows

from the direct proportionality relation between Tg and AH expressed by Eq. (16). From

a physical point of view, a larger value of the intra-particle glass transition temperature Tg

corresponds to a larger value of the Hamaker constant of the suspension and hence, from

Eq. (14), to a larger cohesive energy of London dispersion forces between the polymer

chains inside each colloid. Indeed, the larger Tg, the larger the amount of energy required

to “break” the cohesive non-covalent interactions, which is necessary to “melt” the polymer

glassy chains within the colloid particle. In this sense, both Tg and AH are measures of the

strength of the non-covalent London-vdW forces between monomers inside the colloid, and

they must be related to each other. This quantitative relation has been provided in this

Letter by Eqs.(15) and (16).

Equation (16) represents also a new way to estimate the Hamaker constant once the

rheological G(T ) of the glassy polymer, from which the colloid particles are made, is known.

Equation (16) can be finally used to estimate how Tg affects the upper limit for salt

addition beyond which particles begin to aggregate, i.e. how Tg affects the CCIS of colloidal

suspensions. We recall that, following Derjaguin and Landau8, the CCIS can be computed

directly from the interaction energy profile (5) provided that an expression for the repulsive

term VR(h) is known. A simple expression for VR(h) can be derived by using the Debye-

Hückel approximation13, according to which one writes

VR(h) ≈ Vdl(h) = 2πRϵ0ϵψ
2
dle

−κh, (18)

where ϵ is the dielectric constant, ϵ0 is the vacuum permittivity, ψdl is the diffuse-layer

potential, and the inverse Debye length κ is defined in terms of the ionic strength I and the

elementary charge q according to κ2 ≡ 2q2I/(kBTϵ0ϵ). The CCIS corresponds to the value
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Figure 2: Critical coagulation ionic strength (CCIS) as a function of the inter-particle glass
transition temperature Tg.While points (and the corresponding error bars) are experimental
data from Ref.17, full line represents Eq. (21) with the proportionality constant obtained
from a fit to experimental data. Both our theory and experiments from Scott et al. predict
the CCIS to be a decreasing function of Tg. However, while theory predicts the decrease to
be continuous and more gradual, the decrease in the experiments appears to be sharp. Data
from Ref.17 are obtained when adding KCl salt for which the CCIS coincide with the critical
coagulation concentration (CCC).
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of ionic strength I that satisfies the conditions

VDLVO(h) = 0 and
dVDLVO(h)

dh
= 0, (19)

i. e. the CCIS represents the critical value of I at which there is no energy barrier against

aggregation8. When the Debye-Hückel approximation (18) is used for the repulsive poten-

tial VR(h) and the Derjaguin approximation a ≫ h45 is considered in the attractive vdW

potential (6), the conditions (19) lead to13,14

CCIS =
72π

e2
1

λB

(
ϵϵ0ψ

2
dl

AH

)2

, (20)

where e is the Neper’s number and λB ≡ q2/(4πϵϵ0kBT ) is the Bjerrum length. Upon

inserting Eq. (16) into Eq. (20), the CCIS can be seen to vary as a function of the intra-

particle glass transition temperature Tg, according to the relation

CCIS =
72π

e2
K−2

λB

(
ϵϵ0ψ

2
dl

kBTg

)2

. (21)

Equation (21) shows that the CCIS of a colloidal suspension decreases upon increasing Tg,

with a law CCIS ∝ T−2
g . Moreover, Eq. (21) allows us to test our theory against the

recent experimental results of Scott et al.17 In particular, we consider data reported in Fig.

1 of Ref.17 where the critical coagulation concentration (CCC), rather than the CCIS, of

a suspension of electrostatic-stabilized polymer nanoparticles is measured by adding the

hydrophilic KCl salt. In this case, the ionic strength I and the concentration c of the

electrolytes present in the suspension are related by the condition14 I = z2c, where z is the

valency of the electrolytes. Since the ions resulting from the addition of the KCl salt have

z = 1, the CCC and the CCIS coincide in this case.

A comparison between our theoretical prediction and the findings of Ref.17 is presented

in Fig. 2, where experimental data are plotted as symbols while Eq. (21) is represented
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by a full red line. The proportionality coefficient between CCIS and T−2
g in Eq. (21) is

obtained by a fit to the experimental data. Both our theory and experiments from Scott

et al.17 predict the CCIS to be a decreasing function of Tg. However, while theory predicts

the decrease to be smooth, experiments rather display a sharper decrease, although this is

difficult to ascertain due to the large error bars. Further investigation is required in the

future to clarify this point and the possible influence of other effects that are not included in

the above model. We hope this Letter will stimulate experimental and theoretical research

along this line.

We observe that a different scaling between CCIS and AH, namely CCIS ∝ A
−2/3
H , can

be obtained if the relationship σ = ϵ0ϵκψdl, connecting the surface charge density σ to the

diffuse-layer potential ψdl, is used into Eq. (18).14 In this case, the proportionality relation

CCIS ∝ T
−2/3
g can be derived from Eq. (16) . However at the moment we cannot say if this

profile works better that of Eq. (21), given the large error bars in the experiments.

To conclude, in this Letter we theoretically investigated how the stability of a colloidal

suspension with respect to coagulation is influenced by the glass-transition temperature, Tg,

of the suspended colloidal particles. We started by identifying Tg with the point at which

the glassy polymer chains within each colloid lose mechanical stability upon heating, as a

consequence of the reduction of monomer connectivity driven by the Debye-Grüneisen ther-

mal expansion. We supplemented this picture with basic solid-state science considerations

about thermal expansion, and established two novel relationships connecting the Hamaker

constant AH of the suspension to the thermal expansion coefficient αT and the intra-particle

glass-transition temperature Tg, respectively. In particular, we found AH to be directly pro-

portional to Tg such that the latter quantity can be conveniently used as a key parameter

(alternative to AH) for controlling the stability of colloidal systems. The theory also provides

an expression for the proportionality coefficient in terms of fundamental physical quantities.

Finally, within DLVO theory, we derived the critical coagulation ionic strength (CCIS) to

be a monotonically decreasing function of the Tg of the polymer.
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The novel relations derived in this Letter may be useful for the design of colloidal materials

whose stability can be tuned by varying the physical properties of the dispersed solid phase.

For particles made of chemically complex materials, indeed, Tg is commonly a much more

accessible quantity compared to the Hamaker constant.

In future studies, it will be of significant interest to investigate the stability of colloidal

suspensions whose dispersed colloidal particles have not a single Tg but rather a distribution

of glass-transition temperaures. In addition we aim to study the stability of suspensions

whose dispersed particles have an internal crystal structure, as a function of the intra-particle

melting temperature Tm. Analogously to the intra-particle glass transition temperature Tg,

Tm can be connected to the thermal expansion coefficient αT
46. We furthermore plan to

extend the theoretical framework presented in this Letter to predict the effect on colloidal

stability of Tg in the presence of hydrophobic salts as those considered in Ref.17 and to

particles with non-spherical shape.47
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(32) Lemâıtre, A.; Maloney, C. Sum Rules for the Quasi-Static and Visco-Elastic Response

of Disordered Solids at Zero Temperature. Journal of Statistical Physics 2006, 123,

415.

(33) Ashcroft, N. W.; Mermin, N. D. Solid State Physics ; Holt, Rinehart and Winston: New

York, 1976.

(34) Lappala, A.; Zaccone, A.; Terentjev, E. M. Polymer glass transition occurs at the

marginal rigidity point with connectivity z* = 4. Soft Matter 2016, 12, 7330–7337.

(35) Fox, T. G.; Flory, P. J. Second-Order Transition Temperatures and Related Properties

of Polystyrene. I. Influence of Molecular Weight. Journal of Applied Physics 2004, 21,

581–591.

(36) Cui, X.-Y.; Ringer, S. P.; Wang, G.; Stachurski, Z. H. What should the density of

amorphous solids be? The Journal of Chemical Physics 2019, 151, 194506.

(37) Mirzahossein, E.; Grzelka, M.; Pan, Z.; Demirkurt, B.; Habibi, M.; Brouwer, A. M.;

Bonn, D. Molecular rotors to probe the local viscosity of a polymer glass. The Journal

of Chemical Physics 2022, 156, 174901.

(38) Bernal, J. D.; Mason, J. Packing of Spheres: Co-ordination of Randomly Packed

Spheres. Nature 1960, 188, 910–911.

(39) Zaccone, A. Explicit Analytical Solution for Random Close Packing in d = 2 and d = 3.

Phys. Rev. Lett. 2022, 128, 028002.

20



(40) Anzivino, C.; Casiulis, M.; Zhang, T.; Moussa, A. S.; Martiniani, S.; Zaccone, A.

Estimating random close packing in polydisperse and bidisperse hard spheres via an

equilibrium model of crowding. The Journal of Chemical Physics 2023, 158, 044901.

(41) Hoy, R. S. Jamming of Semiflexible Polymers. Phys. Rev. Lett. 2017, 118, 068002.

(42) Schmieder, K.; Wolf, K. Mechanische Relaxationserscheinungen an Hochpolymeren.

Kolloid-Zeitschrift 1953, 134, 149–189.

(43) Kittel, C. Introduction to solid state physics ; John Wiley and Sons, 2005.
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