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Abstract. We study projective irreducible symplectic orbifolds of dimension four
that are deformations of partial resolutions of quotients of hyperkähler manifolds of
K3[2]-type by symplectic involutions; we call them orbifolds of Nikulin type. We first
classify those projective orbifolds that are really quotients, by describing all families
of projective fourfolds of K3[2]-type with a symplectic involution and the relation
with their quotients, and then study their deformations. We compute the Riemann–
Roch formula for Weil divisors on orbifolds of Nikulin type and using this we describe
the first known locally complete family of singular irreducible symplectic varieties as
double covers of special complete intersections (3, 4) in P6.

1. Introduction

One of the three building blocks [Bea] of Ricci-flat compact Kähler manifolds, to-
gether with Abelian varieties and Calabi–Yau manifolds, are irreducible holomorphic
symplectic manifolds, i.e. simply connected manifolds X such that H2,0(X) = CωX

is spanned by a symplectic holomorphic form. This kind of manifolds, also known as
irreducible hyperkähler, has been deeply studied ever since the foundational works of
Beauville [Bea], Bogomolov [Bo] and Fujiki [Fuj].

The first and lower dimensional examples of irreducible holomorphic symplectic man-
ifolds are K3 surfaces; a second series of deformation families is given by manifolds of
K3[n]-type, i.e. deformations of Hilbert schemes W [n] of n points on a K3 surface W .
Together with generalized Kummer manifolds of dimension 2n and two deformation
families in dimension six and ten constructed by O’Grady, these are all the infinitely
many deformation families of irreducible holomorphic manifolds which are currently
known.

A natural attempt at constructing new families, already described by Fujiki in [Fuj],
is to study quotients of irreducible holomorphic symplectic manifolds by finite sym-
plectic group actions i.e. those actions which preserve the symplectic form. Symplectic
involutions σ on smooth K3 surfaces W are nowadays well understood thanks to foun-
dational works of Nikulin [N1], Morrison [Mor] and then of van Geemen and Sarti
[vGS]. The quotient W/σ admits a resolution of singularities with Picard number ≥ 8
which is again a K3 surface, called a Nikulin surface. In higher dimension the quo-
tient of a smooth manifold of K3[n]-type by a symplectic action does not admit any
desingularization being irreducible holomorphic symplectic.

More recently, starting from work of Beauville [Bea1], several authors began to
study the question of how to enlarge the class of irreducible holomorphic symplectic
manifolds while keeping valid most of their distinguished geometrical properties. One
of the main directions has been to admit symplectic varieties with mild singularities.
Many definitions can be found in the literature and we refer the interested reader to
the nice survey by Perego [Pe], and references therein, for more details. Beauville
considered the class of irreducible symplectic varieties which admit a symplectic form
ω on the smooth locus and have symplectic singularities i.e. singularities such that the
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holomorphic 2-form ω extends to any resolution. Nowadays, a class which has attracted
great attention is that of irreducible symplectic orbifolds [Camp]. They naturally appear
as building blocks in the generalization of Beauville–Bogomolov decomposition theorem
to compact connected Kähler Ricci-flat orbifolds. A compact Kähler orbifold Y is said
irreducible symplectic if Y \ Sing(Y ) is simply connected and admits a unique, up to a
scalar multiple, non-degenerate holomorphic 2-form.

This paper focuses on a special deformation family of irreducible symplectic orbifolds,
which we call orbifolds of Nikulin type. Those are constructed as deformations of Nikulin
orbifolds, whose construction mimics that of Nikulin surfaces (see Definition 3.1). The

quotient X/σ of a fourfold X of K3[2]-type by a symplectic involution σ is singular
along a K3 surface and 28 points. As we mentioned above, X/σ does not admit a
crepant resolution, but one can partially resolve it blowing up the singular K3 surface.
This partial resolution Y is an irreducible symplectic orbifold with 28 terminal points,
which we call Nikulin orbifold. By [Bea1], orbifolds of Nikulin type are also irreducible
symplectic varieties, and the two moduli spaces constructions in [BL, Me2] agree for this
deformation family. Examples were already studied by [MaT] and the main properties
of the whole deformation family have been described by Menet and Menet–Riess in
[Me1, MeR1, MeR2]. It is worth noticing that not all orbifolds of Nikulin type are
Nikulin orbifolds, in fact the latter sit in a family of codimension one. As in the case
of K3 surfaces, orbifolds of Nikulin type are Kähler and irreducible symplectic but in
general not projective. The projective ones correspond to divisors in the period domain
of orbifolds of Nikulin type [Me2, BL].

In many aspects the theory of irreducible symplectic manifolds/varieties/ orbifolds is
a generalization to higher dimensions of that of K3 surfaces. Most notably, the group
H2(X,Z) can be endowed with an integral quadratic form qX , so-called Beauville–
Bogomolov–Fujiki form (for short BBF form), and it is a lattice L of signature (3, b2(X)−
3), which is a topological invariant of the deformation family; the existence of this lat-
tice structure allows to study moduli spaces of irreducible symplectic manifolds of a
fixed deformation type through periods since a global Torelli theorem, analogous to
the one for K3 surfaces, also holds. However, a remarkable difference with the theory
of K3 surfaces is the lack of projective models for general higher dimensional alge-
braic examples. They are crucial for the understanding of the geometric behaviour of
these varieties. For this reason, in the early development of the theory of irreducible
holomorphic symplectic manifolds, a lot of effort has been put into constructing so
called locally complete families of these, i.e. general elements in the family of man-
ifolds with a given degree and type of polarization. Historically, the first known lo-
cally complete families of projective irreducible holomorphic symplectic manifolds were
the family of Fano varieties of smooth cubic fourfolds, shown to be of K3[2]-type by
Beauville and Donagi [BeaDo], and the family of double EPW sextics, again of K3[2]-
type, discovered by O’Grady [O’G]. A few more families have been constructed in

[DebV, IR, IKKR1, LLSvS, BLMNPS]: all are algebraic manifolds of K3[n]-type for
some n and their families have codimension one inside their respective moduli spaces.
However, in the case of singular orbifolds no locally complete family has been con-
structed so far.

The main aim of the paper is to provide tools to study the explicit geometry of
orbifolds of Nikulin type. We do it by addressing the following problems that we
discuss separately in the remaining part of the introduction.

(1) Classify projective fourfolds of K3[2]-type with symplectic involutions and re-
lated Nikulin orbifolds.
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(2) Provide a Riemann–Roch formula for linear systems on orbifolds of Nikulin
type.

(3) Describe a locally complete family of orbifolds of Nikulin type.

1.1. Classification of polarized Nikulin orbifolds. The first aim of this paper is to
describe the families of projective Nikulin orbifolds, i.e. the algebraic Noether–Lefschetz
locus in the family of Nikulin orbifolds, in analogy with what has been done by van
Geemen and Sarti for projective Nikulin surfaces. This is achieved in two steps: first
we classify all families (infinitely many of those) of projective fourfolds of K3[2]-type
X carrying a symplectic involution σ; then we describe the corresponding families of
projective Nikulin orbifolds Y .

In Section 2, we look at symplectic involutions σ on projective fourfolds of K3[2]-type
of degree 2d. We describe their possible Picard lattices and transcendental groups; as a
consequence we identify their families in terms of lattice polarized families of fourfolds
of K3[2]-type. We prove the following result (see Table 2.1), which is the analogue of
the result [vGS, Proposition 2.2] for K3 surfaces with a symplectic involution.

Theorem 1.1. Let X be a generic projective fourfold of K3[2]-type admitting a sym-
plectic involution. Then the pair (TX ,NS(X)) of the transcendental lattice and the
Néron–Severi group of X is one of the following:
(U⊕2 ⊕ E8(−2)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩, Λ2d);
(U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5,Λ2d), with d ≡ 1 mod 2;
(U⊕2 ⊕ E8(−2)⊕Kd,Λ2d) with d ≡ 3 mod 4;

(U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5, Λ̃2d) with d ≡ 0 mod 2,
where the lattices involved are defined in the notation in Section 2.1 and d is a positive
integer.

Vice versa if X is a projective fourfold of K3[2]-type such that NS(X) is isometric

either to Λ2d or to Λ̃2d, then it admits a symplectic involution.

In Section 2.2 we show that the general member of the above lattice polarized families
can be described either as Hilbert scheme of two points on a K3 surface or as moduli
space of (possibly twisted) sheaves on a K3 surface, see Table 2.2. In both cases the
K3 surfaces involved lie in 12-dimensional families of lattice polarized K3 surfaces and
are resolution of singular K3 surfaces with 7 nodes.

In Section 3 we consider the quotient X/σ and the corresponding Nikulin orbifold
Y . The knowledge of the Néron–Severi group and of the transcendental lattice of X
allows one to compute the ones of Y and thus the family of fourfolds of K3[2]-type X
determines the family of the Nikulin orbifolds Y . In particular we prove the following
result (see Table 3.1), which is the analogue of the result [GS, Corollary 2.2] for Nikulin
surfaces.

Theorem 1.2. Let X be a generic projective fourfold of K3[2]-type admitting a sym-
plectic involution σ and Y be the corresponding Nikulin orbifold. Then:

the pair (TX ,NS(X)) determines uniquely the transcendental lattice TY of Y and
vice versa TY determines uniquely the pair (TX ,NS(X))

See Table 3.1 for the explicit description of TY and of its relation with (TX ,NS(X)).

In Section 3.3 we study the K3 surface S in the fixed locus of the involution σ
on the fourfold of K3[2]-type X: we show that there is an isometry between TS ⊗Q
and TY ⊗Q, where T•⊗Q is the transcendental lattice with rational coefficients and
Y is the Nikulin orbifold as above (see Proposition 3.16). In particular the Picard
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number of S is at least 8. Moreover, we conjecture that this isometry holds also with
integer coefficients (Conjecture 3.12). We prove the conjecture for many subfamilies of
codimension 1, corresponding to Hilbert scheme of points on K3 surfaces with natural
symplectic involutions, and for two locally complete algebraic families, see Propositions
3.14 and 3.15.

1.2. Riemann-Roch formula for Nikulin orbifolds and orbifolds of Nikulin
type. In Section 4 we find the Riemann–Roch formula on the orbifolds of Nikulin
type by following step by step the quotient construction of Nikulin orbifolds. Since
H2(Y,Z) is endowed with the BBF quadratic form qY , explicitly computed by [Me1],
the Riemann–Roch formula for a Q-Cartier Weil divisor D can be stated as a relation
between χ(D) and qY (D), in the same spirit of [GrHJo, Example 23.19] and depends
also on the number of points where D fails to be Cartier. Using the results from
[BuReZ, Bl, CGMo] for 2-factorial orbifolds we prove in Corollary 4.4 and in Proposition
4.5 the following result.

Theorem 1.3. Let Y be an orbifold of Nikulin type and let D = m
2 L be a Q-Cartier

Weil divisor on Y , with m ∈ Z and L ∈ NS(Y ); let n be the number of points where D
fails to be Cartier. Then

χ(O(D)) =
3

8

(
m4

24
qY (L)

2 +m2qY (L) + 8

)
− n

16
,

where qY denotes the BBF quadratic form on H2(Y,Z).
In particular, on any orbifold of Nikulin type Y and for any D ∈ NS(Y ),

χ(O(D)) =
1

4

(
qY (D)2 + 6qY (D) + 12

)
.

By applying the previous result to some specific divisors on Y , we obtain the dimen-
sions of projective spaces where the quotient X/σ or its partial resolution Y have a
natural projective model, see Theorems 4.9, 4.10 and 4.12 and Table 4.1.

1.3. A locally complete family of orbifolds of Nikulin type. To obtain a locally
complete family, we need to understand the projective model of the general elements of
a family of irreducible symplectic varieties with a given type of polarization. In Section
5, we describe a locally complete family of polarized orbifolds of Nikulin type of BBF
degree 2 (the least possible). As already remarked, this is the first known description
of a locally complete family of polarized singular irreducible symplectic varieties; the
reader should see this construction as the analogue of O’Grady’s double EPW sextics.
In this case the analogue of EPW sextic will be a special complete intersection (3, 4)
in P6.

Theorem 1.4. The general element Y in a family of orbifolds of Nikulin type with a
polarization of BBF degree 2 and divisibility 1 is a double cover of a special complete
intersection (3, 4) in P6 branched along a surface of degree 48.

In Section 5.4 we discuss the reciprocal of the theorem by describing the possible
complete intersections (3, 4) using the Beilinson resolution (see also Problem 5.10).
Our strategy to prove Theorem 1.4 is the following. Special examples of orbifolds of
Nikulin type of BBF degree 2 are constructed as quotients by a symplectic involution

of fourfolds X of K3[2]-type with Néron–Severi group isometric to Λ̃4, which is an
extension of index two of ⟨4⟩ ⊕E8(−2). The polarization of BBF degree 4 on X which
is orthogonal to the E8(−2) summand gives a 2 : 1 map (see [IKKR]) to an EPW
quartic in the cone C(P2 × P2) ⊂ P9. The symplectic involution on X is then induced

4



by an involution on the linear system of the polarization, i.e. on P9. After projecting
from the P2 ⊂ P9 which is a component of the fixed locus of the involution on P9, we
obtain a complete intersection (3, 4) in P6 that is singular in codimension 2 along a
surface of degree 52. From the results in Sections 3 and 4 we deduce that the image of
the projection is the projective model of the quotient of X by the symplectic involution.
By deforming this example and knowing part of the monodromy group of orbifolds of
Nikulin type (see [MeR1]), we prove that a general orbifold of BBF degree 2 as above
has a similar description.
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2. Fourfolds of K3[2]-type with a symplectic involution

We are interested in fourfolds of K3[2]-type admitting a symplectic involution and
mainly in the projective ones. We will describe the general member of families of
fourfolds satisfying these conditions first in a lattice theoretic way and then giving a
model as (twisted) moduli space of sheaves on a K3 surface. From now on let X be a

fourfold of K3[2]-type and σ be a symplectic involution on X.

2.1. Lattice theoretic description of X. Let us fix some notation and recall pre-
liminary results on lattices:

• The lattice U is the unique even unimodular lattice of rank 2 and signature
(1, 1); we will denote by {u1, u2} a basis such that u21 = u22 = 0 and u1u2 = 1.

• The lattice E8 is the unique even unimodular positive definite lattice of rank 8.
• Given a latticeM and an integer n ∈ Z, M(n) is the lattice obtained multiplying
the bilinear form of M by n.

• We denote by {b1, . . . b8} the basis of E8(−2) such that: b2i = −4, i = 1, . . . , 8;
bjbj+1 = 2, j = 1, . . . , 6; b3b8 = 2; the other intersections are zeros.

• The lattice N , called Nikulin lattice, is an even negative definite rank 8 lattice.
It is generated by the classes ri, i = 1, . . . , 8 such that r2i = −2, rirj = 0 and

by the class
(∑8

i=1 ri

)
/2.

• For n ∈ Z, u(n) is the discriminant form of U(n); for each m ∈ Z and α ∈ Q
Zm(α) is the discriminant cyclic group Zm endowed with the quadratic form
taking value α on a generator. For short, the discriminant quadratic form of
Zm

(
± 1

m

)
is denoted by (± 1

m).

• The discriminant form of N is u(2)⊕3 and the discriminant form of E8(−2) is
u(2)⊕4 (see. [N3, p. 1414]).

• The lattice D4(−1) is the rank 4 negative definite lattice whose bilinear form
on the basis {d1, d2, d3, d4} is d2i = −2, did2 = 1, i = 1, 3, 4, didj = 0 otherwise.
Its discriminant group is (Z/2Z)2 and its discriminant form is called v(2), see
e.g. [N2, Section 8].

• The lattice LK3 is the unique even unimodular lattice of rank 22 and signature
(3, 19) and is isometric to U⊕3 ⊕ E8(−1)⊕2.
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• The lattice L := LK3⊕⟨−2⟩ and its discriminant form is (−1
2). We will denote

by δ the generator of the lattice ⟨−2⟩, orthogonal to LK3 in L.
• For every positive integer d, the lattice Λ2d is isometric to ⟨2d⟩ ⊕ E8(−2). We
denote by h a generator of the summand ⟨2d⟩.

• For every even positive integer d, the lattice Λ̃2d is the unique overlattice of
index 2 of Λ2d in which ⟨2d⟩ and E8(−2) are primitively embedded.

• The lattice Kd is the negative definite lattice with the following quadratic form[
−d+1

2 1
1 −2

]
, d ≡ 1 mod 2.

• The lattice Hd is the indefinite lattice with the following quadratic form[
d−1
2 1
1 −2

]
, d ≡ 1 mod 2.

• The divisibility div(v) of v ∈ M is the generator of the ideal (vw | w ∈ M) ⊂ Z.
Moreover, since for all the considered varieties there is a canonical isomorphism between
the Picard lattice and the Néron–Severi group, we always refer to the Néron–Severi
group, even to indicate the Picard lattice.

Proposition 2.1. A fourfold X of K3[2]-type admits a symplectic involution if and
only if E8(−2) is primitively embedded in NS(X).

Moreover, if X is projective then there exists a positive d ∈ N such that Λ2d ⊂ NS(X).
The Néron–Severi group of the very general element in the family of ⟨2d⟩-polarized
fourfolds of K3[2]-type admitting a symplectic involution is an overlattice of finite index
(possibly equal to 1) of Λ2d, with the property that E8(−2) is primitively embedded in
it.

Proof. The first statement is proved by Mongardi in [Mon]. If X is projective, then it
admits an ample divisor, which has necessarily a positive BBF degree. Since E8(−2)
is negative definite, it follows that Λ2d ⊂ NS(X) and that if the Picard number of X is
the minimal possible, i.e. 9, then NS(X) is an overlattice of finite index (possibly equal
to 1) of Λ2d, with the property that E8(−2) is primitively embedded in it. □

Lemma 2.2. [vGS, Proposition 2.2] The overlattices of Λ2d containing primitively both
⟨2d⟩ and E8(−2) are:

(1) if d ≡ 1 mod 2 only Λ2d itself ;

(2) if d ≡ 0 mod 2 either Λ2d or the unique overlattice Λ̃2d of index 2 of Λ2d in
which ⟨2d⟩ and E8(−2) are primitively embedded.

The discriminant forms of the lattices Λ2d and Λ̃2d are
(

1
2d

)
⊕u(2)⊕4 and

(
1
2d

)
⊕u(2)⊕3.

The lattices Λ2d and Λ̃2d admit a unique embedding in LK3 (up to isometry).

Proof. The uniqueness of the overlattices is proved in [vGS, Proposition 2.2], and their
discriminant forms are computed in [CG, Corollary 3.7]. We briefly recall the proofs
here. The lattice Λ2d is described in the list of lattices at the beginning of the section:
the discriminant form on AΛ2d

= A⟨2d⟩⊕AE8(−2) is
(

1
2d

)
⊕u(2)⊕4. We denote h, ui,j for

i = 1, . . . , 4, j = 1, 2 a basis of AΛ2d
on which the discriminant form is ( 1

2d)⊕ u(2)⊕4.

The overlattices Λ̃2d in which ⟨2d⟩ and E8(−2) are primitively embedded correspond
to isotropic subgroups H of AΛ2d

which have a non trivial intersection with both A⟨2d⟩
and AE8(−2) in AΛ2d

, by [N2, Proposition 1.4.1]. So H can be chosen to be generated

by dh+ v, where v ∈ AE8(−2) is such that v2 = 0 or 1 respectively when d ≡ 0 mod 4
or d ≡ 2 mod 4. We suppose that d ≡ 0 mod 4 and we can assume that v = u1,1.
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Since H⊥ = ⟨h+u1,2, u1,1, ui,j |i = 2, 3, 4, j = 1, 2⟩, Λ̃2d has discriminant quadratic form
( 1
2d)⊕ u(2)⊕3. The case d ≡ 2 mod 4 is completely analogous. □

In [vGS] an explicit basis for the lattice Λ̃2d is given:

• if d ≡ 2 mod 4, the lattice Λ̃2d is generated by the generators of Λ2d and by
the class (h+ b1)/2;

• if d ≡ 0 mod 4, the lattice Λ̃2d is generated by the generators of Λ2d and by
the class (h+ b1 + b3)/2.

Corollary 2.3. Let X be a very general element in a family of (possibly not projective)

fourfolds of K3[2]-type admitting a symplectic involution σ, then NS(X) ≃ E8(−2) and

vice versa if X is a fourfold of K3[2]-type such that NS(X) ≃ E8(−2), then X is non
projective and it admits a symplectic involution.

Let X be a very general element in a family of projective fourfolds of K3[2]-type
admitting a symplectic involution σ. Then either NS(X) ≃ Λ2d for a certain integer

d > 0 or NS(X) ≃ Λ̃2d for a certain even integer d > 0.

Vice versa if X is a fourfold of K3[2]-type such that NS(X) is isometric either to

Λ2d for an integer d > 0 or to Λ̃2d for an even integer d > 0, then X is projective and
admits a symplectic involution.

We observe that E8(−2) admits a unique primitive embedding in L, whose orthogonal
is U⊕3 ⊕ E8(−2)⊕ ⟨−2⟩.

In order to determine the families of projective fourfolds of K3[2]-type admitting a
symplectic involution, we consider all possible primitive embeddings of the lattices Λ2d

and Λ̃2d into L.

Proposition 2.4. For any integer d > 0 Λ2d admits, up to isometry of L, the following
primitive embeddings into L:

(1) j1 such that j1(Λ2d)
⊥ ≃ T2d,1 := U⊕2 ⊕ E8(−2)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩;

(2) if d ≡ 1 mod 2, j2 such that j2(Λ2d)
⊥ ≃ T2d,2 := U⊕2 ⊕ D4(−1) ⊕ ⟨−2d⟩ ⊕

⟨−2⟩⊕5;
(3) if d ≡ 3 mod 4, j3 such that j3(Λ2d)

⊥ ≃ T2d,3 := U⊕2 ⊕ E8(−2)⊕Kd.

For any d ≡ 0 mod 2, Λ̃2d admits a unique primitive embedding j̃ into L, with orthog-

onal isometric to T̃2d := U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5.

Proof. First we study possible primitive embeddings of Λ2d inside L. The first embed-
ding j1 is simply obtained by composing the embedding of Λ2d inside LK3 with the
embedding of this one inside L. This is unique up to isometry if d ≡ 0 mod 2.

When d ≡ 1 mod 2, an application of [N2, Proposition 1.15.1] shows that there is
a second possibility: indeed, in this case AΛ2d

contains a subgroup H of order two
to which the discriminant form restricts as (−1

2). Standard computations in this case
produce the embedding j2 if d ≡ 1 mod 4, and the embeddings j2 and j3 if d ≡ 3
mod 4. Up to isometry these are the only possibilities.

Concerning the primitive embeddings of Λ̃2d, j̃ is again obtained by composing the

embedding of Λ̃2d inside LK3 with the embedding of this one inside L. The fact that
it is the only possible one comes by an application of [N2, Proposition 1.15.1]: we
have AL ≃ Z2(−1

2), whereas the quadratic form on A
Λ̃2d

takes values in Z/2Z on any

subgroup of order two; as a consequence, the only possible choice for two isometric
subgroups inside AL and A

Λ̃2d
is H = {0}, and the discriminant form of the orthogonal

R is exactly (−q
Λ̃2d

) ⊕ qAL
= u(2)⊕3 ⊕ (− 1

2d) ⊕ (−1
2). From [N2, Proposition 1.8.2],
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we have u(2)⊕3 ⊕ (− 1
2d) ⊕ (−1

2) ≃ (12)
⊕3 ⊕ (−1

2)
⊕4 ⊕ (− 1

2d). Moreover, it is easy

to show that (12)
⊕3 ⊕ (−1

2)
⊕4 ≃ v(2) ⊕ (−1

2)
⊕5. The signature of R is (2, 12). The

genus of the lattices with signature and discriminant form as the ones of R contains a

unique class by [N2, Corollary 1.13.3], and so R ≃ T̃2d. Moreover, by [N2, Theorem

1.14.2], O(T̃2d) → O(qA
T̃2d

) is surjective. By [N2, Proposition 1.15.1], we conclude that

j̃(Λ̃2d)
⊥ ≃ T̃2d ad that the embedding j̃ is unique up to isometries of L. □

To recap, if X is a very general projective fourfold of K3[2]-type admitting a sym-
plectic involution, there are the following possibilities for NS(X) and TX

Condition on d Embed. NS(X) ⊂ L NS(X) TX

∀d ∈ N j1 Λ2d T2d,1 := U⊕2 ⊕ E8(−2)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩
d ≡ 1 mod 2 j2 Λ2d T2d,2 := U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5

d ≡ 3 mod 4 j3 Λ2d T2d,3 := U⊕2 ⊕ E8(−2)⊕Kd

d ≡ 0 mod 2 j̃ Λ̃2d T̃2d := U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5

(2.1)

As observed before, if X is a very general non-projective fourfold of K3[2]-type admit-
ting a symplectic involution, then NS(X) = E8(−2) and TX = U⊕3 ⊕ E8(−2)⊕ ⟨−2⟩.

As in the case of the K3 surfaces, see e.g. [vGS], to relate the Néron–Severi group of
a manifold with an involution to the one of its quotient by the involution, one uses the
explicit description of the isometry induced on the second cohomology group by the
involution, and the knowledge of a primitive embedding of the Néron–Severi group in
the second cohomology group. Therefore here we describe a choice for this embedding,
which will be used in Section 3. The uniqueness of the action induced by the involution
and of the embeddings up to isometries of the lattice L, will guarantee that the results in
Section 3 are independent by the embedding chosen to make the explicit computations.

Hence, we explicitly fix the embeddings ja, a = 1, 2, 3 and j̃ in L which will be used
in the following.

Let X be a fourfold of K3[2]-type admitting a symplectic involution ι. Fix a basis of
H2(X,Z) ≃ U⊕3⊕E8(−1)⊕E8(−1)⊕⟨−2⟩: there exists an isometry between H2(X,Z)
and L = U⊕3 ⊕ E8(−1) ⊕ E8(−1) ⊕ ⟨−2⟩ such that the involution ι∗ ∈ O(H2(X,Z))
switches the two copies of E8(−1) and acts as the identity on U ⊕ U ⊕ U ⊕ ⟨−2⟩. We
denote by ei, (resp. fi), i = 1, . . . , 8 a basis of the first (resp. second) copy of E8(−1)
in E8(−1)⊕ E8(−1), and by bi a basis of E8(−2). We fix two different embeddings of
the lattice E8(−2) in E8(−1)⊕ E8(−1):

λ+(bi) = ei + fi i = 1, . . . , 8
λ−(bi) = ei − fi i = 1, . . . , 8.

In particular H2(X,Z)ι∗ = U⊕3 ⊕ λ+(E8(−2))⊕ ⟨−2⟩ ≃ U⊕3 ⊕ E8(−2)⊕ ⟨−2⟩ and
(H2(X,Z)ι∗)⊥ = λ−(E8(−2)) ≃ E8(−2).

Let h ∈ H2(X,Z) be a ι-invariant primitive class with self-intersection 2d > 0. Let
us denote by j(h) an embedding of h in H2(X,Z) ≃ L. Since the polarization h is
invariant for ι, j(h) ∈ H2(X,Z)ι∗ ≃ U⊕3⊕λ+(E8(−2))⊕⟨−2⟩ and thus it corresponds
to a vector of the form (u,w, v, x, y, k) such that x = y.

Proposition 2.5. Let d be a positive integer and let

j1(h) :=

((
1
d

)
,

(
0
0

)
,

(
0
0

)
, 0, 0, 0

)
.
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The embedding (j1, λ−) : ⟨2d⟩ ⊕ E8(−2) → L is a primitive embedding and there exist

fourfolds of K3[2]-type X1 such that NS(X1) ≃ (j1, λ−) (⟨2d⟩ ⊕ E8(−2)) ≃ Λ2d and
TX1 ≃ T2d,1.

Proof. The embedding (j1, λ−) is clearly primitive, hence there exist fourfolds of K3[2]-
type admitting this lattice as Néron–Severi group. Since j1 restricts to an embedding
of h in U and λ− restricts to an embedding of E8(−2) in E8(−1) ⊕ E8(−1), one can
compute separately the orthogonal in the different direct summands, finding that the
orthogonal to NS(X1) is ⟨−2d⟩ ⊕ U ⊕ U ⊕ λ+(E8(−2))⊕ ⟨−2⟩ ≃ T2d,1. □

Proposition 2.6. Let d be an odd positive integer. Let

j2(h) :=

((
2

2k + 2

)
,

(
0
0

)
,

(
0
0

)
, e1, e1, 1

)
if d = 4k + 1,

j2(h) :=

((
2

2k + 2

)
,

(
0
0

)
,

(
0
0

)
, e1 + e3, e1 + e3, 1

)
if d = 4k − 1.

The embedding (j2, λ−) : ⟨2d⟩ ⊕ E8(−2) → L is a primitive embedding and there exist

fourfolds of K3[2]-type X2 such that NS(X2) ≃ (j2, λ−) (⟨2d⟩ ⊕ E8(−2)) ≃ Λ2d and
TX2 ≃ T2d,2.

Proof. The embedding (j2, λ−) is clearly primitive, hence there exist fourfolds of K3[2]-
type admitting this lattice as Néron–Severi group. By Proposition 2.4 there is an
embedding of ⟨2d⟩ ⊕ E8(−2) in U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩ which is not equivalent to j1,
computed in Proposition 2.5.

Let x =

{
e1 if d ≡ 1 mod 4
e1 + e3 if d ≡ 3 mod 4.

. By direct computation, the orthogonal lattice

((j2, λ−)(Λ2d))
⊥ is spanned by the following vectors:(

0, ai, 0, 0, 0, 0
)
,
(
0, 0, ai, 0, 0, 0

)
, i = 1, 2 where a1, a2 is a basis of U ;((

−1
k + 1

)
, 0, 0, 0, 0, 0

)
,

((
0
1

)
, 0, 0, 0, 0, 1

)
, (0, 0, 0, w, w, 0) , w ∈ (x)⊥E8(−1),

b :=
(
0, 0, 0, y, y, 1

)
with y =

{
e2 if d ≡ 1 mod 4
e4 if d ≡ 3 mod 4.

One can directly compute the form on the previous basis and hence its discriminant
form. By [N2, Corollary 1.13.3] one obtains that there exists a unique, up to isometry,
even lattice with signature (2, 12) and the required discriminant form. Such a lattice
is isometric to T2d,2. □

Proposition 2.7. Let d be a positive integer such that d ≡ 3 mod 4. Let

j3(h) :=

((
2

(d+ 1)/2

)
,

(
0
0

)
,

(
0
0

)
, 0, 0, 1

)
.

The embedding (j3, λ−) : ⟨2d⟩ ⊕ E8(−2) → L is a primitive embedding and there

exist fourfolds of K3[2]-type X3 such that NS(X3) ≃ (j3, λ−) (⟨2d⟩ ⊕ E8(−2)) ≃ Λ2d

and TX3 ≃ T2d,3.

Proof. The embedding (j3, λ−) is clearly a primitive embedding of ⟨2d⟩ ⊕ E8(−2) in

L and hence there exist fourfolds of K3[2]-type admitting this lattice as Néron–Severi
group. Since j3 restricts to an embedding of h in U⊕⟨−2⟩, one can compute the orthogo-

nal of j3(h) in U⊕⟨−2⟩, which is generated by

((
0
1

)
, 1

)
and

((
1

−(d+ 1)/4

)
, 0

)
,

with intersection form equal to Kd, so that TX3 ≃ T2d,3. □
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Proposition 2.8. Let d be an even positive integer. Let

j̃(h) :=

((
2
2k

)
,

(
0
0

)
,

(
0
0

)
, e1, e1, 0

)
if d = 4k − 2,

j̃(h) :=

((
2
2k

)
,

(
0
0

)
,

(
0
0

)
, e1 + e3, e1 + e3, 0

)
if d = 4k − 4.

The embedding (j̃, λ−) : ⟨2d⟩ ⊕ E8(−2) → L is not a primitive embedding and the

primitive closure of (j̃, λ−) (⟨2d⟩ ⊕ E8(−2)) is isometric to Λ̃2d. There exist fourfolds

of K3[2]-type X̃ such that NS(X̃) ≃ Λ̃2d and T
X̃

≃ T̃2d.

Proof. Let us consider the case d = 4k−2, i.e. d ≡ 2 mod 4. The embedding (j̃, λ−) is

not primitive, since the class j̃(h)+λ−(b1) can be divided by 2 in U⊕U⊕U⊕E8(−1)⊕
E8(−1)⊕ ⟨−2⟩, whereas h+ b1 is primitive inside ⟨2d⟩ ⊕ E8(−2). By adding the class(
j̃(h) + λ−(b1)

)
/2 to (j̃, λ−)(⟨2d⟩ ⊕ E8(−2)) one obtains a primitive embedding of

Λ̃2d in L. In particular there exists a fourfold of K3[2]-type with NS(X̃) ≃ Λ̃2d and, by
computing its orthogonal complement, one finds T

Ỹ
≃ U⊕2⊕⟨−2d⟩⊕D4(−1)⊕⟨−2⟩⊕5.

The case d = 4k − 4 is analogous. □

2.2. Models of X as moduli space of sheaves on a K3 surface. In this section
we provide at least one model of the very general member of each family of projective
fourfolds of K3[2]-type admitting a symplectic involution, i.e. of each family described
in Table (2.1). Each of these models will be described either as Hilbert scheme of a
certain K3 surface or as a moduli space of stable, possibly twisted, sheaves on a K3
surface. The main results of this section are summarized in Table (2.2).

One needs two preliminary definitions in order to list all cases.

Definition 2.9. If d ≡ 3 mod 4, we denote by
(
⟨2d⟩ ⊕ ⟨−2⟩⊕7

)′
the overlattice of

⟨2d⟩⊕⟨−2⟩⊕7 = Zt
⊕

⊕iZni obtained by adding to ⟨2d⟩⊕⟨−2⟩⊕7 the class (t+
∑

i ni) /2.

Lemma 2.10. The lattice ⟨2d⟩ ⊕ ⟨−2⟩⊕7 admits a unique primitive embedding in LK3

and its orthogonal is uniquely determined and isometric to U⊕2 ⊕ D4(−1) ⊕ ⟨−2d⟩ ⊕
⟨−2⟩⊕5.

If d ≡ 3 mod 4 the lattice
(
⟨2d⟩ ⊕ ⟨−2⟩⊕7

)′
admits a unique primitive embedding in

LK3 and its orthogonal is uniquely determined and isometric to U⊕2 ⊕N ⊕Kd.

Proof. The discriminant quadratic form of Q := ⟨2d⟩⊕⟨−2⟩⊕7 is
(

1
2d

)
⊕
(
−1

2

)⊕7
. Since

LK3 is unimodular, the orthogonal Q⊥ needs to have discriminant quadratic form(
− 1

2d

)
⊕

(
1

2

)⊕7

≃
(
− 1

2d

)
⊕ v(2)⊕

(
−1

2

)⊕5

and signature (2, 12): by [N2, Corollary 1.13.3], there is, up to isometry, a unique lattice
with these properties, which is U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5, thus the embedding
is unique up to isometry of LK3.

The discriminant quadratic form of Q′ := (⟨2d⟩ ⊕ ⟨−2⟩⊕7)′ is
(
2
d

)
⊕ u(2)⊕3, hence

its orthogonal in LK3 has discriminant quadratic form
(
−2

d

)
⊕ u(2)⊕3 and signature

(2, 12): again by [N2, Corollary 1.13.3], there is, up to isometry, a unique lattice with
these properties, which is U⊕2 ⊕N ⊕Kd. □

The previous lemma implies that there exists a well defined family of K3 surfaces

which is polarized with the lattice ⟨2d⟩ ⊕ ⟨−2⟩⊕7 (resp.
(
⟨2d⟩ ⊕ ⟨−2⟩⊕7

)′
).
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Definition 2.11. For any positive integer d, Wd is a K3 surface such that NS(Wd) =
⟨2d⟩ ⊕ ⟨−2⟩⊕7.

For the positive integers d such that d ≡ 3 mod 4, W ′
d is a K3 surface such that

NS(W ′
d) =

(
⟨2d⟩ ⊕ ⟨−2⟩⊕7

)′
By the previous lemma, the transcendental lattices of the surfaces Wd and W ′

d are
respectively TWd

≃ U⊕2 ⊕D4(−1)⊕ ⟨−2d⟩ ⊕ ⟨−2⟩⊕5 and TW ′
d
≃ U⊕2 ⊕N ⊕Kd.

In the following we will denote by H ′ a primitive vector in

⟨2d⟩ ⊕ ⟨−2⟩⊕7 or
(
⟨2d⟩ ⊕ ⟨−2⟩⊕7

)′
whose square is 2. It surely exists by Lagrange’s four squares theorem.

The following table summarizes all the birational models given for X: in the first
column we identify the family of fourfolds which we are considering (and this is done by
exhibiting the embedding NS(X) ⊂ L, using the results in (2.1)); in the second column
we declare which K3 surface is associated to the model; in the third we describe the
model; if the model of X is as moduli space of sheaves determined by a Mukai vector,
in the fourth column we write the Mukai vector (we omit the element in the Brauer
group giving the twist, when needed); in the last column we give the reference to the
proposition where we describe the model and prove that it is the required one.

Embedding NS(X) ⊂ L K3 model v Prop.
j1, d ≡ 1 mod 2 Wd Mv(Wd, β) (0, H ′, 2) 2.14

j1, d ≡ 0 mod 2 Wd Mv(Wd, β) (4,
∑7

i=1 ni, 2) 2.16

j2, d ≡ 1 mod 2 Wd W
[2]
d − 2.12

j3, d ≡ 3 mod 4 W ′
d Mv(W

′
d, β) (0, H ′, 2) 2.15

j̃, d ≡ 0 mod 2 Wd Mv(Wd) (2,
∑7

i=1 ni, 4) 2.16

(2.2)

The easiest description of the fourfold that we obtain is the one associated to the
embedding j2 : NS(X) ↪→ L, indeed in this case X is (birational to) a Hilbert scheme
of points on a K3 surface, by the following.

Proposition 2.12. Let d be an odd positive integer. Then W
[2]
d is a (Λ2d, j2)-polarized

fourfold.

Proof. The transcendental lattice TWd
of Wd is isometric to the one of W

[2]
d . Since

TWd
≃ T2d,2 (see Proposition 2.4), we conclude that T

W
[2]
d

≃ T2d,2. Moreover, NS(W
[2]
d ) ≃

NS(Wd)⊕⟨−2⟩ and, by comparison of the discriminant forms, one has NS(Wd)⊕⟨−2⟩ ≃
Λ2d. So a generic (Λ2d, j2)-polarized fourfold has the same transcendental lattice and

Néron–Severi group of W
[2]
d , thus their families coincide. □

Remark 2.13. Note that there is no natural symplectic involution on these Hilbert
schemes. It is a nice open problem how to construct such involutions on some bira-
tional models of those Hilbert schemes, but for d = 1 there is the following geometric
construction.

If d = 1, then the generic (⟨2⟩ ⊕ ⟨−2⟩⊕7)-polarized K3 surface W1 is a double cover
of a del Pezzo surface of degree 2, denoted by dP2, thus it admits a non symplectic
involution, which is the cover involution. We denote it as ιW1 and we observe that it
acts as the identity on NS(W1). Moreover, since the anticanonical model of dP2 exhibits
dP2 as double cover of P2 branched on a quartic curve, the surface W1 admits a model
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(induced by the anticanonical one of dP2) as a quartic hypersurface in P3 which does not

contain lines. Therefore the fourfold X = W
[2]
1 admits two non-symplectic involutions:

one is ι
[2]
W1

, the natural involution induced by ιW1 , and the other is Beauville’s involution

β (see [Bea, Proposition 11] for the definition). The isometry (ι
[2]
W1

)∗ acts as the identity

on NS(X) and as minus the identity on TX , hence it commutes with every isometry
induced by an involution on X (since they commute both on the transcendental lattice

and on the Néron–Severi group). In particular ι
[2]
W1

and β are two commuting non
symplectic involutions, whose composition is necessarily a symplectic involution on X.
Such an involution can be constructed also on a birational model, as done in [MaT].

In the case d = 3, by Proposition 2.12 examples of (Λ6, j2)-polarized fourfolds are
given by Hilbert squares of K3 surfaces W3 which are (⟨6⟩ ⊕ ⟨−2⟩⊕7)-polarized. In
this case, one can show that such Hilbert squares are in fact birational to the Fano
varieties of cubic fourfolds with 8 nodes [L, Thm. 1.1]. It is an open question whether
it is possible to describe geometrically a symplectic involution on these manifolds.

Proposition 2.14. Let d be an odd positive integer. There exist a Brauer class
β ∈ H2(O∗

Wd
)2 and a Mukai vector v ∈ H∗(Wd,Z) such that the moduli space X =

Mv(Wd, β) is a (Λ2d, j1)-polarized fourfold of K3[2]-type.

Proof. The transcendental lattice TWd
of Wd is of the form U ⊕Ξ for Ξ an even hyper-

bolic lattice; we denote by f1, f2 a basis of the hyperbolic plane U . Then we consider
B = f1

2 ∈ TWd
⊗Q and β ∈ H2(O∗

Wd
)2 the Brauer class of order two corresponding to

( , B) : TWd
→ Z2. The twisted Néron–Severi group NS(Wd, β) is thus the sublattice

of H∗(Wd,Z) generated by NS(Wd), (0, 0, 1) and (2, f1, 0), hence it is isomorphic to
U(2) ⊕ NS(Wd), and its orthogonal in the Mukai lattice is isometric to U(2) ⊕ Ξ. It
follows from work of Yoshioka [Y, Section 3] that NS(Mv(Wd, β)) ≃ v⊥B ∩ NS(Wd, β)
and that the transcendental lattice of Mv(Wd, β) is isometric to U(2)⊕ Ξ.

We conclude by choosing as Mukai vector v = (0, H ′, 2) where H ′ ∈ NS(Wd) is
a primitive effective class of square two. The orthogonal P of H ′ in NS(Wd) is a
negative definite lattice with rank and length 7 and discriminant group Z2d ⊕ (Z2)

⊕6

with discriminant quadratic form q =
(

1
2d

)
⊕ v(2) ⊕

(
−1

2

)⊕4
. For such a choice we

have vB = v primitive of square two and the orthogonal to v in U(2) ⊕ NS(Wd) is a
hyperbolic lattice of rank 9 and discriminant group Z2d⊕ (Z2)

⊕8. Its 2-adic component
is isometric to the one of ⟨2⟩⊕⟨−2⟩8 ≃ ⟨2⟩⊕E8(−2) and there is only one even indefinite
lattice in this genus by [N2, Theorem 1.13.2]. Thus the orthogonal to v is isometric to
Λ2d. □

Proposition 2.15. Let d be a positive integer such that d ≡ 3 mod 4. There exist a
Brauer class β ∈ H2(O∗

W ′
d
)2 and a Mukai vector v ∈ H∗(W ′

d,Z) such that the moduli

space X = Mv(W
′
d, β) is a (Λ2d, j3)-polarized fourfold of K3[2]-type.

Proof. Denote by Ξ the lattice U ⊕N ⊕Kd, it holds

T2d,3 ≃ U⊕2 ⊕ E8(−2)⊕Kd ≃ U(2)⊕ U ⊕N ⊕Kd ≃ U(2)⊕ Ξ

and TW ′
d
≃ U⊕2⊕N ⊕Kd ≃ U ⊕Ξ. Now reasoning as in Proposition 2.14, one chooses

B = f1
2 ∈ TW ′

d
⊗Q and β ∈ H2(O∗

W ′
d
)2 the Brauer class of order two corresponding

to ( , B) : TW ′
d
→ Z2. So NS(Mv(W

′
d, β)) ≃ v⊥B ∩ NS(W ′

d, β) and the transcendental

lattice of Mv(W
′
d, β) is isometric to U(2)⊕ Ξ ≃ T2d,3.

We conclude by choosing as Mukai vector v = (0, H ′, 2) where H ′ ∈ NS(W ′
d) ≃(

⟨2d⟩ ⊕ ⟨−2⟩⊕7
)′

is a primitive effective class of square two. □
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Proposition 2.16. If d ≡ 0 mod 2, then:

• a general fourfold of K3[2]-type (Λ2d, j1)-polarized is birational to Mv(Wd, β)
where v = (4,

∑
i ni, 2) and β are as above;

• a general fourfold of K3[2]-type (Λ̃2d, j̃)-polarized is birational to Mw(Wd) with
w = (2,

∑
ni, 4) ∈ H∗(Wd,Z).

Proof. Let us fix β as in Proposition 2.14. Then, since TWd
≃ U⊕2 ⊕ D4(−1) ⊕

⟨−2⟩⊕5 ⊕ ⟨−2d⟩, TMv(Wd,β) ≃ U ⊕U(2)⊕D4(−1)⊕ ⟨−2⟩⊕5 ⊕ ⟨−2d⟩ for every possible
choice of the Mukai vector v. Moreover, the twisted Néron–Severi group NS(Wd, β) is
U(2) ⊕ NS(Wd) (as in the proof of Proposition 2.14) and it is generated by (0, 0, 1),
(2, f1, 0), (0, ni, 0), i = 1, . . . 7, (0, t, 0) (where t, ni are the generators of NS(Wd),
t2 = 2d, and f1 is as in Proposition 2.14). We now fix v = (4,

∑
i ni, 2), then vB =

(4,
∑

i ni + 2f1, 2) ∈ H∗(Wd,Z) and we compute v⊥B ∩ NS(Wd, β). It is generated by
(2, f1,−1), (0, 2n1, 1), (0, ni−ni+1, 0), i = 1, . . . 6, (0, t, 0). One can directly check that
(0, t, 0) is orthogonal to all the other generators and the form computed on all the other
generators is R(2) where R is an even negative definite unimodular lattice of rank 8.
It follows that R ≃ E8(−1) and so the orthogonal to vB in NS(Wd, β) is isometric to
E8(−2) ⊕ ⟨2d⟩ ≃ Λ2d. Hence Mv(Wd, β) is (Λ2d, j1)-polarized and gives a birational

model of the general (Λ2d, j1)-polarized fourfold of K3[2]-type.

To prove the similar result for a general fourfold of K3[2]-type (Λ̃2d, j̃)-polarized we

observe that TWd
≃ T̃2d. Moreover, the (1, 1)-part in H∗(Wd,Z) is U ⊕NS(Wd). Next,

we observe that Λ̃2d ≃ ⟨2d⟩ ⊕ N , where N is the Nikulin lattice, obtained by ⟨−2⟩⊕8

by gluing the class n :=
∑

ri/2 and it is generated by the first seven roots r1, . . . , r7
and by n such that n2 = −4 and nri = −1.

Let g1, g2, t, n1, . . . , n7 be a basis of U ⊕NS(Wd), i.e. of the (1, 1) part of H
∗(Wd,Z).

Consider now the explicit primitive embedding ⟨2d⟩⊕N ⊂ U⊕NS(Wd) which sends the
⟨2d⟩ summand in the lattice spanned by t and which sends ri 7→ ni+g1 for i = 1, . . . , 7,
n 7→ 2g1 − g2. The Mukai vector w = (2,

∑
i ni, 4) is 4g1 + 2g2 + n1 + . . .+ n7 and its

orthogonal is spanned by t, n and ri with i = 1, . . . 7. So the orthogonal to the Mukai

vector w in U ⊕NS(Wd) is isometric to ⟨2d⟩ ⊕N ≃ Λ̃2d and this ends the proof. □

Remark 2.17. (Induced automorphisms from autoequivalences.) The symplectic au-
tomorphism considered in Proposition 2.16 is induced by a symplectic autoequivalence
on Db(Wd) that is not induced by a symplectic action on Wd. The result [BecOb,
Prop 1.4] gives a way to further investigate these symplectic involutions. If [BecOb,
Prop 1.4] is generalized for twisted sheaves then this would give a way to study also
the other involutions considered here.

3. Nikulin orbifolds

After having described the moduli spaces of projective fourfolds X of K3[2]-type
admitting a symplectic involution σ, we now turn to the study of their quotients. It
is well-known, since work of Fujiki [Fuj], that the quotient does not admit a crepant
resolution of singularities. Nevertheless, there is a partial resolution Y → X/σ which
is a so-called irreducible sympletic orbifold.

Definition 3.1. Let X be a fourfold of K3[2]-type and let σ be a symplectic involution
onX. The partial resolution Y ofX/σ obtained by blowing up theK3 surface contained
in Sing(X/σ) is called the Nikulin orbifold corresponding to (X,σ).

Deformations (in the sense of [BL, Me2]) of Nikulin orbifolds are said to be orbifolds
of Nikulin type.
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We recall the following result by Menet.

Theorem 3.2. [Me1] The second cohomology group H2(Y,Z) of an orbifold Y of
Nikulin type is endowed with a symmetric bilinear form, which is the Beauville–Bogomolov–
Fujiki form BY and thus it is a lattice. Let qY denote the corresponding quadratic form.
Let Σ be the exceptional divisor of Y → X/σ and let ∆ be the divisor induced by δ;
then:

qY (Σ) = qY (∆) = −4, (Σ±∆)/2 ∈ H2(Y,Z).
The lattice

(
H2(Y,Z), qY

)
is isometric to U(2)⊕3 ⊕ E8(−1) ⊕ ⟨−2⟩ ⊕ ⟨−2⟩, where the

last two summands are generated by (∆± Σ)/2.
It follows that Σ is a class with self-intersection −4 and divisibility 2 in H2(Y,Z).

As a consequence of the previous theorem we get the following

Corollary 3.3. Let X be fourfold of K3[2]-type with a symplectic involution σ and such
that NS(X) ≃ E8(−2); then the corresponding Nikulin orbifold Y has NS(Y ) ≃ ⟨−4⟩.

Hence, deformations of Y are not necessarily Nikulin orbifolds, since it follows from
Corollary 3.3 that Nikulin orbifolds are contained in a family of codimension 1.

3.1. Families of projective Nikulin orbifolds and the map π∗. In Corollary 3.3
we describe the explicit relations between NS(X) and NS(Y ) in the generic case. In
the following we will consider the same problem for special subfamilies, those of the
projective fourfolds X.

If one specializes to the projective case one has four different families of fourfolds
of K3[2]-type X admitting a symplectic involution σ, which depend on the chosen
embedding of NS(X) in L and are those listed in Table (2.1). The aim of this section is
to associate to each of these families the family of Nikulin orbifolds Y which are partial
resolution of X/σ. The results of this section are summarized in the following table: in
the first column we identify the family by choosing the embedding NS(X) ⊂ L; in the
second column we describe the Néron–Severi group of Y , in the third its transcendental
lattice and in the last we give the reference to the propositions where the results are
proved.

Embedding NS(X) ⊂ L NS(Y ) TY Prop.

j1 ⟨4d⟩ ⊕ ⟨−4⟩ U(2)⊕2 ⊕ E8(−1)⊕ ⟨−4d⟩ ⊕ ⟨−4⟩ 3.5

j2, d ≡ 1 mod 2

[
d− 1 2

2 −4

]
U(2)⊕2 ⊕ E7(−1)⊕Kd(2)⊕ ⟨−2⟩ 3.6

j3, d ≡ 3 mod 4

[
d− 1 2

2 −4

]
U(2)⊕2 ⊕Kd(2)⊕ E8(−1) 3.7

j̃, d ≡ 0 mod 2 ⟨d⟩ ⊕ ⟨−4⟩ U⊕2 ⊕ ⟨−d⟩ ⊕N ⊕ ⟨−4⟩ 3.8

(3.1)

To prove these results we will use the explicit embeddings described in Section 2.1
and also the following explicit description of the map π∗ induced by the quotient map
π : X → X/σ.

The map

π∗ : H
2(X,Z) → H2(X/σ,Z) ⊂ H2(Y,Z)
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is compatible (as explained below) with the lattice structure induced by the Beauville–
Bogomolov–Fujiki form both on H2(X,Z) and on H2(Y,Z). Hence we can interpret π∗
as a map between the lattices U⊕3 ⊕E8(−1)⊕2 ⊕ ⟨−2⟩ and U(2)⊕3 ⊕E8(−1)⊕ ⟨−2⟩ ⊕
⟨−2⟩. To describe this map we consider, as in Section 2.1, a basis of H2(X,Z) such
that σ∗ ∈ O(H2(X,Z)) switches the two copies of E8(−1) and acts as the identity
on U ⊕ U ⊕ U ⊕ ⟨−2⟩. We consider again the embeddings of the lattice E8(−2) in
E8(−1)⊕ E8(−1):

λ+(bi) = ei + fi i = 1, . . . , 8,
λ−(bi) = ei − fi i = 1, . . . , 8.

In particular H2(X,Z)σ∗
= U⊕3 ⊕ λ+(E8(−2)) ⊕ ⟨−2⟩ ≃ U⊕3 ⊕ E8(−2) ⊕ ⟨−2⟩ and

(H2(X,Z)σ∗
)⊥ = λ−(E8(−2)) ≃ E8(−2).

Take u, v, w vectors in U and x, y vectors in E8(−1); for ease of notation, we will
denote by k ∈ Z an element of ⟨−2⟩, referring to the k-th multiple of its genera-
tor (depending on the lattice this will be either δ, (∆ + Σ)/2 or (∆ − Σ)/2). Thus
(u,w, v, x, y, k) is a vector in U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩. Then

(3.2) π∗(u,w, v, x, y, k) = (u,w, v, x+ y, k, k) ∈ U(2)⊕3 ⊕ E8(−1)⊕ ⟨−2⟩ ⊕ ⟨−2⟩.

Hence the restriction of π∗ to U⊕3 acts as the identity on the vector space, but the
form is multiplied by 2; the restriction of π∗ to E8(−1)⊕2 acts as the sum of the two
components on the vector space and divides the form by 2 in the quotient.

Lemma 3.4. One has: π∗(λ−(E8(−2))) is trivial; π∗(λ+(E8(−2))) = E8(−1);

π∗(H
2(X,Z)σ

∗
) = U(2)⊕3 ⊕ E8(−1)⊕ ⟨−4⟩.

Proof. It suffices to choose a basis of the sublattices λ−(E8(−2)), λ+(E8(−2)),H2(X,Z)σ∗

of H2(X,Z) and then to apply the map π∗ as given in (3.2). □

Proposition 3.5. Let d be a positive integer and X1 be a (Λ2d, j1)-polarized fourfold

of K3[2]-type. The fourfold X1 admits a symplectic involution σ and, denoted by Y1
the corresponding Nikulin orbifold, one has NS(Y1) ≃ ⟨4d⟩ ⊕ ⟨−4⟩ and TY1 ≃ ⟨−4d⟩ ⊕
U(2)⊕2 ⊕ E8(−1)⊕ ⟨−4⟩.

Proof. By Proposition 2.5 one can choose the embedding j1 such that j1|E8(−2) =

λ− and j1(h) :=

((
1
d

)
,

(
0
0

)
,

(
0
0

)
, 0, 0, 0

)
. Since π∗(NS(X1)) ⊂ NS(Y1), one

first considers π∗(NS(X1)) = π∗ ((j1, λ−) (⟨2d⟩ ⊕ E8(−2))) = π∗(j1(h)) (where the last
identity is due to Lemma 3.4). By (3.2),

π∗(j1(h)) =

((
1
d

)
,

(
0
0

)
,

(
0
0

)
, 0, 0, 0

)
∈ U(2)3 ⊕ E8(−1)⊕ ⟨−2⟩⊕2,

so qY (π∗(j1(h))) = 4d. Moreover, the class

Σ =

((
0
0

)
,

(
0
0

)
,

(
0
0

)
, 0, 1,−1

)
is contained in NS(Y1). Hence NS(Y1) is spanned by π∗(j1(h)) and Σ and there are
no linear combinations with rational non integer coefficients of these classes which are
also contained in H2(Y1,Z). So NS(Y1) = ⟨π∗(j1(h)),Σ⟩ ≃ ⟨4d⟩ ⊕ ⟨−4⟩. By definition
TY1 is the orthogonal of NS(Y1) in H2(Y1,Z). So

TY1 ≃ ⟨−4d⟩ ⊕ U(2)⊕2 ⊕ E8(−1)⊕ ⟨−4⟩.
□
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Proposition 3.6. Let d be an odd positive integer and X2 be a (Λ2d, j2)-polarized

fourfold of K3[2]-type. The fourfold X2 admits a symplectic involution σ and, denoted

by Y2 the corresponding Nikulin orbifold, one has NS(Y2) ≃ Hd(2) :=

[
d− 1 2
2 −4

]
and TY2 ≃ U(2)⊕2 ⊕ E7(−1)⊕Kd(2)⊕ ⟨−2⟩.

Proof. By Proposition 2.6 one can choose the embedding j2 such that j2|E8(−2) = λ−

and j2(h) :=


((

2
2k + 2

)
,

(
0
0

)
,

(
0
0

)
, e1, e1, 1

)
if d = 4k + 1,((

2
2k + 2

)
,

(
0
0

)
,

(
0
0

)
, e1 + e3, e1 + e3, 1

)
if d = 4k − 1.

As above, to compute NS(Y2) one observes that a Q-basis is given by π∗(j2(h)) and Σ.

By (3.2), π∗(j2(h)) =

((
2

2k + 2

)
,

(
0
0

)
,

(
0
0

)
, 2x, 1, 1

)
and qY (π∗(j2(h))) = 4d.

The class π∗(j2(h)) − Σ =

((
2

2k + 2

)
,

(
0
0

)
,

(
0
0

)
, 2x, 0, 2

)
is divisible by 2 in

H2(Y2,Z), thus (π∗(j2(h))− Σ) /2 ∈ NS(Y2). Finally, we get

NS(Y2) = ⟨(π∗(j2(h))− Σ) /2,Σ⟩ =
[
d− 1 2
2 −4

]
.

The transcendental lattice is the orthogonal to Σ and π∗(j2(h)) in H2(Y2,Z). A Q-
basis is obtained by computing the image via π∗ of the generators of TX2 listed above;
then one observes that the only elements which are two-divisible are those of the form
(0, 0, 0, 2w, 0, 0), and this allows to deduce a Z-basis of the lattice TY2 , which is of
discriminant 28d. Direct computation now shows that

TY2 ≃ U(2)⊕2 ⊕ E7(−1)⊕Kd(2)⊕ ⟨−2⟩.
□

Proposition 3.7. Let d be a positive integer such that d ≡ 3 mod 4 and X3 be a
(Λ2d, j3)-polarized fourfold of K3[2]-type. The fourfold X3 admits a symplectic involu-
tion σ and, denoted by Y3 the corresponding Nikulin orbifold, one has NS(Y3) ≃ Hd(2)
and TY3 ≃ U(2)⊕2 ⊕Kd(2)⊕ E8(−1).

Proof. By Proposition 2.7 one can choose the embedding j3 such that j3|E8(−2) = λ−

and j3(h) :=

((
2

(d+ 1)/2

)
,

(
0
0

)
,

(
0
0

)
, 0, 0, 1

)
.

Since both π∗(j3(h)) =

((
2

(d+ 1)/2

)
,

(
0
0

)(
0
0

)
, 0, 1, 1

)
and (π∗(j3(h))− Σ) /2

are contained in NS(Y3),

NS(Y3) = ⟨(π∗(j3(h))− Σ)/2,Σ⟩ ≃
[
d− 1 2
2 −4

]
and TY3 is its orthogonal complement inside U(2)⊕3 ⊕ E8(−1)⊕ ⟨−2⟩⊕2. Hence

TY3 ≃ U(2)⊕2 ⊕Kd(2)⊕ E8(−1).

□

Proposition 3.8. Let d be an even positive integer and X̃ be a (Λ̃2d, j̃)-polarized

fourfold of K3[2]-type. The fourfold X̃ admits a symplectic involution σ and, de-

noted by Ỹ the corresponding Nikulin orbifold, one has NS(Ỹ ) ≃ ⟨d⟩ ⊕ ⟨−4⟩ and
T
Ỹ
≃ U⊕2 ⊕ ⟨−d⟩ ⊕N ⊕ ⟨−4⟩.
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Proof. By Proposition 2.8 one can choose the embedding j̃ such that j̃|E8(−2) = λ− and

j̃(h) :=


((

2
2k

)
,

(
0
0

)
,

(
0
0

)
, e1, e1, 0

)
if d = 4k − 2 and((

2
2k

)
,

(
0
0

)
,

(
0
0

)
, e1 + e3, e1 + e3, 0

)
if d = 4k − 4.

Let us consider the case d = 4k−2. Since π∗(j̃(h)) =

((
2
2k

)
,

(
0
0

)
,

(
0
0

)
, 2e1, 0, 0

)
,(

π∗(j̃(h))
)
/2 ∈ NS(Ỹ ) and a basis of NS(Ỹ ) is given by

(
π∗(j̃(h))

)
/2 and Σ. So

NS(Ỹ ) = ⟨d⟩⊕⟨−4⟩ and T
Ỹ
is the orthogonal complement in U(2)⊕3⊕E8(−1)⊕⟨−2⟩⊕2

to 〈((
1
k

)
,

(
0
0

)
,

(
0
0

)
, e1, 0, 0

)
,

((
0
0

)
,

(
0
0

)
,

(
0
0

)
, 0, 1,−1

)〉
.

One obtains T
Ỹ
≃ U⊕2 ⊕ ⟨−d⟩ ⊕N ⊕ ⟨−4⟩. The case d = 4k − 4 is analogous. □

Remark 3.9. The classes of divisors considered in Propositions 3.5, 3.6, 3.7, 3.8 have
a geometric meaning: the class Σ is the effective class of the exceptional divisor; the
class π∗(j(h)) is a pseudoample polarization induced on Y by the ample polarization
j(h) on X, and it is orthogonal to Σ. Its pullback via π∗ is 2j(h); the class (j(h)−Σ)
corresponds to a divisor which has positive intersection with the exceptional divisor Σ
and its pullback via π∗ is 2j(h).

3.2. Nikulin orbifolds related with natural involutions on Hilbert squares of
K3 surfaces. In Corollary 3.3 we described the relations between NS(X) and NS(Y )

for a very general X of K3[2]-type admitting a symplectic involution σ. In Section 3.1
we specialize X by requiring that it is projective. In this section we specialize X by
requiring that it is the Hilbert scheme of two points of a K3 surface W and that the
involution σ is natural, i.e. it is induced by a symplectic involution on W because of
the equivariance of the construction of the Hilbert scheme W [2].

Proposition 3.10. Let W be a generic non-projective K3 surface admitting a sym-
plectic involution σW , i.e. NS(W ) = E8(−2). Let X := W [2] be its Hilbert square and

σ := σ
[2]
W be the natural involution induced by σW . Then NS(X) = E8(−2) ⊕ ⟨−2⟩,

TX ≃ U⊕3 ⊕ E8(−2) and NS(Y ) ≃ ⟨−2⟩⊕2, TY ≃ U(2)⊕3 ⊕ E8(−1).

Proof. By construction, the embedding of NS(X) inH2(X,Z) is given by λ−(E8(−2))⊕
δ ≃ E8(−2) ⊕ ⟨−2⟩. By Lemma 3.4, π∗(λ−(E8(−2)) ⊕ δ) = π∗(δ). Since π∗ maps
NS(X) to NS(Y ), one deduces that ∆ = π∗(δ) = (0, 0, 0, 0, 1, 1) ∈ U(2)⊕3 ⊕ E8(−1) ⊕
⟨−2⟩ ⊕ ⟨−2⟩ is a class in NS(Y ). Moreover, NS(Y ) always contains the class Σ =
(0, 0, 0, 0, 1,−1). Since NS(Y ) contains both ∆ and Σ, it contains all their linear com-
binations which belong to H2(Y,Z). In particular NS(Y ) = ⟨(∆ + Σ)/2, (∆−Σ)/2⟩ ≃
⟨−2⟩⊕ ⟨−2⟩. The transcendental lattices are directly computed respectively as orthog-
onal to the Néron–Severi groups inside H2(X,Z) and H2(Y,Z). □

Proposition 3.11. Let W be a projective K3 surface admitting a symplectic involution

σW such that ρ(W ) = 9. Then either NS(W ) ≃ Λ2d or NS(W ) ≃ Λ̃2d.

Let X = W [2] be the Hilbert square on W , σ be the natural symplectic involution
induced by σW and Y be the corresponding Nikulin orbifold.

If NS(W ) ≃ Λ2d, then NS(W [2]) = Λ2d ⊕ ⟨−2⟩, TW [2] ≃ ⟨−2d⟩ ⊕ U⊕2 ⊕ E8(−2),
NS(Y ) ≃ ⟨4d⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2⟩ and TY ≃ ⟨−4d⟩ ⊕ U(2)⊕2 ⊕ E8(−1).

If NS(W ) ≃ Λ̃2d, then NS(W [2]) = Λ̃2d ⊕ ⟨−2⟩, TW [2] ≃ ⟨−2d⟩ ⊕ U ⊕ U ⊕ N ,
NS(Y ) ≃ ⟨d⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2⟩ and TY ≃ ⟨−d⟩ ⊕ U⊕2 ⊕N .
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Proof. The Néron–Severi group of W is given in [vGS]. The rest of the proof is anal-
ogous to the previous ones and we sketch it. If NS(W ) ≃ Λ2d the embedding of

NS(W [2]) in H2(X,Z) is (j1, λ−, id)(h,E8(−2), δ), where j1(h) is defined in Proposi-
tion 3.5, λ−(E8(−2)) is as above, and

id(δ) = (0, 0, 0, 0, 0, 1) ∈ U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩.
Then one applies π∗ as in (3.2): if both ∆ and Σ are contained in NS(Y ), then also
(∆± Σ)/2 is contained in NS(Y ).

If NS(W ) ≃ Λ̃2d, the embedding of NS(W [2]) in H2(X,Z) is (j̃, λ−, id)(h,E8(−2), δ),

where j̃(h) is defined in Proposition 3.8 and λ−(E8(−2)) is as above. Then one applies
π∗ as in (3.2) and concludes.

□

3.3. A conjecture: the transcendental lattices of Y and of the fixed K3
surface. In Section 3.1, we computed TY for every possible embedding ji. We observe
that for all the computed TY one can embed TY not only in H2(Y,Z) as we did,
but also in LK3. The orthogonal of TY ↪→ LK3 is the Néron–Severi group of a K3
surface whose transcendental lattice is isometric to TY . In this section we discuss the
following conjecture, which relates this K3 surface with the one in the fixed locus of
the symplectic involution σ on X.

Conjecture 3.12. Let X be a fourfold of K3[2]-type admitting a symplectic involution
σ, let Y be the partial resolution of X/σ as above, let S be the K3 surface contained in
Fixσ(X). Then TY ≃ TS.

As a first evidence to the conjecture we observe the following.

Proposition 3.13. Let W be a K3 surface (projective or not) admitting a symplectic

involution σW , such that NS(W ) is one of the following lattices E8(−2), Λ2d or Λ̃2d. Let

X be W [2] and σ be the natural symplectic involution induced by σW . Then Conjecture
3.12 holds for X.

Proof. Let us denote by Ŵ the minimal resolution of W/σW . It is a K3 surface and
its Néron–Severi group and transcendental lattice are determined by those of W by

[GS, Corollary 2.2]. We will denote by Γ̃2e the unique even overlattice of index 2
of Γ2e := ⟨2e⟩ ⊕ N where both N and ⟨2e⟩ are primitively embedded. One has the
following relations between the Néron–Severi groups

NS(W ) = E8(−2) if and only if NS(Ŵ ) = N

NS(W ) = Λ2d if and only if NS(Ŵ ) = Γ̃4d

NS(W ) = Λ̃2d, d ≡ 0 mod 2, if and only if NS(Ŵ ) = Γd

(3.3)

which correspond to the following relations between the transcendental lattices

TW = U⊕3 ⊕ E8(−2) if and only if TŴ = U⊕3 ⊕N
TW = ⟨−2d⟩ ⊕ U⊕2 ⊕ E8(−2) if and only if TŴ = ⟨−4d⟩ ⊕ U(2)⊕2 ⊕ E8(−1)
TW = ⟨−2d⟩ ⊕ U⊕2 ⊕N, d ≡ 0 mod 2, if and only if TŴ = ⟨−d⟩ ⊕ U⊕2 ⊕N

(3.4)

For every fourfold of K3[2]-type X with a symplectic involution σ the fixed locus of

σ consists of 28 isolated fixed points and a K3 surface S. If X = W [2] and σ = σ
[2]
W ,

then the surface S is the Nikulin surface constructed as minimal resolution of W/σW ,

i.e. the surface Ŵ . Hence, to conclude the proof it suffices to show that, for every W
(and thus every X), one has TY ≃ TŴ .
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If NS(W ) = E8(−2), then TW = U⊕3⊕E8(−2). By Proposition 3.10, TY ≃ U⊕3⊕N
and by (3.4) also TŴ ≃ U⊕3 ⊕N .

If NS(W ) = ⟨2d⟩⊕E8(−2), then TW = U⊕2⊕⟨−2d⟩⊕E8(−2). By Proposition 3.11,

TY ≃ ⟨−4d⟩ ⊕ U(2)⊕2 ⊕ E8(−1)

and by (3.4) also TŴ ≃ ⟨−4d⟩ ⊕ U(2)⊕2 ⊕ E8(−1).

If NS(W ) = Λ̃2d, with d ≡ 0 mod 2, then TW = ⟨−2d⟩ ⊕ U⊕2 ⊕N . By Proposition
3.11,

TY ≃ ⟨−d⟩ ⊕ U⊕2 ⊕N

and by (3.4) also TŴ ≃ ⟨−d⟩ ⊕ U⊕2 ⊕N . □

We can also show that Conjecture 3.12 holds for two locally complete families when
d = 1, 3 and the embeddings of Λ2d are respectively j2 and j3.

Proposition 3.14. Let X be a (Λ2, j2)-polarized fourfold of K3[2]-type and σ the sym-
plectic involution described in Remark 2.13. Conjecture 3.12 holds in this case.

Proof. We must describe the fixed locus of the symplectic involution σ = ι
[2]
W1

◦ β on X

(see also [MaT, Lemmma 5.3]). The surface W1 has a model as quartic in P3 and its
non-symplectic involution ιW1 is the restriction of an automorphism of P3, still denoted
by ιW1 . For any point P ∈ W1 we consider the line rP := ⟨P, ιW1(P )⟩. The line rP is
invariant for ιW1 and thus the set of intersection points rP ∩ W1 is invariant for ιW1 ,
hence there exists a point Q ∈ W1 such that

rP ∩W1 = {P, ιW1(P ), Q, ιW1(Q)}.

We consider the pair of points (P,Q), which corresponds to a point in W
[2]
1 . This point

is a fixed point of σ, indeed β(P,Q) = (ιW1(P ), ιW1(Q)) and ι
[2]
W1

(ιW1(P ), ιW1(Q)) =

(P,Q), so σ(P,Q) = (P,Q). We get a fixed point of σ for each point P ∈ W1. Vice

versa each fixed point of σ in W
[2]
1 necessarily corresponds to a pair of points in W1

which lie on a ιW1-invariant line. So the fixed surface S of σ is parametrized by points

in W1 and thus it is birational to W1 (birational because in order to construct W
[2]
1

we blow up a surface and it is possible, a priori, that this introduces some exceptional
divisors in the fixed locus). Nevertheless the surface S contained in the fixed locus of
σ is a K3 surface as W1 and thus if they are birational, they are isomorphic. So S is
a surface isomorphic to W1 and in particular its transcendental lattice is TS ≃ TW1 ≃
U⊕2 ⊕ D4(−1) ⊕ ⟨−2⟩⊕6. This lattice is a 2-elementary lattice with signature (2, 12)
and δ = 1, so it is isometric to any other 2-elementary lattice with these properties, in
particular to

U(2)⊕2 ⊕ E7(−1)⊕K1(2)⊕ ⟨−2⟩
and the conjecture holds. □

In the case of (Λ6, j3)-polarized fourfolds, the orthogonal of Λ6 is T6,3 = U⊕2 ⊕
E8(−2) ⊕K3 and j3(h) is a polarization on X of degree 6 and divisibility 2, hence X
is birational to the Fano variety of a smooth cubic fourfold. In fact, this is the family
of Fano varieties F (Z) of smooth symmetric cubic fourfolds Z carrying a symplectic
involution, as discussed in [C, §7]. In this case, the ample polarization h of degree 6 is
of non-split type and its orthogonal complement is h⊥ ≃ U⊕2 ⊕ E8(−1)⊕2 ⊕ A2(−1);
since E8(−2) has to be orthogonal to h, we obtain that the orthogonal complement of
Λ6 into L is the sublattice

T6,3 ≃ U⊕2 ⊕ E8(−2)⊕A2(−1).
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In this case the equation of the cubic fourfold can be chosen to be

X2
0L0(X2 : X3 : X4 : X5) +X2

1L1(X2 : X3 : X4 : X5) +X0X1L2(X2 : X3 : X4 : X5)+

+G(X2 : X3 : X4 : X5) = 0

where Li(X2 : X3 : X4 : X5) and G(X2 : X3 : X4 : X5) are homogeneous polynomials,
deg(Li) = 1, deg(G) = 3. The symplectic involution is induced on the Fano variety by
the projective transformation

(X0 : X1 : X2 : X3 : X4 : X5) → (−X0 : −X1 : X2 : X3 : X4 : X5).

The fixed locus consists of 28 points, in the (+1)-eigenspace, and of a K3 surface S, in
the (−1)-eigenspace, which has bidegree (2, 1) in P1 × V (G).

Proposition 3.15. Let Z,F (Z), S be as above. Then TS ≃ TY ≃ U(2)⊕2 ⊕K3(2) ⊕
E8(−1) and Conjecture 3.12 holds for F (Z).

Proof. Since V (G) is a cubic in the projective space P3
(X2:X3:X4:X5)

the K3 surface S

in the fixed locus is a complete intersection of two hypersurfaces of bidegree (2, 1) and
(0, 3) in P1 × P3. We denote by dP3 the del Pezzo cubic surface defined by V (G). We
recall that dP3 is obtained as blow up of P2 in six points and, denoted by m the class
of a line in P2 and by Ei the exceptional divisors of the blow up, NS(dP3) is generated
(over Z) by m,E1, . . . E6. The surface dP3 is embedded in P3 by the anticanonical
linear system H := 3m−

∑
iEi. So

m = (H +
∑
i

Ei)/3 ∈ NS(dP3).

To compute NS(S) we first observe that it is generated, at least over Q, by the classes
h1, h2, ℓi, i = 1, . . . , 6 where h1 (resp. h2) is the restriction to the surface of the
pullback in P1 × P3 of the hyperplane section of P1 (resp. P3) and ℓi is the pullback of
the class Ei ∈ NS(dP3). The intersection properties of these classes are the following:
h21 = 0, h1h2 = 3, h1ℓi = 1, i = 1, . . . , 6, h22 = 6, h2ℓi = 2, (ℓi)

2 = −2 and ℓiℓj = 0
if i ̸= j. In particular, we observe that h2 is the pullback of the divisor H ∈ NS(dP3)
and since

(H +
∑
i

Ei)/3 ∈ NS(dP3),

we obtain that (h2 +
∑

i ℓi)/3 ∈ NS(S) (this divisor exhibits S as double cover of P2

and contracts the rational curves ℓi to nodes of the branch locus of the double cover).
So {h1, (h2 +

∑
i ℓi)/3, ℓi} is a set of generators of NS(S). The discriminant group

of this lattice is Z6 ⊕ (Z2)
⊕5 and the discriminant form is the opposite of the one of

U(2)⊕2 ⊕A2(−2). We deduce that the transcendental lattice of S is

TS ≃ U(2)⊕2 ⊕A2(−2)⊕ E8(−1).

Recalling that A2(−1) ≃ K3, we obtain that

TS ≃ U(2)⊕2 ⊕K3(2)⊕ E8(−1) ≃ TY

(cf. Table 3.1). So Conjecture 3.12 holds in this case. □

The conjecture is true at least with rational coefficients, or, in other words, the
transcendental lattice of the symplectic orbifold Y is the same of a (possibly twisted)
Fourier–Mukai partner of the fixed K3 surface.

Proposition 3.16. Let X be a fourfold of K3[2]-type admitting a symplectic involution
σ, let Y be the corresponding Nikulin orbifold and let S be the K3 surface contained in
Fixσ(X). Then TY ⊗Q ≃ TS ⊗Q. In particular, ρ(Y ) = ρ(S)− 6.
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Proof. Let ν : S → X be the embedding of the K3 surface, we consider the restriction
of forms ν∗ : H2(X,C) → H2(S,C), which gives a morphism of Hodge structures of
weight two.

Let ωS ∈ H2,0(S) be the restriction of a symplectic form ωX ∈ H2,0(X), i.e. ωS =
ν∗ωX ; since S is the fixed K3 surface, this restriction is again a symplectic form on
S, hence ωX /∈ ker ν∗. Moreover, the rational transcendental lattice TX ⊗Q can be
defined as the smallest rational Hodge substructure of H2(X,Q) such that TX ⊗C
contains ωX . This implies that the restriction ν∗|TX ⊗Q is injective: indeed, both the

transcendental lattice and the kernel of a morphism of Hodge structures are irreducible
Hodge substructures, thus either their intersection is trivial or they coincide, which
is not the case here. In the same way one observes that the image of ν∗|TX ⊗Q is

exactly TS ⊗Q: both these Hodge substructures of H2(S,Q) are irreducible, and their
intersection contains at least ωS ̸= 0, thus they coincide. In the rest of the proof we
denote ν∗ : TX ⊗Q → TS ⊗Q: it is an isomorphism of irreducible Hodge structures of
weight two.

Let now ρ̃ : X̃ → X be the blow-up of the fixed K3 surface S, Σ̃ be the exceptional

divisor of ρ and let π̃ : X̃ → Y be the quotient by the involution induced on X̃ by σ.
We use the following diagram:

X̃
ρ̃
//

π̃

��

X

π

��

Ỹ // Y
ρ
// X/σ

We know from [Sh, Proposition 5] that the transcendental lattice of a smooth res-

olution Ỹ of a quotient X/Γ, where X is smooth and Γ is a finite group, is a Hodge
structure isomorphic to the Γ-invariant part of TX . In our case, a smooth resolu-

tion Ỹ of singularities of X/σ is also a resolution of singularities for the orbifold Y ,
hence TY ⊗Q is isomorphic to T

Ỹ
⊗Q as Hodge structures. Finally we obtained an

isomorphism of rational Hodge structures of weight two

TY ⊗Q ∼= (TX ⊗Q)σ = TX ⊗Q ∼= TS ⊗Q,

where the first and the last isomorphisms are respectively given by ρ̃∗ ◦ π̃∗ and ν∗.
We now show that this isomorphism is in fact an isometry over Q. Let µ[S] :

H2(X,Q) → H6(X,Q) be the cup-product with [S], where [S] is the cohomology
class of S; in [V, Proposition B.2] Voisin shows that kerµ[S] = ker ν∗ and that, as a
consequence, on im ν∗ the cup-product on S is induced by cup-product on X via the
following equality:

⟨ν∗x, ν∗y⟩S = ⟨µ[S](x), y⟩X = x.y.[S].

In our particular case, this equality holds for all x, y ∈ TX ⊗Q.

Denote by Σ̃ and Σ respectively the exceptional divisors of ρ̃ and of ρ. Let α, β ∈
TY ⊗Q; by [Me1, Proposition 2.11] we have BY (α, β) = −1

8α.β.Σ
2. Moreover, observ-

ing that π̃∗Σ = 2Σ̃, a standard computation in intersection theory yields:

α.β.Σ2 = 2π̃∗α.π̃∗β.Σ̃2 = −2ρ̃∗π̃
∗α.ρ̃∗π̃

∗β.[S] = −2⟨ν∗ρ̃∗π̃∗α, ν∗ρ̃∗π̃
∗β⟩S ,

where the second equality follows from projection formula (see [Ful, Proposition 8.3(c)])

and the equality Σ̃2 = −ρ∗[S], which is proven in [Me1, Lemma 2.12].
This shows that BY (α, β) = 1

4⟨ν
∗ρ̃∗π̃

∗α, ν∗ρ̃∗π̃
∗β⟩S for all α, β ∈ TY ⊗Q, thus

TS ⊗Q ≃ TY (4)⊗Q ≃ TY ⊗Q. □
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Remark 3.17. The K3 surfaces in the fixed locus of a symplectic involution can be
seen as a generalization of Nikulin surfaces as their moduli space is densely covered by
families of Nikulin surfaces. It would be interesting to study the rationality of such
moduli spaces as in [FVe].

4. Orbifold Riemann–Roch formula

4.1. Orbifold Riemann–Roch. In order to study projective models of Nikulin orb-
ifolds, we need to apply the theory of orbifold Riemann–Roch, as developed in [Bl] and
in [BuReZ]. We first treat the case of Nikulin orbifolds, and then we generalize it to
orbifolds of Nikulin type.

We consider again the following diagram:

V
β̃
//

q
��

r̃

!!

X̃
ρ̃
//

π̃

��

X

π

��

Ỹ
β
//

55
Y

ρ
// X/σ

where:

• X is a fourfold of K3[2]-type, σ ∈ Aut(X) is a symplectic involution and S ⊂
Fixσ(X) is the fixed surface; we will denote by NS|X the normal sheaf.

• Y is the Nikulin orbifold corresponding to (X,σ); Σ is the exceptional divisor

of ρ : Y → X/σ and X̃ is the blow-up of X along S;

• Ỹ is the total smooth resolution of X/σ, and hence of Y , and V is the blow-up

of X̃ in the inverse image via ρ̃ of the 28 isolated fixed points of σ. Denote

respectively by E1, . . . , E28 and Ẽ1, . . . , Ẽ28 the exceptional divisors on V and

on Ỹ . Moreover, let ES and ẼS be the exceptional divisors on V and Ỹ over

S and over its image in X/σ respectively. Finally, let E and Ẽ be respectively∑28
i=1Ei + ES and

∑28
i=1 Ẽi + ẼS .

Lemma 4.1. Let X, Y, Ỹ be as described above, and let ν : S ↪→ X be the embedding
of the fixed K3 surface. Then:

c1(Ỹ ) =
1

2
(q∗c1(V ) + Ẽ) = −

28∑
i=1

Ẽi,

c2(Ỹ ) =
1

2
q∗r̃

∗(c2(X) + ν∗[S]) + q∗(−8

28∑
i=1

E2
i − E2

S) +
3

2
K

Ỹ
Ẽ + 2K2

Ỹ
.

Proof. The proof follows from an application of Grothendieck–Riemann–Roch formula
(see [Ful, Thm. 15.2] combined with well-known properties of smooth blow-ups (see
[Ful, Example 15.4.3]):

KV = 3
28∑
i=1

Ei + ES , c2(V ) = r̃∗(c2(X) + ν∗[S]) + 2
28∑
i=1

E2
i .

It is a generalization of the proof of [CGMo, Proof of Prop. 7.2]. □
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Theorem 4.2 (Orbifold Riemann–Roch formula). Let D be a Q-Cartier Weil divisor
on Y , then q∗β∗D is equivalent to r̃∗H + kES , with H ∈ NS(X), k ∈ Z; let n be the
number of points in which the divisor D fails to be Cartier. Then

χ(Y,D) =
1

48
H4 +

1

48
H2.c2(X) + (

1

16
− k2

8
)(H|S)

2 + 3− n

16
+

k4

4
− 3k2

2
.

Proof. Since D is a Q-Cartier Weil divisor on Y , then there exists an effective divisor

D̃ ∈ NS(Ỹ ) such that β∗D = D̃ +
∑28

i=1 λiẼi with λi ∈ Q: λi = 1
2 if D fails to be

Cartier in pi ∈ Sing(Y ) for i = 1, . . . , 28, it is zero otherwise. We have β∗D.Ẽi = 0 for
all i. Then the orbifold Riemann–Roch formula ([BuReZ, Theorem 3.3]) is

χ(Y,D) = χ(Ỹ , D̃) =
1

24
(β∗D)4 +

1

12
(β∗D)3.c1(Ỹ ) +

1

24
(β∗D)2.(c1(Ỹ )2 + c2(Ỹ ))+

1

24
(β∗D).c1(Ỹ ).c2(Ỹ ) + χ(O

Ỹ
) +

28∑
i=1

γi(D),

where for each singular point pi ∈ Y we define γi(D) = − 1
16 if D is not Cartier in pi,

γi(D) = 0 otherwise.
It was proven in [FuMe] that χ(OY ) = χ(OỸ ) = 3. Moreover, it follows from K

Ỹ
=∑

i Ẽi, as shown in Lemma 4.1, that β∗D.c1(Ỹ ) = 0, hence the formula above reduces

to computing (β∗D)4 and (β∗D)2.c2(Ỹ ). Our aim is now to reduce the intersection

theory on Ỹ to the intersection theory on X.
In our situation, we have q∗β∗D = r̃∗H + kES (indeed, if there were components in

the Ei’s, we would have β∗D.Ẽi ̸= 0). Moreover, q∗ẼS = 2ES and q∗ES = ẼS ; hence

E4
S = 12, since Fujiki’s relation on Y implies ẼS

4
= 6 · 16.

Hence we obtain the following equalities of intersection numbers in Q, by using
Lemma 4.1 and the projection formula [Ful, Proposition 8.3(c)] (see also [CGMo] for
further details):

(β∗D)4 =
1

2
(q∗β∗D)4 =

1

2

(
(r̃∗H)4 + k4E4

S + 6k2(r̃∗H)2.E2
S

)
=

1

2
H4+6k4−3k2(H|S)

2,

(β∗D)2.q∗r̃
∗c2(X) = r̃∗(H2.c2(X)) + k2E2

S .r̃
∗c2(X) = H2.c2(X)− k2c2(X).ν∗[S],

(β∗D)2.q∗r̃
∗ν∗[S] = r̃∗((H|S)

2) + k2E2
S .r̃

∗ν∗[S] = (H|S)
2 − k2c2(NS|X),

(β∗D)2.q∗(E
2
S) = −r̃∗((H|S)

2) + k2E4
S = −(H|S)

2 + 12k2.

Many equalities and vanishings of some terms in the formulas above use the following
equality for α ∈ A4−i(X) (easy generalization of [BaBel, Lemma 1.1]):

Ei
S .r̃

∗α = (−1)i−1si−2(NS|X).ν∗α,

combined with ν∗ν∗[S] = c2(NS|X) (see [Ful, Corollary 6.3]) and with the results
contained in [C, Proof of Theorem 5], which give s1(NS|X) = 0, c2(X).[S] = 36,
s2(NS|X) = −c2(NS|X) = −c2(X).[S] + c2(S) = −12. □

Lemma 4.3. Let H ∈ NS(X) as in Theorem 4.2; then (H|S)
2 = 2qX(H), where qX is

the BBF quadratic form on H2(X,Z).

Proof. This is proven in [Me1, Prop. 2.24 (4)], once recalled that (H|S)
2 = −E2

S .r̃
∗H2.

□

Corollary 4.4 (Riemann–Roch formula for Cartier divisors on Y ). If D ∈ NS(Y ) then
χ(Y,D) = 1

4(qY (D)2 + 6qY (D) + 12).
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Proof. In this particular case, Theorem 4.2 simplifies into

χ(D) =
1

48
H4 +

1

48
H2.c2(X) + (

1

16
− k2

8
)(H|S)

2 + 3 +
k4

4
− 3k2

2
.

Since q∗β∗D = r̃∗H+kES , by push-pull formula [Ful, proof of Proposition 2.3(c)] and

the commutativity of the diagram above, we have D = 1
2 π̃∗ρ̃

∗H + k
2Σ. The statement

then follows from qY (Σ) = −4, qY (π̃∗ρ̃∗H) = 2qX(H) ([Me1, Prop.2.9]), Riemann–
Roch formula on X ([GrHJo, Example 23.19]) and Lemma 4.3. □

Corollary 4.4 holds for all orbifolds of Nikulin type, since it is topological in nature.
Indeed, we can deform any orbifold of Nikulin type with a Cartier divisor to a Nikulin
orbifold while keeping the class of the divisor algebraic (one just needs to require an
additional (−4)-class of divisibility 2 in the same monodromy orbit of Σ in Theorem
3.2). We deduce the following general result.

Proposition 4.5. Let Y be an orbifold of Nikulin type and let D and m
2 L be equivalent

Q-Cartier Weil divisors on Y , with m ∈ Z and L a Cartier divisor. Let n be the number
of points where D fails to be Cartier. Then

χ(D) =
3

8

(
m4

24
qY (L)

2 +m2qY (L) + 8

)
− n

16
.

Proof. Since Y is an orbifold of Nikulin type it is singular in 28 points. Let β : Ỹ → Y
be a smooth resolution of singularities. By [BuReZ, Theorem 3.3], χ(D) = χ(β∗D)− n

16

as integers. Our assumptions imply that β∗D = m
2 β

∗L, hence (β∗D)4 = m4

16 L
4 =

3m4

8 qY (L)
2.

Moreover, it follows from Corollary 4.4 that

1

24
(β∗D)2.c2(Ỹ ) =

m2

96
(β∗L)2.c2(Ỹ ) =

m2

4
(χ(L)− 3− 1

4
qY (L)

2) =
3m2

8
qY (L),

since L4 = 6qY (L)
2 and

1

24
(β∗L)4 +

1

24
(β∗L)2.c2(Ỹ ) + 3 = χ(β∗L) = χ(L) =

1

4
(qY (L)

2 + 6qY (L) + 12).

Hence, χ(D) = χ(β∗D)− n
16 = 3

8(
m4

24 qY (L)
2 +m2qY (L) + 8)− n

16 . □

4.2. Projective models of quotients. Let X be as above, with ρ(X) = 9. Let us
denote by A the ample generator of the orthogonal to E8(−2) in NS(X). In particular
A is preserved by σ. Then the map φ|A| : X → P(H0(X,A)∨) is such that the au-

tomorphism σ on X is induced by a projective transformation on P(H0(X,A)∨), still
denoted by σ. Hence σ acts on the vector space U := H0(X,A)∨, splitting it in the
direct sum U+ ⊕ U− where U+ and U− are the eigenspaces of the eigenvalues +1 and
−1 respectively.

The fourfold X projects to P(U+) and P(U−); since we are considering projective
spaces which are invariant for σ, these two projections induce maps on the quotient,
i.e. they induce the two maps X/σ 99K P(U+) and X/σ 99K P(U−). These rational
maps extend to the partial resolution Y , so we obtained two maps Y 99K P(U+) and
Y 99K P(U−). We are interested in these maps, which essentially give the projective
models of the quotient orbifold keeping trace of the construction of this orbifold as
quotient of X.

The maps Y 99K P(U+) and Y 99K P(U−) are of course induced by some linear
systems on Y and in order to find them we are looking for divisors D on Y such that
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ρ̃∗π̃
∗D = π∗ρ∗D = A (because the maps to P(U±) are induced by the projections from

P(H0(X,A)∨)).
If a connected component Z of the fixed locus Fixσ(X) of σ on X is contained in

one of the two eigenspaces, then the generic member of the linear system giving the
projection to the other eigenspace has to pass through Z. Thus the corresponding
divisor on X/σ is Weil but not necessarily Cartier and passes through n of the 28
singular points of X/σ and possibly through the singular surface of X/σ. Nevertheless,
since the map is just 2 : 1, we can assume that generically the divisor on X/σ passes
simply through the singularities. Let us now consider the partial resolution ρ : Y →
X/σ. The divisor which we are considering on X/σ induces a divisor D1 on Y . Since
ρ is an isomorphism outside Σ (which is the exceptional divisor of ρ mapped to the
singular surface), the Weil divisorD1 passes simply through n of the 28 isolated singular
points of Y and then fails to be Cartier on these points. Moreover, if the divisor on
X/σ passes through the singular surface, then D1 has a component on the exceptional
divisor Σ, with multiplicity 1; otherwise it has none.

We observe that the linear system on X which corresponds to one of the projections
and which is not a complete linear system (since its members have to pass through a
part of Fixσ(X)) induces a complete linear system on V (where all the fixed locus is
blown up).

By the previous discussion we deduce that the divisors that we are looking for on Y
are two divisors D1 and D2 (each associated to one of the two projections on the two
eigenspaces) such that

q∗β∗Di = r̃∗A+ kiES , with ki = 0,−1 and thus ρ̃∗π̃
∗Di = A.

Exactly one between D1 and D2 fails to be Cartier in a specific point (indeed a
specific isolated fixed point is contained in exactly one eigenspace). The same holds
true for the fixed surface (it is contained in exactly one of the eigenspaces), hence
ki = −1 for exactly one value among 1 and 2 and ki = 0 for the other one. Indeed, if

Di is orthogonal to Σ, then β∗Di is orthogonal to ẼS and q∗β∗Di is orthogonal to ES ,
i.e. ki = 0. Similarly if the intersection of Di with Σ is non trivial, then ki = −1.

So, given X a generic member of a family of fourfolds of K3[2]-type with a symplectic
involution, we determine two Q-Cartier Weil divisors D1 and D2 which give two maps
φ|Di| : Yi → Pmi . In the following table we summarize the properties of D1 and D2

and the dimensions mi of the projective spaces target of the map φ|Di|. We choose
D1 to be always orthogonal to the exceptional divisor Σ and hence D2 is always the
divisor meeting Σ. Hence we have also to declare the number of points where Di fails
to be Cartier (and this is always denoted by ni). As in the other tables, in the first
column we identify the family of X (and hence of Y ) by giving the explicit embedding
of NS(X) in L and in the last we give the reference to the propositions were the results
are proved.

25



Embedding NS(X) ⊂ L (n1, n2) m1 m2 Proposition

j1, d ≡ 1 mod 2 (12, 16) d2

4 + 3d
2 + 5

4
d2

4 + d− 1
4 4.9

j1, d ≡ 0 mod 2 (16, 12) d2

4 + 3d
2 + 1 d2

4 + d 4.9

j2, d ≡ 1 mod 2 (28, 0) d2

4 + 3d
2 + 1

4
d2

4 + d+ 3
4 4.10

j3, d ≡ 3 mod 4 (28, 0) d2

4 + 3d
2 + 1

4
d2

4 + d+ 3
4 4.10

j̃, d ≡ 0 mod 2 (0, 28) d2

4 + 3d
2 + 2 d2

4 + d− 1 4.12

(4.1)

Proposition 4.6. Let ρ(X) = 9, A, D1 and D2 be as above and q(A) = 2d. Then both
χ(Y,D1) and χ(Y,D2) are integer if and only if ni and ki are as in the following (up
to a possible switch between D1 and D2):

• if d is even then
• (n1, k1) = (0, 0) and (n2, k2) = (28,−1) or
• (n1, k1) = (16, 0) and (n2, k2) = (12,−1);

• if d is odd then
• (n1, k1) = (28, 0) and (n2, k2) = (0,−1) or
• (n1, k1) = (12, 0) and (n2, k2) = (16,−1).

Proof. We recall that for a divisor A on a fourfold of K3[2]-type X it holds

1

48
A4 +

1

4
A2.c2(X) +

3

2
=

1

2
χ(A) =

1

16
(qX(A) + 4)(qX(A) + 6),

which, combined with Theorem 4.2, gives

χ(Y,Di) =
1

16
(qX(A) + 4)(qX(A) + 6)− 3

2
+

(
1

16
− k2i

8

)
(A|S)

2 + 3− ni

16
+

k4i
4

− 3
k2i
2
.

Now we recall that qX(A) = 2d and, by Lemma 4.3, A2
|S = 2qX(A) = 4d, so

χ(Y,Di) =
d2

4
+

5

4
d+

d

4
− k2i d

2
+ 3− ni

16
+

k4i
4

− 3
k2i
2
.

We observe that if ki = 0,−1, then |ki| = k2i = k4i , hence we obtain the following
formula:

χ(Y,Di) =
d2

4
+

3d

2
− |ki|d

2
− ni

16
− 5|ki|

4
+ 3.

Let us assume k1 = 0 and then k2 = −1. If d is even, then χ(Y,D2) ∈ Z forces n2 ≡ 12
mod 16, which implies n2 = 12 or n2 = 28. If d is odd then χ(Y,D2) ∈ Z forces n2 ≡ 0
mod 16, which implies n2 = 0 or n2 = 16. □

We observe that if ni = 0 for a certain divisor Di, then it is a Cartier divisor on Y .
In this case Di is π∗(A) and it is orthogonal to the exceptional divisor if ki = 0, it has
a positive intersection with the divisor Σ if ki = −1.

Lemma 4.7. The variety Y is normal with terminal singularities. In particular Y is
a klt variety.
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Proof. The variety Y is smooth outside 28 points where its singularities are locally
the quotient of C4 by an involution g. In particular it is an orbifold. Hence it is
normal. Moreover, the local action of the automorphism g is given by the diagonal
matrix diag(−1,−1,−1,−1) ∈ SL(4). The age of g is 2, hence the singularities of Y
are terminal singularities (see [Jo, Theorem 6.4.3]), and in particular the pair (Y, 0) is
a klt pair. □

Proposition 4.8. Let X, A, D1 and D2 be as in Corollary 4.6. Then

χ(Y,Di) = h0(Y,Di).

Proof. The Kawamata–Vieweg vanishing theorem holds, see [KoMor, Theorem 2.70],
for the variety Y . With respect to the notation in loc.cit. one can assume ∆ = 0, and
N ≡ Di, i = 1, 2. It remains to prove that the Di’s are nef and big divisors. Since
ρ(X) = 9 and A is the generator of E8(−2)⊥ in NS(X), it can be assumed to be an
ample divisor. In particular it is nef, so π∗(A) is a nef divisors. Since the sign of the
top self-intersection of A is the same as the sign of the self-intersection of π∗(A), we
deduce that π∗(A) is a nef and big divisor, by [KoMor, Proposition 2.61]. Moreover,
ρ∗(Di) = π∗(A) and since the properties of being big and nef are birational invariants,
we deduce that Di is nef and big. □

In Section 2 we associated the divisor A to a certain embedding of NS(X) in
H2(X,Z), i.e. we considered A = j(h) where h is vector in U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩.
In Propositions 3.5, 3.6, 3.7, 3.8, we studied the image of this divisor under the map
π∗ and we determined the generators of NS(Y ). So, by comparing the conditions on
Di with the Néron–Severi group of Y computed in Section 3, one obtains the following
theorems.

Theorem 4.9. Let NS(X) = (j1, λ−)(⟨2d⟩⊕E8(−2)) and A the generator of j1(⟨2d⟩).
Let D1 and D2 be Q-Cartier Weil divisors such that 2D1 = ρ∗(π∗(j1(h))) ∈ NS(Y )

and 2D2 = ρ∗π∗(j1(h)) − Σ ∈ NS(Y ). Then if d is even (resp. odd), D1 fails to be
Cartier in 16 (resp. 12) points and D2 in the other 12 (resp. the other 16) points.
These divisors are such that ρ̃∗π̃

∗(D1) = ρ̃∗π̃
∗(D2) = A and

H0(X,A) = (ρ−1 ◦ π)∗H0(Y,D1)⊕ (ρ−1 ◦ π)∗H0(Y,D2).

Proof. Let us consider the case d even. The other one is similar. One first considers
ρ∗(π∗(j1(h))) ∈ NS(Y ), ρ∗(π∗(j1(h))) − Σ ∈ NS(Y ). Then there exist D1 and D2 Q-
Cartier Weil divisors such that a multiple of Di, denoted by hiDi is one prescribed
element in NS(Y ). We choose hi to be the minimum among positive integers such
that hiDi ∈ NS(Y ). In particular, due to the singularities of Y , hi is either 1 or 2. If
hi = 1, then Di is Cartier, otherwise it is a Q-Cartier Weil divisor on Y and it fails
to be Cartier in ni points. The possibilities for the divisors D1 and D2 are given in
Corollary 4.6: the divisor D1 is orthogonal to Σ, hence it is characterized by k1 = 0;
then there are two possibilities for n1: either n1 = 0 or n1 = 16. If n1 = 0, then D1 is
Cartier and h1 = 1, otherwise D1 is not Cartier and h1 = 2. The choice of one of these
two possibilities determines also the properties of D2, which is necessarily Q-Cartier
Weil and not Cartier, hence h2 is necessarily 2.

If h1 = 1, then the divisors D1 would be Cartier, but this is not the case, since
the divisor ρ∗(π∗(j1(h)))/2 is not Cartier (NS(Y ) is described in Proposition 3.5). We
deduce that h1 = 2, so n1 = 16, n2 = 12.

The map ρ is the contraction of Σ so, if B ∈ NS(Y ) and B ̸= rΣ, then ρ∗(B) is a
multiple of the unique generator of NS(X/σ). Since π is a 2 : 1 map and A is invariant
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for σ, we have π∗(ρ∗(hiDi)) = 2A for each hiDi ∈ NS(Y ) as above. In particular
we have π∗(ρ∗(D2)) = ρ̃∗π̃

∗(D2) = A (since h2 = 2) and thus the sections of D2

correspond to sections of A which are either all invariant or all anti-invariant for the
action of the involution σ. So the sections of D2 span a subspace of H0(X,A) which
is contained (possibly coincides) either in U+ or in U− where U± are the eigenspaces
of H0(X,A) for the action of σ∗. Similarly, the span of the sections of 2 (D1/2) = D1

is contained in the other eigenspace. In order to conclude that each one of φ|D1|
and φ|D2| is associated to one of the two projections of X to P(U+) and to P(U−),
it suffices to prove that the space spanned by the sections of D2 (resp. D1) is not
just contained, but coincides with one of the eigenspaces. So it suffices to prove that
dim

(
H0(Y,D2)⊕H0(Y,D1)

)
= dim(H0(X,A)).

We are now able to compute χ(Di), i = 1, 2, by Theorem 4.2 and we know that
χ(Di) = h0(Di), by Proposition 4.8. Since qX(A) = 2d, one checks

1
8(qX(A) + 6)(qX(A) + 4) = dim(H0(X,A)) = dim(H0(Y,D1)) + dim(H0(Y,D2)) =(

d2

4 + 3d
2 − 1 + 3

)
+
(
d2

4 + 3d
2 − d

2 − 12
16 − 5

4 + 3
)
= d2

2 + 5d
2 + 3.

Since ρ̃∗π̃
∗(Di) = A we conclude that

H0(X,A) = (ρ−1 ◦ π)∗H0(Y,D1)⊕ (ρ−1 ◦ π)∗H0(Y,D2).

□

Theorem 4.10. Let d ≡ 1 mod 2, s = 2, 3 and NS(X) ≃ (js, λ−)(⟨2d⟩ ⊕ E8(−2)).
Let A be the generator of js(⟨2d⟩). Let D1 be the Q-Cartier Weil divisor such that
2D1 = ρ∗(π∗(j2(h))) ∈ NS(Y ) and D2 the Cartier divisor D2 := (ρ∗π∗(j1(h))− Σ) /2 ∈
NS(Y ). Then D1 fails to be Cartier in 28 points, ρ̃∗π̃

∗(D1) = ρ̃∗π̃
∗(D2) = A and

H0(X,A) = (ρ−1 ◦ π)∗H0(Y,D1)⊕ (ρ−1 ◦ π)∗H0(Y,D2).

Proof. The proof is similar to the previous one. One first observes that ρ∗(π∗(j2(h))) ∈
NS(Y ) and (ρ∗(π∗(j2(h)))− Σ) /2 ∈ NS(Y ) by the Propositions 3.6 and 3.7. There
exist D1 and D2 Q-Cartier Weil divisors such that a multiple of Di, denoted by hiDi

is one prescribed element in NS(Y ). We choose hi to be the minimum among positive
integers such that hiDi ∈ NS(Y ). In particular, due to the singularities of Y , hi is
either 1 or 2. If hi = 1, then Di is Cartier, otherwise it is a Q-Cartier Weil divisor on
Y and it fails to be Cartier in ni points. The possibilities for the divisors D1 and D2

are given in Corollary 4.6: the divisor D1 is orthogonal to Σ, hence it is characterized
by k1 = 0; then there are two possibilities for n1, which in turn determine uniquely
the values of n2: either n1 = 28 and n2 = 0 or n1 = 12 and n2 = 16. If n1 = 28, then
n2 = 0 and so D2 is Cartier, otherwise (if n1 = 12), neither D1 nor D2 are Cartier. As
in the previous proof, we are looking for divisors Di, i = 1, 2, such that π∗(ρ∗(Di)) = A.
Since

π∗
(
ρ∗

(
ρ∗ (π∗ (j2 (h)))− Σ

2

))
= A,

we obtain

D2 = (ρ∗(π∗(j2(h)))− Σ) /2,

h2 = 1 and D2 is Cartier. This implies that n1 = 28 and D1 fails to be Cartier in
all the 28 singular points of Y . As in the previous proposition one is able to compute
χ(Di), i = 1, 2, by Theorem 4.2 and we know that χ(Di) = h0(Di), by Proposition 4.8.
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So, recalling that qX(A) = 2d, one can check that
1
8(qX(A) + 6)(qX(A) + 4) = dim(H0(X,A)) = dim(H0(Y,D1)) + dim(H0(Y,D2)) =(

d2

4 + 3d
2 − 28

16 + 3
)
+
(
d2

4 + 3d
2 − d

2 − 5
4 + 3

)
= d2

2 + 5d
2 + 3.

Since ρ̃∗π̃
∗(Di) = A we conclude that

H0(X,A) = (ρ−1 ◦ π)∗H0(Y,D1)⊕ (ρ−1 ◦ π)∗H0(Y,D2).

□

Remark 4.11. When d = 1 and js = j2, in the case discussed in Proposition 3.14, we
obtain h0(D1) = h0(D2) = 3, respectively with (n1, k1) = (28, 0) and (n2, k2) = (0,−1).
When d = 3 and js = j3, in the case of the Fano variety of a symmetric cubic discussed
before Proposition 3.15, we obtain h0(D1) = 8 and h0(D2) = 7, respectively with
(n1, k1) = (28, 0) and (n2, k2) = (0,−1).

Theorem 4.12. Let d ≡ 0 mod 2 and NS(X) ≃ Λ̃2d be the primitive closure of the

embedding (j̃, λ−)(⟨2d⟩ ⊕ E8(−2)) where A is the generator of j̃(⟨2d⟩).
Let D1 be the Cartier divisor D1 ≃ ρ∗(π∗(j̃(h)))/2 ∈ NS(Y ) and D2 be a Q-Cartier

Weil divisor such that 2D2 ≃
(
(π∗(j̃(h)))/2− Σ

)
∈ NS(Y ). Then D2 fails to be Cartier

in 28 points, ρ̃∗π̃
∗(D1) = ρ̃∗π̃

∗(D2) = A and

H0(X,A) = (ρ−1 ◦ π)∗H0(Y,D1)⊕ (ρ−1 ◦ π)∗H0(Y,D2).

Proof. The proof is completely analogous to the previous ones. We omit it. □

We now give an example of application of the previous theorems, in particular of
Theorem 4.9 with d = 1.

Proposition 2.4 shows that, when d = 1, the lattice Λ2 ≃ ⟨2⟩ ⊕ ⟨−2⟩⊕8 admits two
non-isometric embeddings inside L = LK3⊕⟨−2⟩, and in particular j1 with orthogonal
isometric to T2,1 := U⊕2 ⊕ E8(−2)⊕ ⟨−2⟩⊕2.

An explicit construction of this family is given in [C, §8]: it is the family of smooth
double EPW sextics which carry a symplectic involution, as it is observed in [MoW,
Example 6.8].

Indeed, the very general element of this family is X = XA a double EPW sextic, as
defined in [O’G], associated with a Lagrangian subspace A ∈ LG(

∧3 V ) invariant for

the action on
∧3 V induced by the involution i of the six-dimensional vector space V

which has exactly four eigenvalues +1. The fourfold XA is defined as a double cover
of a so-called EPW sextic ZA ⊂ P(V ) ≃ P5, which in this case is invariant for i, and it
carries an ample invariant class A ∈ NS(XA) of degree two; the map φ|A| : XA → P5

associated to A factors through the double cover f : XA → ZA.
As a consequence, we get two involutions induced by i on XA and we call σ the

symplectic one among the two lifts. It is proven in [C, Prop. 19] that the fixed locus
Fixσ(XA) is the union of 28 isolated fixed points and one K3 surfaces. In fact, 12
points are the preimages in the double cover of six points q1, . . . , q6 ∈ P(V−), whereas
the other 16 points lie in the intersection of the ramification of f with P(V+).

Finally, the fixed K3 surface S is the K3 surface obtained as double cover of a
quadric surface Q ⊂ ZA ∩ P(V+) ramified along its intersection with a quartic surface.
The double cover endows S with a non-symplectic involution and a copy of U(2) is
primitively embedded in NS(S). By Proposition 3.5, if the conjecture holds we should
have TS ≃ U(2)⊕2 ⊕ E8(−1)⊕ ⟨−4⟩⊕2.

Next we look at the Nikulin fourfold Y obtained as partial resolution of XA/σ. Using
the notation of Corollary 4.6 and of Theorem 4.9, we obtain on Y two divisors D1 and
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D2 with (n1, k1) = (12, 0) and (n2, k2) = (16,−1). The orbifold Riemann–Roch formula
in Theorem 4.2 implies h0(D1) = 4 and h0(D2) = 2 (cfr. also with Table 4.1).

The quotient of P5 by the involution is the join in P12 of a conic C ⊂ P2
1 and a second

Veronese v2(P3) ⊂ P9
2 where P2

1 an P9
2 are general linear subspaces of P12. With the

notation as in Theorem 4.9 we have a polarization 2D1 on Y such that qY (2D1) = 4
(see the proof of Theorem 4.9).

Lemma 4.13. The image φ|2D1|(Y ) = Z̄ ⊂ P12 is the intersection of J(C, v2(P3)) with
a special cubic I. The map φ|2D1| is generically 2 : 1 ramified along a surface.

Proof. The image φ|2D1|(Y ) = Z̄ ⊂ P12 can be seen as the image of a symmetric
EPW sextic through the involution described above. The equation of the sextic can
be written as a cubic in term of invariant quadric polynomials. Such polynomials can
be seen as coordinates of P12 so the image is defined as the intersection of J(C, v2(P3))
with a cubic.

The image Z̄ is singular along 6 points C ∩ I and three surfaces I ∩v2(P3) ⊂ P9
2 (two

of the components are quadric surfaces, one is a Kummer quartic) and the image of the
singular surface of degree 40 on ZA. Only the Kummer quartic is in the ramification
since the quadric component is in the ramification of the symplectic involution. □

Note that J(C, v2(P3)) ⊂ P2 can be seen as the intersection of the cone C(P2
1, v2(P3))

with a quadric cone with vertex P9
2. For general projective models of a general defor-

mation we expect the above quadric cone to be more general.

5. Orbifolds of Nikulin type of BBF degree 2

The aim of this section is to study the first locally complete family of projective
orbifolds of Nikulin type. This will be a family polarized by a class of BBF degree 2. It
follows from the Riemann-Roch Theorem 1.3 that their projective models are fourfolds
in P6.

Note that there are two types of classes of BBF degree 2 in the second cohomology
group U(2)⊕3 ⊕E8(−1)⊕⟨−2⟩⊕ ⟨−2⟩ of an orbifold of Nikulin type, respectively with
divisibility 1 and 2.

An example of a Nikulin orbifold with the class of the polarization of divisibility 2
is given by the quotient of the Fano variety of lines on a symmetric cubic fourfold by
the involution with signature (2, 4). Indeed, by Remark 4.11 the model of X in P14 is
symmetric with respect to an involution with invariant space P7. After projecting from
it we obtain a fourfold in P6 being a special projective model of a Nikulin orbifold of
BBF degree 2 with divisibility 2.

In this section, we are interested in the case of a polarization of BBF degree 2
divisibility 1. We first describe some special elements of the locally complete family,
given by the Nikulin orbifolds. We show that they correspond to double EPW quartics,
see Lemma 5.1, and that they are double covers of complete intersections of type (3, 4) in
P6, see Proposition 5.5. Then in Section 5.2 we generalize the previous results, showing
that all the projective deformations of these Nikulin orbifolds are double covers of
special complete intersections of a cubic and a quartic in P6.

5.1. Geometry of (Λ̃4, j̃)-polarized K3[2]-fourfolds. (cf. [vGS, §3.5]) We consider

a fourfold of K3[2]-type with Néron–Severi group NS(X) ≃ Λ̃4. Then X admits a
symplectic involution σ such that the corresponding Nikulin orbifold Y has a polariza-
tion of BBF degree 2 orthogonal to the exceptional divisor Σ, see Proposition 3.8. We
denote by D1 this divisor.

30



We now describe the image φ|D1|(Y ) ⊂ P6. As in Proposition 2.8, we can assume
that NS(X) is generated by A, E8(−2) and F1 where qX(A) = 4 and F1 = (A+v)/2 and
v ∈ E8(−2) with qX(v) = −4. Let F2 = (A−v)/2 then F 2

i = 0 and A = F1+F2. After
monodromy operations we can assume that A is big and nef. We denote C(P2 × P2)
the cone in P9 over the Segre embedding P2 × P2 ↪→ P8.

Lemma 5.1. The linear system |A| defines a 2 : 1 map to C(P2 × P2) ⊂ P9. The
image is symmetric with respect to a linear involution σ with signature (3, 7) on P9

that exchanges the factors in the Segre product. Moreover, the image is isomorphic to
an EPW quartic corresponding to a Verra threefold that is symmetric with respect to
the involution exchanging the factors in P2 × P2.

Proof. By the construction of NS(X) given in Proposition 2.8, one obtains that Fi

are primitive in NS(X) and that the linear system of A = F1 + F2 defines a 2 : 1
map to C(P2 × P2), see [IKKR, Thm. 1.1]. The symplectic involution σ acts as −1
on E8(−2), hence σ∗F1 = F2. So σ switches the two copies of P2 in C(P2 × P2) and
φ|A|(X) is symmetric with respect to the linear involution which induces σ and which

has signature (3, 7) on P9.
Moreover, U(2) ≃ ⟨F1, F2⟩ is primitive in NS(X). It follows that X is in the moduli

space of lattice polarized fourfolds of K3[2]-type with U(2) contained in the Néron–
Severi lattice. It is thus a deformation of double EPW quartics described in [IKKR].

It follows as in [CKKMo, §6.5] that X is related to a threefold V ⊂ P2×P2 symmetric
with respect to the involution interchanging the factors. □

Lemma 5.2. The quotient of C(P2 × P2) ⊂ P9 by σ is isomorphic to the projection of
this cone from the invariant P2

− ⊂ P9. This quotient is a cubic hypersurface Z3 that is
isomorphic to a cone in P6 over a symmetric determinantal cubic fourfold in P5. In
particular its singular locus is a cone over the Veronese surface in P5.

Proof. We can assume C(P2 × P2) is defined by 2 × 2 minors of a 3 × 3 matrix with

entries being a basis of the hyperplane in P9∨ orthogonal to the vertex of the cone. So
elements of P9 can be thought as classes of pairs (x,M) such that x ∈ C and M is
a 3 × 3 matrix of rank 1. The involution σ is then just the map transposing M i.e.
(x,M) 7→ (x,MT ) and

P2
− = {(0,M)|M ̸= 0, M +MT = 0}.

The corresponding projection is then: P9 ∋ (x,M) 7→ (x,M + MT ) ∈ P6
+ where

P6
+ = {(x,M)|x ∈ C, M = MT }. Since for a rank 1 matrix M , we have M + MT

is a matrix of rank at most 2, the image of the projection is a cone over the space of
symmetric matrices with trivial determinant. The latter is singular in the cone over
the locus of rank 1 symmetric matrices, which is a cone over a Veronese surface. □

We denote by p : P9 → P6 the projection from the σ-invariant P2
− ⊂ P9 described

in the previous lemma and we observe that p restricts to a 2 : 1 map C(P2 × P2) →
p(C(P2 × P2)) with branch locus isomorphic to the cone over the diagonal of P2 × P2.

Proposition 5.3. Let J := p(φ|A|(X)) ⊂ P6, then J is a complete intersection Z3 ∩
Z4 ⊂ P6 of two hypersurfaces Z3 and Z4 of degrees 3 and 4 respectively. Moreover, J is
singular along a surface which is the disjoint union of two (possibly reducible) surfaces:
S16 of degree 16 and S36 of degree 36.

Proof. This proof is supported by a calculation using Macaulay2 whose script is pre-
sented in the Appendix. Using the script we find an explicit example, defined in positive
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characteristic, of fourfold J satisfying the assertion of the theorem. We need only to
argue that the invariants (degree, dimensions of the variety and decomposition of its
singular locus) of the constructed variety are as expected to conclude by semicontinuity.
Note that, once we get the expected invariants it is not important if the computation
is made in positive or 0 characteristic as semicontinuity permits us to pass to charac-
teristic zero in any case.

Observe first that, by the definition and properties of the map p, the variety J is
contained in the hypersurface Z3 which is the cone over the symmetric determinantal
cubic hypersurface in P5 described in Lemma 5.2. In particular Z3 is singular along a
threefold cone over the Veronese surface and has generically A1 singularities. Moreover,
by construction, J is the image of a symmetric quartic hypersurface in P2 × P2, being
a symmetric EPW quartic, via the quotient by the symmetry. It follows that J is
a fourfold of degree 12 in Z3. Using our script in Macaualy2 we find an explicit case
where J is complete intersection of Z3 with a quartic and this must hence be the generic
behaviour.

Moreover the intersection of the singular locus of Z3 with J is a quartic section of
a cone over the Veronese surface and is part of the singular locus of J . Using our
Macaulay 2 script we check on an example that this quartic section of the cone over
the Veronese surface is a surface of degree 16 as expected hence this is also the generic
case for J .

Recall now, that a very general EPW quartic is singular along a surface of degree 72
in P2 × P2 ⊂ P9. It follows that a general symmetric EPW quartic has also at least a
surface of degree 72 as singularities. Our Macaulay2 computation shows that there are
symmetric EPW quartics for which the singular surface is indeed of degree 72. This
surface is mapped via the map p to a surface in J which is necessarily part of the
singular locus and has degree at least 36. Our Macaulay 2 script produces an example
where this surface of degree 72 is mapped to a surface of degree 36, hence this must be
the general behaviour for symmetric EPW quartics.

Summing up, the variety J in general must contain in its singular locus the following
surfaces:

(1) the intersection of the singular locus of Z3 with Z4. Since Sing(Z3) is a cone
over the Veronese surface, Sing(Z3) ∩ Z4 has degree 16;

(2) the quotient of the singular locus of the symmetric EPW quartic by the invo-
lution, which is a variety of degree 72 : 2 = 36.

Since in our explicit example the singular locus of J consists of two disjoint surfaces
one of degree 16 and one of degree 36 and both need to appear in the very general case
this concludes the proof. □

Remark 5.4. In the above proof we can avoid computer calculation with some addi-
tional effort. First, we prove that J is in general smooth in codimension 1. Indeed, if J
was singular in codimension 1, then the corresponding symmetric EPW quartic would
either be singular in codimension 1 or would need to contain the whole ramification
locus including the vertex of the cone. Both these cases cannot occur, see [IKKR,
Section 3].

Next, from the shape of the Néron– Severi lattice of a very general symmetric double
EPW quartic we can deduce that there are no divisors contracted by the map from the
double EPW quartic to the cone over P2 × P2 hence the very general symmetric EPW
quartic is singular in a surface of degree 72 and has no additional singularities as in
the very general non-symmetric case.
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Finally, following the construction in [IKKR, Proposition 2.14], we can describe
the symmetric EPW quartic via the varieties of (1, 1) conics on their corresponding
symmetric Verra fourfolds (see Lemma 5.1) and deduce that the singular surface of
degree 72 has no component contained in the cone over the diagonal. Hence the image
of this singular surface of degree 72, which is necessarily symmetric, via the projection
p is a surface of degree 36 and by the fact that p is a local isomorphism outside its
branch locus is necessarily a component of the singular locus of J . For the same reason
J is smooth outside the union of the branch locus and the surface of degree 36.

Proposition 5.5. The map φ|D1| : Y → P6 is 2 : 1 onto φ|D1|(Y ) ⊂ P6 and its image

is isomorphic to J , the complete intersection Z3 ∩ Z4 ⊂ P6. The exceptional divisor
Σ ⊂ Y is mapped to a component of degree 4 of the surface S16. Moreover, the (−2)-
class D1 − Σ is effective on Y and contracted to a surface via 2D1 − Σ. There are no
more contractible classes on any birational model of Y .

Proof. By Section 4.2, φ|D1|(Y ) is the image of the projection of φ|A|(X) from a

σ-invariant subspace in H0(X,A)∨. In our context this implies that φ|D1|(Y ) =
p(φ|A|(X)) and hence Lemma 5.1 shows that φ|D1| is 2 : 1 and Proposition 5.3 de-
scribes φ|D1|(Y ). In particular we have the following diagram

X
2:1 //

2:1

��

φ|A|

**
φ|A|(X)

2:1

��

� � // C(P2 × P2)

2:1
��

� � // P9

p

��

Y
2:1 //

φ|D1|

11J = Z4 ∩ Z3
� � // Z3 = p(C(P2 × P2)) �

�
// P6.

where J := p(φ|A|(X)) is Z4∩Z3 by Proposition 5.3. The exceptional divisor Σ resolves
the singularity ofX/σ in theK3 surface image of the σ-fixed surface S onX. The latter
surface is in C(P2 × P2). The symplectic involution on X is induced by the symmetry
on P9 that interchanges the factors of P2 × P2. So the K3 surface S in C(P2 × P2),
being fixed by the involution, is contained in the cone over the diagonal in P2 × P2. It
follows that its image is a component of S16. By Lemma 4.3 it is a surface S4 of degree
4 which is necessarily projectively isomorphic to the Veronese surface.

For the second part we observe that the proper transform on Y of the intersection
of φ|D1|(Y ) with the span of S4 in P6 is the (−2)-class D1 −Σ. The system 2D1 −Σ is
big and induces its contraction since on φ|D1|(Y ) it can be seen as a system of quadrics
containing the Veronese surface S4 i.e. it contracts the planes spanned by conics on S4

which fill the cubic Z3 intersected with the span of S4. The locus contracted by 2D1−Σ
is hence exactly the (−2)-class D1−Σ. Observe that there can be no more contractible
divisorial classes on any birational model of Y . For that, we work in codimension 1
knowing [MeR1, Lemma 3.2] that any birational map is regular in codimension 1. Now,
since the Picard number of Y is 2, among three big divisor classes one of them is a
positive combination of the two other ones. In particular, if we have three divisor classes
each contracted by some map associated to a big divisor then one of these big divisors
is a positive linear combination of the two remaining ones. But a positive combination
of two big divisors can only contract subvarieties which are contracted by both divisors,
so all three contracted divisors would need to have a common component. However,
both Σ and D1 −Σ are represented by distinct irreducible effective divisors so have no
common component. □
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In the next section we will study the locally complete projective family of orbifolds
of Nikulin type to which Y as in Proposition 5.5 belongs and we will show that they
can all be realized as certain double covers, in complete analogy with what happens
in the case of double EPW sextics. Since the full monodromy group of orbifolds of
Nikulin type of dimension 4 is not known yet, we will first use the non-symplectic
involution on Y given by the double cover to produce an involution of H2(Y,Z) which
is a monodromy operator and has the span of the divisor D1 as the only invariant
classes. We recall the following notation: given an element e ∈ H2(Y,Z), the reflection

re in e is the isometry defined by re(x) = x − 2BY (x,e)
qY (e) e (it is integral only for special

values of qY (e) and div(e)).

Lemma 5.6. Let D1 be the class with qY (D1) = 2 and divisibility 1 considered above.
The isometry −rD1, such that x 7→ −x + BY (x,D1)D1, in H2(Y,Z) is a monodromy
operator of H2(Y,Z).

Proof. The map φ|D1| is a generically 2 : 1 map onto its image and so there exists the
involution Θ which is the cover involution of Y → φ|D1|(Y ). First φ|D1| contracts the
exceptional (−4)-class Σ and then it identifies points switched by Θ. So Θ∗ acts as
−1 on the transcendental lattice TY and acts trivially on NS(Y ), generated by D1 and
Σ, see Proposition 3.8. Moreover Θ∗ is a monodromy operator of H2(Y,Z), since it is
induced by an automorphism of Y .

Let rΣ be the reflection given by rΣ(x) = x + 1
2BY (x,Σ)Σ for x ∈ H2(Y,Z). It is

a monodromy operator by [MeR2, Proposition 1.5]. We observe that −rD1 = Θ∗ ◦ rΣ
and so −rD1 is a monodromy operator. □

5.2. The family of complete intersections (3, 4). Let Y be an orbifold of Nikulin
type such that (

H2(Y,Z), qY
)
≃ U(2)⊕3 ⊕ E8(−1)⊕ ⟨−2⟩ ⊕ ⟨−2⟩,

such that there exists an ample Cartier divisor H on Y with degree qY (H) = 2 and
divisibility 1. Such an orbifold exists by surjectivity of the period map. Since the Fujiki
constant for Y is 6 we have H4 = 24.

Theorem 5.7. The map φ|H| : Y → P6 is 2 : 1 and its image is a special fourfold of

codimension 2 in P6 being the complete intersection of a cubic and a quartic. The map
is branched along a surface of degree 48.

Proof. By Corollary 4.4 and the Kawamata–Viehweg vanishing theorem we have

h0(Y,O(H)) = 7.

Hence the target space of φ|H| is P6.
Let Y0 be the special Nikulin orbifold considered in Section 5.1 and H0 be the divisor

D1 ∈ NS(Y0) considered in Proposition 5.5.
From Proposition 5.5, φ|H0| is 2 : 1 and hence there exists an involution Θ0 on Y0,

which is the cover involution and it is non-symplectic. Moreover the image φ|H0|(Y0)
is a normal complete intersection of type (3, 4). The idea of the proof is to show that
a general deformation of (Y0, H0) is of the same shape.

Let (π : Y → B,H) be a family of polarized orbifolds of degree 2 and divisibility
1 with central fiber (Y0, H0) over a small disc B ∋ 0. From Lemma 5.6, −rH0 is a
monodromy operator of H2(Y0,Z).

Let tn ∈ B, Ytn be the fiber of π over tn and let Htn be the restriction of H to Ytn .
We fix a sequence tn → 0 such that NS(Ytn) = ZHtn . By parallel transport −rHtn

is
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a monodromy operator of H2(Ytn ,Z) and, by a standard argument using ρ(Ytn) = 1
and the global Torelli theorem (see for example [MeR1, Theorem 1.1]), −rHtn

lifts to
an involution Θtn : Ytn → Ytn .

Arguing as in [O’G, §2], the limit of Θtn is an involution on Y0 and we show that
it is Θ0. We denote the graph of Θtn by Γtn . The analytic cycles Γtn converge (see
proof of [H, Thm. 4.3]) to Γ0 with a decomposition Γ + niΩi where Γ is the graph of
a birational map Y0 99K Y0 and Ωi are irreducible in Di × Ei with Di, Ei ⊂ Y0 proper
subsets. As in [O’G, §2], Γ0 induces on H2(Y0,Z) exactly the monodromy operator
−rH0 via parallel transport.

Again as in loc.cit., the invariance of Γtn with respect to the exchange of the two
factors in Y0×Y0 implies that Γ0 is invariant as well and, due to the different nature of
the two parts in the decomposition above, that Γ is the graph of a birational involution.

If Di has codimension > 1, the action on H2(Y0,Z) of [Ωi]∗ is zero, thus we assume
that Di is an effective divisor in NS(Y0) = ⟨H0,Σ⟩, but this implies that the action
of Γ on TY0 coincides with the action of Γ0, i.e. it acts as − id on the transcendental
lattice. It follows from Proposition 5.5 that there are exactly 2 contractible classes on
Y0: the (−4)-class Σ and the (−2)-class H0 − Σ. Hence Σ and H0 − Σ are preserved
by any birational map, and thus also by [Γ]∗ i.e.

[Γ]∗(H0) = H0, [Γ]∗(Σ) = Σ.

We conclude that, since [Γ]∗ acts on H2(Y0,Z) preserving both H0 and Σ and acts
as minus the identity on their orthogonal in H2(Y0,Z), it coincides with Θ∗

0. In the
case of orbifolds of Nikulin type, the only automorphism acting trivially in cohomology
is the identity, as shown in [MeR2, Proposition 8.1], hence the birational involution
associated to Γ is exactly the non-symplectic involution Θ0 ∈ Aut(Y0).

We thus have a sequence (Ytn , Htn ,Θtn) of polarized orbifolds of Nikulin type each
equipped with an involution Θtn preserving Htn and such that (Y0, H0,Θ0) is its
limit in the sense above. The involutions Θtn induce a sequence of involutions on
H0(Ytn , Htn) = H0(Y0, H0) whose limit is the map induced by Θ0 on H0(Y0, H0). The
latter is the identity map because Θ0 is the cover involution of φ|H0|. It follows that

for n >> 1 the action of Θtn on H0(Ytn , Htn) is also trivial and hence φ|Htn | is 2:1 for
n >> 1. We conclude that for general (Yt, Ht) in a neighbourhood of (Y0, H0) the map
φ|Ht| is 2 : 1 onto the image contained in P6.

We saw that J0 := φ|H0|(Y0) is normal, hence by the openness of normality the image

Jt of Yt through |Ht| is also normal of codimension 2 in P6. Thus Jt is necessarily the
quotient of Yt through the involution Θt. In particular, Jt has ODP points along a
surface that is smooth outside the 28 orbifold points. Let us show that the general Jt
is also a complete intersection. We consider the family {Gt}t∈∆, with ∆ a small disc,
with Gt = φ−1

Ht
(Π1 ∩Π2) and Πi two chosen general hyperplanes in P6. Note that G0 is

smooth and maps via φH0 to J0 ∩Π1 ∩Π2 which is a complete intersection (3, 4) in P4

and which must admit only nodes as singularities. It follows that the general Gt maps
via φHt to a nodal surface in Rt = Jt∩Π1∩Π2 ⊂ P4 = Π1∩Π2 being the quotient of Gt

through an involution. Such surface is of degree 12 and half-canonical i.e. KRt = 2H
(where H is the hyperplane from P4).

We can now mimic [DPPoSc, Prop. 1.2] to prove that Rt is a complete intersection.
Indeed, Rt is a half canonical surface and since Rt has complete intersection singularities
it is the zero locus of a rank 2 vector bundle E on P4 hence the methods of [DPPoSc,
Prop. 1.2] apply also in this case. More precisely, the case c1(E)2 − 4c2(E) ≤ 0 from
[DPPoSc, Prop. 1.2] cannot occur by a generalization of the double point formula for
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nodal hypersurfaces proved in [CatOg, Thm. 5.1] (δ = 0 in our case). Thus c1(E)2 −
4c2(E) > 0 and we conclude as in Case 2 of [DPPoSc, Prop. 1.2] that Rt ⊂ P4 is a
complete intersection (3, 4).

We thus know that a general codimension two linear section Rt of Jt is a complete
intersection (3, 4). To conclude that Jt must also be such a complete intersection let
us consider Ut ⊃ Rt a general hyperplane section of Jt containing Rt and the exact
sequences

0 → IJt → IJt(1) → IUt|P5(1) → 0.

0 → IUt → IUt(1) → IRt|P4(1) → 0.

To conclude it is enough to show that h1(IJt(2)) = h1(IUt(2)) = 0 and h1(IJt(3)) =
h1(IUt(3)) = 0 (then the cubic and a quartic defining Rt extend to the ideal of Ut and
then Jt). But applying again the long exact sequence of cohomology the vanishing of
h1(IUt(k)) will follow from the vanishing of h2(IJt(k − 1)) and h1(IJt(k)). It is hence
enough to prove

(5.1) h2(IJt(2)) = h2(IJt(1)) = h1(IJt(3)) = h1(IJt(2)) = 0.

We compute these dimensions using the finite map f : Yt → Jt: there exists a sheaf F
on Jt such that

f∗OYt(k) = OJt(k)⊕F(k).

We get our vanishings (5.1) from the fact that hi(OYt(k)) = 0 for i = 1, 2 and
k = 2, 3. We conclude that IJt admits a cubic and a quartic generator which, after
restriction to a codimension 2 linear space, define a complete intersection. Since Jt is
of codimension 2 and degree 12, Jt is a complete intersection.

Let us compute the degree of the singular surface of Jt (in fact we can deduce this
from the singular locus of J0 finding 52 − 4 = 48). If we denote by F ⊂ Yt a general
intersection of two divisors in the system Ht in Yt then we find that KF = 2Ht|F and

χ(OF (nHt)) = 12n2 − 24n + 20. Denote by G ⊂ P4 the image of F being a complete
intersection (3, 4). The involution given by |Ht| cannot fix varieties of odd codimension
(since the smooth locus of the orbifold Yt has a symplectic form and the singular locus
consists of isolated points). Moreover, it cannot fix smooth points, since it is a non-
symplectic involution. The orbifold points are in the fixed locus otherwise they would
map to non complete intersection singularities. So the ramification of the map is a
surface. We find that G is nodal and F → G is branched at the nodes. Let µ be
the number of nodes. We shall compute µ by comparing the Euler characteristics of
appropriate sheaves on F and G. First observe that χ(OG) = 16 since G is a complete
intersection. Next we consider the minimal resolution Ḡ of G and the blow up F̄ of
F at the pre-images of the nodes together with the induced map f : F̄ → Ḡ. We find
f∗OF̄ = OḠ⊕OḠ(L) where 2L is the sum of the exceptional divisors on Ḡ. We compare
the Riemann–Roch formulas for F̄ and Ḡ and conclude from 2χ(OG)− µ

4 = χ(OF̄ ) =
χ(OF ) = 20 that µ = 48.

□

5.3. A special subfamily of BBF degree 2. We consider Nikulin orbifolds with a
Cartier divisor of BBF degree 2 and divisibility 1 that form a subfamily of codimension
2 of the locally complete family described in Theorem 5.7.

These orbifolds are constructed as quotients of W [2] by a natural symplectic involu-

tion σ[2], where W is a K3 surface with NS(W ) ≃ Λ̃4 and σ is a symplectic involution
on it. The surfaces W are double covers of a quadric Q = P1 × P1 branched along a
(2, 2) curve C that is symmetric with respect to the involution ιQ exchanging the two

36



factors of Q, see [vGS]. We denote by j the cover involution of W → Q and we observe
that ιQ lifts to two involutions on W : a non symplectic involution ι and a symplectic
involution σ. We observe that ι = j ◦ σ.

Then σ induces a natural involution σ[2] on W [2] fixing 28 points and a K3 surface
S. The ample divisor of degree 4 on W invariant for σ∗ induces a divisor A on W [2]

which is orthogonal to the exceptional divisor of W [2] → Sym2(W ).
The map given by |A| can be described as follows:

φ|A| : (P3)[2] ⊃ W [2] → Sym2(Q) ⊂ Sym2(P3) ⊂ P9.

The involution ι induces on P9 a linear involution of the form (−,−,−,+,+,+,+,+,+,+)
so we have two invariant linear spaces P6

+ and P2
−. By Proposition 3.11 the Nikulin

orbifold W [2]/σ[2] admits a polarization H of BBF degree 2 and divisibility 1 induced
by A.

Lemma 5.8. The image of the Nikulin orbifold W [2]/σ[2] through the 4 : 1 map given
by H is a special complete intersection (2, 3) in P6. This fourfold is a degeneration of
the family of (3, 4) intersections described in 5.7.

Proof. The image of the map φ is a fourfold of degree 12 in P9 that can be seen as the
secant variety of the second Veronese embedding of a quadric surface. The projection
from P2

− is no longer 2 : 1, as it can be checked on a special fiber. The image is

contained in a quadric since we find that φ|A|(W
[2]) is contained in a quadric being a

cone over P2
−. We conclude knowing the degree of the fourfold in P6. □

Remark 5.9. One can show using computer calculations that the intersection (2, 3)
above is singular along a surface of degree 12.

Note that the involution ι(2) on Q(2) has two fixed surfaces: B1 consisting of the
pairs (x, j(x)) for x ∈ Q and B2 consisting of the pairs (c1, c2) ⊂ C(2) ⊂ Q(2). We see
that the fixed K3 surface S is mapped to B1 and the isolated points are mapped to
B2.

5.4. Lagrangian type description. Let us describe an object analogous to the La-
grangian subspace of dimension 10 of

∧3C6 for double EPW sextics. Suppose (Y,H)
is a polarized orbifold of Nikulin type with degree qY (H) = 2 such that |H| induces
a finite 2 : 1 morphism. Then |H| defines a 2 : 1 map f with image J being a 4-
dimensional variety of degree 12 in P6 singular along a surface. Since f is finite, there
exists a sheaf F on J such that

f∗OY = OJ ⊕F .

We infer from the Riemann–Roch theorem the following table.

H4(F(−3)) H4(F(−2)) 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 C 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 H0(F(2)) H0(F(3))

So we have the following symmetric Beilinson resolution.

0 → 28Ω6(6)
M∗
−−→ 3Ω5(5)⊕ Ω3(3)⊕ 3Ω1(1)

M−→ 28O → F(3) → 0

The matrix corresponding to M from the Beilinson resolution is a matrix with three
rows of 1 forms, one row of 3-forms and three rows of 5-forms. Moreover, it has the
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property that MM∗ = 0 as matrices of 4-forms (the product is induced by the exterior
product of forms).

The choice of M is thus the choice of a 28 dimensional linear subspace in

3

5∧
V7 ⊕

3∧
V7 ⊕ 3V7,

isotropic for the product b that can be seen as a kind of symplectic form:

b : (3V7 ⊕
3∧
V7 ⊕ 3

5∧
V7)

2 →
6∧
V7

given by the formula

b((l1, l2, l3, α, w1, w2, w3), (L1, L2, L3, β,W1,W2,W3)) =

= L1 ∧ w1 + L2 ∧ w2 + L3 ∧ w3 + α ∧ β + l1 ∧W1 + l2 ∧W2 + l3 ∧W3.

Note that the variety J , being the support of F(3), appears as a degeneracy locus
of such a map M .

Problem 5.10. (1) Describe the ”Lagrangian” 28 space corresponding to Nikulin

orbifolds i.e. quotients of fourfolds of K3[2]-type as described in Section 5.1.
(2) How to describe the cubic in the complete intersection (3, 4)?
(3) Is the moduli space of polarized orbifolds of Nikulin type of dimension 4 and

BBF degree 2 unirational?
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6. Appendix: j̃ computations M2

Let us find a projective model (3,4) in P6 of a fourfold from the family corresponding
to the embedding j̃.

S=ZZ/11[z_1..z_10]

R=S[x_1,x_2,x_3,y_1,y_2,y_3] --the ring of P2 x P2

T=R[e_1,e_2,e_3,f_1,f_2,f_3, SkewCommutative=>true]-- the space wedge3 V

E1=(e_1+(x_1*y_1)*f_1+(x_1*y_2)*f_2+(x_1*y_3)*f_3)

E2=(e_2+(x_2*y_1)*f_1+(x_2*y_2)*f_2+(x_2*y_3)*f_3)

E3=(e_3+(x_3*y_1)*f_1+(x_3*y_2)*f_2+(x_3*y_3)*f_3)

--E1*E2*E3 represent the image of the point in the cone over

-- P^2 x P^2 with coordinates (1,((x_1,x_2,x_3),(y_1,y_2,y_3)))

B0=E1*E2*E3

B1=E1*E2*f_1

B2=E1*E2*f_2

B3=E1*E2*f_3

B4=E1*E3*f_1

B5=E1*E3*f_2

B6=E1*E3*f_3

B7=E2*E3*f_1

B8=E2*E3*f_2

B9=E2*E3*f_3

--Bi span the tangent to the Grassmannian in E1*E2*E3.

V1=e_1*e_2*e_3

V2=e_1*e_2*f_1

V3=e_1*e_2*f_2

V4=e_1*e_2*f_3

V5=e_1*e_3*f_1

V6=e_1*e_3*f_2

V7=e_1*e_3*f_3

V8=e_2*e_3*f_1

V9=e_2*e_3*f_2

V10=e_2*e_3*f_3

--Vi span the fixed Lagrangian space being the tangent to the Grassmannian in
40



$e_1*e_2*e_3$.

W1=f_1*f_2*f_3

W2=f_1*f_2*e_1

W3=f_1*f_2*e_2

W4=f_1*f_2*e_3

W5=f_1*f_3*e_1

W6=f_1*f_3*e_2

W7=f_1*f_3*e_3

W8=f_2*f_3*e_1

W9=f_2*f_3*e_2

W10=f_2*f_3*e_3

--Wi span the Lagrangian space being the tangent to the Grassmannian in f_1*f_2*f_3,

--together Vi and Fi span the whole space wedge^3 V.

VV=matrix{{V1,V2,V3,V4,V5,V6,V7,V8,V9,V10}}

WW=matrix{{W1,W2,W3,W4,W5,W6,W7,W8,W9,W10}}

WV=WW*(sub((transpose (VV))*WW, {e_1=>1, e_2=>1, e_3=>1, f_1=>1, f_2=>1, f_3=>1}))

-- this is a sign adjustment making the pairing given by the wedge product a

--duality between the two bases of the Lagrangians VV and WW

RP=ZZ/11[ed_1..ed_45]

L=genericSymmetricMatrix(RP, 9)

G=matrix{

{0,0,0,0,0,0,0,0,1},

{0,0,0,0,0,-1,0,0,0},

{0,0,1,0,0,0,0,0,0},

{0,0,0,0,0,0,0,-1,0},

{0,0,0,0,1,0,0,0,0},

{0,-1,0,0,0,0,0,0,0},

{0,0,0,0,0,0,1,0,0},

{0,0,0,-1,0,0,0,0,0},

{1,0,0,0,0,0,0,0,0}}

--G represents a symmetry induced on wedge^3 V by the symmetry of

-- P^2 x P^2 exchanging x coordinates with y coordinates

FG=sub(L,transpose(mingens kernel transpose (coefficients (mingens ideal (L*G-G*L),

Monomials=>vars RP))_1 *random(RP^27,RP^1)))

MM=(map(T,RP)) FG

M0=matrix{{0,0,0,0,0,0,0,0,0}}

MMM=(0|M0)||((transpose M0)|MM)

-- MMM represents a symmetric linear map between the two Lagrangians with bases given by

--VV and WV i.e. a Lagrangian subspace in wedge^3 V passing through e_1*e_2*e_3

-- its relation with G means that it is invariant under the symmetry corresponding

--to G WV*MMM

KK=VV+WV*MMM

--KK is a basis of the Lagrangian space defined as the graph of MMM

P=(KK*transpose((map(T,S)) (matrix{{z_1..z_10}})))_0_0

KOP=coefficients(matrix{{P*B0, P*B1, P*B2, P*B3, P*B4, P*B5, P*B6, P*B7, P*B8, P*B9}},

Monomials=>{e_1*e_2*e_3*f_1*f_2*f_3})
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-- KOP gives condition on elements of the Lagrangian spanned by KK given by by zi in the

--basis KK to be elements of the tangent in E1*E2*E3 represented by the span of B

--the rank of these conditions will give the codimension of the intersection locus

KPP=KOP_1

FRT=diff( (transpose matrix{{z_1..z_10}}), KPP)

GFD=minors(9,FRT);

--GFD describes the locus of tangents to $E1*E2*E3$ meeting the chosen symmetric

--Lagrangian spanned by $KK$

degree GFD

D=ZZ/11[x_1,x_2,x_3,y_1,y_2,y_3]

GFO=(map(D,T)) GFD;

SB=ZZ/11[m,q_1..q_9]

fv=map(D,SB,matrix{{1,x_1*y_1,x_1*y_2,x_1*y_3,x_2*y_1,x_2*y_2,x_2*y_3,x_3*y_1,x_3*y_2,x

_3*y_3}})

man=preimage(fv, GFO);

--we see the EPW quartic GFD in the corresponding affine part of the cone over the Segre

--embedding of P^2 x P^2

dim man

degree man

EPW=ideal (homogenize(gens man, m))

--we take the projective closure and get EPW the EPW quartic in P^9 that is

--contained in the cone over

--P^2x P^2 and is symmetric with respect to

--the chosen involution

degree EPW

dim EPW

SFB=ZZ/11[s_1,s_2,s_3,s_4,s_5,s_6,tdt]

EPWsym=preimage(map(SB,SFB,matrix{{q_1,q_2+q_4,q_3+q_7,q_5,q_6+q_8,q_9,m}}),

EPW);

--EPWsym is the projection from the anti-invariant locus given by the space of

--skew-matrices

degree EPWsym

mingens EPWsym

--we get a complete intersection of a cubic and a quartic in P^6

S=singularLocus EPWsym;

IS=ideal S;

--IS represents the singular locus of EPWsym

dim IS

degree IS

--the singular locus is a surface of degree 52 as expected, here we possibly need to repeat the whole program

-- to get a general enough choice that will give the right number

R=QQ[x_1..x_4,y_1..y_4]

G=QQ[a_1..a_10]

F= (transpose matrix{{x_1..x_4}})* matrix{{y_1..y_4}}

P=(F+transpose F)

W=P^{0}|P^{1}_{1,2,3}|P^{2}_{2,3}|P^{3}_{3}

--W represents the map from P^3 x P^3$ to the space of symmetric
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--matrices which commutes with the exchange of variables.

--its image is the symmetric square of P^3

BU=preimage(map(R,G, W), ideal(x_1^2+x_2^2+x_3^2+x_4^2,y_1^2+y_2^2+y_3^2+y_4^2))

--BU is the image of the symmetric square of the Fermat quadric in P^3 in the chosen coordinates

dim BU

saturate BU

GH=QQ[a_1,a_5..a_10]

mingens preimage(map(G,GH), BU)

--we project the symmetric square of the quadric from the anti-invariant

-- locus of a chosen symmetry preserving the quadric
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