PROJECTIVE ORBIFOLDS OF NIKULIN TYPE

CHIARA CAMERE, ALICE GARBAGNATI, GRZEGORZ KAPUSTKA, AND MICHAE KAPUSTKA

Abstract

We study projective irreducible symplectic orbifolds of dimension four that are deformations of partial resolutions of quotients of hyperkähler manifolds of $K 3^{[2]}$-type by symplectic involutions; we call them orbifolds of Nikulin type. We first classify those projective orbifolds that are really quotients, by describing all families of projective fourfolds of $K 3^{[2]}$-type with a symplectic involution and the relation with their quotients, and then study their deformations. We compute the RiemannRoch formula for Weil divisors on orbifolds of Nikulin type and using this we describe the first known locally complete family of singular irreducible symplectic varieties as double covers of special complete intersections $(3,4)$ in \mathbb{P}^{6}.

1. Introduction

One of the three building blocks [Bea] of Ricci-flat compact Kähler manifolds, together with Abelian varieties and Calabi-Yau manifolds, are irreducible holomorphic symplectic manifolds, i.e. simply connected manifolds X such that $H^{2,0}(X)=\mathbb{C} \omega_{X}$ is spanned by a symplectic holomorphic form. This kind of manifolds, also known as irreducible hyperkähler, has been deeply studied ever since the foundational works of Beauville [Bea], Bogomolov [Bo] and Fujiki [Fuj].

The first and lower dimensional examples of irreducible holomorphic symplectic manifolds are $K 3$ surfaces; a second series of deformation families is given by manifolds of $K 3^{[n]}$-type, i.e. deformations of Hilbert schemes $W^{[n]}$ of n points on a $K 3$ surface W. Together with generalized Kummer manifolds of dimension $2 n$ and two deformation families in dimension six and ten constructed by O'Grady, these are all the infinitely many deformation families of irreducible holomorphic manifolds which are currently known.

A natural attempt at constructing new families, already described by Fujiki in [Fuj], is to study quotients of irreducible holomorphic symplectic manifolds by finite symplectic group actions i.e. those actions which preserve the symplectic form. Symplectic involutions σ on smooth $K 3$ surfaces W are nowadays well understood thanks to foundational works of Nikulin [N1], Morrison [Mor] and then of van Geemen and Sarti [vGS]. The quotient W / σ admits a resolution of singularities with Picard number ≥ 8 which is again a $K 3$ surface, called a Nikulin surface. In higher dimension the quotient of a smooth manifold of $K 3^{[n]}$-type by a symplectic action does not admit any desingularization being irreducible holomorphic symplectic.

More recently, starting from work of Beauville [Bea1], several authors began to study the question of how to enlarge the class of irreducible holomorphic symplectic manifolds while keeping valid most of their distinguished geometrical properties. One of the main directions has been to admit symplectic varieties with mild singularities. Many definitions can be found in the literature and we refer the interested reader to the nice survey by Perego [Pe], and references therein, for more details. Beauville considered the class of irreducible symplectic varieties which admit a symplectic form ω on the smooth locus and have symplectic singularities i.e. singularities such that the
holomorphic 2-form ω extends to any resolution. Nowadays, a class which has attracted great attention is that of irreducible symplectic orbifolds [Camp]. They naturally appear as building blocks in the generalization of Beauville-Bogomolov decomposition theorem to compact connected Kähler Ricci-flat orbifolds. A compact Kähler orbifold Y is said irreducible symplectic if $Y \backslash \operatorname{Sing}(Y)$ is simply connected and admits a unique, up to a scalar multiple, non-degenerate holomorphic 2-form.

This paper focuses on a special deformation family of irreducible symplectic orbifolds, which we call orbifolds of Nikulin type. Those are constructed as deformations of Nikulin orbifolds, whose construction mimics that of Nikulin surfaces (see Definition 3.1). The quotient X / σ of a fourfold X of $K 3^{[2]}$-type by a symplectic involution σ is singular along a $K 3$ surface and 28 points. As we mentioned above, X / σ does not admit a crepant resolution, but one can partially resolve it blowing up the singular $K 3$ surface. This partial resolution Y is an irreducible symplectic orbifold with 28 terminal points, which we call Nikulin orbifold. By [Bea1], orbifolds of Nikulin type are also irreducible symplectic varieties, and the two moduli spaces constructions in [BL, Me2] agree for this deformation family. Examples were already studied by $[\mathrm{MaT}]$ and the main properties of the whole deformation family have been described by Menet and Menet-Riess in [Me1, MeR1, MeR2]. It is worth noticing that not all orbifolds of Nikulin type are Nikulin orbifolds, in fact the latter sit in a family of codimension one. As in the case of $K 3$ surfaces, orbifolds of Nikulin type are Kähler and irreducible symplectic but in general not projective. The projective ones correspond to divisors in the period domain of orbifolds of Nikulin type [Me2, BL].

In many aspects the theory of irreducible symplectic manifolds/varieties/ orbifolds is a generalization to higher dimensions of that of $K 3$ surfaces. Most notably, the group $H^{2}(X, \mathbb{Z})$ can be endowed with an integral quadratic form q_{X}, so-called Beauville-Bogomolov-Fujiki form (for short BBF form), and it is a lattice L of signature ($3, b_{2}(X)-$ 3), which is a topological invariant of the deformation family; the existence of this lattice structure allows to study moduli spaces of irreducible symplectic manifolds of a fixed deformation type through periods since a global Torelli theorem, analogous to the one for $K 3$ surfaces, also holds. However, a remarkable difference with the theory of $K 3$ surfaces is the lack of projective models for general higher dimensional algebraic examples. They are crucial for the understanding of the geometric behaviour of these varieties. For this reason, in the early development of the theory of irreducible holomorphic symplectic manifolds, a lot of effort has been put into constructing so called locally complete families of these, i.e. general elements in the family of manifolds with a given degree and type of polarization. Historically, the first known locally complete families of projective irreducible holomorphic symplectic manifolds were the family of Fano varieties of smooth cubic fourfolds, shown to be of $K 3^{[2]}$-type by Beauville and Donagi [BeaDo], and the family of double EPW sextics, again of $K 3{ }^{[2]}$ _ type, discovered by O'Grady [O'G]. A few more families have been constructed in [DebV, IR, IKKR1, LLSvS, BLMNPS]: all are algebraic manifolds of $K 3^{[n]}$-type for some n and their families have codimension one inside their respective moduli spaces. However, in the case of singular orbifolds no locally complete family has been constructed so far.

The main aim of the paper is to provide tools to study the explicit geometry of orbifolds of Nikulin type. We do it by addressing the following problems that we discuss separately in the remaining part of the introduction.
(1) Classify projective fourfolds of $K 3{ }^{[2]}$-type with symplectic involutions and related Nikulin orbifolds.
(2) Provide a Riemann-Roch formula for linear systems on orbifolds of Nikulin type.
(3) Describe a locally complete family of orbifolds of Nikulin type.
1.1. Classification of polarized Nikulin orbifolds. The first aim of this paper is to describe the families of projective Nikulin orbifolds, i.e. the algebraic Noether-Lefschetz locus in the family of Nikulin orbifolds, in analogy with what has been done by van Geemen and Sarti for projective Nikulin surfaces. This is achieved in two steps: first we classify all families (infinitely many of those) of projective fourfolds of $K 3^{[2]}$-type X carrying a symplectic involution σ; then we describe the corresponding families of projective Nikulin orbifolds Y.

In Section 2, we look at symplectic involutions σ on projective fourfolds of $K 3{ }^{[2]}$-type of degree $2 d$. We describe their possible Picard lattices and transcendental groups; as a consequence we identify their families in terms of lattice polarized families of fourfolds of $K 3{ }^{[2]}$-type. We prove the following result (see Table 2.1), which is the analogue of the result [vGS, Proposition 2.2] for $K 3$ surfaces with a symplectic involution.

Theorem 1.1. Let X be a generic projective fourfold of $K 3^{[2]}$-type admitting a symplectic involution. Then the pair $\left(\mathrm{T}_{X}, \mathrm{NS}(X)\right)$ of the transcendental lattice and the Néron-Severi group of X is one of the following:
$\left(U^{\oplus 2} \oplus E_{8}(-2) \oplus\langle-2 d\rangle \oplus\langle-2\rangle, \Lambda_{2 d}\right) ;$
$\left(U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}, \Lambda_{2 d}\right)$, with $d \equiv 1 \bmod 2$;
$\left(U^{\oplus 2} \oplus E_{8}(-2) \oplus K_{d}, \Lambda_{2 d}\right)$ with $d \equiv 3 \bmod 4$;
$\left(U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}, \widetilde{\Lambda}_{2 d}\right)$ with $d \equiv 0 \bmod 2$,
where the lattices involved are defined in the notation in Section 2.1 and d is a positive integer.

Vice versa if X is a projective fourfold of $K 3{ }^{[2]}$-type such that $\mathrm{NS}(X)$ is isometric either to $\Lambda_{2 d}$ or to $\widetilde{\Lambda}_{2 d}$, then it admits a symplectic involution.

In Section 2.2 we show that the general member of the above lattice polarized families can be described either as Hilbert scheme of two points on a $K 3$ surface or as moduli space of (possibly twisted) sheaves on a $K 3$ surface, see Table 2.2. In both cases the $K 3$ surfaces involved lie in 12-dimensional families of lattice polarized $K 3$ surfaces and are resolution of singular $K 3$ surfaces with 7 nodes.

In Section 3 we consider the quotient X / σ and the corresponding Nikulin orbifold Y. The knowledge of the Néron-Severi group and of the transcendental lattice of X allows one to compute the ones of Y and thus the family of fourfolds of $K 3^{[2]}$-type X determines the family of the Nikulin orbifolds Y. In particular we prove the following result (see Table 3.1), which is the analogue of the result [GS, Corollary 2.2] for Nikulin surfaces.

Theorem 1.2. Let X be a generic projective fourfold of $K 3^{[2]}$-type admitting a symplectic involution σ and Y be the corresponding Nikulin orbifold. Then:
the pair $\left(\mathrm{T}_{X}, \mathrm{NS}(X)\right)$ determines uniquely the transcendental lattice T_{Y} of Y and vice versa T_{Y} determines uniquely the pair $\left(\mathrm{T}_{X}, \mathrm{NS}(X)\right)$
See Table 3.1 for the explicit description of T_{Y} and of its relation with $\left(\mathrm{T}_{X}, \mathrm{NS}(X)\right)$.
In Section 3.3 we study the $K 3$ surface S in the fixed locus of the involution σ on the fourfold of $K 3^{[2]}$-type X : we show that there is an isometry between $\mathrm{T}_{S} \otimes \mathbb{Q}$ and $\mathrm{T}_{Y} \otimes \mathbb{Q}$, where $\mathrm{T}_{\bullet} \otimes \mathbb{Q}$ is the transcendental lattice with rational coefficients and Y is the Nikulin orbifold as above (see Proposition 3.16). In particular the Picard
number of S is at least 8 . Moreover, we conjecture that this isometry holds also with integer coefficients (Conjecture 3.12). We prove the conjecture for many subfamilies of codimension 1, corresponding to Hilbert scheme of points on $K 3$ surfaces with natural symplectic involutions, and for two locally complete algebraic families, see Propositions 3.14 and 3.15 .
1.2. Riemann-Roch formula for Nikulin orbifolds and orbifolds of Nikulin type. In Section 4 we find the Riemann-Roch formula on the orbifolds of Nikulin type by following step by step the quotient construction of Nikulin orbifolds. Since $H^{2}(Y, \mathbb{Z})$ is endowed with the BBF quadratic form q_{Y}, explicitly computed by [Me1], the Riemann-Roch formula for a \mathbb{Q}-Cartier Weil divisor D can be stated as a relation between $\chi(D)$ and $q_{Y}(D)$, in the same spirit of [GrHJo, Example 23.19] and depends also on the number of points where D fails to be Cartier. Using the results from [BuReZ, $\mathrm{Bl}, \mathrm{CGMo}$ for 2 -factorial orbifolds we prove in Corollary 4.4 and in Proposition 4.5 the following result.

Theorem 1.3. Let Y be an orbifold of Nikulin type and let $D=\frac{m}{2} L$ be a \mathbb{Q}-Cartier Weil divisor on Y, with $m \in \mathbb{Z}$ and $L \in \operatorname{NS}(Y)$; let n be the number of points where D fails to be Cartier. Then

$$
\chi(\mathcal{O}(D))=\frac{3}{8}\left(\frac{m^{4}}{24} q_{Y}(L)^{2}+m^{2} q_{Y}(L)+8\right)-\frac{n}{16},
$$

where q_{Y} denotes the BBF quadratic form on $H^{2}(Y, \mathbb{Z})$.
In particular, on any orbifold of Nikulin type Y and for any $D \in \operatorname{NS}(Y)$,

$$
\chi(\mathcal{O}(D))=\frac{1}{4}\left(q_{Y}(D)^{2}+6 q_{Y}(D)+12\right) .
$$

By applying the previous result to some specific divisors on Y, we obtain the dimensions of projective spaces where the quotient X / σ or its partial resolution Y have a natural projective model, see Theorems 4.9, 4.10 and 4.12 and Table 4.1.
1.3. A locally complete family of orbifolds of Nikulin type. To obtain a locally complete family, we need to understand the projective model of the general elements of a family of irreducible symplectic varieties with a given type of polarization. In Section 5, we describe a locally complete family of polarized orbifolds of Nikulin type of BBF degree 2 (the least possible). As already remarked, this is the first known description of a locally complete family of polarized singular irreducible symplectic varieties; the reader should see this construction as the analogue of O'Grady's double EPW sextics. In this case the analogue of EPW sextic will be a special complete intersection $(3,4)$ in \mathbb{P}^{6}.

Theorem 1.4. The general element Y in a family of orbifolds of Nikulin type with a polarization of BBF degree 2 and divisibility 1 is a double cover of a special complete intersection $(3,4)$ in \mathbb{P}^{6} branched along a surface of degree 48.

In Section 5.4 we discuss the reciprocal of the theorem by describing the possible complete intersections $(3,4)$ using the Beilinson resolution (see also Problem 5.10). Our strategy to prove Theorem 1.4 is the following. Special examples of orbifolds of Nikulin type of BBF degree 2 are constructed as quotients by a symplectic involution of fourfolds X of $K 33^{[2]}$-type with Néron-Severi group isometric to $\widetilde{\Lambda_{4}}$, which is an extension of index two of $\langle 4\rangle \oplus E_{8}(-2)$. The polarization of BBF degree 4 on X which is orthogonal to the $E_{8}(-2)$ summand gives a $2: 1$ map (see [IKKR]) to an EPW quartic in the cone $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \mathbb{P}^{9}$. The symplectic involution on X is then induced
by an involution on the linear system of the polarization, i.e. on \mathbb{P}^{9}. After projecting from the $\mathbb{P}^{2} \subset \mathbb{P}^{9}$ which is a component of the fixed locus of the involution on \mathbb{P}^{9}, we obtain a complete intersection $(3,4)$ in \mathbb{P}^{6} that is singular in codimension 2 along a surface of degree 52. From the results in Sections 3 and 4 we deduce that the image of the projection is the projective model of the quotient of X by the symplectic involution. By deforming this example and knowing part of the monodromy group of orbifolds of Nikulin type (see [MeR1]), we prove that a general orbifold of BBF degree 2 as above has a similar description.

Acknowledgements

The authors want to thank Arvid Perego for an interesting conversation on symplectic orbifolds and Gregoire Menet and Ulrike Riess for many precious discussions and for sharing a preliminary draft of their forthcoming paper. Moreover, the authors thank the anonymous referee for the useful comments and suggestions.
G.K. is supported by the project Narodowe Centrum Nauki 2018/30/E/ST1/00530. M.K is supported by the project Narodowe Centrum Nauki 2018/31/B/ST1/02857.

2. Fourfolds of $K 3^{[2]}$-TYPE with a Symplectic involution

We are interested in fourfolds of $K 3^{[2]}$-type admitting a symplectic involution and mainly in the projective ones. We will describe the general member of families of fourfolds satisfying these conditions first in a lattice theoretic way and then giving a model as (twisted) moduli space of sheaves on a $K 3$ surface. From now on let X be a fourfold of $K 33^{[2]}$-type and σ be a symplectic involution on X.
2.1. Lattice theoretic description of X. Let us fix some notation and recall preliminary results on lattices:

- The lattice U is the unique even unimodular lattice of rank 2 and signature $(1,1)$; we will denote by $\left\{u_{1}, u_{2}\right\}$ a basis such that $u_{1}^{2}=u_{2}^{2}=0$ and $u_{1} u_{2}=1$.
- The lattice E_{8} is the unique even unimodular positive definite lattice of rank 8 .
- Given a lattice M and an integer $n \in \mathbb{Z}, M(n)$ is the lattice obtained multiplying the bilinear form of M by n.
- We denote by $\left\{b_{1}, \ldots b_{8}\right\}$ the basis of $E_{8}(-2)$ such that: $b_{i}^{2}=-4, i=1, \ldots, 8$; $b_{j} b_{j+1}=2, j=1, \ldots, 6 ; b_{3} b_{8}=2$; the other intersections are zeros.
- The lattice N, called Nikulin lattice, is an even negative definite rank 8 lattice. It is generated by the classes $r_{i}, i=1, \ldots, 8$ such that $r_{i}^{2}=-2, r_{i} r_{j}=0$ and by the class $\left(\sum_{i=1}^{8} r_{i}\right) / 2$.
- For $n \in \mathbb{Z}, u(n)$ is the discriminant form of $U(n)$; for each $m \in \mathbb{Z}$ and $\alpha \in \mathbb{Q}$ $\mathbb{Z}_{m}(\alpha)$ is the discriminant cyclic group \mathbb{Z}_{m} endowed with the quadratic form taking value α on a generator. For short, the discriminant quadratic form of $\mathbb{Z}_{m}\left(\pm \frac{1}{m}\right)$ is denoted by $\left(\pm \frac{1}{m}\right)$.
- The discriminant form of N is $u(2)^{\oplus 3}$ and the discriminant form of $E_{8}(-2)$ is $u(2)^{\oplus 4}$ (see. [N3, p. 1414]).
- The lattice $D_{4}(-1)$ is the rank 4 negative definite lattice whose bilinear form on the basis $\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$ is $d_{i}^{2}=-2, d_{i} d_{2}=1, i=1,3,4, d_{i} d_{j}=0$ otherwise. Its discriminant group is $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and its discriminant form is called $v(2)$, see e.g. [N2, Section 8].
- The lattice $L_{K 3}$ is the unique even unimodular lattice of rank 22 and signature $(3,19)$ and is isometric to $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$.
- The lattice $L:=L_{K 3} \oplus\langle-2\rangle$ and its discriminant form is $\left(-\frac{1}{2}\right)$. We will denote by δ the generator of the lattice $\langle-2\rangle$, orthogonal to $L_{K 3}$ in L.
- For every positive integer d, the lattice $\Lambda_{2 d}$ is isometric to $\langle 2 d\rangle \oplus E_{8}(-2)$. We denote by h a generator of the summand $\langle 2 d\rangle$.
- For every even positive integer d, the lattice $\widetilde{\Lambda}_{2 d}$ is the unique overlattice of index 2 of $\Lambda_{2 d}$ in which $\langle 2 d\rangle$ and $E_{8}(-2)$ are primitively embedded.
- The lattice K_{d} is the negative definite lattice with the following quadratic form

$$
\left[\begin{array}{cc}
-\frac{d+1}{2} & 1 \\
1 & -2
\end{array}\right], \quad d \equiv 1 \quad \bmod 2 .
$$

- The lattice H_{d} is the indefinite lattice with the following quadratic form

$$
\left[\begin{array}{cc}
\frac{d-1}{2} & 1 \\
1 & -2
\end{array}\right], \quad d \equiv 1 \quad \bmod 2 .
$$

- The divisibility $\operatorname{div}(v)$ of $v \in M$ is the generator of the ideal $(v w \mid w \in M) \subset \mathbb{Z}$. Moreover, since for all the considered varieties there is a canonical isomorphism between the Picard lattice and the Néron-Severi group, we always refer to the Néron-Severi group, even to indicate the Picard lattice.
Proposition 2.1. A fourfold X of $K 3^{[2]}$-type admits a symplectic involution if and only if $E_{8}(-2)$ is primitively embedded in $\mathrm{NS}(X)$.
Moreover, if X is projective then there exists a positive $d \in \mathbb{N}$ such that $\Lambda_{2 d} \subset \operatorname{NS}(X)$. The Néron-Severi group of the very general element in the family of $\langle 2 d\rangle$-polarized fourfolds of K $\mathrm{K}_{3}^{[2]}$-type admitting a symplectic involution is an overlattice of finite index (possibly equal to 1) of $\Lambda_{2 d}$, with the property that $E_{8}(-2)$ is primitively embedded in it.

Proof. The first statement is proved by Mongardi in [Mon]. If X is projective, then it admits an ample divisor, which has necessarily a positive BBF degree. Since $E_{8}(-2)$ is negative definite, it follows that $\Lambda_{2 d} \subset \mathrm{NS}(X)$ and that if the Picard number of X is the minimal possible, i.e. 9 , then $\operatorname{NS}(X)$ is an overlattice of finite index (possibly equal to 1) of $\Lambda_{2 d}$, with the property that $E_{8}(-2)$ is primitively embedded in it.
Lemma 2.2. [vGS, Proposition 2.2] The overlattices of $\Lambda_{2 d}$ containing primitively both $\langle 2 d\rangle$ and $E_{8}(-2)$ are:
(1) if $d \equiv 1 \bmod 2$ only $\Lambda_{2 d}$ itself ;
(2) if $d \equiv 0 \bmod 2$ either $\Lambda_{2 d}$ or the unique overlattice $\widetilde{\Lambda}_{2 d}$ of index 2 of $\Lambda_{2 d}$ in which $\langle 2 d\rangle$ and $E_{8}(-2)$ are primitively embedded.
The discriminant forms of the lattices $\Lambda_{2 d}$ and $\widetilde{\Lambda}_{2 d}$ are $\left(\frac{1}{2 d}\right) \oplus u(2)^{\oplus 4}$ and $\left(\frac{1}{2 d}\right) \oplus u(2)^{\oplus 3}$. The lattices $\Lambda_{2 d}$ and $\widetilde{\Lambda}_{2 d}$ admit a unique embedding in $L_{K 3}$ (up to isometry).
Proof. The uniqueness of the overlattices is proved in [vGS, Proposition 2.2], and their discriminant forms are computed in [CG, Corollary 3.7]. We briefly recall the proofs here. The lattice $\Lambda_{2 d}$ is described in the list of lattices at the beginning of the section: the discriminant form on $A_{\Lambda_{2 d}}=A_{\langle 2 d\rangle} \oplus A_{E_{8}(-2)}$ is $\left(\frac{1}{2 d}\right) \oplus u(2)^{\oplus 4}$. We denote $h, u_{i, j}$ for $i=1, \ldots, 4, j=1,2$ a basis of $A_{\Lambda_{2 d}}$ on which the discriminant form is $\left(\frac{1}{2 d}\right) \oplus u(2)^{\oplus 4}$. The overlattices $\widetilde{\Lambda}_{2 d}$ in which $\langle 2 d\rangle$ and $E_{8}(-2)$ are primitively embedded correspond to isotropic subgroups H of $A_{\Lambda_{2 d}}$ which have a non trivial intersection with both $A_{\langle 2 d\rangle}$ and $A_{E_{8}(-2)}$ in $A_{\Lambda_{2 d}}$, by [N 2 , Proposition 1.4.1]. So H can be chosen to be generated by $d h+v$, where $v \in A_{E_{8}(-2)}$ is such that $v^{2}=0$ or 1 respectively when $d \equiv 0 \bmod 4$ or $d \equiv 2 \bmod 4$. We suppose that $d \equiv 0 \bmod 4$ and we can assume that $v=u_{1,1}$.

Since $H^{\perp}=\left\langle h+u_{1,2}, u_{1,1}, u_{i, j} \mid i=2,3,4, j=1,2\right\rangle, \widetilde{\Lambda}_{2 d}$ has discriminant quadratic form $\left(\frac{1}{2 d}\right) \oplus u(2)^{\oplus 3}$. The case $d \equiv 2 \bmod 4$ is completely analogous.

In [vGS] an explicit basis for the lattice $\widetilde{\Lambda}_{2 d}$ is given:

- if $d \equiv 2 \bmod 4$, the lattice $\widetilde{\Lambda}_{2 d}$ is generated by the generators of $\Lambda_{2 d}$ and by the class $\left(h+b_{1}\right) / 2$;
- if $d \equiv 0 \bmod 4$, the lattice $\widetilde{\Lambda}_{2 d}$ is generated by the generators of $\Lambda_{2 d}$ and by the class $\left(h+b_{1}+b_{3}\right) / 2$.

Corollary 2.3. Let X be a very general element in a family of (possibly not projective) fourfolds of K3 ${ }^{[2]}$-type admitting a symplectic involution σ, then $\operatorname{NS}(X) \simeq E_{8}(-2)$ and vice versa if X is a fourfold of $K 3{ }^{[2]}$-type such that $\mathrm{NS}(X) \simeq E_{8}(-2)$, then X is non projective and it admits a symplectic involution.

Let X be a very general element in a family of projective fourfolds of $K 3{ }^{[2]}$-type admitting a symplectic involution σ. Then either $\operatorname{NS}(X) \simeq \Lambda_{2 d}$ for a certain integer $d>0$ or $\mathrm{NS}(X) \simeq \widetilde{\Lambda}_{2 d}$ for a certain even integer $d>0$.

Vice versa if X is a fourfold of $K 33^{[2]}$-type such that $\mathrm{NS}(X)$ is isometric either to $\Lambda_{2 d}$ for an integer $d>0$ or to $\widetilde{\Lambda}_{2 d}$ for an even integer $d>0$, then X is projective and admits a symplectic involution.

We observe that $E_{8}(-2)$ admits a unique primitive embedding in L, whose orthogonal is $U^{\oplus 3} \oplus E_{8}(-2) \oplus\langle-2\rangle$.

In order to determine the families of projective fourfolds of $K 33^{[2]}$-type admitting a symplectic involution, we consider all possible primitive embeddings of the lattices $\Lambda_{2 d}$ and $\widetilde{\Lambda_{2 d}}$ into L.
Proposition 2.4. For any integer $d>0 \Lambda_{2 d}$ admits, up to isometry of L, the following primitive embeddings into L :
(1) j_{1} such that $j_{1}\left(\Lambda_{2 d}\right)^{\perp} \simeq T_{2 d, 1}:=U^{\oplus 2} \oplus E_{8}(-2) \oplus\langle-2 d\rangle \oplus\langle-2\rangle$;
(2) if $d \equiv 1 \bmod 2$, j_{2} such that $j_{2}\left(\Lambda_{2 d}\right)^{\perp} \simeq T_{2 d, 2}:=U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus$ $\langle-2\rangle^{\oplus 5}$;
(3) if $d \equiv 3 \bmod 4, j_{3}$ such that $j_{3}\left(\Lambda_{2 d}\right)^{\perp} \simeq T_{2 d, 3}:=U^{\oplus 2} \oplus E_{8}(-2) \oplus K_{d}$.

For any $d \equiv 0 \bmod 2, \widetilde{\Lambda}_{2 d}$ admits a unique primitive embedding \widetilde{j} into L, with orthogonal isometric to $\widetilde{T}_{2 d}:=U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}$.
Proof. First we study possible primitive embeddings of $\Lambda_{2 d}$ inside L. The first embedding j_{1} is simply obtained by composing the embedding of $\Lambda_{2 d}$ inside $L_{K 3}$ with the embedding of this one inside L. This is unique up to isometry if $d \equiv 0 \bmod 2$.

When $d \equiv 1 \bmod 2$, an application of [N2, Proposition 1.15.1] shows that there is a second possibility: indeed, in this case $A_{\Lambda_{2 d}}$ contains a subgroup H of order two to which the discriminant form restricts as $\left(-\frac{1}{2}\right)$. Standard computations in this case produce the embedding j_{2} if $d \equiv 1 \bmod 4$, and the embeddings j_{2} and j_{3} if $d \equiv 3$ $\bmod 4 . U p$ to isometry these are the only possibilities.

Concerning the primitive embeddings of $\widetilde{\Lambda}_{2 d}, \widetilde{j}$ is again obtained by composing the embedding of $\widetilde{\Lambda}_{2 d}$ inside $L_{K 3}$ with the embedding of this one inside L. The fact that it is the only possible one comes by an application of [N2, Proposition 1.15.1]: we have $A_{L} \simeq \mathbb{Z}_{2}\left(-\frac{1}{2}\right)$, whereas the quadratic form on $A_{\widetilde{\Lambda}_{2 d}}$ takes values in $\mathbb{Z} / 2 \mathbb{Z}$ on any subgroup of order two; as a consequence, the only possible choice for two isometric subgroups inside A_{L} and $A_{\tilde{\Lambda}_{2 d}}$ is $H=\{0\}$, and the discriminant form of the orthogonal R is exactly $\left(-q_{\widetilde{\Lambda}_{2 d}}\right) \oplus q_{A_{L}}=u(2)^{\oplus 3} \oplus \underset{7}{\left(-\frac{1}{2 d}\right)} \oplus\left(-\frac{1}{2}\right)$. From [N2, Proposition 1.8.2],
we have $u(2)^{\oplus 3} \oplus\left(-\frac{1}{2 d}\right) \oplus\left(-\frac{1}{2}\right) \simeq\left(\frac{1}{2}\right)^{\oplus 3} \oplus\left(-\frac{1}{2}\right)^{\oplus 4} \oplus\left(-\frac{1}{2 d}\right)$. Moreover, it is easy to show that $\left(\frac{1}{2}\right)^{\oplus 3} \oplus\left(-\frac{1}{2}\right)^{\oplus 4} \simeq v(2) \oplus\left(-\frac{1}{2}\right)^{\oplus 5}$. The signature of R is $(2,12)$. The genus of the lattices with signature and discriminant form as the ones of R contains a unique class by [N2, Corollary 1.13.3], and so $R \simeq \widetilde{T}_{2 d}$. Moreover, by [N2, Theorem 1.14.2], $O\left(\widetilde{T}_{2 d}\right) \rightarrow O\left(q_{\widetilde{T}_{2 d}}\right)$ is surjective. By [N2, Proposition 1.15.1], we conclude that $\widetilde{j}\left(\widetilde{\Lambda}_{2 d}\right)^{\perp} \simeq \widetilde{T}_{2 d}$ ad that the embedding \widetilde{j} is unique up to isometries of L.

To recap, if X is a very general projective fourfold of $K 3^{[2]}$-type admitting a symplectic involution, there are the following possibilities for $\mathrm{NS}(X)$ and T_{X}
(2.1)

Condition on d	Embed. $\mathrm{NS}(X) \subset L$	$\mathrm{NS}(X)$	T_{X}
$\forall d \in \mathbb{N}$	j_{1}	$\Lambda_{2 d}$	$T_{2 d, 1}:=U^{\oplus 2} \oplus E_{8}(-2) \oplus\langle-2 d\rangle \oplus\langle-2\rangle$
$d \equiv 1 \quad \bmod 2$	j_{2}	$\Lambda_{2 d}$	$T_{2 d, 2}:=U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}$
$d \equiv 3 \quad \bmod 4$	j_{3}	$\Lambda_{2 d}$	$T_{2 d, 3}:=U^{\oplus 2} \oplus E_{8}(-2) \oplus K_{d}$
$d \equiv 0 \quad \bmod 2$	\widetilde{j}	$\widetilde{\Lambda}_{2 d}$	$\widetilde{T}_{2 d}:=U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}$

As observed before, if X is a very general non-projective fourfold of $K 3^{[2]}$-type admitting a symplectic involution, then $\mathrm{NS}(X)=E_{8}(-2)$ and $\mathrm{T}_{X}=U^{\oplus 3} \oplus E_{8}(-2) \oplus\langle-2\rangle$.

As in the case of the K3 surfaces, see e.g. [vGS], to relate the Néron-Severi group of a manifold with an involution to the one of its quotient by the involution, one uses the explicit description of the isometry induced on the second cohomology group by the involution, and the knowledge of a primitive embedding of the Néron-Severi group in the second cohomology group. Therefore here we describe a choice for this embedding, which will be used in Section 3. The uniqueness of the action induced by the involution and of the embeddings up to isometries of the lattice L, will guarantee that the results in Section 3 are independent by the embedding chosen to make the explicit computations.

Hence, we explicitly fix the embeddings $j_{a}, a=1,2,3$ and \widetilde{j} in L which will be used in the following.

Let X be a fourfold of $K 3^{[2]}$-type admitting a symplectic involution ι. Fix a basis of $H^{2}(X, \mathbb{Z}) \simeq U^{\oplus 3} \oplus E_{8}(-1) \oplus E_{8}(-1) \oplus\langle-2\rangle$: there exists an isometry between $H^{2}(X, \mathbb{Z})$ and $L=U^{\oplus 3} \oplus E_{8}(-1) \oplus E_{8}(-1) \oplus\langle-2\rangle$ such that the involution $\iota^{*} \in O\left(H^{2}(X, \mathbb{Z})\right)$ switches the two copies of $E_{8}(-1)$ and acts as the identity on $U \oplus U \oplus U \oplus\langle-2\rangle$. We denote by e_{i}, (resp. $\left.f_{i}\right), i=1, \ldots, 8$ a basis of the first (resp. second) copy of $E_{8}(-1)$ in $E_{8}(-1) \oplus E_{8}(-1)$, and by b_{i} a basis of $E_{8}(-2)$. We fix two different embeddings of the lattice $E_{8}(-2)$ in $E_{8}(-1) \oplus E_{8}(-1)$:

$$
\begin{aligned}
\lambda_{+}\left(b_{i}\right) & =e_{i}+f_{i} \quad i=1, \ldots, 8 \\
\lambda_{-}\left(b_{i}\right) & =e_{i}-f_{i} \quad i=1, \ldots, 8
\end{aligned}
$$

In particular $H^{2}(X, \mathbb{Z})^{\iota^{*}}=U^{\oplus 3} \oplus \lambda_{+}\left(E_{8}(-2)\right) \oplus\langle-2\rangle \simeq U^{\oplus 3} \oplus E_{8}(-2) \oplus\langle-2\rangle$ and $\left(H^{2}(X, \mathbb{Z})^{\iota^{*}}\right)^{\perp}=\lambda_{-}\left(E_{8}(-2)\right) \simeq E_{8}(-2)$.

Let $h \in H^{2}(X, \mathbb{Z})$ be a ι-invariant primitive class with self-intersection $2 d>0$. Let us denote by $j(h)$ an embedding of h in $H^{2}(X, \mathbb{Z}) \simeq L$. Since the polarization h is invariant for $\iota, j(h) \in H^{2}(X, \mathbb{Z})^{\iota^{*}} \simeq U^{\oplus 3} \oplus \lambda_{+}\left(E_{8}(-2)\right) \oplus\langle-2\rangle$ and thus it corresponds to a vector of the form $(\underline{u}, \underline{w}, \underline{v}, \underline{x}, \underline{y}, k)$ such that $\underline{x}=\underline{y}$.

Proposition 2.5. Let d be a positive integer and let

$$
j_{1}(h):=\left(\binom{1}{d},\binom{0}{0},\binom{0}{0}, \underline{0}, \underline{0}, 0\right) .
$$

The embedding $\left(j_{1}, \lambda_{-}\right):\langle 2 d\rangle \oplus E_{8}(-2) \rightarrow L$ is a primitive embedding and there exist fourfolds of $K 3^{[2]}$-type X_{1} such that $\operatorname{NS}\left(X_{1}\right) \simeq\left(j_{1}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right) \simeq \Lambda_{2 d}$ and $\mathrm{T}_{X_{1}} \simeq T_{2 d, 1}$.
Proof. The embedding $\left(j_{1}, \lambda_{-}\right)$is clearly primitive, hence there exist fourfolds of $K 3^{[2]}{ }_{-}$ type admitting this lattice as Néron-Severi group. Since j_{1} restricts to an embedding of h in U and λ_{-}restricts to an embedding of $E_{8}(-2)$ in $E_{8}(-1) \oplus E_{8}(-1)$, one can compute separately the orthogonal in the different direct summands, finding that the orthogonal to $\mathrm{NS}\left(X_{1}\right)$ is $\langle-2 d\rangle \oplus U \oplus U \oplus \lambda_{+}\left(E_{8}(-2)\right) \oplus\langle-2\rangle \simeq T_{2 d, 1}$.

Proposition 2.6. Let d be an odd positive integer. Let

$$
\left.\begin{array}{l}
j_{2}(h):=\left(\left(\begin{array}{c}
2 \\
2 k+2 \\
2 \\
2 k+2
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), \underline{e_{1}}, \underline{e_{1}}, 1\right) \\
j_{2}(h):=\left(\underline{e_{3}}, \underline{e_{1}}+\underline{e_{3}}, 1\right.
\end{array}\right) \quad \text { if } d=4 k+1,
$$

The embedding $\left(j_{2}, \lambda_{-}\right):\langle 2 d\rangle \oplus E_{8}(-2) \rightarrow L$ is a primitive embedding and there exist fourfolds of $K 3^{[2]}$-type X_{2} such that $\operatorname{NS}\left(X_{2}\right) \simeq\left(j_{2}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right) \simeq \Lambda_{2 d}$ and $\mathrm{T}_{X_{2}} \simeq T_{2 d, 2}$.
Proof. The embedding $\left(j_{2}, \lambda_{-}\right)$is clearly primitive, hence there exist fourfolds of $K 3^{[2]}{ }_{-}$ type admitting this lattice as Néron-Severi group. By Proposition 2.4 there is an embedding of $\langle 2 d\rangle \oplus E_{8}(-2)$ in $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2} \oplus\langle-2\rangle$ which is not equivalent to j_{1}, computed in Proposition 2.5.

Let $\underline{x}=\left\{\begin{array}{ll}\underline{e_{1}} & \text { if } d \equiv 1 \bmod 4 \\ \underline{e_{1}}+\underline{e_{3}} & \text { if } d \equiv 3 \bmod 4 .\end{array}\right.$. By direct computation, the orthogonal lattice $\left(\left(j_{2}, \lambda_{-}\right)\left(\Lambda_{2 d}\right)\right)^{\perp}$ is spanned by the following vectors:
$\left(\underline{0}, \underline{a_{i}}, \underline{0}, \underline{0}, \underline{0}, 0\right),\left(\underline{0}, \underline{0}, \underline{a_{i}}, \underline{0}, \underline{0}, 0\right), i=1,2$ where a_{1}, a_{2} is a basis of $U ;$

$$
\begin{gathered}
\left(\binom{-1}{k+1}, \underline{0}, \underline{0}, \underline{0}, \underline{0}, 0\right),\left(\binom{0}{1}, \underline{0}, \underline{0}, \underline{0}, \underline{0}, 1\right),(\underline{0}, \underline{0}, \underline{0}, \underline{w}, \underline{w}, 0), \underline{w} \in(\underline{x})_{E_{8}(-1)}^{\perp} \\
b:=(\underline{0}, \underline{0}, \underline{0}, \underline{y}, \underline{y}, 1) \text { with } \underline{y}=\left\{\begin{array}{lll}
\frac{e_{2}}{e_{4}} & \text { if } d \equiv 1 & \text { if } d \equiv 3
\end{array} \bmod 4\right.
\end{gathered}
$$

One can directly compute the form on the previous basis and hence its discriminant form. By [N2, Corollary 1.13.3] one obtains that there exists a unique, up to isometry, even lattice with signature $(2,12)$ and the required discriminant form. Such a lattice is isometric to $T_{2 d, 2}$.
Proposition 2.7. Let d be a positive integer such that $d \equiv 3 \bmod 4$. Let

$$
j_{3}(h):=\left(\binom{2}{(d+1) / 2},\binom{0}{0},\binom{0}{0}, \underline{0}, \underline{0}, 1\right)
$$

The embedding $\left(j_{3}, \lambda_{-}\right):\langle 2 d\rangle \oplus E_{8}(-2) \rightarrow L$ is a primitive embedding and there exist fourfolds of $K 3^{[2]}$-type X_{3} such that $\mathrm{NS}\left(X_{3}\right) \simeq\left(j_{3}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right) \simeq \Lambda_{2 d}$ and $\mathrm{T}_{X_{3}} \simeq T_{2 d, 3}$.
Proof. The embedding $\left(j_{3}, \lambda_{-}\right)$is clearly a primitive embedding of $\langle 2 d\rangle \oplus E_{8}(-2)$ in L and hence there exist fourfolds of $K 3^{[2]}$-type admitting this lattice as Néron-Severi group. Since j_{3} restricts to an embedding of h in $U \oplus\langle-2\rangle$, one can compute the orthogonal of $j_{3}(h)$ in $U \oplus\langle-2\rangle$, which is generated by $\left(\binom{0}{1}, 1\right)$ and $\left(\binom{1}{-(d+1) / 4}, 0\right)$, with intersection form equal to K_{d}, so that $\mathrm{T}_{X_{3}} \simeq T_{2 d, 3}$.

Proposition 2.8. Let d be an even positive integer. Let

$$
\left.\left.\begin{array}{ll}
\tilde{j}(h):= \\
\widetilde{j}(h):=\binom{2}{2 k},\left(\begin{array}{l}
0 \\
0 \\
2 \\
2 k
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\underline{e_{1}}, \underline{e_{1}}, 0\right. \\
0 \\
0
\end{array}\right), \underline{e_{1}}+\underline{e_{3}}, \underline{e_{1}}+\underline{e_{3}}, 0\right) \quad \text { if } d=4 k-4 . .
$$

The embedding $\left(\widetilde{j}, \lambda_{-}\right):\langle 2 d\rangle \oplus E_{8}(-2) \rightarrow L$ is not a primitive embedding and the primitive closure of $\left(\widetilde{j}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)$ is isometric to $\widetilde{\Lambda}_{2 d}$. There exist fourfolds of $K 33^{[2]}$-type \widetilde{X} such that $\operatorname{NS}(\widetilde{X}) \simeq \widetilde{\Lambda}_{2 d}$ and $\mathrm{T}_{\widetilde{X}} \simeq \widetilde{T}_{2 d}$.
Proof. Let us consider the case $d=4 k-2$, i.e. $d \equiv 2 \bmod 4$. The embedding $\left(\widetilde{j}, \lambda_{-}\right)$is not primitive, since the class $\widetilde{j}(h)+\lambda_{-}\left(b_{1}\right)$ can be divided by 2 in $U \oplus U \oplus U \oplus E_{8}(-1) \oplus$ $E_{8}(-1) \oplus\langle-2\rangle$, whereas $h+b_{1}$ is primitive inside $\langle 2 d\rangle \oplus E_{8}(-2)$. By adding the class $\left(\widetilde{j}(h)+\lambda_{-}\left(b_{1}\right)\right) / 2$ to $\left(\widetilde{j}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)$ one obtains a primitive embedding of $\widetilde{\Lambda}_{2 d}$ in L. In particular there exists a fourfold of $K 33^{[2]}$ - type with $\operatorname{NS}(\widetilde{X}) \simeq \widetilde{\Lambda}_{2 d}$ and, by computing its orthogonal complement, one finds $\mathrm{T}_{\tilde{Y}} \simeq U^{\oplus 2} \oplus\langle-2 d\rangle \oplus D_{4}(-1) \oplus\langle-2\rangle^{\oplus 5}$.

The case $d=4 k-4$ is analogous.
2.2. Models of X as moduli space of sheaves on a $K 3$ surface. In this section we provide at least one model of the very general member of each family of projective fourfolds of $K 33^{[2]}$-type admitting a symplectic involution, i.e. of each family described in Table (2.1). Each of these models will be described either as Hilbert scheme of a certain $K 3$ surface or as a moduli space of stable, possibly twisted, sheaves on a $K 3$ surface. The main results of this section are summarized in Table (2.2).

One needs two preliminary definitions in order to list all cases.
Definition 2.9. If $d \equiv 3 \bmod 4$, we denote by $\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}$ the overlattice of $\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}=\mathbb{Z} t \oplus \oplus_{i} \mathbb{Z} n_{i}$ obtained by adding to $\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}$ the class $\left(t+\sum_{i} n_{i}\right) / 2$.

Lemma 2.10. The lattice $\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}$ admits a unique primitive embedding in $L_{K 3}$ and its orthogonal is uniquely determined and isometric to $U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus$ $\langle-2\rangle^{\oplus 5}$.

If $d \equiv 3 \bmod 4$ the lattice $\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}$ admits a unique primitive embedding in $L_{K 3}$ and its orthogonal is uniquely determined and isometric to $U^{\oplus 2} \oplus N \oplus K_{d}$.
Proof. The discriminant quadratic form of $Q:=\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}$ is $\left(\frac{1}{2 d}\right) \oplus\left(-\frac{1}{2}\right)^{\oplus 7}$. Since $L_{K 3}$ is unimodular, the orthogonal Q^{\perp} needs to have discriminant quadratic form

$$
\left(-\frac{1}{2 d}\right) \oplus\left(\frac{1}{2}\right)^{\oplus 7} \simeq\left(-\frac{1}{2 d}\right) \oplus v(2) \oplus\left(-\frac{1}{2}\right)^{\oplus 5}
$$

and signature (2,12): by [N 2 , Corollary 1.13 .3], there is, up to isometry, a unique lattice with these properties, which is $U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}$, thus the embedding is unique up to isometry of $L_{K 3}$.

The discriminant quadratic form of $Q^{\prime}:=\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}$ is $\left(\frac{2}{d}\right) \oplus u(2)^{\oplus 3}$, hence its orthogonal in $L_{K 3}$ has discriminant quadratic form $\left(-\frac{2}{d}\right) \oplus u(2)^{\oplus 3}$ and signature (2,12): again by [N2, Corollary 1.13.3], there is, up to isometry, a unique lattice with these properties, which is $U^{\oplus 2} \oplus N \oplus K_{d}$.

The previous lemma implies that there exists a well defined family of $K 3$ surfaces which is polarized with the lattice $\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}$ (resp. $\left.\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}\right)$.

Definition 2.11. For any positive integer d, W_{d} is a $K 3$ surface such that $\mathrm{NS}\left(W_{d}\right)=$ $\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}$.

For the positive integers d such that $d \equiv 3 \bmod 4, W_{d}^{\prime}$ is a $K 3$ surface such that $\mathrm{NS}\left(W_{d}^{\prime}\right)=\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}$

By the previous lemma, the transcendental lattices of the surfaces W_{d} and W_{d}^{\prime} are respectively $\mathrm{T}_{W_{d}} \simeq U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2 d\rangle \oplus\langle-2\rangle^{\oplus 5}$ and $\mathrm{T}_{W_{d}^{\prime}} \simeq U^{\oplus 2} \oplus N \oplus K_{d}$.

In the following we will denote by H^{\prime} a primitive vector in

$$
\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7} \quad \text { or } \quad\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}
$$

whose square is 2 . It surely exists by Lagrange's four squares theorem.
The following table summarizes all the birational models given for X : in the first column we identify the family of fourfolds which we are considering (and this is done by exhibiting the embedding $\operatorname{NS}(X) \subset L$, using the results in (2.1)); in the second column we declare which $K 3$ surface is associated to the model; in the third we describe the model; if the model of X is as moduli space of sheaves determined by a Mukai vector, in the fourth column we write the Mukai vector (we omit the element in the Brauer group giving the twist, when needed); in the last column we give the reference to the proposition where we describe the model and prove that it is the required one.

Embedding NS $(X) \subset L$		$K 3$	model	v	Prop.
$j_{1}, d \equiv 1$	$\bmod 2$	W_{d}	$M_{v}\left(W_{d}, \beta\right)$	$\left(0, H^{\prime}, 2\right)$	2.14
$j_{1}, d \equiv 0$	$\bmod 2$	W_{d}	$M_{v}\left(W_{d}, \beta\right)$	$\left(4, \sum_{i=1}^{7} n_{i}, 2\right)$	2.16
$j_{2}, d \equiv 1$	$\bmod 2$	W_{d}	$W_{d}^{2]}$	-	2.12
$j_{3}, d \equiv 3$	$\bmod 4$	W_{d}^{\prime}	$M_{v}\left(W_{d}^{\prime}, \beta\right)$	$\left(0, H^{\prime}, 2\right)$	2.15
$\widetilde{j}, d \equiv 0$	$\bmod 2$	W_{d}	$M_{v}\left(W_{d}\right)$	$\left(2, \sum_{i=1}^{7} n_{i}, 4\right)$	2.16

The easiest description of the fourfold that we obtain is the one associated to the embedding $j_{2}: \mathrm{NS}(X) \hookrightarrow L$, indeed in this case X is (birational to) a Hilbert scheme of points on a $K 3$ surface, by the following.
Proposition 2.12. Let d be an odd positive integer. Then $W_{d}^{[2]}$ is a $\left(\Lambda_{2 d}, j_{2}\right)$-polarized fourfold.
Proof. The transcendental lattice $\mathrm{T}_{W_{d}}$ of W_{d} is isometric to the one of $W_{d}^{[2]}$. Since $\mathrm{T}_{W_{d}} \simeq T_{2 d, 2}$ (see Proposition 2.4), we conclude that $\mathrm{T}_{W_{d}^{[2]}} \simeq T_{2 d, 2}$. Moreover, $\mathrm{NS}\left(W_{d}^{[2]}\right) \simeq$ $\mathrm{NS}\left(W_{d}\right) \oplus\langle-2\rangle$ and, by comparison of the discriminant forms, one has $\mathrm{NS}\left(W_{d}\right) \oplus\langle-2\rangle \simeq$ $\Lambda_{2 d}$. So a generic $\left(\Lambda_{2 d}, j_{2}\right)$-polarized fourfold has the same transcendental lattice and Néron-Severi group of $W_{d}^{[2]}$, thus their families coincide.
Remark 2.13. Note that there is no natural symplectic involution on these Hilbert schemes. It is a nice open problem how to construct such involutions on some birational models of those Hilbert schemes, but for $d=1$ there is the following geometric construction.

If $d=1$, then the generic $\left(\langle 2\rangle \oplus\langle-2\rangle^{\oplus 7}\right)$-polarized $K 3$ surface W_{1} is a double cover of a del Pezzo surface of degree 2 , denoted by $d P_{2}$, thus it admits a non symplectic involution, which is the cover involution. We denote it as $\iota_{W_{1}}$ and we observe that it acts as the identity on $\mathrm{NS}\left(W_{1}\right)$. Moreover, since the anticanonical model of $d P_{2}$ exhibits $d P_{2}$ as double cover of \mathbb{P}^{2} branched on a quartic curve, the surface W_{1} admits a model
(induced by the anticanonical one of $d P_{2}$) as a quartic hypersurface in \mathbb{P}^{3} which does not contain lines. Therefore the fourfold $X=W_{1}^{[2]}$ admits two non-symplectic involutions: one is $\iota_{W_{1}}^{[2]}$, the natural involution induced by $\iota_{W_{1}}$, and the other is Beauville's involution β (see [Bea, Proposition 11] for the definition). The isometry $\left(\iota_{W_{1}}^{[2]}\right)^{*}$ acts as the identity on $\operatorname{NS}(X)$ and as minus the identity on T_{X}, hence it commutes with every isometry induced by an involution on X (since they commute both on the transcendental lattice and on the Néron-Severi group). In particular $\iota_{W_{1}}^{[2]}$ and β are two commuting non symplectic involutions, whose composition is necessarily a symplectic involution on X. Such an involution can be constructed also on a birational model, as done in [MaT].

In the case $d=3$, by Proposition 2.12 examples of $\left(\Lambda_{6}, j_{2}\right)$-polarized fourfolds are given by Hilbert squares of $K 3$ surfaces W_{3} which are $\left(\langle 6\rangle \oplus\langle-2\rangle^{\oplus 7}\right)$-polarized. In this case, one can show that such Hilbert squares are in fact birational to the Fano varieties of cubic fourfolds with 8 nodes [L, Thm. 1.1]. It is an open question whether it is possible to describe geometrically a symplectic involution on these manifolds.
Proposition 2.14. Let d be an odd positive integer. There exist a Brauer class $\beta \in H^{2}\left(\mathcal{O}_{W_{d}}^{*}\right)_{2}$ and a Mukai vector $v \in H^{*}\left(W_{d}, \mathbb{Z}\right)$ such that the moduli space $X=$ $M_{v}\left(W_{d}, \beta\right)$ is a $\left(\Lambda_{2 d}, j_{1}\right)$-polarized fourfold of $K 3{ }^{[2]}$-type.
Proof. The transcendental lattice $\mathrm{T}_{W_{d}}$ of W_{d} is of the form $U \oplus \Xi$ for Ξ an even hyperbolic lattice; we denote by f_{1}, f_{2} a basis of the hyperbolic plane U. Then we consider $B=\frac{f_{1}}{2} \in \mathrm{~T}_{W_{d}} \otimes \mathbb{Q}$ and $\beta \in H^{2}\left(\mathcal{O}_{W_{d}}^{*}\right)_{2}$ the Brauer class of order two corresponding to $(-, B): \mathrm{T}_{W_{d}} \rightarrow \mathbb{Z}_{2}$. The twisted Néron-Severi group $\mathrm{NS}\left(W_{d}, \beta\right)$ is thus the sublattice of $H^{*}\left(W_{d}, \mathbb{Z}\right)$ generated by $\operatorname{NS}\left(W_{d}\right),(0,0,1)$ and $\left(2, f_{1}, 0\right)$, hence it is isomorphic to $U(2) \oplus \mathrm{NS}\left(W_{d}\right)$, and its orthogonal in the Mukai lattice is isometric to $U(2) \oplus \Xi$. It follows from work of Yoshioka [Y, Section 3] that $\operatorname{NS}\left(M_{v}\left(W_{d}, \beta\right)\right) \simeq v_{B}^{\frac{1}{B}} \cap \mathrm{NS}\left(W_{d}, \beta\right)$ and that the transcendental lattice of $M_{v}\left(W_{d}, \beta\right)$ is isometric to $U(2) \oplus \Xi$.

We conclude by choosing as Mukai vector $v=\left(0, H^{\prime}, 2\right)$ where $H^{\prime} \in \mathrm{NS}\left(W_{d}\right)$ is a primitive effective class of square two. The orthogonal P of H^{\prime} in $\operatorname{NS}\left(W_{d}\right)$ is a negative definite lattice with rank and length 7 and discriminant group $\mathbb{Z}_{2 d} \oplus\left(\mathbb{Z}_{2}\right)^{\oplus 6}$ with discriminant quadratic form $q=\left(\frac{1}{2 d}\right) \oplus v(2) \oplus\left(-\frac{1}{2}\right)^{\oplus 4}$. For such a choice we have $v_{B}=v$ primitive of square two and the orthogonal to v in $U(2) \oplus \operatorname{NS}\left(W_{d}\right)$ is a hyperbolic lattice of rank 9 and discriminant group $\mathbb{Z}_{2 d} \oplus\left(\mathbb{Z}_{2}\right)^{\oplus 8}$. Its 2-adic component is isometric to the one of $\langle 2\rangle \oplus\langle-2\rangle^{8} \simeq\langle 2\rangle \oplus E_{8}(-2)$ and there is only one even indefinite lattice in this genus by [N 2 , Theorem 1.13.2]. Thus the orthogonal to v is isometric to $\Lambda_{2 d}$.
Proposition 2.15. Let d be a positive integer such that $d \equiv 3 \bmod 4$. There exist a Brauer class $\beta \in H^{2}\left(\mathcal{O}_{W_{d}^{\prime}}^{*}\right)_{2}$ and a Mukai vector $v \in H^{*}\left(W_{d}^{\prime}, \mathbb{Z}\right)$ such that the moduli space $X=M_{v}\left(W_{d}^{\prime}, \beta\right)$ is a $\left(\Lambda_{2 d}, j_{3}\right)$-polarized fourfold of $K 33^{[2]}$-type.
Proof. Denote by Ξ the lattice $U \oplus N \oplus K_{d}$, it holds

$$
T_{2 d, 3} \simeq U^{\oplus 2} \oplus E_{8}(-2) \oplus K_{d} \simeq U(2) \oplus U \oplus N \oplus K_{d} \simeq U(2) \oplus \Xi
$$

and $\mathrm{T}_{W_{d}^{\prime}} \simeq U^{\oplus 2} \oplus N \oplus K_{d} \simeq U \oplus \Xi$. Now reasoning as in Proposition 2.14, one chooses $B=\frac{f_{1}}{2} \in \mathrm{~T}_{W_{d}^{\prime}} \otimes \mathbb{Q}$ and $\beta \in H^{2}\left(\mathcal{O}_{W_{d}^{\prime}}^{*}\right)_{2}$ the Brauer class of order two corresponding to $(-, B): \mathrm{T}_{W_{d}^{\prime}} \rightarrow \mathbb{Z}_{2}$. So $\operatorname{NS}\left(M_{v}\left(W_{d}^{\prime}, \beta\right)\right) \simeq v_{B}^{\perp} \cap \operatorname{NS}\left(W_{d}^{\prime}, \beta\right)$ and the transcendental lattice of $M_{v}\left(W_{d}^{\prime}, \beta\right)$ is isometric to $U(2) \oplus \Xi \simeq T_{2 d, 3}$.

We conclude by choosing as Mukai vector $v=\left(0, H^{\prime}, 2\right)$ where $H^{\prime} \in \operatorname{NS}\left(W_{d}^{\prime}\right) \simeq$ $\left(\langle 2 d\rangle \oplus\langle-2\rangle^{\oplus 7}\right)^{\prime}$ is a primitive effective class of square two.

Proposition 2.16. If $d \equiv 0 \bmod 2$, then:

- a general fourfold of $K 3^{[2]}$-type $\left(\Lambda_{2 d}, j_{1}\right)$-polarized is birational to $M_{v}\left(W_{d}, \beta\right)$ where $v=\left(4, \sum_{i} n_{i}, 2\right)$ and β are as above;
- a general fourfold of $K 3^{[2]}$-type $\left(\widetilde{\Lambda}_{2 d}, \tilde{j}\right)$-polarized is birational to $M_{w}\left(W_{d}\right)$ with $w=\left(2, \sum n_{i}, 4\right) \in H^{*}\left(W_{d}, \mathbb{Z}\right)$.
Proof. Let us fix β as in Proposition 2.14. Then, since $\mathrm{T}_{W_{d}} \simeq U^{\oplus 2} \oplus D_{4}(-1) \oplus$ $\langle-2\rangle^{\oplus 5} \oplus\langle-2 d\rangle, \mathrm{T}_{M_{v}\left(W_{d}, \beta\right)} \simeq U \oplus U(2) \oplus D_{4}(-1) \oplus\langle-2\rangle^{\oplus 5} \oplus\langle-2 d\rangle$ for every possible choice of the Mukai vector v. Moreover, the twisted Néron-Severi group $\operatorname{NS}\left(W_{d}, \beta\right)$ is $U(2) \oplus \operatorname{NS}\left(W_{d}\right)$ (as in the proof of Proposition 2.14) and it is generated by $(0,0,1)$, $\left(2, f_{1}, 0\right),\left(0, n_{i}, 0\right), i=1, \ldots 7,(0, t, 0)$ (where t, n_{i} are the generators of $\mathrm{NS}\left(W_{d}\right)$, $t^{2}=2 d$, and f_{1} is as in Proposition 2.14). We now fix $v=\left(4, \sum_{i} n_{i}, 2\right)$, then $v_{B}=$ $\left(4, \sum_{i} n_{i}+2 f_{1}, 2\right) \in H^{*}\left(W_{d}, \mathbb{Z}\right)$ and we compute $v_{B}^{\perp} \cap \mathrm{NS}\left(W_{d}, \beta\right)$. It is generated by $\left(2, f_{1},-1\right),\left(0,2 n_{1}, 1\right),\left(0, n_{i}-n_{i+1}, 0\right), i=1, \ldots 6,(0, t, 0)$. One can directly check that $(0, t, 0)$ is orthogonal to all the other generators and the form computed on all the other generators is $R(2)$ where R is an even negative definite unimodular lattice of rank 8 . It follows that $R \simeq E_{8}(-1)$ and so the orthogonal to v_{B} in $\operatorname{NS}\left(W_{d}, \beta\right)$ is isometric to $E_{8}(-2) \oplus\langle 2 d\rangle \simeq \Lambda_{2 d}$. Hence $M_{v}\left(W_{d}, \beta\right)$ is $\left(\Lambda_{2 d}, j_{1}\right)$-polarized and gives a birational model of the general $\left(\Lambda_{2 d}, j_{1}\right)$-polarized fourfold of $K 3^{[2]}$-type.

To prove the similar result for a general fourfold of $K 3^{[2]}$-type $\left(\widetilde{\Lambda}_{2 d}, \tilde{j}\right)$-polarized we observe that $\mathrm{T}_{W_{d}} \simeq \widetilde{T}_{2 d}$. Moreover, the (1,1)-part in $H^{*}\left(W_{d}, \mathbb{Z}\right)$ is $U \oplus \operatorname{NS}\left(W_{d}\right)$. Next, we observe that $\widetilde{\Lambda}_{2 d} \simeq\langle 2 d\rangle \oplus N$, where N is the Nikulin lattice, obtained by $\langle-2\rangle{ }^{\oplus 8}$ by gluing the class $n:=\sum r_{i} / 2$ and it is generated by the first seven roots r_{1}, \ldots, r_{7} and by n such that $n^{2}=-4$ and $n r_{i}=-1$.

Let $g_{1}, g_{2}, t, n_{1}, \ldots, n_{7}$ be a basis of $U \oplus \mathrm{NS}\left(W_{d}\right)$, i.e. of the $(1,1)$ part of $H^{*}\left(W_{d}, \mathbb{Z}\right)$. Consider now the explicit primitive embedding $\langle 2 d\rangle \oplus N \subset U \oplus \mathrm{NS}\left(W_{d}\right)$ which sends the $\langle 2 d\rangle$ summand in the lattice spanned by t and which sends $r_{i} \mapsto n_{i}+g_{1}$ for $i=1, \ldots, 7$, $n \mapsto 2 g_{1}-g_{2}$. The Mukai vector $w=\left(2, \sum_{i} n_{i}, 4\right)$ is $4 g_{1}+2 g_{2}+n_{1}+\ldots+n_{7}$ and its orthogonal is spanned by t, n and r_{i} with $i=1, \ldots 7$. So the orthogonal to the Mukai vector w in $U \oplus \operatorname{NS}\left(W_{d}\right)$ is isometric to $\langle 2 d\rangle \oplus N \simeq \widetilde{\Lambda}_{2 d}$ and this ends the proof.

Remark 2.17. (Induced automorphisms from autoequivalences.) The symplectic automorphism considered in Proposition 2.16 is induced by a symplectic autoequivalence on $D^{b}\left(W_{d}\right)$ that is not induced by a symplectic action on W_{d}. The result $[\mathrm{BecOb}$, Prop 1.4] gives a way to further investigate these symplectic involutions. If [BecOb , Prop 1.4] is generalized for twisted sheaves then this would give a way to study also the other involutions considered here.

3. Nikulin orbifolds

After having described the moduli spaces of projective fourfolds X of $K 3{ }^{[2]}$-type admitting a symplectic involution σ, we now turn to the study of their quotients. It is well-known, since work of Fujiki [Fuj], that the quotient does not admit a crepant resolution of singularities. Nevertheless, there is a partial resolution $Y \rightarrow X / \sigma$ which is a so-called irreducible sympletic orbifold.
Definition 3.1. Let X be a fourfold of $K 3^{[2]}$-type and let σ be a symplectic involution on X. The partial resolution Y of X / σ obtained by blowing up the $K 3$ surface contained in $\operatorname{Sing}(X / \sigma)$ is called the Nikulin orbifold corresponding to (X, σ).

Deformations (in the sense of [BL, Me2]) of Nikulin orbifolds are said to be orbifolds of Nikulin type.

We recall the following result by Menet.
Theorem 3.2. [Me1] The second cohomology group $H^{2}(Y, \mathbb{Z})$ of an orbifold Y of Nikulin type is endowed with a symmetric bilinear form, which is the Beauville-BogomolovFujiki form B_{Y} and thus it is a lattice. Let q_{Y} denote the corresponding quadratic form. Let Σ be the exceptional divisor of $Y \rightarrow X / \sigma$ and let Δ be the divisor induced by δ; then:

$$
q_{Y}(\Sigma)=q_{Y}(\Delta)=-4, \quad(\Sigma \pm \Delta) / 2 \in H^{2}(Y, \mathbb{Z})
$$

The lattice $\left(H^{2}(Y, \mathbb{Z}), q_{Y}\right)$ is isometric to $U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle \oplus\langle-2\rangle$, where the last two summands are generated by $(\Delta \pm \Sigma) / 2$.

It follows that Σ is a class with self-intersection -4 and divisibility 2 in $H^{2}(Y, \mathbb{Z})$.
As a consequence of the previous theorem we get the following
Corollary 3.3. Let X be fourfold of $K 3^{[2]}$-type with a symplectic involution σ and such that $\operatorname{NS}(X) \simeq E_{8}(-2)$; then the corresponding Nikulin orbifold Y has $\operatorname{NS}(Y) \simeq\langle-4\rangle$.

Hence, deformations of Y are not necessarily Nikulin orbifolds, since it follows from Corollary 3.3 that Nikulin orbifolds are contained in a family of codimension 1.
3.1. Families of projective Nikulin orbifolds and the map π_{*}. In Corollary 3.3 we describe the explicit relations between $\mathrm{NS}(X)$ and $\mathrm{NS}(Y)$ in the generic case. In the following we will consider the same problem for special subfamilies, those of the projective fourfolds X.

If one specializes to the projective case one has four different families of fourfolds of $K 3{ }^{[2]}$-type X admitting a symplectic involution σ, which depend on the chosen embedding of $\mathrm{NS}(X)$ in L and are those listed in Table (2.1). The aim of this section is to associate to each of these families the family of Nikulin orbifolds Y which are partial resolution of X / σ. The results of this section are summarized in the following table: in the first column we identify the family by choosing the embedding $\operatorname{NS}(X) \subset L$; in the second column we describe the Néron-Severi group of Y, in the third its transcendental lattice and in the last we give the reference to the propositions where the results are proved.
$\left.\left.\begin{array}{|c|c|c|c|}\hline \text { Embedding } \operatorname{NS}(X) \subset L & \mathrm{NS}(Y) & \mathrm{T}_{Y} & \text { Prop. } \\ \hline j_{1} & \langle 4 d\rangle \oplus\langle-4\rangle & U(2)^{\oplus 2} \oplus E_{8}(-1) \oplus\langle-4 d\rangle \oplus\langle-4\rangle & 3.5 \\ \hline j_{2}, d \equiv 1 & \bmod 2 & {\left[\begin{array}{cc}d-1 & 2 \\ 2 & -4\end{array}\right]} & U(2)^{\oplus 2} \oplus E_{7}(-1) \oplus K_{d}(2) \oplus\langle-2\rangle\end{array}\right] 3.6\right\}$

To prove these results we will use the explicit embeddings described in Section 2.1 and also the following explicit description of the map π_{*} induced by the quotient map $\pi: X \rightarrow X / \sigma$.

The map

$$
\pi_{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X / \sigma, \mathbb{Z}) \subset H^{2}(Y, \mathbb{Z})
$$

is compatible (as explained below) with the lattice structure induced by the Beauville-Bogomolov-Fujiki form both on $H^{2}(X, \mathbb{Z})$ and on $H^{2}(Y, \mathbb{Z})$. Hence we can interpret π_{*} as a map between the lattices $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2} \oplus\langle-2\rangle$ and $U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle \oplus$ $\langle-2\rangle$. To describe this map we consider, as in Section 2.1, a basis of $H^{2}(X, \mathbb{Z})$ such that $\sigma^{*} \in O\left(H^{2}(X, \mathbb{Z})\right)$ switches the two copies of $E_{8}(-1)$ and acts as the identity on $U \oplus U \oplus U \oplus\langle-2\rangle$. We consider again the embeddings of the lattice $E_{8}(-2)$ in $E_{8}(-1) \oplus E_{8}(-1)$:

$$
\begin{aligned}
& \lambda_{+}\left(b_{i}\right)=e_{i}+f_{i} \quad i=1, \ldots, 8 \\
& \lambda_{-}\left(b_{i}\right)=e_{i}-f_{i} \quad i=1, \ldots, 8
\end{aligned}
$$

In particular $H^{2}(X, \mathbb{Z})^{\sigma^{*}}=U^{\oplus 3} \oplus \lambda_{+}\left(E_{8}(-2)\right) \oplus\langle-2\rangle \simeq U^{\oplus 3} \oplus E_{8}(-2) \oplus\langle-2\rangle$ and $\left(H^{2}(X, \mathbb{Z})^{\sigma^{*}}\right)^{\perp}=\lambda_{-}\left(E_{8}(-2)\right) \simeq E_{8}(-2)$.

Take $\underline{u}, \underline{v}, \underline{w}$ vectors in U and \underline{x}, y vectors in $E_{8}(-1)$; for ease of notation, we will denote by $k \in \mathbb{Z}$ an element of $\langle-\overline{2}\rangle$, referring to the k-th multiple of its generator (depending on the lattice this will be either $\delta,(\Delta+\Sigma) / 2$ or $(\Delta-\Sigma) / 2)$. Thus $(\underline{u}, \underline{w}, \underline{v}, \underline{x}, \underline{y}, k)$ is a vector in $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2} \oplus\langle-2\rangle$. Then

$$
\begin{equation*}
\pi_{*}(\underline{u}, \underline{w}, \underline{v}, \underline{x}, \underline{y}, k)=(\underline{u}, \underline{w}, \underline{v}, \underline{x}+\underline{y}, k, k) \in U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle \oplus\langle-2\rangle . \tag{3.2}
\end{equation*}
$$

Hence the restriction of π_{*} to $U^{\oplus 3}$ acts as the identity on the vector space, but the form is multiplied by 2 ; the restriction of π_{*} to $E_{8}(-1)^{\oplus 2}$ acts as the sum of the two components on the vector space and divides the form by 2 in the quotient.

Lemma 3.4. One has: $\pi_{*}\left(\lambda_{-}\left(E_{8}(-2)\right)\right)$ is trivial; $\pi_{*}\left(\lambda_{+}\left(E_{8}(-2)\right)\right)=E_{8}(-1)$;

$$
\pi_{*}\left(H^{2}(X, \mathbb{Z})^{\sigma^{*}}\right)=U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-4\rangle
$$

Proof. It suffices to choose a basis of the sublattices $\lambda_{-}\left(E_{8}(-2)\right), \lambda_{+}\left(E_{8}(-2)\right), H^{2}(X, \mathbb{Z})^{\sigma^{*}}$ of $H^{2}(X, \mathbb{Z})$ and then to apply the map π_{*} as given in (3.2).

Proposition 3.5. Let d be a positive integer and X_{1} be a $\left(\Lambda_{2 d}, j_{1}\right)$-polarized fourfold of $K 3{ }^{[2]}$-type. The fourfold X_{1} admits a symplectic involution σ and, denoted by Y_{1} the corresponding Nikulin orbifold, one has $\mathrm{NS}\left(Y_{1}\right) \simeq\langle 4 d\rangle \oplus\langle-4\rangle$ and $\mathrm{T}_{Y_{1}} \simeq\langle-4 d\rangle \oplus$ $U(2)^{\oplus 2} \oplus E_{8}(-1) \oplus\langle-4\rangle$.

Proof. By Proposition 2.5 one can choose the embedding j_{1} such that $j_{1 \mid E_{8}(-2)}=$ λ_{-}and $j_{1}(h):=\left(\binom{1}{d},\binom{0}{0},\binom{0}{0}, \underline{0}, \underline{0}, 0\right)$. Since $\pi_{*}\left(\operatorname{NS}\left(X_{1}\right)\right) \subset \operatorname{NS}\left(Y_{1}\right)$, one first considers $\pi_{*}\left(\operatorname{NS}\left(X_{1}\right)\right)=\pi_{*}\left(\left(j_{1}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)\right)=\pi_{*}\left(j_{1}(h)\right)$ (where the last identity is due to Lemma 3.4). By (3.2),

$$
\pi_{*}\left(j_{1}(h)\right)=\left(\binom{1}{d},\binom{0}{0},\binom{0}{0}, \underline{0}, 0,0\right) \in U(2)^{3} \oplus E_{8}(-1) \oplus\langle-2\rangle^{\oplus 2}
$$

so $q_{Y}\left(\pi_{*}\left(j_{1}(h)\right)\right)=4 d$. Moreover, the class

$$
\Sigma=\left(\binom{0}{0},\binom{0}{0},\binom{0}{0}, \underline{0}, 1,-1\right)
$$

is contained in $\mathrm{NS}\left(Y_{1}\right)$. Hence $\mathrm{NS}\left(Y_{1}\right)$ is spanned by $\pi_{*}\left(j_{1}(h)\right)$ and Σ and there are no linear combinations with rational non integer coefficients of these classes which are also contained in $H^{2}\left(Y_{1}, \mathbb{Z}\right)$. So $\operatorname{NS}\left(Y_{1}\right)=\left\langle\pi_{*}\left(j_{1}(h)\right), \Sigma\right\rangle \simeq\langle 4 d\rangle \oplus\langle-4\rangle$. By definition $\mathrm{T}_{Y_{1}}$ is the orthogonal of $\operatorname{NS}\left(Y_{1}\right)$ in $H^{2}\left(Y_{1}, \mathbb{Z}\right)$. So

$$
\mathrm{T}_{Y_{1}} \simeq\langle-4 d\rangle \oplus U(2)^{\oplus 2} \oplus E_{8}(-1) \oplus\langle-4\rangle
$$

Proposition 3.6. Let d be an odd positive integer and X_{2} be a $\left(\Lambda_{2 d}, j_{2}\right)$-polarized fourfold of $K 33^{[2]}$-type. The fourfold X_{2} admits a symplectic involution σ and, denoted by Y_{2} the corresponding Nikulin orbifold, one has $\operatorname{NS}\left(Y_{2}\right) \simeq H_{d}(2):=\left[\begin{array}{cc}d-1 & 2 \\ 2 & -4\end{array}\right]$ and $\mathrm{T}_{Y_{2}} \simeq U(2)^{\oplus 2} \oplus E_{7}(-1) \oplus K_{d}(2) \oplus\langle-2\rangle$.
Proof. By Proposition 2.6 one can choose the embedding j_{2} such that $j_{2 \mid E_{8}(-2)}=\lambda_{-}$ and $j_{2}(h):=\left\{\begin{array}{ll}\left(\begin{array}{c}2 \\ 2 k+2 \\ 2 \\ 2 k+2\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right), \underline{e_{1}}, \underline{e_{1}}, 1\end{array}\right) \quad$ if $\left.d=4 k+1, \underline{e_{3}}, \underline{e_{1}}+\underline{e_{3}}, 1\right) \quad$ if $d=4 k-1$.

As above, to compute $\operatorname{NS}\left(Y_{2}\right)$ one observes that a \mathbb{Q}-basis is given by $\pi_{*}\left(j_{2}(h)\right)$ and Σ. By $(3.2), \pi_{*}\left(j_{2}(h)\right)=\left(\binom{2}{2 k+2},\binom{0}{0},\binom{0}{0}, 2 \underline{x}, 1,1\right)$ and $q_{Y}\left(\pi_{*}\left(j_{2}(h)\right)\right)=4 d$. The class $\pi_{*}\left(j_{2}(h)\right)-\Sigma=\left(\binom{2}{2 k+2},\binom{0}{0},\binom{0}{0}, 2 \underline{x}, 0,2\right)$ is divisible by 2 in $H^{2}\left(Y_{2}, \mathbb{Z}\right)$, thus $\left(\pi_{*}\left(j_{2}(h)\right)-\Sigma\right) / 2 \in \operatorname{NS}\left(Y_{2}\right)$. Finally, we get

$$
\mathrm{NS}\left(Y_{2}\right)=\left\langle\left(\pi_{*}\left(j_{2}(h)\right)-\Sigma\right) / 2, \Sigma\right\rangle=\left[\begin{array}{cc}
d-1 & 2 \\
2 & -4
\end{array}\right]
$$

The transcendental lattice is the orthogonal to Σ and $\pi_{*}\left(j_{2}(h)\right)$ in $H^{2}\left(Y_{2}, \mathbb{Z}\right)$. A \mathbb{Q} basis is obtained by computing the image via π^{*} of the generators of $\mathrm{T}_{X_{2}}$ listed above; then one observes that the only elements which are two-divisible are those of the form $(\underline{0}, \underline{0}, \underline{0}, 2 \underline{w}, 0,0)$, and this allows to deduce a \mathbb{Z}-basis of the lattice $T_{Y_{2}}$, which is of discriminant $2^{8} d$. Direct computation now shows that

$$
\mathrm{T}_{Y_{2}} \simeq U(2)^{\oplus 2} \oplus E_{7}(-1) \oplus K_{d}(2) \oplus\langle-2\rangle .
$$

Proposition 3.7. Let d be a positive integer such that $d \equiv 3 \bmod 4$ and X_{3} be a $\left(\Lambda_{2 d}, j_{3}\right)$-polarized fourfold of $K 3{ }^{[2]}$-type. The fourfold X_{3} admits a symplectic involution σ and, denoted by Y_{3} the corresponding Nikulin orbifold, one has $\operatorname{NS}\left(Y_{3}\right) \simeq H_{d}(2)$ and $\mathrm{T}_{Y_{3}} \simeq U(2)^{\oplus 2} \oplus K_{d}(2) \oplus E_{8}(-1)$.
Proof. By Proposition 2.7 one can choose the embedding j_{3} such that $j_{3 \mid E_{8}(-2)}=\lambda_{-}$ and $\left.j_{3}(h):=\binom{2}{(d+1) / 2},\binom{0}{0},\binom{0}{0}, \underline{0}, \underline{0}, 1\right)$.

Since both $\pi_{*}\left(j_{3}(h)\right)=\left(\binom{2}{(d+1) / 2},\binom{0}{0}\binom{0}{0}, \underline{0}, 1,1\right)$ and $\left(\pi_{*}\left(j_{3}(h)\right)-\Sigma\right) / 2$ are contained in $\mathrm{NS}\left(Y_{3}\right)$,

$$
\operatorname{NS}\left(Y_{3}\right)=\left\langle\left(\pi_{*}\left(j_{3}(h)\right)-\Sigma\right) / 2, \Sigma\right\rangle \simeq\left[\begin{array}{cc}
d-1 & 2 \\
2 & -4
\end{array}\right]
$$

and $\mathrm{T}_{Y_{3}}$ is its orthogonal complement inside $U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle^{\oplus 2}$. Hence

$$
\mathrm{T}_{Y_{3}} \simeq U(2)^{\oplus 2} \oplus K_{d}(2) \oplus E_{8}(-1)
$$

Proposition 3.8. Let d be an even positive integer and \tilde{X} be a $\left(\widetilde{\Lambda}_{2 d}, \tilde{j}\right)$-polarized fourfold of $K 3{ }^{[2]}$-type. The fourfold \widetilde{X} admits a symplectic involution σ and, denoted by \widetilde{Y} the corresponding Nikulin orbifold, one has $\operatorname{NS}(\widetilde{Y}) \simeq\langle d\rangle \oplus\langle-4\rangle$ and $\mathrm{T}_{\tilde{Y}} \simeq U^{\oplus 2} \oplus\langle-d\rangle \oplus N \oplus\langle-4\rangle$.

Proof. By Proposition 2.8 one can choose the embedding \widetilde{j} such that $\widetilde{j}_{\mid E_{8}(-2)}=\lambda_{-}$and $\tilde{j}(h):= \begin{cases}\left(\left(\begin{array}{c}2 \\ 2 k \\ 2 \\ 2 k\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right), \underline{e_{1}}, \underline{e_{1}}, 0\right) & \text { if } d=4 k-2 \text { and } \\ \left(\underline{e_{3}}+\underline{e_{3}}, 0\right) & \text { if } d=4 k-4 .\end{cases}$

Let us consider the case $d=4 k-2$. Since $\pi_{*}(\widetilde{j}(h))=\left(\binom{2}{2 k},\binom{0}{0},\binom{0}{0}, 2 \underline{e_{1}}, 0,0\right)$, $\left(\pi_{*}(\tilde{j}(h))\right) / 2 \in \operatorname{NS}(\tilde{Y})$ and a basis of $\operatorname{NS}(\widetilde{Y})$ is given by $\left(\pi_{*}(\tilde{j}(h))\right) / 2$ and Σ. So $\mathrm{NS}(\widetilde{Y})=\langle d\rangle \oplus\langle-4\rangle$ and $\mathrm{T}_{\widetilde{Y}}$ is the orthogonal complement in $U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle^{\oplus 2}$ to

$$
\left\langle\left(\binom{1}{k},\binom{0}{0},\binom{0}{0}, \underline{e_{1}}, 0,0\right),\left(\binom{0}{0},\binom{0}{0},\binom{0}{0}, \underline{0}, 1,-1\right)\right\rangle .
$$

One obtains $\mathrm{T}_{\widetilde{Y}} \simeq U^{\oplus 2} \oplus\langle-d\rangle \oplus N \oplus\langle-4\rangle$. The case $d=4 k-4$ is analogous.
Remark 3.9. The classes of divisors considered in Propositions 3.5, 3.6, 3.7, 3.8 have a geometric meaning: the class Σ is the effective class of the exceptional divisor; the class $\pi_{*}(j(h))$ is a pseudoample polarization induced on Y by the ample polarization $j(h)$ on X, and it is orthogonal to Σ. Its pullback via π^{*} is $2 j(h)$; the class $(j(h)-\Sigma)$ corresponds to a divisor which has positive intersection with the exceptional divisor Σ and its pullback via π^{*} is $2 j(h)$.
3.2. Nikulin orbifolds related with natural involutions on Hilbert squares of K3 surfaces. In Corollary 3.3 we described the relations between $\mathrm{NS}(X)$ and $\mathrm{NS}(Y)$ for a very general X of $K 3^{[2]}$-type admitting a symplectic involution σ. In Section 3.1 we specialize X by requiring that it is projective. In this section we specialize X by requiring that it is the Hilbert scheme of two points of a $K 3$ surface W and that the involution σ is natural, i.e. it is induced by a symplectic involution on W because of the equivariance of the construction of the Hilbert scheme $W^{[2]}$.
Proposition 3.10. Let W be a generic non-projective $K 3$ surface admitting a symplectic involution σ_{W}, i.e. $\mathrm{NS}(W)=E_{8}(-2)$. Let $X:=W^{[2]}$ be its Hilbert square and $\sigma:=\sigma_{W}^{[2]}$ be the natural involution induced by σ_{W}. Then $\operatorname{NS}(X)=E_{8}(-2) \oplus\langle-2\rangle$, $\mathrm{T}_{X} \simeq U^{\oplus 3} \oplus E_{8}(-2)$ and $\mathrm{NS}(Y) \simeq\langle-2\rangle^{\oplus 2}, \mathrm{~T}_{Y} \simeq U(2)^{\oplus 3} \oplus E_{8}(-1)$.
Proof. By construction, the embedding of $\operatorname{NS}(X)$ in $H^{2}(X, \mathbb{Z})$ is given by $\lambda_{-}\left(E_{8}(-2)\right) \oplus$ $\delta \simeq E_{8}(-2) \oplus\langle-2\rangle$. By Lemma 3.4, $\pi_{*}\left(\lambda_{-}\left(E_{8}(-2)\right) \oplus \delta\right)=\pi_{*}(\delta)$. Since π_{*} maps $\mathrm{NS}(X)$ to $\mathrm{NS}(Y)$, one deduces that $\Delta=\pi_{*}(\delta)=(\underline{0}, \underline{0}, \underline{0}, \underline{0}, 1,1) \in U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus$ $\langle-2\rangle \oplus\langle-2\rangle$ is a class in $\operatorname{NS}(Y)$. Moreover, $\mathrm{NS}(Y)$ always contains the class $\Sigma=$ $(\underline{0}, \underline{0}, \underline{0}, \underline{0}, 1,-1)$. Since $\operatorname{NS}(Y)$ contains both Δ and Σ, it contains all their linear combinations which belong to $H^{2}(Y, \mathbb{Z})$. In particular $\mathrm{NS}(Y)=\langle(\Delta+\Sigma) / 2,(\Delta-\Sigma) / 2\rangle \simeq$ $\langle-2\rangle \oplus\langle-2\rangle$. The transcendental lattices are directly computed respectively as orthogonal to the Néron-Severi groups inside $H^{2}(X, \mathbb{Z})$ and $H^{2}(Y, \mathbb{Z})$.
Proposition 3.11. Let W be a projective $K 3$ surface admitting a symplectic involution σ_{W} such that $\rho(W)=9$. Then either $\mathrm{NS}(W) \simeq \Lambda_{2 d}$ or $\mathrm{NS}(W) \simeq \overline{\Lambda_{2 d}}$.

Let $X=W^{[2]}$ be the Hilbert square on W, σ be the natural symplectic involution induced by σ_{W} and Y be the corresponding Nikulin orbifold.

If $\mathrm{NS}(W) \simeq \Lambda_{2 d}$, then $\mathrm{NS}\left(W^{[2]}\right)=\Lambda_{2 d} \oplus\langle-2\rangle, \mathrm{T}_{W^{[2]}} \simeq\langle-2 d\rangle \oplus U^{\oplus 2} \oplus E_{8}(-2)$, $\mathrm{NS}(Y) \simeq\langle 4 d\rangle \oplus\langle-2\rangle \oplus\langle-2\rangle$ and $\mathrm{T}_{Y} \simeq\langle-4 d\rangle \oplus U(2)^{\oplus 2} \oplus E_{8}(-1)$.

If $\mathrm{NS}(W) \simeq \widetilde{\Lambda_{2 d}}$, then $\mathrm{NS}\left(W^{[2]}\right)=\widetilde{\Lambda_{2 d}} \oplus\langle-2\rangle, \mathrm{T}_{W^{[2]}} \simeq\langle-2 d\rangle \oplus U \oplus U \oplus N$, $\mathrm{NS}(Y) \simeq\langle d\rangle \oplus\langle-2\rangle \oplus\langle-2\rangle$ and $\mathrm{T}_{Y} \simeq\langle-d\rangle \oplus U^{\oplus 2} \oplus N$.

Proof. The Néron-Severi group of W is given in [vGS]. The rest of the proof is analogous to the previous ones and we sketch it. If $\mathrm{NS}(W) \simeq \Lambda_{2 d}$ the embedding of $\mathrm{NS}\left(W^{[2]}\right)$ in $H^{2}(X, \mathbb{Z})$ is $\left(j_{1}, \lambda_{-}, \mathrm{id}\right)\left(h, E_{8}(-2), \delta\right)$, where $j_{1}(h)$ is defined in Proposition 3.5, $\lambda_{-}\left(E_{8}(-2)\right)$ is as above, and

$$
\operatorname{id}(\delta)=(\underline{0}, \underline{0}, \underline{0}, \underline{0}, \underline{0}, 1) \in U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2} \oplus\langle-2\rangle .
$$

Then one applies π_{*} as in (3.2): if both Δ and Σ are contained in $\operatorname{NS}(Y)$, then also $(\Delta \pm \Sigma) / 2$ is contained in $\mathrm{NS}(Y)$.

If $\operatorname{NS}(W) \simeq \widetilde{\Lambda_{2 d}}$, the embedding of $\operatorname{NS}\left(W^{[2]}\right)$ in $H^{2}(X, \mathbb{Z})$ is $\left(\widetilde{j}, \lambda_{-}, \operatorname{id}\right)\left(h, E_{8}(-2), \delta\right)$, where $\widetilde{j}(h)$ is defined in Proposition 3.8 and $\lambda_{-}\left(E_{8}(-2)\right)$ is as above. Then one applies π_{*} as in (3.2) and concludes.
3.3. A conjecture: the transcendental lattices of Y and of the fixed K3 surface. In Section 3.1, we computed T_{Y} for every possible embedding j_{i}. We observe that for all the computed T_{Y} one can embed T_{Y} not only in $H^{2}(Y, \mathbb{Z})$ as we did, but also in $L_{K 3}$. The orthogonal of $\mathrm{T}_{Y} \hookrightarrow L_{K 3}$ is the Néron-Severi group of a $K 3$ surface whose transcendental lattice is isometric to T_{Y}. In this section we discuss the following conjecture, which relates this K3 surface with the one in the fixed locus of the symplectic involution σ on X.
Conjecture 3.12. Let X be a fourfold of $K 3{ }^{[2]}$-type admitting a symplectic involution σ, let Y be the partial resolution of X / σ as above, let S be the $K 3$ surface contained in $\operatorname{Fix}_{\sigma}(X)$. Then $\mathrm{T}_{Y} \simeq \mathrm{~T}_{S}$.

As a first evidence to the conjecture we observe the following.
Proposition 3.13. Let W be a $K 3$ surface (projective or not) admitting a symplectic involution σ_{W}, such that $\mathrm{NS}(W)$ is one of the following lattices $E_{8}(-2), \Lambda_{2 d}$ or $\widetilde{\Lambda}_{2 d}$. Let X be $W^{[2]}$ and σ be the natural symplectic involution induced by σ_{W}. Then Conjecture 3.12 holds for X.

Proof. Let us denote by \hat{W} the minimal resolution of W / σ_{W}. It is a $K 3$ surface and its Néron-Severi group and transcendental lattice are determined by those of W by [GS, Corollary 2.2 . We will denote by $\widetilde{\Gamma_{2 e}}$ the unique even overlattice of index 2 of $\Gamma_{2 e}:=\langle 2 e\rangle \oplus N$ where both N and $\langle 2 e\rangle$ are primitively embedded. One has the following relations between the Néron-Severi groups

$$
\begin{array}{lll}
\mathrm{NS}(W)=E_{8}(-2) & \text { if and only if } & \mathrm{NS}(\hat{W})=N \\
\mathrm{NS}(W)=\Lambda_{2 d} & \text { if and only if } & \operatorname{NS}(\hat{W})=\widetilde{\Gamma}_{4 d} \tag{3.3}\\
\operatorname{NS}(W)=\widetilde{\Lambda}_{2 d}, d \equiv 0 & \bmod 2, & \text { if and only if } \\
\operatorname{NS}(\hat{W})=\Gamma_{d}
\end{array}
$$

which correspond to the following relations between the transcendental lattices

$$
\begin{array}{lll}
\mathrm{T}_{W}=U^{\oplus 3} \oplus E_{8}(-2) & \text { if and only if } & \mathrm{T}_{\hat{W}}=U^{\oplus 3} \oplus N \\
\mathrm{~T}_{W}=\langle-2 d\rangle \oplus U^{\oplus 2} \oplus E_{8}(-2) & \text { if and only if } & \mathrm{T}_{\hat{W}}=\langle-4 d\rangle \oplus U(2)^{\oplus 2} \oplus \\
\mathrm{~T}_{W}=\langle-2 d\rangle \oplus U^{\oplus 2} \oplus N, d \equiv 0 & \bmod 2, & \text { if and only if } \tag{3.4}
\end{array} \mathrm{T}_{\hat{W}}=\langle-d\rangle \oplus U^{\oplus 2} \oplus N
$$

For every fourfold of $K 3^{[2]}$-type X with a symplectic involution σ the fixed locus of σ consists of 28 isolated fixed points and a $K 3$ surface S. If $X=W^{[2]}$ and $\sigma=\sigma_{W}^{[2]}$, then the surface S is the Nikulin surface constructed as minimal resolution of W / σ_{W}, i.e. the surface \hat{W}. Hence, to conclude the proof it suffices to show that, for every W (and thus every X), one has $\mathrm{T}_{Y} \simeq \mathrm{~T}_{\hat{W}}$.

If $\mathrm{NS}(W)=E_{8}(-2)$, then $\mathrm{T}_{W}=U^{\oplus 3} \oplus E_{8}(-2)$. By Proposition 3.10, $\mathrm{T}_{Y} \simeq U^{\oplus 3} \oplus N$ and by (3.4) also $\mathrm{T}_{\hat{W}} \simeq U^{\oplus 3} \oplus N$.

If $\mathrm{NS}(W)=\langle 2 d\rangle \oplus E_{8}(-2)$, then $\mathrm{T}_{W}=U^{\oplus 2} \oplus\langle-2 d\rangle \oplus E_{8}(-2)$. By Proposition 3.11,

$$
\mathrm{T}_{Y} \simeq\langle-4 d\rangle \oplus U(2)^{\oplus 2} \oplus E_{8}(-1)
$$

and by (3.4) also $\mathrm{T}_{\hat{W}} \simeq\langle-4 d\rangle \oplus U(2)^{\oplus 2} \oplus E_{8}(-1)$.
If $\operatorname{NS}(W)=\widetilde{\Lambda}_{2 d}$, with $d \equiv 0 \bmod 2$, then $\mathrm{T}_{W}=\langle-2 d\rangle \oplus U^{\oplus 2} \oplus N$. By Proposition 3.11,

$$
\mathrm{T}_{Y} \simeq\langle-d\rangle \oplus U^{\oplus 2} \oplus N
$$

and by (3.4) also $\mathrm{T}_{\hat{W}} \simeq\langle-d\rangle \oplus U^{\oplus 2} \oplus N$.
We can also show that Conjecture 3.12 holds for two locally complete families when $d=1,3$ and the embeddings of $\Lambda_{2 d}$ are respectively j_{2} and j_{3}.

Proposition 3.14. Let X be a $\left(\Lambda_{2}, j_{2}\right)$-polarized fourfold of $K 3{ }^{[2]}$-type and σ the symplectic involution described in Remark 2.13. Conjecture 3.12 holds in this case.

Proof. We must describe the fixed locus of the symplectic involution $\sigma=\iota_{W_{1}}^{[2]} \circ \beta$ on X (see also [MaT, Lemmma 5.3]). The surface W_{1} has a model as quartic in \mathbb{P}^{3} and its non-symplectic involution $\iota_{W_{1}}$ is the restriction of an automorphism of \mathbb{P}^{3}, still denoted by $\iota_{W_{1}}$. For any point $P \in W_{1}$ we consider the line $r_{P}:=\left\langle P, \iota_{W_{1}}(P)\right\rangle$. The line r_{P} is invariant for $\iota_{W_{1}}$ and thus the set of intersection points $r_{P} \cap W_{1}$ is invariant for $\iota_{W_{1}}$, hence there exists a point $Q \in W_{1}$ such that

$$
r_{P} \cap W_{1}=\left\{P, \iota_{W_{1}}(P), Q, \iota_{W_{1}}(Q)\right\} .
$$

We consider the pair of points (P, Q), which corresponds to a point in $W_{1}^{[2]}$. This point is a fixed point of σ, indeed $\beta(P, Q)=\left(\iota_{W_{1}}(P), \iota_{W_{1}}(Q)\right)$ and $\iota_{W_{1}}^{[2]}\left(\iota_{W_{1}}(P), \iota_{W_{1}}(Q)\right)=$ (P, Q), so $\sigma(P, Q)=(P, Q)$. We get a fixed point of σ for each point $P \in W_{1}$. Vice versa each fixed point of σ in $W_{1}^{[2]}$ necessarily corresponds to a pair of points in W_{1} which lie on a $\iota_{W_{1}}$-invariant line. So the fixed surface S of σ is parametrized by points in W_{1} and thus it is birational to W_{1} (birational because in order to construct $W_{1}^{[2]}$ we blow up a surface and it is possible, a priori, that this introduces some exceptional divisors in the fixed locus). Nevertheless the surface S contained in the fixed locus of σ is a $K 3$ surface as W_{1} and thus if they are birational, they are isomorphic. So S is a surface isomorphic to W_{1} and in particular its transcendental lattice is $\mathrm{T}_{S} \simeq \mathrm{~T}_{W_{1}} \simeq$ $U^{\oplus 2} \oplus D_{4}(-1) \oplus\langle-2\rangle^{\oplus 6}$. This lattice is a 2-elementary lattice with signature $(2,12)$ and $\delta=1$, so it is isometric to any other 2-elementary lattice with these properties, in particular to

$$
U(2)^{\oplus 2} \oplus E_{7}(-1) \oplus K_{1}(2) \oplus\langle-2\rangle
$$

and the conjecture holds.
In the case of $\left(\Lambda_{6}, j_{3}\right)$-polarized fourfolds, the orthogonal of Λ_{6} is $T_{6,3}=U^{\oplus 2} \oplus$ $E_{8}(-2) \oplus K_{3}$ and $j_{3}(h)$ is a polarization on X of degree 6 and divisibility 2 , hence X is birational to the Fano variety of a smooth cubic fourfold. In fact, this is the family of Fano varieties $F(Z)$ of smooth symmetric cubic fourfolds Z carrying a symplectic involution, as discussed in $[\mathrm{C}, \S 7]$. In this case, the ample polarization h of degree 6 is of non-split type and its orthogonal complement is $h^{\perp} \simeq U^{\oplus 2} \oplus E_{8}(-1)^{\oplus 2} \oplus A_{2}(-1)$; since $E_{8}(-2)$ has to be orthogonal to h, we obtain that the orthogonal complement of Λ_{6} into L is the sublattice

$$
T_{6,3} \simeq U^{\oplus 2} \oplus E_{8}(-2) \oplus A_{2}(-1)
$$

In this case the equation of the cubic fourfold can be chosen to be

$$
\begin{gathered}
X_{0}^{2} L_{0}\left(X_{2}: X_{3}: X_{4}: X_{5}\right)+X_{1}^{2} L_{1}\left(X_{2}: X_{3}: X_{4}: X_{5}\right)+X_{0} X_{1} L_{2}\left(X_{2}: X_{3}: X_{4}: X_{5}\right)+ \\
+G\left(X_{2}: X_{3}: X_{4}: X_{5}\right)=0
\end{gathered}
$$

where $L_{i}\left(X_{2}: X_{3}: X_{4}: X_{5}\right)$ and $G\left(X_{2}: X_{3}: X_{4}: X_{5}\right)$ are homogeneous polynomials, $\operatorname{deg}\left(L_{i}\right)=1, \operatorname{deg}(G)=3$. The symplectic involution is induced on the Fano variety by the projective transformation

$$
\left(X_{0}: X_{1}: X_{2}: X_{3}: X_{4}: X_{5}\right) \rightarrow\left(-X_{0}:-X_{1}: X_{2}: X_{3}: X_{4}: X_{5}\right) .
$$

The fixed locus consists of 28 points, in the (+1)-eigenspace, and of a $K 3$ surface S, in the (-1)-eigenspace, which has bidegree $(2,1)$ in $\mathbb{P}^{1} \times V(G)$.
Proposition 3.15. Let $Z, F(Z), S$ be as above. Then $\mathrm{T}_{S} \simeq \mathrm{~T}_{Y} \simeq U(2)^{\oplus 2} \oplus K_{3}(2) \oplus$ $E_{8}(-1)$ and Conjecture 3.12 holds for $F(Z)$.
Proof. Since $V(G)$ is a cubic in the projective space $\mathbb{P}_{\left(X_{2}: X_{3}: X_{4}: X_{5}\right)}^{3}$ the $K 3$ surface S in the fixed locus is a complete intersection of two hypersurfaces of bidegree $(2,1)$ and $(0,3)$ in $\mathbb{P}^{1} \times \mathbb{P}^{3}$. We denote by $d P_{3}$ the del Pezzo cubic surface defined by $V(G)$. We recall that $d P_{3}$ is obtained as blow up of \mathbb{P}^{2} in six points and, denoted by m the class of a line in \mathbb{P}^{2} and by E_{i} the exceptional divisors of the blow up, $\mathrm{NS}\left(d P_{3}\right)$ is generated (over \mathbb{Z}) by $m, E_{1}, \ldots E_{6}$. The surface $d P_{3}$ is embedded in \mathbb{P}^{3} by the anticanonical linear system $H:=3 m-\sum_{i} E_{i}$. So

$$
m=\left(H+\sum_{i} E_{i}\right) / 3 \in \operatorname{NS}\left(d P_{3}\right) .
$$

To compute $\operatorname{NS}(S)$ we first observe that it is generated, at least over \mathbb{Q}, by the classes $h_{1}, h_{2}, \ell_{i}, i=1, \ldots, 6$ where h_{1} (resp. h_{2}) is the restriction to the surface of the pullback in $\mathbb{P}^{1} \times \mathbb{P}^{3}$ of the hyperplane section of \mathbb{P}^{1} (resp. \mathbb{P}^{3}) and ℓ_{i} is the pullback of the class $E_{i} \in \mathrm{NS}\left(d P_{3}\right)$. The intersection properties of these classes are the following: $h_{1}^{2}=0, h_{1} h_{2}=3, h_{1} \ell_{i}=1, i=1, \ldots, 6, h_{2}^{2}=6, h_{2} \ell_{i}=2,\left(\ell_{i}\right)^{2}=-2$ and $\ell_{i} \ell_{j}=0$ if $i \neq j$. In particular, we observe that h_{2} is the pullback of the divisor $H \in \operatorname{NS}\left(d P_{3}\right)$ and since

$$
\left(H+\sum_{i} E_{i}\right) / 3 \in \operatorname{NS}\left(d P_{3}\right),
$$

we obtain that $\left(h_{2}+\sum_{i} \ell_{i}\right) / 3 \in \operatorname{NS}(S)$ (this divisor exhibits S as double cover of \mathbb{P}^{2} and contracts the rational curves ℓ_{i} to nodes of the branch locus of the double cover). So $\left\{h_{1},\left(h_{2}+\sum_{i} \ell_{i}\right) / 3, \ell_{i}\right\}$ is a set of generators of $\mathrm{NS}(S)$. The discriminant group of this lattice is $\mathbb{Z}_{6} \oplus\left(\mathbb{Z}_{2}\right)^{\oplus 5}$ and the discriminant form is the opposite of the one of $U(2)^{\oplus 2} \oplus A_{2}(-2)$. We deduce that the transcendental lattice of S is

$$
\mathrm{T}_{S} \simeq U(2)^{\oplus 2} \oplus A_{2}(-2) \oplus E_{8}(-1) .
$$

Recalling that $A_{2}(-1) \simeq K_{3}$, we obtain that

$$
\mathrm{T}_{S} \simeq U(2)^{\oplus 2} \oplus K_{3}(2) \oplus E_{8}(-1) \simeq \mathrm{T}_{Y}
$$

(cf. Table 3.1). So Conjecture 3.12 holds in this case.
The conjecture is true at least with rational coefficients, or, in other words, the transcendental lattice of the symplectic orbifold Y is the same of a (possibly twisted) Fourier-Mukai partner of the fixed $K 3$ surface.
Proposition 3.16. Let X be a fourfold of $K 3{ }^{[2]}$-type admitting a symplectic involution σ, let Y be the corresponding Nikulin orbifold and let S be the $K 3$ surface contained in $\operatorname{Fix}_{\sigma}(X)$. Then $\mathrm{T}_{Y} \otimes \mathbb{Q} \simeq \mathrm{~T}_{S} \otimes \mathbb{Q}$. In particular, $\rho(Y)=\rho(S)-6$.

Proof. Let $\nu: S \rightarrow X$ be the embedding of the $K 3$ surface, we consider the restriction of forms $\nu^{*}: H^{2}(X, \mathbb{C}) \rightarrow H^{2}(S, \mathbb{C})$, which gives a morphism of Hodge structures of weight two.

Let $\omega_{S} \in H^{2,0}(S)$ be the restriction of a symplectic form $\omega_{X} \in H^{2,0}(X)$, i.e. $\omega_{S}=$ $\nu^{*} \omega_{X}$; since S is the fixed $K 3$ surface, this restriction is again a symplectic form on S, hence $\omega_{X} \notin \operatorname{ker} \nu^{*}$. Moreover, the rational transcendental lattice $\mathrm{T}_{X} \otimes \mathbb{Q}$ can be defined as the smallest rational Hodge substructure of $H^{2}(X, \mathbb{Q})$ such that $\mathrm{T}_{X} \otimes \mathbb{C}$ contains ω_{X}. This implies that the restriction $\nu_{\mid \mathrm{T}_{X} \otimes \mathbb{Q}}^{*}$ is injective: indeed, both the transcendental lattice and the kernel of a morphism of Hodge structures are irreducible Hodge substructures, thus either their intersection is trivial or they coincide, which is not the case here. In the same way one observes that the image of $\nu_{\mid T_{X} \otimes \mathbb{Q}}^{*}$ is exactly $\mathrm{T}_{S} \otimes \mathbb{Q}$: both these Hodge substructures of $H^{2}(S, \mathbb{Q})$ are irreducible, and their intersection contains at least $\omega_{S} \neq 0$, thus they coincide. In the rest of the proof we denote $\nu^{*}: \mathrm{T}_{X} \otimes \mathbb{Q} \rightarrow \mathrm{~T}_{S} \otimes \mathbb{Q}$: it is an isomorphism of irreducible Hodge structures of weight two.

Let now $\widetilde{\rho}: \widetilde{X} \rightarrow X$ be the blow-up of the fixed $K 3$ surface $S, \widetilde{\Sigma}$ be the exceptional divisor of ρ and let $\widetilde{\pi}: \widetilde{X} \rightarrow Y$ be the quotient by the involution induced on \widetilde{X} by σ. We use the following diagram:

We know from [Sh, Proposition 5] that the transcendental lattice of a smooth resolution \widetilde{Y} of a quotient X / Γ, where X is smooth and Γ is a finite group, is a Hodge structure isomorphic to the Γ-invariant part of T_{X}. In our case, a smooth resolution \widetilde{Y} of singularities of X / σ is also a resolution of singularities for the orbifold Y, hence $\mathrm{T}_{Y} \otimes \mathbb{Q}$ is isomorphic to $\mathrm{T}_{\widetilde{Y}} \otimes \mathbb{Q}$ as Hodge structures. Finally we obtained an isomorphism of rational Hodge structures of weight two

$$
\mathrm{T}_{Y} \otimes \mathbb{Q} \cong\left(\mathrm{~T}_{X} \otimes \mathbb{Q}\right)^{\sigma}=\mathrm{T}_{X} \otimes \mathbb{Q} \cong \mathrm{~T}_{S} \otimes \mathbb{Q},
$$

where the first and the last isomorphisms are respectively given by $\widetilde{\rho}_{*} \circ \widetilde{\pi}^{*}$ and ν^{*}.
We now show that this isomorphism is in fact an isometry over \mathbb{Q}. Let $\mu_{[S]}$: $H^{2}(X, \mathbb{Q}) \rightarrow H^{6}(X, \mathbb{Q})$ be the cup-product with $[S]$, where $[S]$ is the cohomology class of S; in [V, Proposition B.2] Voisin shows that $\operatorname{ker} \mu_{[S]}=\operatorname{ker} \nu^{*}$ and that, as a consequence, on $\operatorname{im} \nu^{*}$ the cup-product on S is induced by cup-product on X via the following equality:

$$
\left\langle\nu^{*} x, \nu^{*} y\right\rangle_{S}=\left\langle\mu_{[S]}(x), y\right\rangle_{X}=x . y .[S] .
$$

In our particular case, this equality holds for all $x, y \in \mathrm{~T}_{X} \otimes \mathbb{Q}$.
Denote by $\widetilde{\Sigma}$ and Σ respectively the exceptional divisors of $\widetilde{\rho}$ and of ρ. Let $\alpha, \beta \in$ $\mathrm{T}_{Y} \otimes \mathbb{Q} ;$ by $\left[\mathrm{Me} 1\right.$, Proposition 2.11] we have $B_{Y}(\alpha, \beta)=-\frac{1}{8} \alpha \cdot \beta \cdot \Sigma^{2}$. Moreover, observing that $\widetilde{\pi}^{*} \Sigma=2 \widetilde{\Sigma}$, a standard computation in intersection theory yields:

$$
\alpha \cdot \beta \cdot \Sigma^{2}=2 \widetilde{\pi}^{*} \alpha \cdot \widetilde{\pi}^{*} \beta \cdot \widetilde{\Sigma}^{2}=-2 \widetilde{\rho}_{*} \widetilde{\pi}^{*} \alpha \cdot \widetilde{\rho}_{*} \widetilde{\pi}^{*} \beta \cdot[S]=-2\left\langle\nu^{*} \widetilde{\rho}_{*} \widetilde{\pi}^{*} \alpha, \nu^{*} \widetilde{\rho}_{*} \widetilde{\pi}^{*} \beta\right\rangle_{S},
$$

where the second equality follows from projection formula (see [Ful, Proposition 8.3(c)]) and the equality $\widetilde{\Sigma}^{2}=-\rho^{*}[S]$, which is proven in [Me1, Lemma 2.12].

This shows that $B_{Y}(\alpha, \beta)=\frac{1}{4}\left\langle\nu^{*} \widetilde{\rho}_{*} \widetilde{\pi}^{*} \alpha, \nu^{*} \widetilde{\rho}_{*} \widetilde{\pi}^{*} \beta\right\rangle_{S}$ for all $\alpha, \beta \in \mathrm{T}_{Y} \otimes \mathbb{Q}$, thus $\mathrm{T}_{S} \otimes \mathbb{Q} \simeq \mathrm{~T}_{Y}(4) \otimes \mathbb{Q} \simeq \mathrm{T}_{Y} \otimes \mathbb{Q}$.

Remark 3.17. The $K 3$ surfaces in the fixed locus of a symplectic involution can be seen as a generalization of Nikulin surfaces as their moduli space is densely covered by families of Nikulin surfaces. It would be interesting to study the rationality of such moduli spaces as in [FVe].

4. Orbifold Riemann-Roch formula

4.1. Orbifold Riemann-Roch. In order to study projective models of Nikulin orbifolds, we need to apply the theory of orbifold Riemann-Roch, as developed in [Bl] and in [BuReZ]. We first treat the case of Nikulin orbifolds, and then we generalize it to orbifolds of Nikulin type.

We consider again the following diagram:

where:

- X is a fourfold of $K 3^{[2]}$-type, $\sigma \in \operatorname{Aut}(X)$ is a symplectic involution and $S \subset$ $\operatorname{Fix}_{\sigma}(X)$ is the fixed surface; we will denote by $\mathcal{N}_{S \mid X}$ the normal sheaf.
- Y is the Nikulin orbifold corresponding to $(X, \sigma) ; \Sigma$ is the exceptional divisor of $\rho: Y \rightarrow X / \sigma$ and \widetilde{X} is the blow-up of X along S;
- \widetilde{Y} is the total smooth resolution of X / σ, and hence of Y, and V is the blow-up of \widetilde{X} in the inverse image via $\widetilde{\rho}$ of the 28 isolated fixed points of σ. Denote respectively by E_{1}, \ldots, E_{28} and $\widetilde{E_{1}}, \ldots, \widetilde{E_{28}}$ the exceptional divisors on V and on \widetilde{Y}. Moreover, let E_{S} and $\widetilde{E_{S}}$ be the exceptional divisors on V and \widetilde{Y} over S and over its image in X / σ respectively. Finally, let E and \widetilde{E} be respectively $\sum_{i=1}^{28} E_{i}+E_{S}$ and $\sum_{i=1}^{28} \widetilde{E_{i}}+\widetilde{E_{S}}$.

Lemma 4.1. Let X, Y, \widetilde{Y} be as described above, and let $\nu: S \hookrightarrow X$ be the embedding of the fixed K3 surface. Then:

$$
\begin{gathered}
c_{1}(\widetilde{Y})=\frac{1}{2}\left(q_{*} c_{1}(V)+\widetilde{E}\right)=-\sum_{i=1}^{28} \widetilde{E_{i}}, \\
c_{2}(\widetilde{Y})=\frac{1}{2} q_{*} \widetilde{r}^{*}\left(c_{2}(X)+\nu_{*}[S]\right)+q_{*}\left(-8 \sum_{i=1}^{28} E_{i}^{2}-E_{S}^{2}\right)+\frac{3}{2} K_{\widetilde{Y}} \widetilde{E}+2 K_{\widetilde{Y}}^{2} .
\end{gathered}
$$

Proof. The proof follows from an application of Grothendieck-Riemann-Roch formula (see [Ful, Thm. 15.2] combined with well-known properties of smooth blow-ups (see [Ful, Example 15.4.3]):

$$
K_{V}=3 \sum_{i=1}^{28} E_{i}+E_{S}, c_{2}(V)=\widetilde{r}^{*}\left(c_{2}(X)+\nu_{*}[S]\right)+2 \sum_{i=1}^{28} E_{i}^{2} .
$$

It is a generalization of the proof of [CGMo, Proof of Prop. 7.2].

Theorem 4.2 (Orbifold Riemann-Roch formula). Let D be a \mathbb{Q}-Cartier Weil divisor on Y, then $q^{*} \beta^{*} D$ is equivalent to $\widetilde{r}^{*} H+k E_{S}$, with $H \in \operatorname{NS}(X), k \in \mathbb{Z}$; let n be the number of points in which the divisor D fails to be Cartier. Then

$$
\chi(Y, D)=\frac{1}{48} H^{4}+\frac{1}{48} H^{2} . c_{2}(X)+\left(\frac{1}{16}-\frac{k^{2}}{8}\right)\left(H_{\mid S}\right)^{2}+3-\frac{n}{16}+\frac{k^{4}}{4}-\frac{3 k^{2}}{2} .
$$

Proof. Since D is a \mathbb{Q}-Cartier Weil divisor on Y, then there exists an effective divisor $\widetilde{D} \in \operatorname{NS}(\widetilde{Y})$ such that $\beta^{*} D=\widetilde{D}+\sum_{i=1}^{28} \lambda_{i} \widetilde{E_{i}}$ with $\lambda_{i} \in \mathbb{Q}: \lambda_{i}=\frac{1}{2}$ if D fails to be Cartier in $p_{i} \in \operatorname{Sing}(Y)$ for $i=1, \ldots, 28$, it is zero otherwise. We have $\beta^{*} D \cdot \widetilde{E_{i}}=0$ for all i. Then the orbifold Riemann-Roch formula ([BuReZ, Theorem 3.3]) is

$$
\begin{gathered}
\chi(Y, D)=\chi(\widetilde{Y}, \widetilde{D})=\frac{1}{24}\left(\beta^{*} D\right)^{4}+\frac{1}{12}\left(\beta^{*} D\right)^{3} \cdot c_{1}(\widetilde{Y})+\frac{1}{24}\left(\beta^{*} D\right)^{2} \cdot\left(c_{1}(\widetilde{Y})^{2}+c_{2}(\widetilde{Y})\right)+ \\
\frac{1}{24}\left(\beta^{*} D\right) \cdot c_{1}(\widetilde{Y}) \cdot c_{2}(\widetilde{Y})+\chi\left(\mathcal{O}_{\tilde{Y}}\right)+\sum_{i=1}^{28} \gamma_{i}(D),
\end{gathered}
$$

where for each singular point $p_{i} \in Y$ we define $\gamma_{i}(D)=-\frac{1}{16}$ if D is not Cartier in p_{i}, $\gamma_{i}(D)=0$ otherwise.

It was proven in [FuMe] that $\chi\left(\mathcal{O}_{Y}\right)=\chi\left(\mathcal{O}_{\tilde{Y}}\right)=3$. Moreover, it follows from $K_{\tilde{Y}}=$ $\sum_{i} \widetilde{E}_{i}$, as shown in Lemma 4.1, that $\beta^{*} D \cdot c_{1}(\widetilde{Y})=0$, hence the formula above reduces to computing $\left(\beta^{*} D\right)^{4}$ and $\left(\beta^{*} D\right)^{2} . c_{2}(\widetilde{Y})$. Our aim is now to reduce the intersection theory on \widetilde{Y} to the intersection theory on X.

In our situation, we have $q^{*} \beta^{*} D=\widetilde{r}^{*} H+k E_{S}$ (indeed, if there were components in the E_{i} 's, we would have $\beta^{*} D . \widetilde{E}_{i} \neq 0$). Moreover, $q^{*} \widetilde{E_{S}}=2 E_{S}$ and $q_{*} E_{S}=\widetilde{E_{S}}$; hence $E_{S}^{4}=12$, since Fujiki's relation on Y implies $\widetilde{E_{S}}{ }^{4}=6 \cdot 16$.

Hence we obtain the following equalities of intersection numbers in \mathbb{Q}, by using Lemma 4.1 and the projection formula [Ful, Proposition 8.3(c)] (see also [CGMo] for further details):

$$
\begin{gathered}
\left(\beta^{*} D\right)^{4}=\frac{1}{2}\left(q^{*} \beta^{*} D\right)^{4}=\frac{1}{2}\left(\left(\widetilde{r}^{*} H\right)^{4}+k^{4} E_{S}^{4}+6 k^{2}\left(\widetilde{r}^{*} H\right)^{2} \cdot E_{S}^{2}\right)=\frac{1}{2} H^{4}+6 k^{4}-3 k^{2}\left(H_{\mid S}\right)^{2}, \\
\left(\beta^{*} D\right)^{2} \cdot q_{*} \widetilde{r}^{*} c_{2}(X)=\widetilde{r}^{*}\left(H^{2} \cdot c_{2}(X)\right)+k^{2} E_{S}^{2} \cdot \overparen{r}^{*} c_{2}(X)=H^{2} \cdot c_{2}(X)-k^{2} c_{2}(X) \cdot \nu_{*}[S], \\
\left(\beta^{*} D\right)^{2} \cdot q_{*} \widetilde{r}^{*} \nu_{*}[S]=\widetilde{r}^{*}\left(\left(H_{\mid S}^{2}\right)+k^{2} E_{S}^{2} \cdot \widetilde{r}^{*} \nu_{*}[S]=\left(H_{\mid S}\right)^{2}-k^{2} c_{2}\left(\mathcal{N}_{S \mid X}\right),\right. \\
\left(\beta^{*} D\right)^{2} \cdot q_{*}\left(E_{S}^{2}\right)=-\widehat{r}^{*}\left(\left(H_{\mid S}\right)^{2}\right)+k^{2} E_{S}^{4}=-\left(H_{\mid S}\right)^{2}+12 k^{2} .
\end{gathered}
$$

Many equalities and vanishings of some terms in the formulas above use the following equality for $\alpha \in A_{4-i}(X)$ (easy generalization of [BaBel, Lemma 1.1]):

$$
E_{S}^{i} \cdot \tilde{r}^{*} \alpha=(-1)^{i-1} s_{i-2}\left(\mathcal{N}_{S \mid X}\right) \cdot \nu^{*} \alpha,
$$

combined with $\nu^{*} \nu_{*}[S]=c_{2}\left(\mathcal{N}_{S \mid X}\right)$ (see [Ful, Corollary 6.3]) and with the results contained in [C, Proof of Theorem 5], which give $s_{1}\left(\mathcal{N}_{S \mid X}\right)=0, c_{2}(X) .[S]=36$, $s_{2}\left(\mathcal{N}_{S \mid X}\right)=-c_{2}\left(\mathcal{N}_{S \mid X}\right)=-c_{2}(X) \cdot[S]+c_{2}(S)=-12$.
Lemma 4.3. Let $H \in \operatorname{NS}(X)$ as in Theorem 4.2; then $\left(H_{\mid S}\right)^{2}=2 q_{X}(H)$, where q_{X} is the BBF quadratic form on $H^{2}(X, \mathbb{Z})$.
Proof. This is proven in [Me1, Prop. 2.24 (4)], once recalled that $\left(H_{\mid S}\right)^{2}=-E_{S}^{2} \cdot \widetilde{r}^{*} H^{2}$.
Corollary 4.4 (Riemann-Roch formula for Cartier divisors on Y). If $D \in \operatorname{NS}(Y)$ then $\chi(Y, D)=\frac{1}{4}\left(q_{Y}(D)^{2}+6 q_{Y}(D)+12\right)$.

Proof. In this particular case, Theorem 4.2 simplifies into

$$
\chi(D)=\frac{1}{48} H^{4}+\frac{1}{48} H^{2} \cdot c_{2}(X)+\left(\frac{1}{16}-\frac{k^{2}}{8}\right)\left(H_{\mid S}\right)^{2}+3+\frac{k^{4}}{4}-\frac{3 k^{2}}{2}
$$

Since $q^{*} \beta^{*} D=\widetilde{r}^{*} H+k E_{S}$, by push-pull formula [Ful, proof of Proposition 2.3(c)] and the commutativity of the diagram above, we have $D=\frac{1}{2} \widetilde{\pi}_{*} \widetilde{\rho}^{*} H+\frac{k}{2} \Sigma$. The statement then follows from $q_{Y}(\Sigma)=-4, q_{Y}\left(\widetilde{\pi}_{*} \widetilde{\rho}^{*} H\right)=2 q_{X}(H)$ ([Me1, Prop.2.9]), RiemannRoch formula on X ([GrHJo, Example 23.19]) and Lemma 4.3.

Corollary 4.4 holds for all orbifolds of Nikulin type, since it is topological in nature. Indeed, we can deform any orbifold of Nikulin type with a Cartier divisor to a Nikulin orbifold while keeping the class of the divisor algebraic (one just needs to require an additional (-4)-class of divisibility 2 in the same monodromy orbit of Σ in Theorem 3.2). We deduce the following general result.

Proposition 4.5. Let Y be an orbifold of Nikulin type and let D and $\frac{m}{2} L$ be equivalent \mathbb{Q}-Cartier Weil divisors on Y, with $m \in \mathbb{Z}$ and L a Cartier divisor. Let n be the number of points where D fails to be Cartier. Then

$$
\chi(D)=\frac{3}{8}\left(\frac{m^{4}}{24} q_{Y}(L)^{2}+m^{2} q_{Y}(L)+8\right)-\frac{n}{16} .
$$

Proof. Since Y is an orbifold of Nikulin type it is singular in 28 points. Let $\beta: \widetilde{Y} \rightarrow Y$ be a smooth resolution of singularities. By [BuReZ, Theorem 3.3], $\chi(D)=\chi\left(\beta^{*} D\right)-\frac{n}{16}$ as integers. Our assumptions imply that $\beta^{*} D=\frac{m}{2} \beta^{*} L$, hence $\left(\beta^{*} D\right)^{4}=\frac{m^{4}}{16} L^{4}=$ $\frac{3 m^{4}}{8} q_{Y}(L)^{2}$.

Moreover, it follows from Corollary 4.4 that

$$
\frac{1}{24}\left(\beta^{*} D\right)^{2} \cdot c_{2}(\widetilde{Y})=\frac{m^{2}}{96}\left(\beta^{*} L\right)^{2} \cdot c_{2}(\widetilde{Y})=\frac{m^{2}}{4}\left(\chi(L)-3-\frac{1}{4} q_{Y}(L)^{2}\right)=\frac{3 m^{2}}{8} q_{Y}(L)
$$

since $L^{4}=6 q_{Y}(L)^{2}$ and

$$
\frac{1}{24}\left(\beta^{*} L\right)^{4}+\frac{1}{24}\left(\beta^{*} L\right)^{2} \cdot c_{2}(\tilde{Y})+3=\chi\left(\beta^{*} L\right)=\chi(L)=\frac{1}{4}\left(q_{Y}(L)^{2}+6 q_{Y}(L)+12\right)
$$

Hence, $\chi(D)=\chi\left(\beta^{*} D\right)-\frac{n}{16}=\frac{3}{8}\left(\frac{m^{4}}{24} q_{Y}(L)^{2}+m^{2} q_{Y}(L)+8\right)-\frac{n}{16}$.
4.2. Projective models of quotients. Let X be as above, with $\rho(X)=9$. Let us denote by A the ample generator of the orthogonal to $E_{8}(-2)$ in $\mathrm{NS}(X)$. In particular A is preserved by σ. Then the map $\varphi_{|A|}: X \rightarrow \mathbb{P}\left(H^{0}(X, A)^{\vee}\right)$ is such that the automorphism σ on X is induced by a projective transformation on $\mathbb{P}\left(H^{0}(X, A)^{\vee}\right)$, still denoted by σ. Hence σ acts on the vector space $U:=H^{0}(X, A)^{\vee}$, splitting it in the direct sum $U_{+} \oplus U_{-}$where U_{+}and U_{-}are the eigenspaces of the eigenvalues +1 and -1 respectively.

The fourfold X projects to $\mathbb{P}\left(U_{+}\right)$and $\mathbb{P}\left(U_{-}\right)$; since we are considering projective spaces which are invariant for σ, these two projections induce maps on the quotient, i.e. they induce the two maps $X / \sigma \rightarrow \mathbb{P}\left(U_{+}\right)$and $X / \sigma \rightarrow \mathbb{P}\left(U_{-}\right)$. These rational maps extend to the partial resolution Y, so we obtained two maps $Y \rightarrow \mathbb{P}\left(U_{+}\right)$and $Y \rightarrow \mathbb{P}\left(U_{-}\right)$. We are interested in these maps, which essentially give the projective models of the quotient orbifold keeping trace of the construction of this orbifold as quotient of X.

The maps $Y \rightarrow \mathbb{P}\left(U_{+}\right)$and $Y \rightarrow \mathbb{P}\left(U_{-}\right)$are of course induced by some linear systems on Y and in order to find them we are looking for divisors D on Y such that
$\tilde{\rho}_{*} \tilde{\pi}^{*} D=\pi^{*} \rho_{*} D=A$ (because the maps to $\mathbb{P}\left(U_{ \pm}\right)$are induced by the projections from $\left.\mathbb{P}\left(H^{0}(X, A)^{\vee}\right)\right)$.

If a connected component Z of the fixed locus $\operatorname{Fix}_{\sigma}(X)$ of σ on X is contained in one of the two eigenspaces, then the generic member of the linear system giving the projection to the other eigenspace has to pass through Z. Thus the corresponding divisor on X / σ is Weil but not necessarily Cartier and passes through n of the 28 singular points of X / σ and possibly through the singular surface of X / σ. Nevertheless, since the map is just $2: 1$, we can assume that generically the divisor on X / σ passes simply through the singularities. Let us now consider the partial resolution $\rho: Y \rightarrow$ X / σ. The divisor which we are considering on X / σ induces a divisor D_{1} on Y. Since ρ is an isomorphism outside Σ (which is the exceptional divisor of ρ mapped to the singular surface), the Weil divisor D_{1} passes simply through n of the 28 isolated singular points of Y and then fails to be Cartier on these points. Moreover, if the divisor on X / σ passes through the singular surface, then D_{1} has a component on the exceptional divisor Σ, with multiplicity 1 ; otherwise it has none.

We observe that the linear system on X which corresponds to one of the projections and which is not a complete linear system (since its members have to pass through a part of $\operatorname{Fix}_{\sigma}(X)$) induces a complete linear system on V (where all the fixed locus is blown up).

By the previous discussion we deduce that the divisors that we are looking for on Y are two divisors D_{1} and D_{2} (each associated to one of the two projections on the two eigenspaces) such that

$$
q^{*} \beta^{*} D_{i}=\tilde{r}^{*} A+k_{i} E_{S}, \quad \text { with } k_{i}=0,-1 \text { and thus } \widetilde{\rho}_{*} \widetilde{\pi}^{*} D_{i}=A .
$$

Exactly one between D_{1} and D_{2} fails to be Cartier in a specific point (indeed a specific isolated fixed point is contained in exactly one eigenspace). The same holds true for the fixed surface (it is contained in exactly one of the eigenspaces), hence $k_{i}=-1$ for exactly one value among 1 and 2 and $k_{i}=0$ for the other one. Indeed, if D_{i} is orthogonal to Σ, then $\beta^{*} D_{i}$ is orthogonal to $\widetilde{E_{S}}$ and $q^{*} \beta^{*} D_{i}$ is orthogonal to E_{S}, i.e. $k_{i}=0$. Similarly if the intersection of D_{i} with Σ is non trivial, then $k_{i}=-1$.

So, given X a generic member of a family of fourfolds of $K 33^{[2]}$-type with a symplectic involution, we determine two \mathbb{Q}-Cartier Weil divisors D_{1} and D_{2} which give two maps $\varphi_{\left|D_{i}\right|}: Y_{i} \rightarrow \mathbb{P}^{m_{i}}$. In the following table we summarize the properties of D_{1} and D_{2} and the dimensions m_{i} of the projective spaces target of the map $\varphi_{\left|D_{i}\right|}$. We choose D_{1} to be always orthogonal to the exceptional divisor Σ and hence D_{2} is always the divisor meeting Σ. Hence we have also to declare the number of points where D_{i} fails to be Cartier (and this is always denoted by n_{i}). As in the other tables, in the first column we identify the family of X (and hence of Y) by giving the explicit embedding of $\operatorname{NS}(X)$ in L and in the last we give the reference to the propositions were the results are proved.

Embedding $\mathrm{NS}(X) \subset L$	$\left(n_{1}, n_{2}\right)$	m_{1}	m_{2}	Proposition
$j_{1}, d \equiv 1 \quad \bmod 2$	$(12,16)$	$\frac{d^{2}}{4}+\frac{3 d}{2}+\frac{5}{4}$	$\frac{d^{2}}{4}+d-\frac{1}{4}$	4.9
$j_{1}, d \equiv 0 \quad \bmod 2$	$(16,12)$	$\frac{d^{2}}{4}+\frac{3 d}{2}+1$	$\frac{d^{2}}{4}+d$	4.9
$j_{2}, d \equiv 1 \quad \bmod 2$	$(28,0)$	$\frac{d^{2}}{4}+\frac{3 d}{2}+\frac{1}{4}$	$\frac{d^{2}}{4}+d+\frac{3}{4}$	4.10
$j_{3}, d \equiv 3 \quad \bmod 4$	$(28,0)$	$\frac{d^{2}}{4}+\frac{3 d}{2}+\frac{1}{4}$	$\frac{d^{2}}{4}+d+\frac{3}{4}$	4.10
$\widetilde{j}, d \equiv 0 \quad \bmod 2$	$(0,28)$	$\frac{d^{2}}{4}+\frac{3 d}{2}+2$	$\frac{d^{2}}{4}+d-1$	4.12

Proposition 4.6. Let $\rho(X)=9, A, D_{1}$ and D_{2} be as above and $q(A)=2 d$. Then both $\chi\left(Y, D_{1}\right)$ and $\chi\left(Y, D_{2}\right)$ are integer if and only if n_{i} and k_{i} are as in the following (up to a possible switch between D_{1} and D_{2}):

- if d is even then
- $\left(n_{1}, k_{1}\right)=(0,0)$ and $\left(n_{2}, k_{2}\right)=(28,-1)$ or
- $\left(n_{1}, k_{1}\right)=(16,0)$ and $\left(n_{2}, k_{2}\right)=(12,-1)$;
- if d is odd then
- $\left(n_{1}, k_{1}\right)=(28,0)$ and $\left(n_{2}, k_{2}\right)=(0,-1)$ or
- $\left(n_{1}, k_{1}\right)=(12,0)$ and $\left(n_{2}, k_{2}\right)=(16,-1)$.

Proof. We recall that for a divisor A on a fourfold of $K 3{ }^{[2]}$-type X it holds

$$
\frac{1}{48} A^{4}+\frac{1}{4} A^{2} \cdot c_{2}(X)+\frac{3}{2}=\frac{1}{2} \chi(A)=\frac{1}{16}\left(q_{X}(A)+4\right)\left(q_{X}(A)+6\right)
$$

which, combined with Theorem 4.2, gives
$\chi\left(Y, D_{i}\right)=\frac{1}{16}\left(q_{X}(A)+4\right)\left(q_{X}(A)+6\right)-\frac{3}{2}+\left(\frac{1}{16}-\frac{k_{i}^{2}}{8}\right)\left(A_{\mid S}\right)^{2}+3-\frac{n_{i}}{16}+\frac{k_{i}^{4}}{4}-3 \frac{k_{i}^{2}}{2}$.
Now we recall that $q_{X}(A)=2 d$ and, by Lemma 4.3, $A_{\mid S}^{2}=2 q_{X}(A)=4 d$, so

$$
\chi\left(Y, D_{i}\right)=\frac{d^{2}}{4}+\frac{5}{4} d+\frac{d}{4}-\frac{k_{i}^{2} d}{2}+3-\frac{n_{i}}{16}+\frac{k_{i}^{4}}{4}-3 \frac{k_{i}^{2}}{2} .
$$

We observe that if $k_{i}=0,-1$, then $\left|k_{i}\right|=k_{i}^{2}=k_{i}^{4}$, hence we obtain the following formula:

$$
\chi\left(Y, D_{i}\right)=\frac{d^{2}}{4}+\frac{3 d}{2}-\frac{\left|k_{i}\right| d}{2}-\frac{n_{i}}{16}-\frac{5\left|k_{i}\right|}{4}+3
$$

Let us assume $k_{1}=0$ and then $k_{2}=-1$. If d is even, then $\chi\left(Y, D_{2}\right) \in \mathbb{Z}$ forces $n_{2} \equiv 12$ $\bmod 16$, which implies $n_{2}=12$ or $n_{2}=28$. If d is odd then $\chi\left(Y, D_{2}\right) \in \mathbb{Z}$ forces $n_{2} \equiv 0$ $\bmod 16$, which implies $n_{2}=0$ or $n_{2}=16$.

We observe that if $n_{i}=0$ for a certain divisor D_{i}, then it is a Cartier divisor on Y. In this case D_{i} is $\pi_{*}(A)$ and it is orthogonal to the exceptional divisor if $k_{i}=0$, it has a positive intersection with the divisor Σ if $k_{i}=-1$.

Lemma 4.7. The variety Y is normal with terminal singularities. In particular Y is a klt variety.

Proof. The variety Y is smooth outside 28 points where its singularities are locally the quotient of \mathbb{C}^{4} by an involution g. In particular it is an orbifold. Hence it is normal. Moreover, the local action of the automorphism g is given by the diagonal matrix $\operatorname{diag}(-1,-1,-1,-1) \in S L(4)$. The age of g is 2 , hence the singularities of Y are terminal singularities (see [Jo, Theorem 6.4.3]), and in particular the pair (Y,0) is a klt pair.

Proposition 4.8. Let X, A, D_{1} and D_{2} be as in Corollary 4.6. Then

$$
\chi\left(Y, D_{i}\right)=h^{0}\left(Y, D_{i}\right)
$$

Proof. The Kawamata-Vieweg vanishing theorem holds, see [KoMor, Theorem 2.70], for the variety Y. With respect to the notation in loc.cit. one can assume $\Delta=0$, and $N \equiv D_{i}, i=1,2$. It remains to prove that the D_{i} 's are nef and big divisors. Since $\rho(X)=9$ and A is the generator of $E_{8}(-2)^{\perp}$ in $\mathrm{NS}(X)$, it can be assumed to be an ample divisor. In particular it is nef, so $\pi_{*}(A)$ is a nef divisors. Since the sign of the top self-intersection of A is the same as the sign of the self-intersection of $\pi_{*}(A)$, we deduce that $\pi_{*}(A)$ is a nef and big divisor, by [KoMor, Proposition 2.61]. Moreover, $\rho^{*}\left(D_{i}\right)=\pi_{*}(A)$ and since the properties of being big and nef are birational invariants, we deduce that D_{i} is nef and big.

In Section 2 we associated the divisor A to a certain embedding of $\mathrm{NS}(X)$ in $H^{2}(X, \mathbb{Z})$, i.e. we considered $A=j(h)$ where h is vector in $U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2} \oplus\langle-2\rangle$. In Propositions 3.5, 3.6, 3.7, 3.8, we studied the image of this divisor under the map π_{*} and we determined the generators of NS (Y). So, by comparing the conditions on D_{i} with the Néron-Severi group of Y computed in Section 3, one obtains the following theorems.

Theorem 4.9. Let $\mathrm{NS}(X)=\left(j_{1}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)$ and A the generator of $j_{1}(\langle 2 d\rangle)$.
Let D_{1} and D_{2} be \mathbb{Q}-Cartier Weil divisors such that $2 D_{1}=\rho^{*}\left(\pi_{*}\left(j_{1}(h)\right)\right) \in \mathrm{NS}(Y)$ and $2 D_{2}=\rho^{*} \pi_{*}\left(j_{1}(h)\right)-\Sigma \in \mathrm{NS}(Y)$. Then if d is even (resp. odd), D_{1} fails to be Cartier in 16 (resp. 12) points and D_{2} in the other 12 (resp. the other 16) points. These divisors are such that $\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{1}\right)=\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{2}\right)=A$ and

$$
H^{0}(X, A)=\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{1}\right) \oplus\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{2}\right)
$$

Proof. Let us consider the case d even. The other one is similar. One first considers $\rho^{*}\left(\pi_{*}\left(j_{1}(h)\right)\right) \in \mathrm{NS}(Y), \rho^{*}\left(\pi_{*}\left(j_{1}(h)\right)\right)-\Sigma \in \mathrm{NS}(Y)$. Then there exist D_{1} and $D_{2} \mathbb{Q}$ Cartier Weil divisors such that a multiple of D_{i}, denoted by $h_{i} D_{i}$ is one prescribed element in $\mathrm{NS}(Y)$. We choose h_{i} to be the minimum among positive integers such that $h_{i} D_{i} \in \mathrm{NS}(Y)$. In particular, due to the singularities of Y, h_{i} is either 1 or 2 . If $h_{i}=1$, then D_{i} is Cartier, otherwise it is a \mathbb{Q}-Cartier Weil divisor on Y and it fails to be Cartier in n_{i} points. The possibilities for the divisors D_{1} and D_{2} are given in Corollary 4.6: the divisor D_{1} is orthogonal to Σ, hence it is characterized by $k_{1}=0$; then there are two possibilities for n_{1} : either $n_{1}=0$ or $n_{1}=16$. If $n_{1}=0$, then D_{1} is Cartier and $h_{1}=1$, otherwise D_{1} is not Cartier and $h_{1}=2$. The choice of one of these two possibilities determines also the properties of D_{2}, which is necessarily \mathbb{Q}-Cartier Weil and not Cartier, hence h_{2} is necessarily 2.

If $h_{1}=1$, then the divisors D_{1} would be Cartier, but this is not the case, since the divisor $\rho^{*}\left(\pi_{*}\left(j_{1}(h)\right)\right) / 2$ is not Cartier (NS (Y) is described in Proposition 3.5). We deduce that $h_{1}=2$, so $n_{1}=16, n_{2}=12$.

The map ρ is the contraction of Σ so, if $B \in \mathrm{NS}(Y)$ and $B \neq r \Sigma$, then $\rho_{*}(B)$ is a multiple of the unique generator of $\operatorname{NS}(X / \sigma)$. Since π is a $2: 1$ map and A is invariant
for σ, we have $\pi^{*}\left(\rho_{*}\left(h_{i} D_{i}\right)\right)=2 A$ for each $h_{i} D_{i} \in \mathrm{NS}(Y)$ as above. In particular we have $\pi^{*}\left(\rho_{*}\left(D_{2}\right)\right)=\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{2}\right)=A$ (since $\left.h_{2}=2\right)$ and thus the sections of D_{2} correspond to sections of A which are either all invariant or all anti-invariant for the action of the involution σ. So the sections of D_{2} span a subspace of $H^{0}(X, A)$ which is contained (possibly coincides) either in U_{+}or in U_{-}where $U_{ \pm}$are the eigenspaces of $H^{0}(X, A)$ for the action of σ^{*}. Similarly, the span of the sections of $2\left(D_{1} / 2\right)=D_{1}$ is contained in the other eigenspace. In order to conclude that each one of $\varphi_{\left|D_{1}\right|}$ and $\varphi_{\left|D_{2}\right|}$ is associated to one of the two projections of X to $\mathbb{P}\left(U_{+}\right)$and to $\mathbb{P}\left(U_{-}\right)$, it suffices to prove that the space spanned by the sections of D_{2} (resp. D_{1}) is not just contained, but coincides with one of the eigenspaces. So it suffices to prove that $\operatorname{dim}\left(H^{0}\left(Y, D_{2}\right) \oplus H^{0}\left(Y, D_{1}\right)\right)=\operatorname{dim}\left(H^{0}(X, A)\right)$.

We are now able to compute $\chi\left(D_{i}\right), i=1,2$, by Theorem 4.2 and we know that $\chi\left(D_{i}\right)=h^{0}\left(D_{i}\right)$, by Proposition 4.8. Since $q_{X}(A)=2 d$, one checks

$$
\begin{gathered}
\frac{1}{8}\left(q_{X}(A)+6\right)\left(q_{X}(A)+4\right)=\operatorname{dim}\left(H^{0}(X, A)\right)=\operatorname{dim}\left(H^{0}\left(Y, D_{1}\right)\right)+\operatorname{dim}\left(H^{0}\left(Y, D_{2}\right)\right)= \\
\left(\frac{d^{2}}{4}+\frac{3 d}{2}-1+3\right)+\left(\frac{d^{2}}{4}+\frac{3 d}{2}-\frac{d}{2}-\frac{12}{16}-\frac{5}{4}+3\right)=\frac{d^{2}}{2}+\frac{5 d}{2}+3 .
\end{gathered}
$$

Since $\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{i}\right)=A$ we conclude that

$$
H^{0}(X, A)=\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{1}\right) \oplus\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{2}\right) .
$$

Theorem 4.10. Let $d \equiv 1 \bmod 2, s=2,3$ and $\operatorname{NS}(X) \simeq\left(j_{s}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)$. Let A be the generator of $j_{s}(\langle 2 d\rangle)$. Let D_{1} be the \mathbb{Q}-Cartier Weil divisor such that $2 D_{1}=\rho^{*}\left(\pi_{*}\left(j_{2}(h)\right)\right) \in \mathrm{NS}(Y)$ and D_{2} the Cartier divisor $D_{2}:=\left(\rho^{*} \pi_{*}\left(j_{1}(h)\right)-\Sigma\right) / 2 \in$ $\mathrm{NS}(Y)$. Then D_{1} fails to be Cartier in 28 points, $\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{1}\right)=\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{2}\right)=A$ and

$$
H^{0}(X, A)=\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{1}\right) \oplus\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{2}\right) .
$$

Proof. The proof is similar to the previous one. One first observes that $\rho^{*}\left(\pi_{*}\left(j_{2}(h)\right)\right) \in$ $\mathrm{NS}(Y)$ and $\left(\rho^{*}\left(\pi_{*}\left(j_{2}(h)\right)\right)-\Sigma\right) / 2 \in \mathrm{NS}(Y)$ by the Propositions 3.6 and 3.7. There exist D_{1} and $D_{2} \mathbb{Q}$-Cartier Weil divisors such that a multiple of D_{i}, denoted by $h_{i} D_{i}$ is one prescribed element in $\mathrm{NS}(Y)$. We choose h_{i} to be the minimum among positive integers such that $h_{i} D_{i} \in \mathrm{NS}(Y)$. In particular, due to the singularities of Y, h_{i} is either 1 or 2. If $h_{i}=1$, then D_{i} is Cartier, otherwise it is a \mathbb{Q}-Cartier Weil divisor on Y and it fails to be Cartier in n_{i} points. The possibilities for the divisors D_{1} and D_{2} are given in Corollary 4.6: the divisor D_{1} is orthogonal to Σ, hence it is characterized by $k_{1}=0$; then there are two possibilities for n_{1}, which in turn determine uniquely the values of n_{2} : either $n_{1}=28$ and $n_{2}=0$ or $n_{1}=12$ and $n_{2}=16$. If $n_{1}=28$, then $n_{2}=0$ and so D_{2} is Cartier, otherwise (if $n_{1}=12$), neither D_{1} nor D_{2} are Cartier. As in the previous proof, we are looking for divisors $D_{i}, i=1,2$, such that $\pi^{*}\left(\rho_{*}\left(D_{i}\right)\right)=A$. Since

$$
\pi^{*}\left(\rho_{*}\left(\frac{\rho^{*}\left(\pi_{*}\left(j_{2}(h)\right)\right)-\Sigma}{2}\right)\right)=A
$$

we obtain

$$
D_{2}=\left(\rho^{*}\left(\pi_{*}\left(j_{2}(h)\right)\right)-\Sigma\right) / 2,
$$

$h_{2}=1$ and D_{2} is Cartier. This implies that $n_{1}=28$ and D_{1} fails to be Cartier in all the 28 singular points of Y. As in the previous proposition one is able to compute $\chi\left(D_{i}\right), i=1,2$, by Theorem 4.2 and we know that $\chi\left(D_{i}\right)=h^{0}\left(D_{i}\right)$, by Proposition 4.8.

So, recalling that $q_{X}(A)=2 d$, one can check that

$$
\begin{gathered}
\frac{1}{8}\left(q_{X}(A)+6\right)\left(q_{X}(A)+4\right)=\operatorname{dim}\left(H^{0}(X, A)\right)=\operatorname{dim}\left(H^{0}\left(Y, D_{1}\right)\right)+\operatorname{dim}\left(H^{0}\left(Y, D_{2}\right)\right)= \\
\left(\frac{d^{2}}{4}+\frac{3 d}{2}-\frac{28}{16}+3\right)+\left(\frac{d^{2}}{4}+\frac{3 d}{2}-\frac{d}{2}-\frac{5}{4}+3\right)=\frac{d^{2}}{2}+\frac{5 d}{2}+3 .
\end{gathered}
$$

Since $\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{i}\right)=A$ we conclude that

$$
H^{0}(X, A)=\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{1}\right) \oplus\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{2}\right)
$$

Remark 4.11. When $d=1$ and $j_{s}=j_{2}$, in the case discussed in Proposition 3.14, we obtain $h^{0}\left(D_{1}\right)=h^{0}\left(D_{2}\right)=3$, respectively with $\left(n_{1}, k_{1}\right)=(28,0)$ and $\left(n_{2}, k_{2}\right)=(0,-1)$. When $d=3$ and $j_{s}=j_{3}$, in the case of the Fano variety of a symmetric cubic discussed before Proposition 3.15, we obtain $h^{0}\left(D_{1}\right)=8$ and $h^{0}\left(D_{2}\right)=7$, respectively with $\left(n_{1}, k_{1}\right)=(28,0)$ and $\left(n_{2}, k_{2}\right)=(0,-1)$.
Theorem 4.12. Let $d \equiv 0 \bmod 2$ and $\operatorname{NS}(X) \simeq \widetilde{\Lambda}_{2 d}$ be the primitive closure of the embedding $\left(\widetilde{j}, \lambda_{-}\right)\left(\langle 2 d\rangle \oplus E_{8}(-2)\right)$ where A is the generator of $\widetilde{j}(\langle 2 d\rangle)$.

Let D_{1} be the Cartier divisor $D_{1} \simeq \rho^{*}\left(\pi_{*}(\tilde{j}(h))\right) / 2 \in \mathrm{NS}(Y)$ and D_{2} be a \mathbb{Q}-Cartier Weil divisor such that $2 D_{2} \simeq\left(\left(\pi_{*}(\widetilde{j}(h))\right) / 2-\Sigma\right) \in \operatorname{NS}(Y)$. Then D_{2} fails to be Cartier in 28 points, $\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{1}\right)=\tilde{\rho}_{*} \tilde{\pi}^{*}\left(D_{2}\right)=A$ and

$$
H^{0}(X, A)=\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{1}\right) \oplus\left(\rho^{-1} \circ \pi\right)^{*} H^{0}\left(Y, D_{2}\right)
$$

Proof. The proof is completely analogous to the previous ones. We omit it.
We now give an example of application of the previous theorems, in particular of Theorem 4.9 with $d=1$.

Proposition 2.4 shows that, when $d=1$, the lattice $\Lambda_{2} \simeq\langle 2\rangle \oplus\langle-2\rangle^{\oplus 8}$ admits two non-isometric embeddings inside $L=L_{K 3} \oplus\langle-2\rangle$, and in particular j_{1} with orthogonal isometric to $T_{2,1}:=U^{\oplus 2} \oplus E_{8}(-2) \oplus\langle-2\rangle^{\oplus 2}$.

An explicit construction of this family is given in [C, §8]: it is the family of smooth double EPW sextics which carry a symplectic involution, as it is observed in $[\mathrm{MoW}$, Example 6.8].

Indeed, the very general element of this family is $X=X_{\mathbb{A}}$ a double EPW sextic, as defined in $\left[\mathrm{O}^{\prime} \mathrm{G}\right]$, associated with a Lagrangian subspace $\mathbb{A} \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ invariant for the action on $\bigwedge^{3} V$ induced by the involution i of the six-dimensional vector space V which has exactly four eigenvalues +1 . The fourfold $X_{\mathbb{A}}$ is defined as a double cover of a so-called EPW sextic $Z_{\mathbb{A}} \subset \mathbb{P}(V) \simeq \mathbb{P}^{5}$, which in this case is invariant for i, and it carries an ample invariant class $A \in \mathrm{NS}\left(X_{\mathbb{A}}\right)$ of degree two; the map $\varphi_{|A|}: X_{\mathbb{A}} \rightarrow \mathbb{P}^{5}$ associated to A factors through the double cover $f: X_{\mathbb{A}} \rightarrow Z_{\mathbb{A}}$.

As a consequence, we get two involutions induced by i on $X_{\mathbb{A}}$ and we call σ the symplectic one among the two lifts. It is proven in [C, Prop. 19] that the fixed locus $\operatorname{Fix}_{\sigma}\left(X_{\mathbb{A}}\right)$ is the union of 28 isolated fixed points and one $K 3$ surfaces. In fact, 12 points are the preimages in the double cover of six points $q_{1}, \ldots, q_{6} \in \mathbb{P}\left(V_{-}\right)$, whereas the other 16 points lie in the intersection of the ramification of f with $\mathbb{P}\left(V_{+}\right)$.

Finally, the fixed $K 3$ surface S is the $K 3$ surface obtained as double cover of a quadric surface $Q \subset Z_{\mathbb{A}} \cap \mathbb{P}\left(V_{+}\right)$ramified along its intersection with a quartic surface. The double cover endows S with a non-symplectic involution and a copy of $U(2)$ is primitively embedded in $\mathrm{NS}(S)$. By Proposition 3.5, if the conjecture holds we should have $\mathrm{T}_{S} \simeq U(2)^{\oplus 2} \oplus E_{8}(-1) \oplus\langle-4\rangle^{\oplus 2}$.

Next we look at the Nikulin fourfold Y obtained as partial resolution of $X_{\mathbb{A}} / \sigma$. Using the notation of Corollary 4.6 and of Theorem 4.9 , we obtain on Y two divisors D_{1} and
D_{2} with $\left(n_{1}, k_{1}\right)=(12,0)$ and $\left(n_{2}, k_{2}\right)=(16,-1)$. The orbifold Riemann-Roch formula in Theorem 4.2 implies $h^{0}\left(D_{1}\right)=4$ and $h^{0}\left(D_{2}\right)=2$ (cfr. also with Table 4.1).

The quotient of \mathbb{P}^{5} by the involution is the join in \mathbb{P}^{12} of a conic $C \subset \mathbb{P}_{1}^{2}$ and a second Veronese $v_{2}\left(\mathbb{P}^{3}\right) \subset \mathbb{P}_{2}^{9}$ where \mathbb{P}_{1}^{2} an \mathbb{P}_{2}^{9} are general linear subspaces of \mathbb{P}^{12}. With the notation as in Theorem 4.9 we have a polarization $2 D_{1}$ on Y such that $q_{Y}\left(2 D_{1}\right)=4$ (see the proof of Theorem 4.9).

Lemma 4.13. The image $\varphi_{\left|2 D_{1}\right|}(Y)=\bar{Z} \subset \mathbb{P}^{12}$ is the intersection of $J\left(C, v_{2}\left(\mathbb{P}^{3}\right)\right)$ with a special cubic I. The map $\varphi_{\left|2 D_{1}\right|}$ is generically $2: 1$ ramified along a surface.

Proof. The image $\varphi_{\left|2 D_{1}\right|}(Y)=\bar{Z} \subset \mathbb{P}^{12}$ can be seen as the image of a symmetric EPW sextic through the involution described above. The equation of the sextic can be written as a cubic in term of invariant quadric polynomials. Such polynomials can be seen as coordinates of \mathbb{P}^{12} so the image is defined as the intersection of $J\left(C, v_{2}\left(\mathbb{P}^{3}\right)\right)$ with a cubic.

The image \bar{Z} is singular along 6 points $C \cap I$ and three surfaces $I \cap v_{2}\left(\mathbb{P}^{3}\right) \subset \mathbb{P}_{2}^{9}$ (two of the components are quadric surfaces, one is a Kummer quartic) and the image of the singular surface of degree 40 on $Z_{\mathbb{A}}$. Only the Kummer quartic is in the ramification since the quadric component is in the ramification of the symplectic involution.

Note that $J\left(C, v_{2}\left(\mathbb{P}^{3}\right)\right) \subset \mathbb{P}^{2}$ can be seen as the intersection of the cone $C\left(\mathbb{P}_{1}^{2}, v_{2}\left(\mathbb{P}^{3}\right)\right)$ with a quadric cone with vertex \mathbb{P}_{2}^{9}. For general projective models of a general deformation we expect the above quadric cone to be more general.

5. Orbifolds of Nikulin type of BBF degree 2

The aim of this section is to study the first locally complete family of projective orbifolds of Nikulin type. This will be a family polarized by a class of BBF degree 2. It follows from the Riemann-Roch Theorem 1.3 that their projective models are fourfolds in \mathbb{P}^{6}.

Note that there are two types of classes of BBF degree 2 in the second cohomology group $U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle \oplus\langle-2\rangle$ of an orbifold of Nikulin type, respectively with divisibility 1 and 2 .

An example of a Nikulin orbifold with the class of the polarization of divisibility 2 is given by the quotient of the Fano variety of lines on a symmetric cubic fourfold by the involution with signature $(2,4)$. Indeed, by Remark 4.11 the model of X in \mathbb{P}^{14} is symmetric with respect to an involution with invariant space \mathbb{P}^{7}. After projecting from it we obtain a fourfold in \mathbb{P}^{6} being a special projective model of a Nikulin orbifold of BBF degree 2 with divisibility 2 .

In this section, we are interested in the case of a polarization of BBF degree 2 divisibility 1 . We first describe some special elements of the locally complete family, given by the Nikulin orbifolds. We show that they correspond to double EPW quartics, see Lemma 5.1, and that they are double covers of complete intersections of type $(3,4)$ in \mathbb{P}^{6}, see Proposition 5.5. Then in Section 5.2 we generalize the previous results, showing that all the projective deformations of these Nikulin orbifolds are double covers of special complete intersections of a cubic and a quartic in \mathbb{P}^{6}.
5.1. Geometry of $\left(\widetilde{\Lambda}_{4}, \widetilde{j}\right)$-polarized $K 3{ }^{[2]}$-fourfolds. (cf. [vGS, §3.5]) We consider a fourfold of $K 3{ }^{[2]}$-type with Néron-Severi group $\operatorname{NS}(X) \simeq \widetilde{\Lambda}_{4}$. Then X admits a symplectic involution σ such that the corresponding Nikulin orbifold Y has a polarization of BBF degree 2 orthogonal to the exceptional divisor Σ, see Proposition 3.8. We denote by D_{1} this divisor.

We now describe the image $\varphi_{\left|D_{1}\right|}(Y) \subset \mathbb{P}^{6}$. As in Proposition 2.8, we can assume that $\mathrm{NS}(X)$ is generated by $A, E_{8}(-2)$ and F_{1} where $q_{X}(A)=4$ and $F_{1}=(A+v) / 2$ and $v \in E_{8}(-2)$ with $q_{X}(v)=-4$. Let $F_{2}=(A-v) / 2$ then $F_{i}^{2}=0$ and $A=F_{1}+F_{2}$. After monodromy operations we can assume that A is big and nef. We denote $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$ the cone in \mathbb{P}^{9} over the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.
Lemma 5.1. The linear system $|A|$ defines a 2: 1 map to $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \mathbb{P}^{9}$. The image is symmetric with respect to a linear involution σ with signature $(3,7)$ on \mathbb{P}^{9} that exchanges the factors in the Segre product. Moreover, the image is isomorphic to an EPW quartic corresponding to a Verra threefold that is symmetric with respect to the involution exchanging the factors in $\mathbb{P}^{2} \times \mathbb{P}^{2}$.
Proof. By the construction of $\mathrm{NS}(X)$ given in Proposition 2.8, one obtains that F_{i} are primitive in $\mathrm{NS}(X)$ and that the linear system of $A=F_{1}+F_{2}$ defines a $2: 1$ map to $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$, see [IKKR, Thm. 1.1]. The symplectic involution σ acts as -1 on $E_{8}(-2)$, hence $\sigma^{*} F_{1}=F_{2}$. So σ switches the two copies of \mathbb{P}^{2} in $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$ and $\varphi_{|A|}(X)$ is symmetric with respect to the linear involution which induces σ and which has signature $(3,7)$ on \mathbb{P}^{9}.

Moreover, $U(2) \simeq\left\langle F_{1}, F_{2}\right\rangle$ is primitive in $\mathrm{NS}(X)$. It follows that X is in the moduli space of lattice polarized fourfolds of $K 33^{[2]}$-type with $U(2)$ contained in the NéronSeveri lattice. It is thus a deformation of double EPW quartics described in [IKKR].

It follows as in [CKKMo, §6.5] that X is related to a threefold $V \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ symmetric with respect to the involution interchanging the factors.
Lemma 5.2. The quotient of $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \mathbb{P}^{9}$ by σ is isomorphic to the projection of this cone from the invariant $\mathbb{P}_{-}^{2} \subset \mathbb{P}^{9}$. This quotient is a cubic hypersurface Z_{3} that is isomorphic to a cone in \mathbb{P}^{6} over a symmetric determinantal cubic fourfold in \mathbb{P}^{5}. In particular its singular locus is a cone over the Veronese surface in \mathbb{P}^{5}.
Proof. We can assume $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$ is defined by 2×2 minors of a 3×3 matrix with entries being a basis of the hyperplane in $\mathbb{P}^{9 \vee}$ orthogonal to the vertex of the cone. So elements of \mathbb{P}^{9} can be thought as classes of pairs (x, M) such that $x \in \mathbb{C}$ and M is a 3×3 matrix of rank 1 . The involution σ is then just the map transposing M i.e. $(x, M) \mapsto\left(x, M^{T}\right)$ and

$$
\mathbb{P}_{-}^{2}=\left\{(0, M) \mid M \neq 0, \quad M+M^{T}=0\right\} .
$$

The corresponding projection is then: $\mathbb{P}^{9} \ni(x, M) \mapsto\left(x, M+M^{T}\right) \in \mathbb{P}_{+}^{6}$ where $\mathbb{P}_{+}^{6}=\left\{(x, M) \mid x \in \mathbb{C}, \quad M=M^{T}\right\}$. Since for a rank 1 matrix M, we have $M+M^{T}$ is a matrix of rank at most 2, the image of the projection is a cone over the space of symmetric matrices with trivial determinant. The latter is singular in the cone over the locus of rank 1 symmetric matrices, which is a cone over a Veronese surface.

We denote by $p: \mathbb{P}^{9} \rightarrow \mathbb{P}^{6}$ the projection from the σ-invariant $\mathbb{P}_{-}^{2} \subset \mathbb{P}^{9}$ described in the previous lemma and we observe that p restricts to a $2: 1 \mathrm{map} C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \rightarrow$ $p\left(C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)\right)$ with branch locus isomorphic to the cone over the diagonal of $\mathbb{P}^{2} \times \mathbb{P}^{2}$.
Proposition 5.3. Let $J:=p\left(\varphi_{|A|}(X)\right) \subset \mathbb{P}^{6}$, then J is a complete intersection $Z_{3} \cap$ $Z_{4} \subset \mathbb{P}^{6}$ of two hypersurfaces Z_{3} and Z_{4} of degrees 3 and 4 respectively. Moreover, J is singular along a surface which is the disjoint union of two (possibly reducible) surfaces: S_{16} of degree 16 and S_{36} of degree 36 .

Proof. This proof is supported by a calculation using Macaulay2 whose script is presented in the Appendix. Using the script we find an explicit example, defined in positive
characteristic, of fourfold J satisfying the assertion of the theorem. We need only to argue that the invariants (degree, dimensions of the variety and decomposition of its singular locus) of the constructed variety are as expected to conclude by semicontinuity. Note that, once we get the expected invariants it is not important if the computation is made in positive or 0 characteristic as semicontinuity permits us to pass to characteristic zero in any case.

Observe first that, by the definition and properties of the map p, the variety J is contained in the hypersurface Z_{3} which is the cone over the symmetric determinantal cubic hypersurface in \mathbb{P}^{5} described in Lemma 5.2. In particular Z_{3} is singular along a threefold cone over the Veronese surface and has generically A_{1} singularities. Moreover, by construction, J is the image of a symmetric quartic hypersurface in $\mathbb{P}^{2} \times \mathbb{P}^{2}$, being a symmetric EPW quartic, via the quotient by the symmetry. It follows that J is a fourfold of degree 12 in Z_{3}. Using our script in Macaualy2 we find an explicit case where J is complete intersection of Z_{3} with a quartic and this must hence be the generic behaviour.

Moreover the intersection of the singular locus of Z_{3} with J is a quartic section of a cone over the Veronese surface and is part of the singular locus of J. Using our Macaulay 2 script we check on an example that this quartic section of the cone over the Veronese surface is a surface of degree 16 as expected hence this is also the generic case for J.

Recall now, that a very general EPW quartic is singular along a surface of degree 72 in $\mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{9}$. It follows that a general symmetric EPW quartic has also at least a surface of degree 72 as singularities. Our Macaulay2 computation shows that there are symmetric EPW quartics for which the singular surface is indeed of degree 72. This surface is mapped via the map p to a surface in J which is necessarily part of the singular locus and has degree at least 36 . Our Macaulay 2 script produces an example where this surface of degree 72 is mapped to a surface of degree 36 , hence this must be the general behaviour for symmetric EPW quartics.

Summing up, the variety J in general must contain in its singular locus the following surfaces:
(1) the intersection of the singular locus of Z_{3} with Z_{4}. Since $\operatorname{Sing}\left(Z_{3}\right)$ is a cone over the Veronese surface, $\operatorname{Sing}\left(Z_{3}\right) \cap Z_{4}$ has degree 16 ;
(2) the quotient of the singular locus of the symmetric EPW quartic by the involution, which is a variety of degree $72: 2=36$.

Since in our explicit example the singular locus of J consists of two disjoint surfaces one of degree 16 and one of degree 36 and both need to appear in the very general case this concludes the proof.

Remark 5.4. In the above proof we can avoid computer calculation with some additional effort. First, we prove that J is in general smooth in codimension 1. Indeed, if J was singular in codimension 1, then the corresponding symmetric EPW quartic would either be singular in codimension 1 or would need to contain the whole ramification locus including the vertex of the cone. Both these cases cannot occur, see [IKKR, Section 3].

Next, from the shape of the Néron- Severi lattice of a very general symmetric double EPW quartic we can deduce that there are no divisors contracted by the map from the double EPW quartic to the cone over $\mathbb{P}^{2} \times \mathbb{P}^{2}$ hence the very general symmetric EPW quartic is singular in a surface of degree 72 and has no additional singularities as in the very general non-symmetric case.

Finally, following the construction in [IKKR, Proposition 2.14], we can describe the symmetric EPW quartic via the varieties of $(1,1)$ conics on their corresponding symmetric Verra fourfolds (see Lemma 5.1) and deduce that the singular surface of degree 72 has no component contained in the cone over the diagonal. Hence the image of this singular surface of degree 72 , which is necessarily symmetric, via the projection p is a surface of degree 36 and by the fact that p is a local isomorphism outside its branch locus is necessarily a component of the singular locus of J. For the same reason J is smooth outside the union of the branch locus and the surface of degree 36 .

Proposition 5.5. The map $\varphi_{\left|D_{1}\right|}: Y \rightarrow \mathbb{P}^{6}$ is $2: 1$ onto $\varphi_{\left|D_{1}\right|}(Y) \subset \mathbb{P}^{6}$ and its image is isomorphic to J, the complete intersection $Z_{3} \cap Z_{4} \subset \mathbb{P}^{6}$. The exceptional divisor $\Sigma \subset Y$ is mapped to a component of degree 4 of the surface S_{16}. Moreover, the (-2)class $D_{1}-\Sigma$ is effective on Y and contracted to a surface via $2 D_{1}-\Sigma$. There are no more contractible classes on any birational model of Y.

Proof. By Section 4.2, $\varphi_{\left|D_{1}\right|}(Y)$ is the image of the projection of $\varphi_{|A|}(X)$ from a σ-invariant subspace in $H^{0}(X, A)^{\vee}$. In our context this implies that $\varphi_{\left|D_{1}\right|}(Y)=$ $p\left(\varphi_{|A|}(X)\right)$ and hence Lemma 5.1 shows that $\varphi_{\left|D_{1}\right|}$ is $2: 1$ and Proposition 5.3 describes $\varphi_{\left|D_{1}\right|}(Y)$. In particular we have the following diagram

where $J:=p\left(\varphi_{|A|}(X)\right)$ is $Z_{4} \cap Z_{3}$ by Proposition 5.3. The exceptional divisor Σ resolves the singularity of X / σ in the $K 3$ surface image of the σ-fixed surface S on X. The latter surface is in $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$. The symplectic involution on X is induced by the symmetry on \mathbb{P}^{9} that interchanges the factors of $\mathbb{P}^{2} \times \mathbb{P}^{2}$. So the $K 3$ surface S in $C\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$, being fixed by the involution, is contained in the cone over the diagonal in $\mathbb{P}^{2} \times \mathbb{P}^{2}$. It follows that its image is a component of S_{16}. By Lemma 4.3 it is a surface S_{4} of degree 4 which is necessarily projectively isomorphic to the Veronese surface.

For the second part we observe that the proper transform on Y of the intersection of $\varphi_{\left|D_{1}\right|}(Y)$ with the span of S_{4} in \mathbb{P}^{6} is the (-2)-class $D_{1}-\Sigma$. The system $2 D_{1}-\Sigma$ is big and induces its contraction since on $\varphi_{\left|D_{1}\right|}(Y)$ it can be seen as a system of quadrics containing the Veronese surface S_{4} i.e. it contracts the planes spanned by conics on S_{4} which fill the cubic Z_{3} intersected with the span of S_{4}. The locus contracted by $2 D_{1}-\Sigma$ is hence exactly the (-2)-class $D_{1}-\Sigma$. Observe that there can be no more contractible divisorial classes on any birational model of Y. For that, we work in codimension 1 knowing [MeR1, Lemma 3.2] that any birational map is regular in codimension 1. Now, since the Picard number of Y is 2 , among three big divisor classes one of them is a positive combination of the two other ones. In particular, if we have three divisor classes each contracted by some map associated to a big divisor then one of these big divisors is a positive linear combination of the two remaining ones. But a positive combination of two big divisors can only contract subvarieties which are contracted by both divisors, so all three contracted divisors would need to have a common component. However, both Σ and $D_{1}-\Sigma$ are represented by distinct irreducible effective divisors so have no common component.

In the next section we will study the locally complete projective family of orbifolds of Nikulin type to which Y as in Proposition 5.5 belongs and we will show that they can all be realized as certain double covers, in complete analogy with what happens in the case of double EPW sextics. Since the full monodromy group of orbifolds of Nikulin type of dimension 4 is not known yet, we will first use the non-symplectic involution on Y given by the double cover to produce an involution of $H^{2}(Y, \mathbb{Z})$ which is a monodromy operator and has the span of the divisor D_{1} as the only invariant classes. We recall the following notation: given an element $e \in H^{2}(Y, \mathbb{Z})$, the reflection r_{e} in e is the isometry defined by $r_{e}(x)=x-\frac{2 B_{Y}(x, e)}{q_{Y}(e)} e$ (it is integral only for special values of $q_{Y}(e)$ and $\left.\operatorname{div}(e)\right)$.

Lemma 5.6. Let D_{1} be the class with $q_{Y}\left(D_{1}\right)=2$ and divisibility 1 considered above. The isometry $-r_{D_{1}}$, such that $x \mapsto-x+B_{Y}\left(x, D_{1}\right) D_{1}$, in $H^{2}(Y, \mathbb{Z})$ is a monodromy operator of $H^{2}(Y, \mathbb{Z})$.

Proof. The map $\varphi_{\left|D_{1}\right|}$ is a generically 2:1 map onto its image and so there exists the involution Θ which is the cover involution of $Y \rightarrow \varphi_{\left|D_{1}\right|}(Y)$. First $\varphi_{\left|D_{1}\right|}$ contracts the exceptional (-4)-class Σ and then it identifies points switched by Θ. So Θ^{*} acts as -1 on the transcendental lattice T_{Y} and acts trivially on $\mathrm{NS}(Y)$, generated by D_{1} and Σ, see Proposition 3.8. Moreover Θ^{*} is a monodromy operator of $H^{2}(Y, \mathbb{Z})$, since it is induced by an automorphism of Y.

Let r_{Σ} be the reflection given by $r_{\Sigma}(x)=x+\frac{1}{2} B_{Y}(x, \Sigma) \Sigma$ for $x \in H^{2}(Y, \mathbb{Z})$. It is a monodromy operator by [MeR2, Proposition 1.5]. We observe that $-r_{D_{1}}=\Theta^{*} \circ r_{\Sigma}$ and so $-r_{D_{1}}$ is a monodromy operator.
5.2. The family of complete intersections $(3,4)$. Let Y be an orbifold of Nikulin type such that

$$
\left(H^{2}(Y, \mathbb{Z}), q_{Y}\right) \simeq U(2)^{\oplus 3} \oplus E_{8}(-1) \oplus\langle-2\rangle \oplus\langle-2\rangle
$$

such that there exists an ample Cartier divisor H on Y with degree $q_{Y}(H)=2$ and divisibility 1 . Such an orbifold exists by surjectivity of the period map. Since the Fujiki constant for Y is 6 we have $H^{4}=24$.

Theorem 5.7. The map $\varphi_{|H|}: Y \rightarrow \mathbb{P}^{6}$ is $2: 1$ and its image is a special fourfold of codimension 2 in \mathbb{P}^{6} being the complete intersection of a cubic and a quartic. The map is branched along a surface of degree 48.

Proof. By Corollary 4.4 and the Kawamata-Viehweg vanishing theorem we have

$$
h^{0}(Y, \mathcal{O}(H))=7
$$

Hence the target space of $\varphi_{|H|}$ is \mathbb{P}^{6}.
Let Y_{0} be the special Nikulin orbifold considered in Section 5.1 and H_{0} be the divisor $D_{1} \in \operatorname{NS}\left(Y_{0}\right)$ considered in Proposition 5.5.

From Proposition $5.5, \varphi_{\left|H_{0}\right|}$ is $2: 1$ and hence there exists an involution Θ_{0} on Y_{0}, which is the cover involution and it is non-symplectic. Moreover the image $\varphi_{\left|H_{0}\right|}\left(Y_{0}\right)$ is a normal complete intersection of type $(3,4)$. The idea of the proof is to show that a general deformation of $\left(Y_{0}, H_{0}\right)$ is of the same shape.

Let $(\pi: \mathcal{Y} \rightarrow B, \mathcal{H})$ be a family of polarized orbifolds of degree 2 and divisibility 1 with central fiber $\left(Y_{0}, H_{0}\right)$ over a small disc $B \ni 0$. From Lemma 5.6, $-r_{H_{0}}$ is a monodromy operator of $H^{2}\left(Y_{0}, \mathbb{Z}\right)$.

Let $t_{n} \in B, Y_{t_{n}}$ be the fiber of π over t_{n} and let $H_{t_{n}}$ be the restriction of \mathcal{H} to $Y_{t_{n}}$. We fix a sequence $t_{n} \rightarrow 0$ such that $\mathrm{NS}\left(Y_{t_{n}}\right)=\mathbb{Z} H_{t_{n}}$. By parallel transport $-r_{H_{t_{n}}}$ is
a monodromy operator of $H^{2}\left(Y_{t_{n}}, \mathbb{Z}\right)$ and, by a standard argument using $\rho\left(Y_{t_{n}}\right)=1$ and the global Torelli theorem (see for example [MeR1, Theorem 1.1]), $-r_{H_{t_{n}}}$ lifts to an involution $\Theta_{t_{n}}: Y_{t_{n}} \rightarrow Y_{t_{n}}$.

Arguing as in [$\mathrm{O}^{\prime} \mathrm{G}, \S 2$], the limit of $\Theta_{t_{n}}$ is an involution on Y_{0} and we show that it is Θ_{0}. We denote the graph of $\Theta_{t_{n}}$ by $\Gamma_{t_{n}}$. The analytic cycles $\Gamma_{t_{n}}$ converge (see proof of $[\mathrm{H}, \mathrm{Thm} .4 .3])$ to Γ_{0} with a decomposition $\Gamma+n_{i} \Omega_{i}$ where Γ is the graph of a birational map $Y_{0} \rightarrow Y_{0}$ and Ω_{i} are irreducible in $D_{i} \times E_{i}$ with $D_{i}, E_{i} \subset Y_{0}$ proper subsets. As in [O'G, §2], Γ_{0} induces on $H^{2}\left(Y_{0}, \mathbb{Z}\right)$ exactly the monodromy operator $-r_{H_{0}}$ via parallel transport.

Again as in loc.cit., the invariance of $\Gamma_{t_{n}}$ with respect to the exchange of the two factors in $Y_{0} \times Y_{0}$ implies that Γ_{0} is invariant as well and, due to the different nature of the two parts in the decomposition above, that Γ is the graph of a birational involution.

If D_{i} has codimension >1, the action on $H^{2}\left(Y_{0}, \mathbb{Z}\right)$ of $\left[\Omega_{i}\right]_{*}$ is zero, thus we assume that D_{i} is an effective divisor in $\operatorname{NS}\left(Y_{0}\right)=\left\langle H_{0}, \Sigma\right\rangle$, but this implies that the action of Γ on $\mathrm{T}_{Y_{0}}$ coincides with the action of Γ_{0}, i.e. it acts as -id on the transcendental lattice. It follows from Proposition 5.5 that there are exactly 2 contractible classes on Y_{0} : the (-4)-class Σ and the (-2)-class $H_{0}-\Sigma$. Hence Σ and $H_{0}-\Sigma$ are preserved by any birational map, and thus also by $[\Gamma]_{*}$ i.e.

$$
[\Gamma]_{*}\left(H_{0}\right)=H_{0},[\Gamma]_{*}(\Sigma)=\Sigma
$$

We conclude that, since $[\Gamma]_{*}$ acts on $H^{2}\left(Y_{0}, \mathbb{Z}\right)$ preserving both H_{0} and Σ and acts as minus the identity on their orthogonal in $H^{2}\left(Y_{0}, \mathbb{Z}\right)$, it coincides with Θ_{0}^{*}. In the case of orbifolds of Nikulin type, the only automorphism acting trivially in cohomology is the identity, as shown in [MeR2, Proposition 8.1], hence the birational involution associated to Γ is exactly the non-symplectic involution $\Theta_{0} \in \operatorname{Aut}\left(Y_{0}\right)$.

We thus have a sequence $\left(Y_{t_{n}}, H_{t_{n}}, \Theta_{t_{n}}\right)$ of polarized orbifolds of Nikulin type each equipped with an involution $\Theta_{t_{n}}$ preserving $H_{t_{n}}$ and such that $\left(Y_{0}, H_{0}, \Theta_{0}\right)$ is its limit in the sense above. The involutions $\Theta_{t_{n}}$ induce a sequence of involutions on $H^{0}\left(Y_{t_{n}}, H_{t_{n}}\right)=H^{0}\left(Y_{0}, H_{0}\right)$ whose limit is the map induced by Θ_{0} on $H^{0}\left(Y_{0}, H_{0}\right)$. The latter is the identity map because Θ_{0} is the cover involution of $\varphi_{\left|H_{0}\right|}$. It follows that for $n \gg 1$ the action of $\Theta_{t_{n}}$ on $H^{0}\left(Y_{t_{n}}, H_{t_{n}}\right)$ is also trivial and hence $\varphi_{\left|H_{t_{n} \mid}\right|}$ is $2: 1$ for $n \gg 1$. We conclude that for general $\left(Y_{t}, H_{t}\right)$ in a neighbourhood of $\left(Y_{0}, H_{0}\right)$ the map $\varphi_{\left|H_{t}\right|}$ is $2: 1$ onto the image contained in \mathbb{P}^{6}.

We saw that $J_{0}:=\varphi_{\left|H_{0}\right|}\left(Y_{0}\right)$ is normal, hence by the openness of normality the image J_{t} of Y_{t} through $\left|H_{t}\right|$ is also normal of codimension 2 in \mathbb{P}^{6}. Thus J_{t} is necessarily the quotient of Y_{t} through the involution Θ_{t}. In particular, J_{t} has ODP points along a surface that is smooth outside the 28 orbifold points. Let us show that the general J_{t} is also a complete intersection. We consider the family $\left\{G_{t}\right\}_{t \in \Delta}$, with Δ a small disc, with $G_{t}=\varphi_{H_{t}}^{-1}\left(\Pi_{1} \cap \Pi_{2}\right)$ and Π_{i} two chosen general hyperplanes in \mathbb{P}^{6}. Note that G_{0} is smooth and maps via $\varphi_{H_{0}}$ to $J_{0} \cap \Pi_{1} \cap \Pi_{2}$ which is a complete intersection $(3,4)$ in \mathbb{P}^{4} and which must admit only nodes as singularities. It follows that the general G_{t} maps via $\varphi_{H_{t}}$ to a nodal surface in $R_{t}=J_{t} \cap \Pi_{1} \cap \Pi_{2} \subset \mathbb{P}^{4}=\Pi_{1} \cap \Pi_{2}$ being the quotient of G_{t} through an involution. Such surface is of degree 12 and half-canonical i.e. $K_{R_{t}}=2 \mathrm{H}$ (where H is the hyperplane from \mathbb{P}^{4}).

We can now mimic [DPPoSc, Prop. 1.2] to prove that R_{t} is a complete intersection. Indeed, R_{t} is a half canonical surface and since R_{t} has complete intersection singularities it is the zero locus of a rank 2 vector bundle E on \mathbb{P}^{4} hence the methods of [DPPoSc, Prop. 1.2] apply also in this case. More precisely, the case $c_{1}(E)^{2}-4 c_{2}(E) \leq 0$ from [DPPoSc, Prop. 1.2] cannot occur by a generalization of the double point formula for
nodal hypersurfaces proved in [CatOg, Thm. 5.1] ($\delta=0$ in our case). Thus $c_{1}(E)^{2}-$ $4 c_{2}(E)>0$ and we conclude as in Case 2 of [DPPoSc, Prop. 1.2] that $R_{t} \subset \mathbb{P}^{4}$ is a complete intersection $(3,4)$.

We thus know that a general codimension two linear section R_{t} of J_{t} is a complete intersection $(3,4)$. To conclude that J_{t} must also be such a complete intersection let us consider $U_{t} \supset R_{t}$ a general hyperplane section of J_{t} containing R_{t} and the exact sequences

$$
\begin{aligned}
0 & \rightarrow \mathcal{I}_{J_{t}} \\
0 & \rightarrow \mathcal{I}_{J_{t}}(1) \rightarrow \mathcal{I}_{U_{t} \mid \mathbb{P}^{5}}(1)
\end{aligned} \rightarrow \mathcal{I}_{U_{t}}(1) \rightarrow \mathcal{I}_{R_{t} \mid \mathbb{P}^{4}}(1) \rightarrow 0 . .
$$

To conclude it is enough to show that $h^{1}\left(\mathcal{I}_{J_{t}}(2)\right)=h^{1}\left(\mathcal{I}_{U_{t}}(2)\right)=0$ and $h^{1}\left(\mathcal{I}_{J_{t}}(3)\right)=$ $h^{1}\left(\mathcal{I}_{U_{t}}(3)\right)=0$ (then the cubic and a quartic defining R_{t} extend to the ideal of U_{t} and then J_{t}). But applying again the long exact sequence of cohomology the vanishing of $h^{1}\left(\mathcal{I}_{U_{t}}(k)\right)$ will follow from the vanishing of $h^{2}\left(\mathcal{I}_{J_{t}}(k-1)\right)$ and $h^{1}\left(\mathcal{I}_{J_{t}}(k)\right)$. It is hence enough to prove

$$
\begin{equation*}
h^{2}\left(\mathcal{I}_{J_{t}}(2)\right)=h^{2}\left(\mathcal{I}_{J_{t}}(1)\right)=h^{1}\left(\mathcal{I}_{J_{t}}(3)\right)=h^{1}\left(\mathcal{I}_{J_{t}}(2)\right)=0 . \tag{5.1}
\end{equation*}
$$

We compute these dimensions using the finite map $f: Y_{t} \rightarrow J_{t}$: there exists a sheaf \mathcal{F} on J_{t} such that

$$
f_{*} \mathcal{O}_{Y_{t}}(k)=\mathcal{O}_{J_{t}}(k) \oplus \mathcal{F}(k) .
$$

We get our vanishings (5.1) from the fact that $h^{i}\left(\mathcal{O}_{Y_{t}}(k)\right)=0$ for $i=1,2$ and $k=2,3$. We conclude that $\mathcal{I}_{J_{t}}$ admits a cubic and a quartic generator which, after restriction to a codimension 2 linear space, define a complete intersection. Since J_{t} is of codimension 2 and degree 12, J_{t} is a complete intersection.

Let us compute the degree of the singular surface of J_{t} (in fact we can deduce this from the singular locus of J_{0} finding $52-4=48$). If we denote by $F \subset Y_{t}$ a general intersection of two divisors in the system H_{t} in Y_{t} then we find that $K_{F}=2 H_{\left.t\right|_{F}}$ and $\chi\left(\mathcal{O}_{F}\left(n H_{t}\right)\right)=12 n^{2}-24 n+20$. Denote by $G \subset \mathbb{P}^{4}$ the image of F being a complete intersection (3,4). The involution given by $\left|H_{t}\right|$ cannot fix varieties of odd codimension (since the smooth locus of the orbifold Y_{t} has a symplectic form and the singular locus consists of isolated points). Moreover, it cannot fix smooth points, since it is a nonsymplectic involution. The orbifold points are in the fixed locus otherwise they would map to non complete intersection singularities. So the ramification of the map is a surface. We find that G is nodal and $F \rightarrow G$ is branched at the nodes. Let μ be the number of nodes. We shall compute μ by comparing the Euler characteristics of appropriate sheaves on F and G. First observe that $\chi\left(\mathcal{O}_{G}\right)=16$ since G is a complete intersection. Next we consider the minimal resolution \bar{G} of G and the blow up \bar{F} of F at the pre-images of the nodes together with the induced map $f: \bar{F} \rightarrow \bar{G}$. We find $f_{*} \mathcal{O}_{\bar{F}}=\mathcal{O}_{\bar{G}} \oplus \mathcal{O}_{\bar{G}}(L)$ where $2 L$ is the sum of the exceptional divisors on \bar{G}. We compare the Riemann-Roch formulas for \bar{F} and \bar{G} and conclude from $2 \chi\left(\mathcal{O}_{G}\right)-\frac{\mu}{4}=\chi\left(\mathcal{O}_{\bar{F}}\right)=$ $\chi\left(\mathcal{O}_{F}\right)=20$ that $\mu=48$.
5.3. A special subfamily of BBF degree 2. We consider Nikulin orbifolds with a Cartier divisor of BBF degree 2 and divisibility 1 that form a subfamily of codimension 2 of the locally complete family described in Theorem 5.7.

These orbifolds are constructed as quotients of $W^{[2]}$ by a natural symplectic involution $\sigma^{[2]}$, where W is a $K 3$ surface with $\operatorname{NS}(W) \simeq \widetilde{\Lambda_{4}}$ and σ is a symplectic involution on it. The surfaces W are double covers of a quadric $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ branched along a $(2,2)$ curve C that is symmetric with respect to the involution ι_{Q} exchanging the two
factors of Q, see [vGS]. We denote by j the cover involution of $W \rightarrow Q$ and we observe that ι_{Q} lifts to two involutions on W : a non symplectic involution ι and a symplectic involution σ. We observe that $\iota=j \circ \sigma$.

Then σ induces a natural involution $\sigma^{[2]}$ on $W^{[2]}$ fixing 28 points and a $K 3$ surface S. The ample divisor of degree 4 on W invariant for σ^{*} induces a divisor A on $W^{[2]}$ which is orthogonal to the exceptional divisor of $W^{[2]} \rightarrow \operatorname{Sym}^{2}(W)$.

The map given by $|A|$ can be described as follows:

$$
\varphi_{|A|}:\left(\mathbb{P}^{3}\right)^{[2]} \supset W^{[2]} \rightarrow \operatorname{Sym}^{2}(Q) \subset \operatorname{Sym}^{2}\left(\mathbb{P}^{3}\right) \subset \mathbb{P}^{9} .
$$

The involution ι induces on \mathbb{P}^{9} a linear involution of the form (,,,,,,,,,---+++++++) so we have two invariant linear spaces \mathbb{P}_{+}^{6} and \mathbb{P}_{-}^{2}. By Proposition 3.11 the Nikulin orbifold $W^{[2]} / \sigma^{[2]}$ admits a polarization H of BBF degree 2 and divisibility 1 induced by A.
Lemma 5.8. The image of the Nikulin orbifold $W^{[2]} / \sigma^{[2]}$ through the $4: 1$ map given by H is a special complete intersection $(2,3)$ in \mathbb{P}^{6}. This fourfold is a degeneration of the family of $(3,4)$ intersections described in 5.7.

Proof. The image of the map φ is a fourfold of degree 12 in \mathbb{P}^{9} that can be seen as the secant variety of the second Veronese embedding of a quadric surface. The projection from \mathbb{P}_{-}^{2} is no longer 2: 1 , as it can be checked on a special fiber. The image is contained in a quadric since we find that $\varphi_{|A|}\left(W^{[2]}\right)$ is contained in a quadric being a cone over \mathbb{P}_{-}^{2}. We conclude knowing the degree of the fourfold in \mathbb{P}^{6}.

Remark 5.9. One can show using computer calculations that the intersection $(2,3)$ above is singular along a surface of degree 12 .

Note that the involution $\iota^{(2)}$ on $Q^{(2)}$ has two fixed surfaces: B_{1} consisting of the pairs $(x, j(x))$ for $x \in Q$ and B_{2} consisting of the pairs $\left(c_{1}, c_{2}\right) \subset C^{(2)} \subset Q^{(2)}$. We see that the fixed $K 3$ surface S is mapped to B_{1} and the isolated points are mapped to B_{2}.
5.4. Lagrangian type description. Let us describe an object analogous to the Lagrangian subspace of dimension 10 of $\bigwedge^{3} \mathbb{C}^{6}$ for double EPW sextics. Suppose (Y, H) is a polarized orbifold of Nikulin type with degree $q_{Y}(H)=2$ such that $|H|$ induces a finite 2: 1 morphism. Then $|H|$ defines a 2: 1 map f with image J being a 4dimensional variety of degree 12 in \mathbb{P}^{6} singular along a surface. Since f is finite, there exists a sheaf \mathcal{F} on J such that

$$
f_{*} \mathcal{O}_{Y}=\mathcal{O}_{J} \oplus \mathcal{F} .
$$

We infer from the Riemann-Roch theorem the following table.

$H^{4}(\mathcal{F}(-3))$	$H^{4}(\mathcal{F}(-2))$	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	\mathbb{C}	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	$H^{0}(\mathcal{F}(2))$	$H^{0}(\mathcal{F}(3))$

So we have the following symmetric Beilinson resolution.

$$
0 \rightarrow 28 \Omega^{6}(6) \xrightarrow{M^{*}} 3 \Omega^{5}(5) \oplus \Omega^{3}(3) \oplus 3 \Omega^{1}(1) \xrightarrow{M} 28 \mathcal{O} \rightarrow \mathcal{F}(3) \rightarrow 0
$$

The matrix corresponding to M from the Beilinson resolution is a matrix with three rows of 1 forms, one row of 3 -forms and three rows of 5 -forms. Moreover, it has the
property that $M M^{*}=0$ as matrices of 4 -forms (the product is induced by the exterior product of forms).

The choice of M is thus the choice of a 28 dimensional linear subspace in

$$
3 \bigwedge^{5} V_{7} \oplus \bigwedge^{3} V_{7} \oplus 3 V_{7}
$$

isotropic for the product b that can be seen as a kind of symplectic form:

$$
b:\left(3 V_{7} \oplus \bigwedge^{3} V_{7} \oplus 3 \bigwedge^{5} V_{7}\right)^{2} \rightarrow \bigwedge^{6} V_{7}
$$

given by the formula

$$
\begin{gathered}
b\left(\left(l_{1}, l_{2}, l_{3}, \alpha, w_{1}, w_{2}, w_{3}\right),\left(L_{1}, L_{2}, L_{3}, \beta, W_{1}, W_{2}, W_{3}\right)\right)= \\
=L_{1} \wedge w_{1}+L_{2} \wedge w_{2}+L_{3} \wedge w_{3}+\alpha \wedge \beta+l_{1} \wedge W_{1}+l_{2} \wedge W_{2}+l_{3} \wedge W_{3}
\end{gathered}
$$

Note that the variety J, being the support of $\mathcal{F}(3)$, appears as a degeneracy locus of such a map M.

Problem 5.10. (1) Describe the "Lagrangian" 28 space corresponding to Nikulin orbifolds i.e. quotients of fourfolds of $K 3^{[2]}$-type as described in Section 5.1.
(2) How to describe the cubic in the complete intersection $(3,4)$?
(3) Is the moduli space of polarized orbifolds of Nikulin type of dimension 4 and $B B F$ degree 2 unirational?

References

[BaBel] L. Badescu, M. Beltrametti, Seshadri positive submanifolds of polarized manifolds. Cent. Eur. J. Math. 11 (2013), no. 3, 447-476.
[BL] B. Bakker, Ch. Lehn, The global moduli theory of symplectic varieties. arXiv:1812.09748.
[BLMNPS] A. Bayer, M. Lahoz, E. Macrì, H. Nuer, A. Perry, P. Stellari, Stability conditions in families. Publ. Math. Inst. Hautes Études Sci. 133 (2021), 157-325.
[Bea] A. Beauville, Some remarks on Kähler manifolds with $c 1=0$. Classification of algebraic and analytic manifolds (Katata, 1982), 1-26, Progr. Math., 39, Birkhäuser Boston, Boston, MA, (1983).
[Bea1] A. Beauville, Symplectic singularities. Invent. math. 139, 541-549 (2000).
[BeaDo] A. Beauville, R. Donagi, La variété des droites d'une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703-706.
[BecOb] T. Beckmann, G. Oberdieck, Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces. arXiv:2006.13899 [math.AG].
[Bl] R. Blache, Chern classes and Hirzebruch-Riemann-Roch theorem for coherent sheaves on complex-projective orbifolds with isolated singularities. Math. Z. 222 (1996), 7-57.
[Bo] F. Bogomolov, Hamiltonian Kahler manifolds, Soviet Math. Dokl. 19, 1978, pp. 14621465.
[BuReZ] A. Buckley, M. Reid, S. Zhou, Ice cream and orbifold Riemann-Roch. Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 3, 29-54; reprinted in Izv. Math. 77 (2013), no. 3, 461-486.
[C] C. Camere, Symplectic involutions of holomorphic symplectic fourfolds. Bull. Lond. Math. Soc. 44 (2012), no. 4, 687-702.
[CG] C. Camere, A. Garbagnati, On certain isogenies between K3 surfaces. Trans. Amer. Math. Soc. 373 (2020), no. 4, 2913-2931.
[CGMo] C. Camere, A. Garbagnati, G. Mongardi, Calabi-Yau quotients of hyperkähler four-folds. Canad. J. Math. 71 (2019), no. 1, 45-92.
[CKKMo] C. Camere, G. Kapustka, M. Kapustka, G. Mongardi, Verra Four-Folds, Twisted Sheaves, and the Last Involution, Int. Math. Res. Not. (2019), Issue 21, 6661-6710.
[Camp] F. Campana, Orbifoldes à première classe de Chern nulle. The Fano Conference, 339-351, Univ. Torino, Turin, (2004).
[CatOg] F. Catanese, K. Oguiso, The double point formula with isolated singularities and canonical embeddings. J. Lond. Math. Soc. 102 (2020), Issue 3, 1337-1356.
[Deb] O. Debarre, Hyperkähler manifolds. arXiv:1810.02087 [math.AG].
[DebV] O. Debarre, C. Voisin, Hyper-Kahler fourfolds and Grassmann geometry. J. Reine Angew. Math. 649 (2010), 63-87.
[DPPoSc] W. Decker, T. Peternell, J. le Potier, M. Schneider Half-canonical surfaces in \mathbb{P}^{4}. In: A. J. Sommese, A. Biancofiore, E. L. Livorni (eds) Algebraic Geometry. Lecture Notes in Mathematics, vol 1417. Springer, Berlin, Heidelberg (1990).
[FVe] G. Farkas, A. Verra, Prym varieties and moduli of polarized Nikulin surfaces Adv. Math. 290 (2016), 314-328.
[FuMe] L. Fu, G. Menet, On the Betti numbers of compact holomorphic symplectic orbifolds of dimension four, Math. Z. (2021), https://doi.org/10.1007/s00209-020-02682-7.
[Fuj] A. Fujiki, On primitively symplectic compact Kähler V-manifolds of dimension four, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, 71-250, Birkhäuser Boston, Boston, MA, 1983.
[Ful] W. Fulton, Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.
[GS] A. Garbagnati, A. Sarti, Projective models of K3 surfaces with an even set, Adv. Geometry 8 (2008), 413-440.
[vGS] B. van Geemen, A. Sarti, Nikulin involutions on K3 surfaces. Math. Z. 255 (2007), no. 4, 731-753.
[GrHJo] M. Gross, D. Huybrechts, D. Joyce, Calabi-Yau manifolds and related geometries. Lectures from the Summer School held in Nordfjordeid, June 2001. Universitext. SpringerVerlag, Berlin, 2003.
[H] D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), 63-113.
[IKKR] A. Iliev, G. Kapustka, M. Kapustka, K. Ranestad, Hyper-Kähler fourfolds and Kummer surfaces Proc. Lond. Math. Soc. 115 (2017), n. 6, 1276-1316.
[IKKR1] A. Iliev, G. Kapustka, M. Kapustka, K. Ranestad, EPW cubes, J. Reine Angew. Math. 748 (2019), 241-268.
[IR] A. Iliev, K. Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds, Trans. Am. Math. Soc. 353 (2001), 1455-1468.
[KoMor] J. Kollár, S. Mori, Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.
[Jo]
D. Joyce, Compact manifolds with special holonomy. Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
[L] Ch. Lehn, Twisted cubics on singular cubic fourfolds - On Starr's fibration Math. Z. 290(1) (2018) 379-388.
[LLSvS] Ch. Lehn, M. Lehn, C. Sorger, D. van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017), 87-128.
[MaT] D. Markushevich, A. S. Tikhomirov, New symplectic V-manifolds of dimension four via the relative compactified Prymian. Internat. J. Math. 18 (2007), no. 10, 1187-1224.
[Me1] G. Menet, Beauville-Bogomolov lattice for a singular symplectic variety of dimension 4, J. Pure Appl. Algebra 219 (2015), no. 5, 1455-1495.
[Me2] G. Menet, Global Torelli theorem for irreducible symplectic orbifolds, J. Math. Pures Appl. 137 (2020), no.9, 213-237.
[MeR1] G. Menet, U. Riess, On the Kähler cone of irreducible symplectic orbifolds, arXiv:2009.04873 [math.AG].
[MeR2] G. Menet, U. Riess, Wall divisors on irreducible symplectic orbifolds of M^{\prime} type, preliminary version available at https://gregoire-menet.webnode.fr/_files/ 200000031-1ebf91ebfc/WDoM5.pdf
[Mon] G. Mongardi, Symplectic involutions on deformations of $K 3^{[2]}$, Cent. Eur. J. Math. 10 (2010), 1472-1485.
[MoW] G. Mongardi, M. Wandel, Induced automorphisms on irreducible symplectic manifolds. J. Lond. Math. Soc. (2) 92 (2015), no. 1, 123-143.
[Mor] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105-121.
[N1] V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38 (1980), 71-135.

[N2]	V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications,
[N3]	Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111-177, 238. V.V. Nikulin, Factor groups of automorphisms of hyperbolic forms with respect to sub- groups generated by 2-reflections. Algebrogeometric applications. J. Math. Sci. 22, (1983)
[O'G]	1401-1475. K. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds. Geom.
[Pe]	Funct. Anal. 15 (2005), n.6, 122-1274. A. Perego, Examples of irreducible symplectic varieties arXiv:1905.11720 [math.AG] To appear in the Springer INdAM Series volume related to the conference Birational Geom- etry and Moduli Spaces held in Rome.
[Sh]	T. Shioda, An Explicit Algorithm for Computing the Picard Number of Certain Algebraic Surfaces, Amer. J. Math., 108 (1986), no. 2, 415-432. K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, in Moduli Spaces and Arithmetic geometry, Advanced Studies in Pure Mathematic 45, Mathematical So-
ciety Japan, Tokyo, (2006), 1-30.	

6. Appendix: \tilde{j} computations M2

Let us find a projective model $(3,4)$ in \mathbb{P}^{6} of a fourfold from the family corresponding to the embedding \tilde{j}.

```
S=ZZ/11[z_1..z_10]
R=S[x_1,x_2,x_3,y_1,y_2,y_3] --the ring of P2 x P2
T=R[e_1,e_2,e_3,f_1,f_2,f_3, SkewCommutative=>true]-- the space wedge3 V
E1=(e_1+(x_1*y_1)*f_1+(x_1*y_2)*f_2+(x_1*y_3)*f_3)
E2=(e_2+(x_2*y_1)*f_1+(x_2*y_2)*f_2+(x_2*y_3)*f_3)
E3=(e_3+(x_3*y_1)*f_1+(x_3*y_2)*f_2+(x_3*y_3)*f_3)
    --E1*E2*E3 represent the image of the point in the cone over
-- P^2 x P^2 with coordinates (1,((x_1,x_2,x_3),(y_1,y_2,y_3)))
B0=E1*E2*E3
B1=E1*E2*f_1
B2=E1*E2*f_2
B3=E1*E2*f_3
B4=E1*E3*f_1
B5=E1*E3*f_2
B6=E1*E3*f_3
B7=E2*E3*f_1
B8=E2*E3*f_2
B9=E2*E3*f_3
--Bi span the tangent to the Grassmannian in E1*E2*E3.
V1=e_1*e_2*e_3
V2=e_1*e_2*f_1
V3=e_1*e_2*f_2
V4=e_1*e_2*f_3
V5=e_1*e_3*f_1
V6=e_1*e_3*f_2
V7=e_1*e_3*f_3
V8=e_2*e_3*f_1
V9=e_2*e_3*f_2
V10=e_2*e_3*f_3
--Vi span the fixed Lagrangian space being the tangent to the Grassmannian in
\$e_1*e_2*e_3\$.
\(\mathrm{W} 1=\mathrm{f} \_1 * \mathrm{f} \_2 * \mathrm{f}\) _3
W2=f_1*f_2*e_1
W3=f_1*f_2*e_2
W4=f_1*f_2*e_3
\(\mathrm{W} 5=\mathrm{f} \_1 * \mathrm{f} \_3 * \mathrm{e}_{-} 1\)
W6=f_1*f_3*e_2
W7=f_1*f_3*e_3
W8=f_2*f_3*e_1
\(\mathrm{W} 9=\mathrm{f} \_2 * \mathrm{f} \_3 * \mathrm{e}_{-} 2\)
W10=f_2*f_3*e_3
--Wi span the Lagrangian space being the tangent to the Grassmannian in f_1*f_2*f_3,
--together Vi and Fi span the whole space wedge^3 V.
\(\mathrm{VV}=\) matrix \(\{\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5, \mathrm{~V} 6, \mathrm{~V} 7, \mathrm{~V} 8, \mathrm{~V} 9, \mathrm{~V} 10\}\}\)
WW=matrix \(\{\{\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3, \mathrm{~W} 4, \mathrm{~W} 5, \mathrm{~W} 6, \mathrm{~W} 7, \mathrm{~W} 8, \mathrm{~W} 9, \mathrm{~W} 10\}\}\)
\(W V=W W *\left(\operatorname{sub}\left((t r a n s p o s e ~(V V)) * W W, ~\left\{e \_1=>1, ~ e \_2=>1, ~ e \_3=>1, f \_1=>1, f \_2=>1, f \_3=>1\right\}\right)\right)\)
-- this is a sign adjustment making the pairing given by the wedge product a
--duality between the two bases of the Lagrangians VV and WW
RP=ZZ/11[ed_1..ed_45]
L=genericSymmetricMatrix (RP, 9)
\(\mathrm{G}=\) matrix\{
\(\{0,0,0,0,0,0,0,0,1\}\),
\(\{0,0,0,0,0,-1,0,0,0\}\),
\(\{0,0,1,0,0,0,0,0,0\}\),
\(\{0,0,0,0,0,0,0,-1,0\}\),
\(\{0,0,0,0,1,0,0,0,0\}\),
\(\{0,-1,0,0,0,0,0,0,0\}\),
\(\{0,0,0,0,0,0,1,0,0\}\),
\(\{0,0,0,-1,0,0,0,0,0\}\),
\(\{1,0,0,0,0,0,0,0,0\}\}\)
--G represents a symmetry induced on wedge^ 3 V by the symmetry of
-- P^2 x P^2 exchanging x coordinates with y coordinates
\(F G=s u b(L, t r a n s p o s e(m i n g e n s ~ k e r n e l ~ t r a n s p o s e ~(c o e f f i c i e n t s ~(m i n g e n s ~ i d e a l ~(L * G-G * L), ~\) Monomials=>vars RP))_1 *random(RP^27, RP^1)))
\(\mathrm{MM}=(\operatorname{map}(\mathrm{T}, \mathrm{RP})) \mathrm{FG}\)
MO=matrix\{\{0,0,0,0,0,0,0,0,0\}\}
MMM \(=(0 \mid M O)| |((\) transpose MO) |MM)
-- MMM represents a symmetric linear map between the two Lagrangians with bases given by
\(--V V\) and WV i.e. a Lagrangian subspace in wedge^3 V passing through e_1*e_2*e_3
-- its relation with \(G\) means that it is invariant under the symmetry corresponding
--to G WV*MMM
KK=VV+WV*MMM
--KK is a basis of the Lagrangian space defined as the graph of MMM
\(\mathrm{P}=(\mathrm{KK} * \operatorname{transpose}((\operatorname{map}(\mathrm{~T}, \mathrm{~S}))\) (matrix\{\{z_1..z_10\}\})))_0_0
\(\mathrm{KOP}=\) coefficients (matrix \(\{\{\mathrm{P} * \mathrm{~B} 0, \mathrm{P} * \mathrm{~B} 1, \mathrm{P} * \mathrm{~B} 2, \mathrm{P} * \mathrm{~B} 3, \mathrm{P} * \mathrm{~B} 4, \mathrm{P} * \mathrm{~B} 5, \mathrm{P} * \mathrm{~B} 6, \mathrm{P} * \mathrm{~B} 7, \mathrm{P} * \mathrm{~B} 8, \mathrm{P} * \mathrm{~B} 9\}\}\), Monomials=>\{e_1*e_2*e_3*f_1*f_2*f_3\})
-- KOP gives condition on elements of the Lagrangian spanned by KK given by by zi in the
--basis KK to be elements of the tangent in E1*E2*E3 represented by the span of B
--the rank of these conditions will give the codimension of the intersection locus
KPP=KOP_1
FRT=diff( (transpose matrix\{\{z_1..z_10\}\}), KPP)
GFD=minors ( \(9, \mathrm{FRT}\) ) ;
--GFD describes the locus of tangents to \(\$ \mathrm{E} 1 * E 2 * E 3 \$\) meeting the chosen symmetric
--Lagrangian spanned by \$KK\$
degree GFD
D=ZZ/11[x_1, \(\left.x_{-} 2, x_{-} 3, y_{-} 1, y_{-} 2, y \_3\right]\)
\(\mathrm{GFO}=(\operatorname{map}(\mathrm{D}, \mathrm{T})) \mathrm{GFD}\);
\(\mathrm{SB}=\mathrm{ZZ} / 11\) [m,q_1. .q_9]
\(\mathrm{fv}=\mathrm{map}\left(\mathrm{D}, \mathrm{SB}, \operatorname{matrix}\left\{\left\{1, \mathrm{x}_{-} 1 * \mathrm{y}_{-} 1, \mathrm{x}_{-} 1 *_{y_{-}} 2, \mathrm{x}_{-} 1 * \mathrm{y}_{-} 3, \mathrm{x}_{-} 2 *_{y_{-}} 1, \mathrm{x}_{-} 2 * \mathrm{y}_{-} 2, \mathrm{x}_{-} 2 * \mathrm{y}_{-} 3, \mathrm{x}_{-} 3 * \mathrm{y}_{-} 1, \mathrm{x}_{-} 3 * \mathrm{y}_{-} 2, \mathrm{x}\right.\right.\right.\)
_3*y_3\}\})
man=preimage(fv, GFO);
--we see the EPW quartic GFD in the corresponding affine part of the cone over the Segre
--embedding of \(\mathrm{P}^{\wedge} 2 \times \mathrm{P}^{\wedge} 2\)
dim man
degree man
EPW=ideal (homogenize (gens man, m))
--we take the projective closure and get EPW the EPW quartic in P^9 that is
--contained in the cone over
\(--P^{\wedge} 2 x P^{\wedge} 2\) and is symmetric with respect to
--the chosen involution
degree EPW
dim EPW
SFB=ZZ/11[s_1,s_2,s_3,s_4,s_5,s_6,tdt]
EPWsym=preimage (map (SB, SFB, matrix\{\{q_1, q_2+q_4, q_3+q_7, q_5, q_6+q_8, q_9,m\}\}),
EPW) ;
--EPWsym is the projection from the anti-invariant locus given by the space of
--skew-matrices
degree EPWsym
mingens EPWsym
--we get a complete intersection of a cubic and a quartic in P^6
S=singularLocus EPWsym;
IS=ideal S;
--IS represents the singular locus of EPWsym
dim IS
degree IS
--the singular locus is a surface of degree 52 as expected, here we possibly need to repe
-- to get a general enough choice that will give the right number
\(R=Q Q\left[x_{-} 1 . . x_{-} 4, y_{-} 1 . y_{-} 4\right]\)
\(\mathrm{G}=\mathrm{QQ}[\mathrm{a}\) _1. . a_10]
\(\mathrm{F}=\left(\operatorname{transpose} \operatorname{matrix}\left\{\left\{\mathrm{x}_{-} 1 . . \mathrm{x}_{-} 4\right\}\right\}\right) * \operatorname{matrix}\left\{\left\{\mathrm{y}_{-} 1 . . \mathrm{y}_{-} 4\right\}\right\}\)
\(\mathrm{P}=(\mathrm{F}+\) transpose F )
\(W=P^{\wedge}\{0\}\left|P \wedge\{1\} \_\{1,2,3\}\right| P \wedge\{2\} \_\{2,3\} \mid P \wedge\{3\} \_\{3\}\)
--W represents the map from \(P^{\wedge} 3 \mathrm{x} \mathrm{P}^{\wedge} 3 \$\) to the space of symmetric
--matrices which commutes with the exchange of variables.
--its image is the symmetric square of \(P^{\wedge} 3\)
BU=preimage (map (R,G, W), ideal (x_1^2+x_2^2+x_3^2+x_4^2,y_1^2+y_2^2+y_3^2+y_4^2)) (
\(--B U\) is the image of the symmetric square of the Fermat quadric in \(P^{\wedge} 3\) in the chosen coordi
dim BU
saturate BU
GH=QQ[a_1, a_5. .a_10]
mingens preimage (map (G,GH), BU)
--we project the symmetric square of the quadric from the anti-invariant
-- locus of a chosen symmetry preserving the quadric
Chiara Camere, Università degli Studi di Milano, Dipartimento di Matematica, Via Cesare Saldini 50, 20133 Milano, Italy

Email address: chiara.camere@unimi.it
URL: http://www.mat.unimi.it/users/camere/en/index.html
Alice Garbagnati, Università degli Studi di Milano, Dipartimento di Matematica, via Cesare Saldini 5020133 Milano, Italy

Email address: alice.garbagnati@unimi.it
URL: https://sites.google.com/site/alicegarbagnati/
Grzegorz Kapustka, Jagiellonian University Cracow, ul. Lojasiewicza 6, 30-348 Kraków Email address: grzegorz.kapustka@uj.edu.pl

Micha乇 Kapustka, Institute of Matematics of the Polish academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw

Micha乇 Kapustka, University of Stavanger, Department of Mathematics and Natural Sciences, NO-4036 Stavanger, Norway

Email address: michal.kapustka@impan.pl```

