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Abstract
This paper shows how safety and liveness properties are not necessarily preserved
by different kinds of copies of computational artefacts and proposes procedures to
preserve them that are consistent with ethical analyses on software property rights
infringement. Safety and liveness are second-order properties that are crucial in
the definition of the formal ontology of computational artefacts. Software copies
are analysed at the level of their formal models as exact, inexact, and approxi-
mate copies, according to the taxonomy in (Angius and Primiero, 2018). First, it
is explained how exact copies are the only kind of copies that preserve safety and
liveness properties, and how inexact and approximate copies do not necessarily
preserve them. Secondly, two model checking algorithms are proposed to verify
whether inexact and approximate copies actually preserve safety and liveness prop-
erties. Essential properties of termination, correctness, and complexity are proved
for these algorithms. Finally, contraction and expansion algorithmic operations
are defined, allowing for the automatic design of safety- and liveness-preserving
approximate copies. As a conclusion, the relevance of the present logical analysis
for the ongoing debates in miscomputation and computer ethics is highlighted.

Keywords. Philosophy of computing, philosophy of information, artefact copy, tem-
poral logic, model checking, software theory change.

1 Introduction
Defining the ontological notion of copy between artefacts, and establishing its formal
properties, is an open problem in the philosophy of technology (Carrara and Soavi,
2010; Hick and Schmcke, 2016; Tzouvaras et al., 1993). The problem acquires par-
ticular significance in the context of the philosophy of information and computing,
wherein structural problems are essential in establishing malfunctions of computa-
tional artefacts (Floridi et al., 2015; Fresco and Primiero, 2013) and because ethical
and legal issues arise in determining property rights infringement (Johnson and Miller,
2008; Nissenbaum, 1995). The copy relation can be understood as a logic weakening
of the stronger identity relation (Angius and Primiero, 2018), the latter being an equiv-
alence relation satisfying Leibniz’s law of the indiscernibility of identicals (Noonan
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and Curtis, 2018). In particular, not everything which is true of an artefact is neces-
sarily true of its copy. This paper focuses on specific properties of software systems
which are relevant for software copies, from a security as well as from an ethical point
of view, namely safety and liveness. The logical analysis on copies carried out in this
journal by Angius and Primiero (2018) is here extended to inquire whether safety and
liveness properties are preserved by software copies and how to preserve them. This
is an especially important task when considering safety-critical systems controlled by
software, but also when investigating the limits and possible risks of opacity and bias
in replicating AI algorithms (Haibe-Kains et al., 2020; Hutson, 2018).

In formal ontology, traditional approaches to the definition of identity move from
the assumption, initially put forward by Frege (1953), that any two objects x and y
should be defined identical in terms of a relation R(x′, y′) holding between objects x′

and y′ functionally related to x and y.1 The relation R is usually required to comply with
a list of formal constraints, which include equivalence and Leibniz’s law (Lombard,
1986; Wiggins, 2001). Angius and Primiero (2018) export this analysis to the case of
identity for any two computational artefacts x and y.2 It is also provided a taxonomy
for the copy relation R′ for models of computational artefacts distinguishing among
exact, inexact, and approximate copies: the specification of the model of y requires,
respectively, all and only, all but not only, or just some of the behaviours required by
the specification of the model of x. While the bisimulation relation is identified as the
formal counterpart for the identity relation R holding between the specifications of the
models of x and y, the simulation relation is then identified as candidate for R′.3

Inexact and approximate copy relations are shown to violate some of the formal
constraints satisfied by identity, equivalence and Leibniz’s law in the first place. Con-
sequently, when y is a copy of x, there are properties of the model of system x which are
not properties of the model of system y. Determining which properties are preserved
by software copies and which are not may reveal itself fundamental when establishing
whether a software copy is preserving the functionalities of the original and whether it
constitutes a property rights infringement. In this context, Angius and Primiero (2019)
argue that a fixed number of computational traces in the specification of a computa-
tional artefact can be copied under the fair use doctrine in case they allow to preserve
important properties for the system, like safety and liveness.

Computational artefacts are designed and developed as implementing a usually
well-defined set of specifications, realising the functional requirements put forward
by customers, users, and other stakeholders engaged in the software development pro-
cess. Formal development methods often require the formalization of specifications
in some proper logic, subsequently allowing to check whether a model of the devel-
oped system satisfies, or does not satisfy, the advanced specifications. In the context of
models of systems working in safety critical situations, such as nuclear plants, rockets

1For more details on this debate see (Lowe, 1989, 1997).
2The analysis in (Angius and Primiero, 2018), along with essential formal preliminaries of temporal logic

and model checking techniques, are extensively recollected in section 2 to keep the present contribution self-
contained.

3Even though behavioural equivalence and preorder can be expressed in different ways than through
bisimulation and simulation relations, such as as isomorphism, trace equivalence, and trace inclusion, this
paper keeps the formal set-up of Angius and Primiero (2018), being bisimulation and simulation the most
studied behavioural equivalence and preorder relations (Sangiorgi, 2011).
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controllers, or traffic lights, particularly significant are the specifications formalizing
safety and liveness properties (Rushby, 1994).

Safety properties require that anything which is considered “bad” for a particular
system will not ever happen. By contrast, liveness properties specify something “good”
that is required to happen infinitely often during the running time of the interested
system. Safety and liveness properties are often called second-order properties in that
they are properties of a computational artefacts as many others but which, unlike the
other properties, turn out to express something “bad” or something “good” for the
artefact. When model checking techniques are employed in formal verification (Clarke
et al., 1999), safety and liveness properties are formalized mainly using Linear Time
temporal Logic (LTL) or its superset Computational Tree Logic∗ (CTL∗) (Kröger and
Merz, 2008). Specific LTL model checking algorithms have been proposed to model
check safety or liveness LTL formulas (Biere et al., 2002; Kupferman and Vardi, 2001).

This paper inquiries the extent to which computational artefact copies preserve
safety and liveness properties. More specifically, it is analysed whether, assuming that
x satisfies, respectively violates, a given set of safety and liveness properties, the latter
are preserved, respectively violated, by exact, inexact, and approximate copies of x.
It is shown how it immediately follows from well-known theorems in process algebra
that inexact and approximate copies do not necessarily preserve safety and liveness
properties.

Subsequently, two algorithms to verify safety and liveness properties for, respec-
tively, inexact and approximate copies are provided. Essential properties of termina-
tion, correctness, and complexity are proved. The algorithms are adaptations of the
LTL model checking algorithms known in the literature to the case of inexact and ap-
proximate copies discussed in (Angius and Primiero, 2018). Intent of this paper is
thereby that of providing the ethical analysis of Angius and Primiero (2019) on soft-
ware property rights with procedural means allowing the fair use doctrine in computer
ethics to be implementable into actionable rules.

To this aim, the present paper also defines formal design principles that allow one
to develop safety- and liveness-preserving inexact or approximate copies. The formal
approach on software theory change proposed in (Primiero et al., 2021) is here used
to define algorithmic operations leading to an approximate copy of a model preserv-
ing safety and liveness properties specified by the original, while copying the minimal
amount of allowed behaviours. The last requirement is consistent with the ethical as-
sumption according to which approximate copies should be permitted in case the least
number possible of specified behaviours allowing for the preservation of safety or live-
ness properties is copied (Angius and Primiero, 2019).

The notion of behaviour formally used in this paper recalls the various concepts
used in engineering design. Angius and Primiero (2018) closely investigated the var-
ious notions proposed in (Chandrasekaran and Josephson, 2000) and suggested that
process algebra matches each with different formal aspects. For the present purposes,
it is worth noting that the verification of liveness and safety properties requires the eval-
uation of output variables over intervals of time, thereby specifically matching notion
IV of that taxonomy.

The paper is structured as follows. Section 2 recalls some formal preliminaries
on software specifications in the form of transition systems, the algebraic relations

3



that such models can entertain, and the taxonomy of the copy relations provided in
(Angius and Primiero, 2018). Section 3, after illustrating some straightforward results
concerning the fulfilment or violation of safety and liveness properties from exact,
inexact, and approximate copies, presents two algorithms to model check inexact and
approximate copies against safety and liveness properties. Section 4 defines model-
theoretic algorithmic operations to create an approximate copy with respect to specified
safety and liveness properties of the copied system. Section 5 concludes by underlining
the relevance of the present logical analysis in the formal ontology of computational
artefacts for the on-going debates in miscomputation and computer ethics.

2 Formal Preliminaries
Specifications of computational artefacts are here considered as artefact models in
terms of abstract machines represented by a finite state transition system TS defined as
follows:

Definition 1 (Finite State Transition System). A finite transition system TS = (S , A,T, I, F, AP, L)
is a set theoretic structure where:

• S = {s0, . . . , sn} is a finite set of states;

• A is a finite set of transitions labels;

• T ⊆ S × A × S is a transition relation, each transition having form si
α
−→ s j;

• I ⊆ S is a set of initial states;

• F ⊆ S is a set of final states;

• AP is a finite set of state labels;

• L : S → 2AP is a state labelling function.

Figure 1 depicts a transition system for a microwave control software in the form
of an oriented graph, wherein nodes represent labelled states and arrows labelled tran-
sitions.4 State 1 is both an initial state (pointed out by an incoming arrow) and a final
state (coloured state). A required behaviour for such a system is expressed as a se-
quence of functionalities, each satisfied at a state. Such a sequence is realised by a path
in the system. For instance, the sequence of functionalities o f f , close → on, close →
on, close,wave → on, close → o f f , close is one of the correct behaviours of the mi-
crowave control system realised by the path s1, s5, s6, s5, s1.

A path of a transition system is accordingly a set of states, starting from some initial
state and, in the former case, terminating in a final state. More generally:

Definition 2 (Path). Given a finite transition system TS , a finite path fragment is a
finite sequence of states s0, . . . , sn, such that each si is the successor of si−1, for all
0 < i ≤ n and n ≥ 0. An infinite path fragment is an infinite sequence of states s0, s1, . . .

4The example is inspired by a study case in (Clarke et al., 1999, p. 39).
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Figure 1: A TS for a microrwave control system.

such that each si is the successor of si−1 for all i > 0. A path is a path fragment which
starts in an initial state si ∈ I and either terminates in a final state s j ∈ F, or is infinite.
The set of paths of a transition system TS is denoted Path(TS ).

To express and reason about model behaviours, sequence of labels are considered,
one for each state in the path; to reason about model properties, requirements on those
sequences are examined, defined as infinite words in the set (2AP)ω.5 Properties of
the model are thus requirements over such set. This results in the following standard
definitions of trace and property:

Definition 3 (Trace). Given a finite transition system TS , the trace of a finite path
fragment s0, . . . , sn is the sequence of its labels L(s0), . . . , L(sn). The trace of an in-
finite path fragment s0, s1, . . . is the sequence of its labels L(s0), L(s1) . . .. Traces of
transitions systems are words over the alphabet 2AP.

Definition 4 (Property). A linear-time property T over the set AP is defined as T ⊆
(2AP)ω.

Property specifications holding true of a transition system (as a system specifica-
tion) are usually expressed in terms of temporal logic formulas (Kröger and Merz,
2008). Specifically, safety and liveness formulas, under the focus of the present paper,
are often formalised using Linear Time Logic (LT L) (Sistla, 1994). The reason is that
LT L formulas implicitly quantify over all the computational paths starting from the
state wherein the formula holds true. Safety and liveness properties are exactly prop-
erties holding in all the paths of a software model, that is, they hold true at any initial

5(2AP)ω is the set of infinite words given as infinite concatenations of words in 2AP.
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state.6

This paper will concentrate on CT L∗ temporal logic, given by the union set of
LT L and Computation Tree Logic (CT L). Safety and liveness properties can well be
expressed in CT L∗, either as LT L formulas or in the universal fragment ∀CT L∗ in
which LT L formulas can be embedded.7

CT L∗ formulas are composed of atomic propositions from the set AP, Boolean con-
nectives, temporal operators, and path quantifiers. Temporal operators specify “when”
the property holds along the computational path; there are five basic temporal opera-
tors:

• X (“Next”): a property will hold in the following state;

• F (“Finally”): a property will eventually hold along the path;

• G (“Globally”): a property always holds along the path;

• U (“Until”): this is a binary operator; given two properties, the operator states
that the second property will hold at a given state and that the first property holds
until that state, that is, in the preceding states of the path;

• R (“Release”): it is the dual operation of U, that is, it indicates that the second
property will hold up to and including the first state where the first property
holds.

Path quantifier ∀ specifies that a property holds in all paths; path quantifier ∃ that
the property holds just in some (at least one) paths. CT L∗ distinguishes between state
formulas and path formulas. Intuitively, state formulas are formulas that hold true in a
given state, while path formulas hold true along a given path.

The syntax for CT L∗ well formed formulas is defined as:

Definition 5 (Syntax of CT L∗ formulas). Given the set AP of atomic propositions, a
state formula is introduced by the following rules:

• if p ∈ AP, then p is a state formula;

• if f and g are state formulas, then ¬ f , f ∧ g, f ∨ g, f → g are state formulas;

• if f is a path formula, then ∀ f and ∃ f are state formulas.

A path formula is introduced by the two additional rules:

• if f is a state formula, then f is also a path formula;

• if f and g are path formulas, then ¬ f , f ∨ g, f ∧ g, f → g, X f , F f , G f , f Ug,
and f Rg are path formulas.

6It would be possible, at this point, to introduce the standard notion of behaviour of a system in terms of
trace execution, and to reduce safety and liveness to properties holding for all behaviours. Instead, the paper
proceeds with the definitions of such properties on traces and of relations between systems satisfying them,
in order to make explicit the link to the conceptual notion of copy.

7See, for instance, theorem 6.83 in Baier and Katoen (2008).
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The satisfiability relation for CT L∗ formulas is inductively defined as:8

Definition 6 (Satisfaction of CT L∗ formulas). Given a TS , an atomic formula p, state
formulas f1, f2, and path formulas g1, g2, the satisfaction relation in TS of CT L∗ for-
mulas is defined as follows:

TS , s |= p iff p ∈ L(s);
TS , s |= ¬ f1 iff TS , s 2 f1;
TS , s |= f1 ∧ f2 iff TS , s |= f1 and TS , s |= f2;
TS , s |= f1 ∨ f2 iff TS , s |= f1 or TS , s |= f2;
TS , s |= ∀g1 iff for all paths π starting from s, TS , π |= g1;
TS , s |= ∃g1 iff there exists a path π starting from s such that TS , π |= g1;
TS , π |= f1 iff TS , s0 |= p where s0 ∈ π;
TS , π |= ¬g1 iff TS , π 6|= g1
TS , π |= g1 ∧ g2 iff TS , π |= g1 and TS , π |= g2;
TS , π |= g1 ∨ g2 iff TS , π |= g1 or TS , π |= g2;
TS , π |= Xg1 iff TS , π1 |= g1;
TS , π |= Fg1 iff there exists k ≥ 0 such that TS , πk |= g1;
TS , π |= Gg1 iff for all k ≥ 0, TS , πk |= g1;
TS , π |= g1Ug2 iff there exists k ≥ 0 such that TS , πk |= g2

and TS , π j |= g1 for all 0 ≤ j < k;

Notice here that, as underlined above, state formulas are evaluated in a state while
path formulas are evaluated in a path. Indeed, state formulas can quantify over paths,
that is, they express whether the formula holds true in at least one path or in all paths
starting from the state satisfying the state formula itself. By contrast, path formulas
assume that time is linear, i.e. that each state has only one successor; they can therefore
be evaluated along a single path.

Many of the properties of interest of the microwave control software in Figure 1 can
be formalized using CT L∗ formulas. One may for instance require that if the oven door
is opened while it is on, the oven displays an error message. This basic functionality
can be expressed by the formula G(on∧open→ error) requiring that all the states (G)
labelled with on and open be also labelled with error.

Some of the property specifications that are required to hold in the transition system
can be recognized as properties of safety and liveness (Alpern and Schneider, 1987).
A safety property specifies that something “bad” will never happen. Accordingly, a
safety property is violated by a finite word including a “bad” prefix wherein the “bad”
event happens and such that no infinite word starting from the “bad” prefix is able to
satisfy the given safety property. By considering linear-time properties of this sort as
infinite words subset of (2AP)ω, one may formally define a safety property as in (Baier
and Katoen, 2008, p. 112):

Definition 7 (Safety property). A safety property ψ is a linear time property such that
for all infinite words σ ∈ (2AP)ω \ψ there exists a finite prefix σ̂ of σ such that ψ∩{σ′ ∈
(2AP)ω| σ̂ is a finite prefix of σ′} = ∅.

One may require that the wave function does not activate while on and open hold
true (indeed, an error message should rather be displayed according to the former

8In what follows index n in πn expresses the nth state in π starting from an initial state s0 in the path.
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property specification). This property can be formalized by the CT L∗ formula G(¬(on∧
open∧wave)), requiring that for all the states of the system (G), it never is the case (¬)
that on∧open∧wave holds true at the same time. The latter property is a safety property
in that it specifies that something “bad” will never happen. Here the “bad” unsafe
situation is one in which microwaves propagate outside the insulated oven. G(¬(on ∧
open ∧ wave)) is often called invariant in that it is required that the predicate logic
formula ¬(on ∧ open ∧ wave) holds in every state of the system. A violation of this
safety property would consist in a finite word containing a bad prefix, namely one at
which (on ∧ open ∧ wave) holds.

By contrast, liveness properties require that something “good” will happen in-
finitely often (Alpern and Schneider, 1985). Consequently, liveness properties are vi-
olated by infinite runs. According to this view, there must exist a finite prefix which
can be extended to an infinite word satisfying the liveness property (Baier and Katoen,
2008, p. 6):

Definition 8 (Liveness Property). Property φ is a liveness property if for all finite words
w ∈ (2AP)∗ there exists an infinite word σ ∈ (2AP)ω such that wσ ∈ φ.9

A “good” and desired circumstance for the microwave control software is one in
which the oven finally starts and keeps cooking. Consequently, the property specifica-
tion FG(wave) specifies a liveness property. The formula requires that it will be eventu-
ally (F) reached a state such that all reachable states from there (G) satisfy wave. This
implies that wave holds infinitely often. For this reason, the CT L∗ formula FG(wave)
is usually called a persistence property. As it can be seen from the state transition sys-
tem in Figure 1, wave holds infinitely often when it holds in a state which is reachable
from some initial state and when that state belongs to a (self)loop.

Once some of the advanced property specifications have been recognised to be
properties of safety and liveness, one may well make use of specific model-checking
algorithms conceived to verify them (instead of standard CT L∗ model-checking algo-
rithms). The literature offers many algorithms of this sort, see for instance (Biere et al.,
2002; Kupferman and Vardi, 2001; Podelski and Rybalchenko, 2003). In this paper, the
approach in Baier and Katoen (2008) for model checking regular safety and liveness
properties is followed.

In the case of safety properties, the first step is the introduction of a non determinis-
tic finite automaton accepting the language defined by the set of bad prefixes of a given
safety property. Recall that a non deterministic finite automaton is defined as follows:

Definition 9 (Nondeterministic Finite Automaton). A nondeterministic finite automa-
ton on finite words is given by the five-tupleA = (Σ,Q,∆,Q0, F) such that:

• Σ is an alphabet;

• Q is a finite set of states;

• ∆ : Q × Σ × Q is a nondeterministic transition relation;

• Q0 is a set of initial states;
9(2AP)∗ is the set of finite words arising in 2AP.
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• F ⊆ Q is a set of accepting states.

A finite word v ∈ Σ∗ for a finite automaton A is a sequence v = α1, α2, . . . , αn of
symbols of the alphabet; a run of A over v is a finite sequence of states q0, q1, . . . , qn

such that q0 ∈ Q0 and for all 0 ≤ i < n it holds that qi
αi+1
−−−→ qi+1. Word v is an input

forA andA is said to read v. A run q0, q1, . . . , qn is said to be accepting when qn ∈ F;
a finite word v ∈ Σ∗ is accepted by A if there is an accepting run for v. The set of
finite words in Σ∗ accepted by A is called the accepted language of A and is denoted
by L(A). Since safety properties can be defined as sets of infinite words over 2AP, bad
prefixes, by being finite, form a language of finite words with alphabet Σ = 2AP.

Subsequently, given a nondeterministic finite automatonAψ accepting the bad pre-
fixes of a safety property ψ, and a transition system TS to be verified against ψ, it is
checked whether TS and Aψ intersect. This is achieved by considering whether the
product automaton TS × Aψ satisfies an invariant Gχ, where χ is a formula derived
from the accepting states ofAψ.10 Let us first recall the definition of the general prod-
uct automaton TS × A; the model checking procedure is then sketched in Algorithm
1.11

Definition 10 (Product of a finite transition system and a nondeterministic finite au-
tomaton). Given a transition system without final states TS = (S , A,T, I, AP, L) and
a nondeterministic finite automaton A = (2AP,Q,∆,Q0, F), the product TS × A is
(S ∗, A,T ∗, I∗, AP∗, L∗) where:

• S ∗ = S × Q;

• A is the finite state of transition labels of TS ;

• T ∗ is the smallest relation such that if si
a
−→ si+1 and qk

L(si+1)
−−−−−→ qk+1 then 〈si, qk〉

a
−→

〈si+1, qk+1〉;

• I∗ = {〈s0, q〉 |s0 ∈ I ∧ ∃q0 ∈ Q0 such that q0
L(s0)
−−−→ q};

• AP∗ = Q;

• L∗ : S × Q→ 2Q such that L∗(〈s, q〉) = {q}.

A similar approach is taken by the algorithm used to check whether TS |= φ for
a given liveness property φ. The set of bad prefixes of φ is here accepted by a nonde-
terministic Büchi automaton. Büchi automata are automata that accept infinite words;
they have the same structure as finite automata except they recognize words from Σω,
where ω indicates an infinite number of repetitions of a finite word. If in f (p) is the set
of states that appear infinitely often within a run p of a Büchi automatonA, such run is
said to be accepting iff in f (P)∩ F , ∅, that is, when some accepting state is reached in
p infinitely often. The model checking algorithm in this case checks whether the prod-
uct automaton TS ×Aφ satisfies a persistent property FGυ. The procedure is sketched
in Algorithm 2.

10For more details see (Baier and Katoen, 2008).
11Please recall that TS |= Θ, for any formula Θ, means that Θ is satisfied by all paths of TS starting from

any initial state.
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Data: TS , ψ,Aψ, χ
Result: true if TS |= ψ, f alse otherwise with a counterexample for ψ
initialization;
if TS ×Aψ |= Gχ then

return true
else

Determine a counterexample 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ×Aψ such that
qn+1 ∈ F;

return (false, s0, . . . , sn)
end

Algorithm 1: Model checking algorithm for TS |= ψ.

Data: TS , φ,Aφ, υ
Result: true if TS |= φ, f alse otherwise with a counterexample for φ
initialization;
if TS ×Aφ |= FGυ then

return true
else

Determine a counterexample 〈s0, q1〉 , . . . , 〈sn, qn+1〉 , . . . , 〈sn, qn+1〉 of
TS ×Aφ such that qn+1 ∈ F;

return (false, s0, . . . , sn, . . . , sn)
end

Algorithm 2: Model checking algorithm for TS |= φ.

Before showing, in the next section, the extent to which software copies preserve
safety and liveness properties, and how to verify them, it is essential to define what
a software copy is. Angius and Primiero (2018) compare computational artefacts for-
malised at the level of abstraction of their specifications, i.e. of models that abstract
away from implementation and linguistic details. Set-theoretical relations of identity,
inclusion, and intersection on models, schematised in Figure 2, are used to identify
respectively exact, inexact, and approximate copies. The models of two computa-
tional artefacts x and y are in an exact copy relation if the specification they express
S (x) = S (y) is the same. This means that exact copies are either different implemen-
tations of the same system specification in two different high-level programs, or two
different implementations of even the same high-level program (and consequently of
the same specification). In other words, models of x and y are in an exact copy rela-
tion if the specifications of the corresponding systems induce exactly the very same set
of behaviours12 and, consequently, if they satisfy the very same set of formulas. The
exact copy relation catches the notion of copying in the sense of duplicating. When
models of x and y are in an inexact copy relation, S (x) is a subset of S (y), meaning
that S (y) allows all the behaviours allowed by S (x), potentially specifying additional
functionalities. An inexact copy is a system model that incorporates another system

12It is assumed that a specification corresponds to set of behaviours it prescribes. Consequently, set-
theoretic relations holding between specifications, such as inclusion or intersection, are taken to hold also
between the corresponding set of behaviours.
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EXACT COPY INEXACT COPY APPROXIMAT E COPY
S (x) = S (y) S (x) ⊂ S (y) S (x) ∩ S (y) , ∅

Figure 2: Taxonomy of copy relations according to the analysis in Angius and Primiero
(2018)

model and develops new functionalities upon it. When y is an approximate copy of x,
it is assumed that the intersection of S (x) and S (y) is not void; this implies that S (y)
copies just some of the functionalities specified by S (x), again realizing new func-
tional properties. The approximate copy case is the most common one in software
development, amounting to the practice of making use, in programming activities, of
already encoded object classes that are known to satisfy some desired property spec-
ification. Angius and Primiero (2018) formulate logical definitions of exact, inexact,
and approximate copy in terms of process algebra relations holding between couples
of specifications for deterministic systems.13 This in turn allows to prove some logic
results of interests for the purposes of this paper.

The notion of exact copy entertained by two systems x and y can be logically de-
fined as a bisimulation relation between S (x) and S (y). Intuitively, two transitions
systems are in a bisimulation relation when each can simulate the other and the two
have the same branching structure. Mutual simulation implies that the two specifica-
tions satisfy the same set of behavioural properties. Formally, a bismulation between
transition systems TS and TS ′ is defined as follows:

Definition 11 (Bisimulation). Let TS = (S , A,T, I, F, AP, L) and TS ′ = (S ′, A′,T ′, I′, F′, AP′, L′)
be two finite transition systems, the binary relation B ⊆ S ×S ′ is a bisimulation relation
if and only if:

1. for each initial state s0 ∈ I there is an initial state s′0 ∈ I′ such that (s0, s′0) ∈ B,
and vice versa;

2. (s0, s′0) ∈ B if and only if: s0 and s′0 have the same label, there is a successor
state s′1 of s′0 for every successor state s1 of s0 such that (s1, s′1) ∈ B and vice
versa.

TS and TS ′ are in a bisimulation relation, denoted TS ≡ TS ′, if there exists a
bismulationn relation B for (TS, TS’).

The transition system in Figure 3 is an exact copy of the one provided in Figure 1.
It can be easily checked that the two satisfy conditions 1 and 2 in definition 11, as well
as that the two transition systems correspond to the same system specification. Indeed,
any path of the first transition system is also a path of the copy, and vice versa. Exact
copies are trivially identical and the only admissible distinctions can be obtained by
the addition of entirely isomorphic structures to those already existing, as it is the case

13For further details on such relations see Fokkink (2013). In the following, these results on copied
systems are used, referring the reader to the original (Angius and Primiero, 2018) for the proofs.
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Figure 3: An exact copy of the TS in figure 1.

for path s1, s5, s6, s5, s1 in Figure 3. Non-trivial identities are captured by the notions
of inexact and approximate copies introduced below.

Hence the copy and the copied system satisfy the very same set of properties. This
result can be extended to any CT L∗ property in a known process algebra theorem on
bismulation and CT L∗ equivalence:

Theorem 1 (Bisimulation and CT L∗ equivalence). TS ≡ TS ′ iff TS ≡CT L∗ TS ′, i.e.
TS , si � g↔ TS ′, s′i � g, for any CT L∗ formula g.

Thus, exact copies intended as models that satisfy all and only the same function-
alities can be defined on bisimulation:

Theorem 2 (Exact Copy as Bisimulation). TS ′ is an exact copy of TS if and only if
TS ≡ TS ′.

To obtain the weaker notion of inexact and approximate copies, the approach in
Angius and Primiero (2018) requires a corresponding weakening of the notion of bisim-
ulation, namely simulation, according to the following standard definition:

Definition 12 (Simulation). Let TS = (S , A,T, I, F, AP, L) and TS ′ = (S ′, A′,T ′, I′, F′, AP′, L′)
be two finite transition systems, the binary relation R ⊆ S × S ′ is a simulation relation
if and only if:

1. for each initial state s0 ∈ I there is an initial state s′0 ∈ I′ such that (s0, s′0) ∈ R;

2. (s0, s′0) ∈ R if and only if: s0 and s′0 have the same label and there is a successor
state s′1 of s′0 for every successor state s1 of s0 such that (s1, s′1) ∈ R.
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Figure 4: An inexact copy of the TS in figure 1.

TS is simulated by TS ′, denoted TS ≤ TS ′, if there exists a simulation relation R
for (TS ,TS ′).

Figure 4 depicts a inexact copy of the microwave control software of Figure 1.
The copying model is able to simulate all the behaviours of the copied model and it
adds additional behaviours, namely those corresponding to all the paths that include
the added transition from state 5 to state 3. Accordingly, the simulation relation does
not imply CT L∗ equivalence. However, the following results can be proven for the
universal fragment ∀CT L∗ and the existential fragment ∃CT L∗ of CT L∗:

Theorem 3 (Simulation and ∀CT L∗ equivalence). TS ≤ TS ′ iff TS ′, s′i � g→ TS , si �
g, for any ∀CT L∗ formula g.

Theorem 4 (Simulation and ∃CT L∗ equivalence). TS ≤ TS ′ iff TS , si � g→ TS ′, s′i �
g, for any ∃CT L∗ formula g.

These results allow to provide an appropriate formal counterpart to the notion of
inexact copy:

Theorem 5 (Inexact Copy as Simulation). TS ′ is an inexact copy of TS if and only if
TS ≤ TS ′.

Finally, a further weakening is required to express approximate copies as relations
that satisfy a non-empty intersection of behaviours. To do so, the notion of simulation
quotient can be used. First, let us recall that the simulation relation also holds between
a transition system and itself:

Definition 13 (Simulation as a Relation on States). Given a TS , a simulation on states
of TS is a binary relation ≤⊆ S × S such that for all (si, s j) ∈ ≤
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1. si and s j have the same label, and

2. if there is a successor state s′i of si, then there is a successor s′j of s j such that
(s′i , s

′
j) ∈ ≤.

Then the simulation quotient system can be defined as the quotient set for the simu-
lation relation over a transition system. In other words, the simulation quotient system
TS/≤ of a transition system TS is a transition system defined by the set of paths that
TS is able to simulate over its states. Accordingly, the simulation quotient system
TS/≤ amounts to the set of paths of TS .

Following Angius and Primiero (2018), y is an approximate copy of x when y man-
ifests some of, and potentially more than, the behaviours of x, while also x is in the
same relation to y. This relation is captured precisely as follows:

Theorem 6 (Approximate copy). TS ′ is an approximate copy of TS , denoted by TS ≈
TS ′ iff ∃π′ ∈ TS ′/ ≤ such that π′ ≤ TS .

In other words, TS ′ is an approximate copy of TS when there is a non-empty set
of paths in a simulation quotient system of TS ′ that TS is able to simulate. This is
equivalent to saying that there is a non-empty set of paths of TS ′ that are also paths of
TS . Figure 5 shows an approximate copy of the TS in figure 1; the copy shares path
s1, s5, s6, s5, s1 with the original system model and adds the new path s1, s2, s1 for the
added functionality light.

3 Safety and Liveness Properties in Copied Structures
An immediate question arising from the previous analysis, and concerned with the spe-
cific case of high-order properties of safety and liveness, is whether one can guarantee
their preservation in copied structures. In Section 3.1, some immediate results in this
direction are illustrated. While these are trivially obtained from the well-known notions
in process algebra recalled in section 2, their formulation is here crucial both for the
conceptual analysis of the relation of copy and for the examination, in computer ethics,
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of what constitutes an intellectual property right infringement. In Section 3.2, a model
checking algorithm for verifying safety properties in inexact copies is formulated. An
algorithm to check liveness properties in inexact copies is presented in Section 3.3.
Finally, in Section 3.4, the analysis is extended to checking liveness and safety for ap-
proximate copies. The logical analysis supplied in these sections is aimed to show how
traditional algorithms for the formal verification of safety and liveness properties de-
veloped in theoretical computer science can well be adapted to the ontological notion
of copy in philosophy of technology and of information.

3.1 Safety and liveness in exact and inexact copies
Let us start from exact copies; one would expect that exact copies, by being a dupli-
cation of some original system, preserve both safety and liveness properties. Indeed,
transition systems which are in a bismulation relation preserve any property:

Corollary 1 (Safety and liveness of exact copies). If TS ′ is an exact copy of TS then
TS ′, s′i � ψ ↔ TS , si � ψ and TS ′, s′i � φ ↔ TS , si � φ for any safety property ψ and
liveness property φ.

Proof. By theorem 2 if TS ′ is an exact copy of TS then TS ≡ TS ′. Any safety
property ψ or liveness property φ can be expressed as a CT L∗ formula. By theorem 1,
bisimulation implies CT L∗ equivalence. �

Inexact copies include all the behaviours of the copied systems and combine them
with new behaviours. It can be easily proved that any safety and liveness property
satisfied by the coping model is also satisfied by the copied model:

Corollary 2 (Safety and Liveness of inexact copies). If TS ′ is an inexact copy of TS
then TS ′, s′i � ψ → TS , si � ψ and TS ′, s′i � φ → TS , si � φ for any safety property ψ
and liveness property φ.

Proof. By theorem 5, if TS ′ is a inexact copy of TS then TS ≤ TS ′. We rely on the
known result stating that for a transition system TS , a LT L formula θ, and for each
transition system state s ∈ TS , TS , si |= θ, according to the LT L semantics, if and only
if TS , si |= ∀θ according to the CT L∗ semantics. Then any safety property ψ or liveness
property φ can be expressed in ∀CT L∗. Finally, theorem 3 guarantees that if TS ≤ TS ′

then ∀CT L∗ formulas are preserved from right to left. �

This corollary provides another expected result and yet of scarce relevance for soft-
ware development: one would like to know about the opposite direction, that is, about
the properties of TS that are also of TS ′, provided that TS ≤ TS ′. One first result in
this direction concerns the violation of safety and liveness:

Corollary 3 (Violation of safety and liveness for inexact copies). If TS ′ is an inexact
copy of TS then TS , si � ¬ψ → TS ′, s′i � ¬ψ and TS , si � ¬φ → TS ′, s′i � ¬φ for any
safety property ψ and liveness property φ.

Proof. Any negation of a safety property ψ or liveness property φ can be expressed in
∃CT L∗, that is, as a negation of a ∀CT L∗ formula. By theorem 4, ∃CT L∗ formulas are
preserved from left to right if and only if TS ≤ TS ′. �
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This theorem specifies that if a computational artefact model fails to satisfy a given
safety or liveness property, any inexact copy would do so as well. Indeed, any path
violating the property would be simulated by the copying model. On the other hand,
if some model satisfies the specified second order property, all the paths fulfilling that
property will be kept by the inexact copy; however, additional paths may well constitute
a counterexample for the desired safety or liveness property.

The conclusion is that in case TS |= ψ or TS |= φ, a inexact copy TS ′ may or
may not satisfy them. Seemingly, the only thing to do is here to model check whether
TS ′, s′i � ψ/φ using the automata-based model-checking algorithms for safety proper-
ties or liveness properties. However, one may well take advantage of the known fact
that TS , si � ψ/φ in order to reduce that state space of TS ′ to be checked against ψ or
φ. Indeed, one already knows that the state space of TS ′ that is also of TS does fulfill
ψ or φ. One therefore needs to model check only that portion of state space of TS ′

which is not in TS . The next subsection covers the case of safety properties only and
formulates a model checking algorithm that, receiving inputs TS , TS ′, and a safety
property ψ, returns an answer “true” TS ′, s′i � ψ or “false” TS ′, s′i 2 ψ together with,
in the latter case, a counterexample (see Algorithm 3). The algorithm avoids the state
explosion problem for checking TS ′, s′i � ψ. This argument runs entirely similar for
the case of liveness properties in inexact copies, formulated in section 3.3.

3.2 Checking safety in inexact copies
Algorithm 3, presented below, first checks whether TS ′ ≤ TS , which one knows it
does not hold true, and non-simulative states in TS ′ which, consequently, are not states
of TS are used to define a smaller transition system TS ∗; it is then checked whether
TS ∗ satisfies ψ. If it does, it is concluded that also TS ′ does, insofar as the portion of
state space TS ′ not in TS ∗ is the state space of TS , already known to satisfy ψ. In case
TS ∗ violates ψ, it is concluded that also TS ′ does, in that TS ′ contains paths, the ones
in TS ∗, violating ψ.

In order to obtain the set of states of TS ′ that are not states of TS , a modified
version of the algorithm proposed in (Baier and Katoen, 2008, pp. 521-527) for com-
puting the simulation quotient system is formulated. While the algorithm in Baier and
Katoen (2008) is used to verify whether two transition systems entertain a simulation
order relation, the algorithms here proposed are rather aimed at checking whether a
system, which is known to be a copy, preserves a safety or liveness property of the
copied system.

In the algorithm, the disjoint union set of the two finite structures TS ′ ⊕ TS (pro-
vided that a disjoint union set S ′ ] S is given in the sum) is considered as input; the
simulation quotient system of TS ′ ⊕ TS is computed taking note of the states of TS ′

that do not hold a simulation relation with states of TS .14 Initially all the state couples
in S ′ ] S having the same label are put in the variable R. Subsequently, for every state
couple in R, it is checked whether its successor state couple is still in R. If it is, the
algorithm keeps checking the other successor state couple. Once the algorithm finds a

14It should be noted here that the simulation quotient system of TS ′ ⊕ TS is finite and can be computed
in finite time, ensuring termination as shown in theorem 8 below. For more details on the finiteness of the
simulation quotient system TS ′ ⊕ TS see (Baier and Katoen, 2008, 521).
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Data: TS ′ ⊕ TS ,Aψ, and χ
Result: ‘true’ if TS ′ |= ψ, ‘false’ otherwise with a counterexample for ψ
initialization;
R := {(si, s j) ∈ TS ′ ⊕ TS |L′(si) = L(s j)};
Π := ∅;
while R is not a simulation do

for si, s j ∈ R do
for s′i ∈ Post(si), s′j ∈ Post(s j) do

if (s′i , s
′
j) < R then

R := R \ {(si, s j)};
Π := {(si, s j)}

end
end

end
end
Define a transition system TS ∗ s.t. TS ∗ = {(Π, A∗,T ∗, I∗, F∗, AP∗, L∗)};
if TS ∗ ×Aψ |= Gχ then

return true
else

Determine a counterexample 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ∗ ×Aψ such that
qn+1 ∈ F;

return (false, s0, . . . , sn)
end

Algorithm 3: Model checking algorithm for TS ′ |= ψ when TS ≤ TS ′.

couple not in R, the preceding state couple is removed from R and is put into variable
Π. The loop terminates once R results to be a simulation relation, that is, when all non
simulative states have been removed from R. The algorithm afterwards defines a re-
duced transition system TS ∗ over the state set Π and such that sets A′,T ′, I′, F′, AP′, L′

in TS ′ are adapted consequently in A∗,T ∗, I∗, F∗, AP∗, L∗ over Π. In the same vein of
Algorithm 1, Algorithm 3 finally checks whether the product of the reduced transition
system TS ∗ withAψ satisfies the invariant Gχ.

If TS ∗ × Aψ |= Gχ, the algorithm returns output ‘true’, meaning that the inexact
copy TS ′ satisfies safety property ψ. If not, a counterexample is determined in TS ∗ ×
Aψ and ‘false’ is outputted together with the corresponding counterexample in TS ′

showing a violation of ψ in TS ′.
Standard properties for Algorithm 3 are here considered:

Theorem 7 (Partial Correctness of Algorithm 3). On termination, Algorithm 3 returns
the answer ‘false’ if and only if TS ′ 6|= ψ.

Proof. ⇒: The answer ‘false’ is outputted only if:

• a state in Π is obtained that belongs to TS ′ but not to TS ;

• there is at least one state
〈si, qi+1〉
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in one path belonging to the intersection set TS ∗ × Aψ such that si 6|= χ, where
Aψ is the automaton accepting the bad prefixes for ψ.

If 〈si, qi+1〉 6|= χ, then, by definition, the intersection TS ∗ × Aψ is not void and hence
there is a path of TS ∗ that violates ψ. Since, by definition, all paths of TS ∗ are paths of
TS ′, also TS ′ violates ψ.
⇐: If TS ′ fails to satisfy ψ, then there is at least one state si of TS ′ not in TS , since

we are assuming that TS |= ψ. Accordingly, Π , ∅ and Π 3 si 6|= ψ. Because there is
a state in Π violating ψ, then the intersection TS ∗ × Aψ cannot be empty, since Aψ is
the automaton accepting the language defined over all bad prefixes of ψ. If this is the
case, since invariants hold in all states of a system, there must be one state 〈si, qi+1〉 in
in TS ∗ × Aψ such that 〈si, qi+1〉 6|= χ. Finally, when such a state is identified, a path
containing such state in in TS ∗ × Aψ is isolated and the answer ‘false’ together with
the corresponding counterexample in TS ′ are returned as outputs. �

Theorem 8 (Termination of Algorithm 3). Algorithm 3 terminates for TS ≤ TS ′.

Proof. Termination of the while loop is considered in the following.
R is defined as the set of state couples (si, s j) in the union set TS ′ ⊕ TS that have

the same labels. According to Definition 13, TS ′ ⊕ TS , as any other transition system,
simulates itself. Therefore, by computing all simulation states in R and dismissing
from R all non-simulation states one obtains, in a finite number of steps, a simulation
order. In particular, this while loop takes at most time in O(|R|), where |R| denotes the
state space of R. One does not have to consider here the state space |S ′| ] |S | since only
states with the same labels have to be travelled when computing simulation order. �

Theorem 9 (Time complexity of Algorithm 3). The worst time complexity of Algorithm
3 is in O((|R| · |Aψ|) · (1 + |χ|) + M), where M = {|T ′ ∪ T | · |∆|}.

Proof. Algorithm 3 first looks for states in TS ′ which are not states of TS and puts
such states in Π. In the worst case, there is only one such a state which is tracked
down only after travelling the whole state space in |R|. This would therefore require
time O(|R| + |T ′ ∪ T |) where |T ′ ∪ T | is the length of the union set of transitions in
TS ′ ] TS needed to travel states in R. Once TS ∗ is determined, an intersection with
Aψ is obtained to check whether the intersection set is empty. Supposing all states of
TS ′ except one are not in TS , the intersection operation is bounded by O(|R∗| · |Aψ| +

|T ′ ∪ T | · |∆|), where |R∗| is the length of the state space of R minus the set of states in
TS ′ which are also states of TS , and |∆| is the transition set of automatonAψ. Finally,
property χ has to be model checked, in the worst case, for each state in O(|R∗| · |Aψ|).
This therefore requires time in O(|R∗| · |Aψ|) · (1 + |χ|)): it is proportional to 1 in case χ
is atomic and to the length of χ otherwise. Therefore, the overall time complexity is in
O((|R| · |Aψ|) · (1 + |χ|) + M), calling M = {|T ′ ∪ T | · |∆|} the intersection of transitions
in TS ′ ] TS and inAψ. �
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Data: TS ′ ⊕ TS ,Aφ, and υ
Result: ‘true’ if TS ′ |= φ, ‘false’ otherwise with a counterexample for φ
initialization;
R := {(si, s j) ∈ TS ′ ⊕ TS |L′(si) = L(s j)};
Π := ∅;
while R is not a simulation do

for si, s j ∈ R do
for s′i ∈ Post(si), s′j ∈ Post(s j) do

if (s′i , s
′
j) < R then

R := R \ {(si, s j)};
Π := {(si, s j)}

end
end

end
end
Define a transition system TS ∗ s.t. TS ∗ = {(Π, A∗,T ∗, I∗, F∗, AP∗, L∗)};
if TS ∗ ×Aφ |= FGυ then

return true
else

Determine a counterexample 〈s0, q1〉 , . . . , 〈sn, qn+1〉 , . . . , 〈sn, qn+1〉 of
TS ∗ ×Aφ such that qn+1 ∈ F;

return (false, s0, . . . , sn, . . . , sn)
end

Algorithm 4: Model checking algorithm for TS ′ |= φ when TS ≤ TS ′.

3.3 Checking liveness in inexact copies
A dual process needs to be defined for checking that an inexact copy model satisfies a
liveness property. Algorithm 4 proceeds as before: it looks for states of TS ′ not being
in a simulation relation with states of TS and it checks whether those states satisfy
a liveness property φ, i.e. whether the product of a reduced transition system TS ∗,
built over states in Π belonging to TS ′ but not to TS , with an automaton accepting a
language for the violation of φ satisfies, in this case, a persistent FGυ. The specific cir-
cumstance is here represented by the relevant state satisfying property υ and belonging
to a loop transition to itself, or rather not. If the persistent is falsified, the corresponding
explored path in TS ′ is returned as a counterexample together with a ‘false’ answer.

Also for this case, relevant properties of the algorithm can be proved.

Theorem 10 (Partial Correctness of Algorithm 4). On termination, Algorithm 4 returns
the answer ‘false’ if and only if TS ′ 6|= φ.

Proof. ⇒: The answer ‘false’ is outputted in case:

• a state in Π is obtained that belongs to TS ′ but not to TS ;

• there is at least one state 〈si, qi+1〉 belonging to the intersection TS ∗ × Aφ such
that 〈si, qi+1〉 6|= υ;

19



• 〈si, qi+1〉 is a successor state of itself, that is, 〈si, qi+1〉 belongs to a self loop or to
a loop.

If 〈si, qi+1〉 6|= υ, and if 〈si, qi+1〉 belongs to a (self) loop, then by definition, the
intersection TS ∗ × Aφ is not void and hence there is a path of TS ′, corresponding to
the identified one in TS ∗, that violates φ.
⇐: If TS ′ fails to satisfy φ, there is at least one state si of TS ′ not in TS , since

it is assumed that TS |= φ. Accordingly, Π , ∅ and Π 3 si 6|= φ. Because there is
a state in Π violating φ, then the intersection TS ∗ × Aφ cannot be empty, since Aφ is
the automaton accepting all bad prefixes of φ as a language, and TS ∗ include that state
violating φ. If this is the case, by definition, there is a persistent which is not satisfied
by at least one state in Π ×Aφ. When a state violating υ is identified, and the violating
state 〈si, qi+1〉 belongs to a self loop or to a loop, answer ‘false’ is given by Algorithm
4 as output. �

Theorem 11 (Termination of Algorithm 4). Algorithm 2 terminates for TS ≤ TS ′.

Proof. The wile loop in Algorithm 4 is defined over the same conditions of the cor-
responding while loop in Algorithm 3. Accordingly, the proof for termination is the
same. �

Theorem 12 (Time complexity of Algorithm 4). The worst time complexity of Algo-
rithm 4 is in O((|R| · |Aφ|) · (1 + |υ|) + M), where M = {|T ′ ∪ T | · |δ|}.

Proof. Time complexity of Algorithm 4 is the same of algorithm 3. This follows from
the fact that Algorithm 4, once found state 〈si, qi+1〉 failing to satisfy υ, checks whether
〈si, qi+1〉 is either a successor state of itself or it belongs to a loop. In order to ascertain
whether any of these is the case, the state space in TS ∗ ×Aφ still needs to be travelled.
Resources needed to do so are therefor still in O((|R| · |Aφ|) + M). �

3.4 Safety and liveness in approximate copies
Let us now consider approximate copies. If TS ′ is an approximate copy of TS , the
latter simulates a subset of the paths of the former, call it P, given by the intersection
of the path set of the two structures. The only result that can be proved for approximate
copies is that if TS ′ is a copy of TS , then the safety and liveness properties satisified
by TS are satisfied also by P.

Corollary 4 (Safety and liveness in approximate copies). If TS ≈ TS ′ then TS |=
ψ→ P |= ψ and TS |= φ→ P |= φ for any safety property ψ or liveness property φ.

Proof. If TS ≈ TS ′, then, by Theorem 6, P ≤ TS . By Theorem 3, any ∀CT L∗ property
satisfied by TS is also satisfied by P, including any safety or liveness property, known
to be expressible in ∀CT L∗. �

From Theorem 4 it follows that TS ′, as an approximate copy of TS , does not
necessarily preserve the safety and liveness properties fulfilled by TS . Indeed, only a
subset of the paths TS ′ does preserve safety and liveness, namely P, and the remaining
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paths may or may not fulfill them. As for inexact copies, TS ′ as an approximate copy
needs to be model checked. One can here restrict the state space to be travelled by the
model checking algorithm to those states of TS ′ which are not in P. This can be done
by adapting Algorithm 3 for checking safety properties, and algorithm 4 for liveness
properties, so as to take respectively inputs TS ′ ⊕ P,Aψ, χ and TS ′ ⊕ P,Aφ, υ. In this
way, the algorithms will isolate states of TS ′ which are not in P and, for each of those
states, it will be checked whether it satisfies the safety or the liveness property.

4 Developing safety- and liveness-preserving systems
The issue of software evolution is a topic of extensive research, see e.g. (Buckley
et al., 2005; Chapin et al., 2001; Ernst et al., 2009) for some recent approaches, also
in relation to liveness properties (Bloem et al., 2014, 2010) and with the aim of en-
forcing resilience (Monperrus, 2017). The issue is less explored in view of the notion
of functionalities preservation under copying. Additionally, the ethical examination
in (Angius and Primiero, 2019) proposes to consider approximate copies of computa-
tional artefacts working in safety-critical situations as legally allowed when preserving
safety and liveness properties.

The previous section showed that approximate copy models may or may not pre-
serve the safety and liveness properties fulfilled by some copied model. This sec-
tion now focuses on the principles that, if implemented, would guide the development
of safety- and liveness-preserving systems. The section will concentrate on the de-
sign principles for the development of a system implementation S ′ as an approximate
copy of a system implementation S with respect to a defined set of safety properties
ψ1, · · · , ψn and a defined set of liveness properties φ1, · · · , φn.

Following the approach on software theory change of Primiero et al. (2021), given
a computational artefact S as a language implementation of a set of safety properties
Ψ := {ψ1, · · · , ψn}, a set of liveness properties Φ := {φ1, · · · , φn}, and a set of first order
properties F := { f1, · · · , fn} with a given priority relation < among the corresponding
formulas, a model S of S is formulated as a transition system TS whose states satisfy
any formula in S . Recall that a system TS satisfies a functionality xi := { fi | ψi | φi} if
and only if xi is expressed by a formula p of CTL∗ and TS � p, according to Definition
6. Priority between functionalities satisfied by a system TS can be understood as a
preference order on corresponding states:

Definition 14 (Priority between functionalities). xi < x j for any two properties of S iff
∃πi, π j ∈ TS such that respectively si ∈ πi, si � xi and s j ∈ π j, s j � x j and si

a
−→ s j.

Let us consider the TS depicted in figure 1. It is a model of the system defined,
among others, by the following CT L∗ formulas:15

15Some of these formulas are not, strictly speaking, satisfied by the TS in figure 1 in that the TS also allows
for “unfair” user operations, such as infinitely often opening and closing the door or switching the oven on
and off. The TS does satisfy all the listed formulas if corresponding fairness constraints are assumed (Clarke
et al., 1999, 40-41).
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FG(o f f ∧ close);
G(o f f → F(on));
G(on→ F(o f f ));
G(close→ F(open));
G(open→ F(close));
G(on ∧ open→ error);
G(on ∧ close ∧ error → F(o f f ∧ close));
FG(wave);
G(¬(on ∧ open ∧ wave)).

Among these formulas one may recognize the safety property G(¬(on ∧ open ∧
wave)) and two liveness properties, namely FG(wave) and FG(o f f ∧ close). The two
liveness properties have priority:

FG(o f f ∧ close) < FG(wave);

the first order formulas have priority:

G(o f f → F(on)) < G(close→ F(open)) <

G(on ∧ open→ error) < G(on ∧ close ∧ error → F(o f f ∧ close)) <

G(open→ F(close)) < G(on→ F(o f f )).

To each formula defining the system realized by the TS of Figure 1 corresponds a
set of paths in TS. For instance, to the formula G(o f f → F(on)) corresponds a set of
paths including path s1, s5, s1, path s1, s2, s3, s4, s1, and path s1, s5, s6, s5, s1. Consider-
ing paths ending in the final state, all paths satisfying G(o f f → F(on)) thereby satisfy
G(on→ F(o f f )). This explains the priority relation given above for the two formulas.
Semantically, the priority G(o f f → F(on)) < G(on → F(o f f )) can be seen, accord-
ing to Definition 14, from the fact that there exists a πi = π j =de f s1, s5, s6, s5, s1 and

there exist two states, namely s1 and s5, such that s1
switch on
−−−−−−→ s5, s1 |= o f f → F(on),

and s5 |= on → F(o f f ). The design process leading from S to the system S ′ to be
developed is here understood model-theoretically as the process leading from S to S′.

4.1 Isolating Safety and Liveness Properties
The first step of the process is to isolate the safety and liveness specifications from S
into its contracted version S◦, such that the latter includes all the safety and liveness
properties of interest, and it removes all the first order properties which are not allowed
by the copying operation. In the best version, i.e. where all first order functionalities
are removed, and all safety and liveness properties are preserved,

S◦ =de f {S \ {F}}.

Any contraction operation (S)−fi with respect to a first order functionality fi should be
safe with respect to the safety and reliability formulas one would like to preserve for
S′. Therefore, one should be careful to ascertain that there is not any si |= fi and
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fi < φi | ψi, i.e. any state which satisfies a property object of contraction and which
also allows a transition to a state satisfying a liveness or safety property. In principle,
one cannot avoid contracting fi under the ethical assumption that only safety and reli-
ability properties can be copied. This paper argues that, in case fi implies a safety or a
liveness property, one should be allowed to exclude fi from contraction on S . From the
model-theoretic perspective adopted here this corresponds to keeping in S◦ only those
states that, besides satisfying fi, satisfy (or lead to states satisfying) ψi or φi. This is
meaningful in that, according to the ethical analysis in (Angius and Primiero, 2019),
there must be a threshold of the number of paths that approximate copies can copy
without incurring into property rights infringement.

Semantically, a contraction operation (S)−fi amounts to removing all labels involved
in fi from states in TS ; this determines a collapse of states with the same remaining
labels together with a collapse of the involved transitions. Accordingly, removing la-
bels is paramount to removing states, in that two states si, s j are the same state iff
L(si) = L(s j) and are either initial states or are reachable from the same states. For fi a
functionality object of contraction from S , the set of states of TS satisfying fi are first
defined:

Definition 15. Ξ = S( fi) where S ( fi) = {si | si � fi}

The set of states Ξi which can be object of contraction without risk to functionalities
satisfied by another state s j, e.g. where s j |= φ | ψ is then inductively defined:

Definition 16.
Θ0 = Ξ

Ξi = {si | si ∈ Θi and ¬∃s j s.t. si
a
−→ s j}

Θi+1 = Θi \ Ξi

k0 = min{k | S i \

k⋃
i=0

Ξi 2 fi}

Here Θi is defined by taking first into account the whole set of states Ξ, and at each
step i it is determined the set of states Ξi which must be removed to safely contract
with respect to fi. Hence, k is the least number of Ξi containing the states that have to
be safely removed from S in order to obtain a safe contracted transition system TS ◦.
A TS ◦ for S◦ is therefore defined as:

Definition 17 (Safely contracted transition system). Given a transition system TS =

(S , A,T, I, F, AP, L) for S, a transition system TS ◦ = (S ◦, A◦,T ◦, I◦, F◦, AP◦, L◦) for
(S)−fi is defined as follows:

• S ◦ = S \
⋃k

i=0 Ξi;

• A◦ ⊆ A;

• T ◦ ⊆ S ◦ × A × S ◦;

• I◦ ⊆ I;
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• F◦ ⊆ S ◦;

• AP◦ ⊆ AP;

• L◦ : S ◦ → 2AP◦ .

Suppose one would like to do without the error functionality. In terms of the
contraction operation just defined, this means contracting formulas G(on ∧ open →
error) and G(on∧ close∧ error → F(o f f ∧ close)). The contraction determines a new
priority relation among the remaining formulas, namely:

G(o f f → F(on)) < G(close→ F(open)) < FG(wave) <

G(¬(on ∧ open ∧ wave)) <

G(open→ F(close)) < G(on→ F(o f f )) < GF(o f f ∧ close)

The TS in figure 6 is a contraction of the TS in figure 1 with respect to the error
functionality, that is, with respect to formulas G(on∧open→ error) and G(on∧close∧
error → F(o f f∧close)). One can easily check that contracting the two formulas is safe
with respect to the safety and liveness properties realized by the uncontracted TS. The
label error was first removed from all states of the TS in figure 1, causing a collapse
of states s4 and s5 both labelled with on, close after contraction. In other words, state
s4 was deleted. State s4 in figure 1 had two outgoing transitions, one towards state
s3 and one towards state s1. Both states satisfy the safety and liveness properties of
interest. However, the contraction is safe in that s1 and s3 keep on being reachable
after removal of state s4. By contrast, contracting formulas G(close → F(open)) and
G(open→ F(close)), for the open and close function, would not be safe with respect to
the liveness property FG(o f f ∧ close). Among other states, state s1 would change into
a new state labelled by o f f . The old state s1 had two outgoing transitions, one towards
s2 and one towards s5, both of which would be re-labelled by o f f and collapse with
state s1. States s2 and s5 satisfied FG(o f f ∧ close) in that outgoing transitions to the
old state s1 were given. Clearly, after contraction no state si such that si |= o f f ∧ close
is reachable anymore.
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Figure 6: A contraction on the TS in figure 1 with respect to the error function and
preserving all safety and liveness properties.

Algorithmically, the safe contraction operation is carried out in two steps. First it
is computed (S)−fi for each fi of S i; then, for each contraction, the contracted model is
checked and refined in case of unsafe contraction. Algorithm 5 provides a procedure
to perform a contraction operation (S)−fi that be safe with respect to a general safety
or liveness property δi = φi | ψi. This amounts to ascertain that all the remaining
states in (S)−fi still satisfy, respectively, an invariant or a persistent. The design of the
algorithm starts by setting the (minimal) set ∆ of safety or liveness properties to be
copied from a given TS , the set F of functional properties which are to be checked
for preservation in TS ◦, and a state set Π initially equal to the set of states in TS . For
each formula fi ∈ F and for each state si ∈ S satisfying fi, si is first included in Ξi

and removed from Π; subsequently, a contracted transition system TS ∗ built over the
state set Π is considered. In case the TS ∗ satisfies the safety or liveness property δi

under consideration, TS ∗ is taken as the contraction TS ◦; if TS ∗ fails to satisfy δi, the
removed state is included back into the contracted system TS ◦ (and into Π as well).

4.2 Adding new functionalities
The next step is adding new functionalities g1∧· · ·∧gn into S′. In terms of the formalism
advanced in (Primiero et al., 2021), this amounts to an expansion operation on S◦,
namely (S◦)+

g1∧···∧gn
. Semantically, an expansion operation (S◦)+

gi
on TS may result in

adding a label onto a state of TS , adding a transition to a state of TS , or adding a new
state among the states of TS . As shown for the contraction operation on states, the
third case can be used to cover both the first and the second case.
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Data: TS
Result: TS ◦

initialization;
TS := {(S , A,T, I, F, AP, L)};
TS ◦ := ∅;
F := { f1 < · · · < fn};
∆ := {δ1 < · · · < δn};
Ξ0 := ∅;
fi := fn;
δi := δn;
Π := S ;
for fi ∈ F, 1 ≤ j < n, j := j + 1 do

for si ∈ S s.t. si � fi, δi ∈ ∆, 1 ≤ k < n, k := k + 1 do
Ξi := Ξ0 ∪ si;
Π := Π \ Ξi;
Define a transition system TS ∗ s.t. TS ∗ = {(Π, A∗,T ∗, I∗, F∗, AP∗, L∗)};
if TS ∗ � δi;
then

TS ◦ := TS ∗;
else

Π := Π ∪ si;
TS ◦ := {(Π, A◦,T ◦, I◦, F◦, AP◦, L◦)};

end
δi := δn−k;

end
fi := fn− j;

end
return TS ◦;

Algorithm 5: Algorithm for safe contraction with respect to a safety or a liveness
property δi = φi | ψi.
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In order to avoid that adding new functionalities results in a violation of a safety or
a liveness property, it is essential to check whether gi |= ¬φi or gi |= ¬ψi, to preserve
consistency. For safety this amounts to avoid the case in which (S◦)+

gi
contains states

violating a property µ for an invariant Gµ. For liveness this amounts to avoid the case
in which (S◦)+

gk
contains paths not going through existing loops satisfying a formula ν

for a persistent FGν. An ordered consistent expansion ensues as:

Definition 18 (Ordered Consistent Expansion). An ordered expansion is denoted as

(TS )+
fi := (TS ◦ ∪ S (gi),T ′)

where

1. S (gi) = {si | si |= gi}

2. T ′ = T ◦ ∪ {(sk, si), (si, s j), (s j, sl), (sl, sk) | s j ∈ Ξ, sk ∈ TS ◦ \ Ξ, sl |= ν}, given:

• Ξ = TS ◦ ∩ S ( f j) and gi ⇒ f j

• si |= µ

Here the intuition is that an added functionality is introduced in terms of the states
that realize it (si |= gi) and such that they also satisfy the invariant (si |= µ). Those
states need to have transitions from states already occurring in the system (sk, si), and
to states (also possibly already occurring) which have functionalities that are logically
implied by the new functionality (sk, s j, such that s j |= f j). Moreover, the definition
accounts for states satisfying the formula for the persistent (sl |= ν) and belonging to a
loop ((sk, si), ..., (sl, sk)) which is still reachable after the new states have been added.

A TS ′ for S+
fi

is therefore defined as

Definition 19. A transition system TS ′ = (S ′, A′,T ′, I′, F′, AP′, L′) for (S)+
gi

is defined
as follows:

• S ′ = S ◦ ∪ S (gi);

• A′ ⊃ A◦;

• T ′ ⊆ S ′ × A′ × S ′;

• I′ ⊆ S ′;

• F′ ⊆ S ′;

• AP′ ⊃ AP◦;

• L′ : S ′ → 2AP′ .

Suppose one would like to add the function grill to the KS ◦ of Figure 6. As a first
step, a set of property specifications in the form of CT L∗ formulas has to be advanced.
This may include:

• FG(grill);
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• G¬(wave ∧ grill) (supposing one does not want to implement a combo function
microwave together with grill);

• G¬(o f f ∧ grill);

• G¬(open ∧ grill).

The new formulas have initially to be added to the formula set defining S ◦. Recall
that the latter was given the following priority order:

G(o f f → F(on)) < G(close→ F(open)) <

G(¬(on ∧ open ∧ wave)) < FG(wave) <

G(open→ F(close)) < G(on→ F(o f f )) < GF(o f f ∧ close)

The new priority relation is given by:

G(o f f → F(on)) < G(close→ F(open)) <

G(¬(on ∧ open ∧ wave)) < G¬(wave ∧ grill) < G¬(o f f ∧ grill) <

G¬(open ∧ grill) < FG(wave) ≤ FG(grill) <

G(open→ F(close)) < G(on→ F(o f f )) < GF(o f f ∧ close)

The resulting KS is depicted in figure 7. State 7 is the new added state, satisfying
all the newly added formulas, without preventing the expanded KS from satisfying any
of the former first order properties and, especially, any of the former safety and liveness
properties. Indeed, state 7 satisfies ¬(on ∧ open ∧ wave) and all paths going through it
can still reach a loop containing a state satisfying wave.

The algorithmic process describing how to construct the new TS with the addi-
tional states and transitions is presented in Algorithm 6, receiving as inputs the pre-
viously contracted transition system TS ◦ and a priority relation R among the added
functionalities and the ones implied by them. The algorithm initializes a set G of added
functionalities, a set S (gi) of states satisfying them, and sets M and N of, respectively,
invariants and persistents. For any formula gi to be expanded, any state si satisfying
gi, any formula µi for the invariant Gµ, and any formula ν for the persistent FGν, the
algorithm adds any state si that satisfies gi provided that it also satisfies µ. State si is
added such that the paths going through it be still able to reach a loop containing a state
satisfying ν, as by definition 18.

5 Conclusions
This paper extended the ontological analysis of the copy relation for computational
artefacts advanced in (Angius and Primiero, 2018) to ask whether models of exact,
inexact, and approximate copies do or do not preserve safety and liveness properties.
Exact copies, by being duplicates of the original system, are the only kind of copies
that preserve all behavioural properties, safety and liveness included. Inexact and ap-
proximate copies do not necessarily preserve the fulfillment of safety and liveness.
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Figure 7: An expansion of the TS in figure 1 with respect to the grill function and
preserving all safety and liveness properties.

The former simulate all the behaviours of the copied artefact, but include additional
behaviours; the latter simulate only some behaviours of the original model, including
many additional behaviours. This paper showed how only non-simulating computa-
tional paths have to be travelled in order to verify the safety and liveness properties
of inexact and approximate copies. The two algorithms here proposed do so staying
within a polynomial time-complexity. Finally, the paper proposed two algorithmic
operations that, at the semantic specification level, allow one to design safety- and
liveness-preserving approximate copies. First, by means of a contraction operation all
prescribed computations not implying safety and liveness properties are removed. Sec-
ond, an expansion operation includes, in the contracted model, any desired additional
behaviour provided that it does not violate any of the required safety and liveness prop-
erties.

It has been shown how the contraction operation, besides removing all states satis-
fying the formulas to be contracted, reduces the state space of the contracting model by
collapsing transitions and states with the same remaining labels. In other words, given
a set of safety and liveness formulas, the contraction operation here proposed preserves
those formula while keeping the minimal set of paths satisfying them. The algorithmic
design principles described here are in line with two philosophically relevant positions.
First, such algorithmic design principles avoid disfunctioning copies with respect to
safety and liveness properties, as by the definition of negative malfunctioning for soft-
ware systems provided in (Floridi et al., 2015). Second, the analysis complies with,
and extends, the ethical examination in (Angius and Primiero, 2019) concerning the
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Data: TS ◦,R
Result: TS +

initialization;
TS ◦ = (S ◦, A◦,T ◦, I◦, F◦, AP◦, L◦);
G := {g1, . . . gn};
gi := g1;
R := { f j | f j > gi};
Ξ := TS ◦ ∩ S ◦( f j);
S (gi) := {si | si |= gi};
M := {µ1, . . . , µn};
N := {ν1, . . . , νm};
µi := µn;
νi := νm;
S + := S ◦;
T + := T ◦;
for gi ∈ G, 1 ≤ i < n, i := i + 1 do

for si ∈ S (gi) do
for µi ∈ M, νi ∈ N, 1 ≤ j < n, 1 ≤ k < m, j := j + 1, k := k + 1 do

if si |= µi;
then

S + := {S ◦ ∪ si};
for f j > gi ∈ R do

T + := T ◦ ∪ {(sk, si), (si, s j), (s j, sl), (sl, sk) | s j ∈ Ξ, sk ∈

TS ◦ \ Ξ, sl |= νi};
end

end
µi := µn− j;
νi := νn−k;

end
end
gi := gi+1;

end
Define a transition system TS + s.t. TS + = (S +, A+,T +, I+, F+, AP+, L+);
return TS +

Algorithm 6: Algorithm for safe expansion with respect to safety and liveness prop-
erties

allowance of approximate copies in the software industry: copying should count as a
“fair usage” if not trespassing a threshold defined by the law and if copying is necessary
to guarantee important security properties for safety-critical systems. In particular, this
paper argued that copying should be allowed not only with respect to safety and live-
ness properties, but also to those properties that, if removed, would cause a violation
of those security properties. Finally, the algorithmic operations here proposed guar-
antee an effective legal copying, that is, procedures that can be implemented to ensure
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intellectual property right protection.
Future steps of this research will aim at extending the proposed ontological, episte-

mological, and formal analyses of the various relations of copy of physical artefacts for
probabilistic systems (see e.g. Termine et al. (2021a)) as they are implemented in AI
technologies, e.g. in the digital twin vision in industry. Future research will therefore
formulate philosophical and algorithmic analyses of properties, such as trustworthiness
examined for example in (Termine et al., 2021b), and their verification, to guarantee
the reliable transfer between digital and physical artefacts.
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