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Abstract. Recently double-bracket quantum algorithms have been proposed as a way to
compile circuits for approximating eigenstates. Physically, they consist of appropriately com-
posing evolutions under an input Hamiltonian together with diagonal evolutions. Here, we
present strategies to optimize the choice of the double-bracket evolutions to enhance the di-
agonalization efficiency. This can be done by finding optimal generators and durations of
the evolutions. We present numerical results regarding the preparation of double-bracket
iterations, both in ideal cases where the algorithm’s setup provides analytical convergence
guarantees and in more heuristic cases, where we use an adaptive and variational approach
to optimize the generators of the evolutions. As an example, we discuss the efficacy of these
optimization strategies when considering a spin-chain Hamiltonian as the target. To propose
algorithms that can be executed starting today, fully aware of the limitations of the quantum
technologies at our disposal, we finally present a selection of diagonal evolution parametriza-
tions that can be directly compiled into CNOTs and single-qubit rotation gates. We discuss
the advantages and limitations of this compilation and propose a way to take advantage of
this approach when used in synergy with other existing methods.

1 Introduction
Preparing the eigenstates of a target physical system is crucial in fields like physics, chemistry, and com-
binatorial optimization. Various strategies exist within both classical [1, 2, 3, 4] and quantum computing
domains. In the quantum realm, high-precision algorithms like quantum phase estimation [5, 6] (QPE)
await technological advancements for practical use, while near-term routines such as variational quan-
tum eigensolvers [7] (VQEs) are more feasible. This work focuses on a family of algorithms suitable for
near-term quantum devices: double-bracket quantum algorithms (DBQAs).

These algorithms have been proposed to prepare eigenstates through a recursive double-bracket it-
eration (DBI) strategy [8] and they can be compiled into quantum circuits. In fact, originally, Ref. [8]
reduced DBQA compilation from the abstract DBI equations to a sequence of queries to Hamiltonian
simulation which can be compiled by known methods [9, 10, 11, 12], but left open quantitative questions
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about the precise cost of compiling DBIs into circuits. In particular, the depth of DBQA circuits grows
exponentially with the number of recursion steps.

Despite this, recent studies [13] show that when initialized properly, DBQAs can substantially improve
the eigenstate fidelity reached by quantum algorithms such as VQEs in just one or two steps.

This trade-off between computational cost and gain is crucial: DBQAs must be used synergistically
with other approximation techniques and double-bracket iterations must be optimized to provide maxi-
mum benefit in a few recursion steps.

Moreover, DBQAs can be optimized to maximize diagonalization gain in every step. Specifically, we
adopt optimization methods to accelerate the preparation of a target eigenstate. In this proceedings,
we aim to study in depth such optimization techniques. We present numerical results implemented in
Qibo [14, 15, 16], as used in Ref [13].

2 Double-bracket quantum algorithms for diagonalization
The building blocks of the double-bracket quantum algorithms are double-bracket rotations (DBRs),

which iteratively update a target Hamiltonian Ĥ0 following

Ĥk+1 = esŴkĤke
−sŴk ≡ R̂†

kĤkR̂k . (1)

Here Ŵk = [D̂k, Ĥk] is a commutator involving D̂k which is a diagonal hermitian operator and R̂k =

e−sŴk is the unitary operator implementing the DBR. In order to see why DBRs have diagonalizing
properties, we motivate the above ansatz Ŵk = [D̂k, Ĥk], by letting Ŵk be any anti-hermitian op-
erator. Let ∆(A) be the diagonal restriction of matrix A and σ(A) the off-diagonal restriction, s.t.

A = ∆(A) + σ(A). Performing a Taylor expansion of of σ(Ĥk+1) in Eq. (1) around s = 0 and using that
∂
∂s ||σ(esŴkĤke

−sŴk)||2HS,s=0 = −2⟨Ŵk, [∆(Ĥk), Ĥk]⟩HS we get

σ(Ĥk+1) = σ(Ĥk) − 2s⟨Ŵk, [∆(Ĥk), Ĥk]⟩HS + . . . , (2)

which implies that the rotation reduces the off-diagonal norm of the Hamiltonian Ĥk+1 compared to Ĥk

if

⟨Ŵk, [∆(Ĥk), Ĥk]⟩HS > 0 . (3)

The choice, Ŵk = [∆(Ĥk), Ĥk], emerges naturally and guarantees an initial drop in the off-diagonal

norm and is known as the canonical bracket. Additionally, if we choose Ŵk = [D̂k, Ĥk], where D̂k is

a diagonal hermitian operator which may be easier to implement than ∆(Ĥk), the overlap is likely to
induce a σ-decrease in Eq. (2). Therefore, this ansatz is largely flexible in devising diagonalization DBIs
outside of using the canonical bracket.

2.1 Types of DBIs
In this work, we will consider three types of DBIs: the first two are derived from double-bracket flow
formulations (the continuous version of the one analyzed here), while the third is a variational approach

to the problem of optimizing the generators D̂k of the double-bracket evolutions.
The first DBI formulation is inspired by Brokett’s work [17], which introduced a double-bracket flow

involving a fixed diagonal operator N̂ . Afterwards, Moore, Mahony, and Helmke [18] have considered

double-bracket iterations where each double-bracket rotation uses N̂ as diagonal operator: D̂k = N̂ . They
concluded that if N̂ has a non-degenerate spectrum then BHMM converges to a diagonal fixed-point Ĥ∞
and the only stable fixed-point is the one where Ĥ∞ has the same sorting of eigenvalues as N̂ . Hence,
we call this strategy the Brokett-Helmke-Moore-Mahony (BHMM) DBI.

The second double-bracket flow is based on works by G lazek, Wilson, and Wegner [19, 20] (GWW).

The corresponding GWW DBI arises recursively by setting D̂k = ∆(Ĥk), which makes Ŵk the canonical
bracket. This choice results in an unconditional σ-decrease where Eq. (2) becomes

∂

∂s
||σ(esŴkĤke

−sŴk)||2HS,s=0 = −2||Ŵk||2HS . (4)



The third DBI paves the way for a variational approach. Given each Ĥk, one can consider introducing
a parametric form of D̂k and optimizing its parameters to maximize the decrease of a cost function which
quantifies the effectiveness of diagonalization. One possible choice for the cost function could be the
off-diagonal norm of the target Hamiltonian. In Sec 2.2 we introduce some other possible cost functions.
We will call adaptive such strategies where we optimize D̂k for each Ĥk. They have the advantage of
possibly being more efficient but, due to implicit numerical optimization, their convergence analysis is
precluded as opposed to GWW and BHMM DBIs.

2.2 Cost functions for diagonalization
When defining an optimization procedure to find a good candidate as a double-bracket rotation generator,
it is crucial to select a proper cost function whose value has to be optimized. We next review possible
cost functions and comment on their role in a prospective quantum computation.

A first possible choice (f1 in Tab. 1) is the off-diagonal norm, i.e. the Hilbert-Schmidt norm of the
restriction to the off-diagonal of an input, which is motivated by the monotonicity relation (2).

A second cost function (f2 in Tab. 1) is inspired by the work of Brockett [17], who originally considered

least-square functional optimization ∥Â − N̂∥HS where Â (in our case Â = Ĥ0 but the setting is more

general) was being varied while N̂ was a fixed target matrix which can be chosen to be diagonal without

loss of generality. If the DBI considered is BHMM then we can set D̂k = N̂ and indeed f2(Ĥk) =

∥Ĥk − N̂∥2 − ∥Ĥ0∥2, agreeing with Brockett’s cost function because ∥Ĥk∥ is constant due to unitary

invariance. As reported in f2 formula from Tab. 1, the norm ||D̂k||2HS is needed to fix normalization. For

the GWW DBI we have D̂k = ∆(Ĥk), the f2 cost function reduces to f1 because Ĥk = ∆(Ĥk) + σ(Ĥk).
A third choice is to consider the energy expectation for a given state (f3 in Tab. 1). Minimizing this

value aims to find the ground energy and state of the target Hamiltonian, making it a good cost function
to utilize in conjunction with the VQE [13].

Finally, we can use the energy fluctuation of a reference state |ψ⟩ (f4 in Tab. 1). It allows to detect

whether |ψ⟩ is converging to an eigenstate of Ĥ. A few steps of DBI can usually produce a good eigenstate
approximation for some states |ψ⟩, making the energy fluctuation an appropriate measure of eigenstate
approximation which is necessary for full diagonalization.

Function Off-diagonal norm (f1) Least-squares (f2) Energy (f3) Energy fluctuation (f4)

Formula ||σ(Ĥk)||HS
1
2
||D̂k||2HS − Tr(ĤkD̂k) ⟨ψ|Ĥ|ψ⟩

√
(⟨ψ|Ĥ2

k |ψ⟩ − ⟨ψ|Ĥk|ψ⟩2)

Utility Diagonalization Diagonalization
Ground state
preparation

Eigenstate
preparation

Table 1: Cost functions DBQAs optimization with possible applications.

As shown in Fig. 1, when we optimize DBRs based on the energy fluctuation of a state |ψ⟩, while the
energy fluctuation is indeed suppressed and the eigenstate is well approximated, the off-diagonal norm is
not necessarily reduced.

2.3 Optimization tasks
Once a specific DBI is chosen and we decide to formalize the diagonalization by minimizing a specific
cost function f∗, the optimization problem can be divided, in practice, into three tasks: the scheduling,
the generator selection and the compilation.

The first task involves finding the DBR duration sk which solves

argminsk<smax

[
f∗(es[D̂k,Ĥk]Ĥke

−s[D̂k,Ĥk])
]

(5)

given a diagonalization operator D̂k. In Eq. (5) we limit the optimization to some smax because sk
increases the gate cost of DBI, see Sec. 3.

The generator selection task seeks to optimize the diagonal operator D̂k in the rotation generator
Ŵk. This entails parametrization of D̂k appropriate for quantum computing and assumes oracle access



to a solver of the scheduling task. We quantify the output of the generator selection task by evaluating

the diagonalization gain f∗(es[D̂k,Ĥk]Ĥke
−s[D̂k,Ĥk]) as detailed in Sec. 4.

Finally, DBR compilation means the DBR unitaries R̂k must be approximated by a circuit made of
primitive gates and is discussed in Sec. 5.

2.4 Models considered
As practical study cases, we consider two spin-chain Hamiltonians as targets. Firstly, we tackle the
transverse field Ising model (TFIM) with periodic boundary conditions (PBC)

ĤTFIM =

L∑
j=1

X̂jX̂j+1 + hẐj . (6)

Sometimes TFIM is defined as
∑L

j=1 ẐjẐj+1 + hX̂j but having diagonalization in mind we take the
2-qubit interaction to be off-diagonal. Secondly, we consider the Heisenberg XXZ model again with PBC

ĤXXZ =

L∑
j=1

(X̂jX̂j+1 + Ŷj Ŷj+1 + δẐjẐj+1) . (7)

we will use TFIM and XXZ to demonstrate our observations about optimizing DBI in Qibo.

3 Scheduling
The simplest approach to find the optimal DBR duration sk at each step consists of using a standard
hyper-optimization algorithm. Grid search, random search [21], Tree of Parzen estimators [22] techniques
are all viable for this task and they are available in Qibo. The scheduling cost functions from Sec. 2.2
have analytical properties which we can take into account by using Taylor expansion. For this we define

Γn = [Ŵ ,Γn−1] (8)

with Γ0 = Ĥ where Ĥ is any operator, e.g. Ĥ0 or Ĥk. The Baker–Campbell–Hausdorff (BCH) formula

gives esŴ Ĥe−sŴ = Γ0 + sΓ1 + s2

2 Γ2 +O(s3). Taking the off-diagonal norm as an example, Eq. (2) taken
up to degree 2 yields a parabola of variable s:

∂

∂s
∥σ(esŴ Ĥe−sŴ )∥2HS = s2 Tr (3σ(Γ1)σ(Γ2) + σ(Γ0)σ(Γ3)) + 2sTr (σ(Γ1)σ(Γ1) + σ(Γ0)σ(Γ2))

+ 2 Tr (σ(Γ0)σ(Γ1)) +O(s3) .
(9)

Subsequently, we can integrate Eq. (9) and obtain the expansion for the off-diagonal norm ||σ(esŴ Ĥe−sŴ )||
as a polynomial. Fig. 1 shows the results of scheduling based on finding minima of Taylor polynomials
and compares the Taylor approximation to the exact σ-decrease curve. More specifically, we find the
roots of the Taylor polynomial of Eq. (9) and output the minimizer s at the first extremum which by
the monotonicity relation will be a minimum, provided that DBR is directed to diagonalization. This
avoids evaluating multiple exponentials for cost function queries and the obtained approximation can be
improved by taking higher-order Taylor polynomials. Moreover, while the first minimum may not be the
global minimum, we have seen cases where taking the first local minimum outperforms taking the global
minimum of the DBR after several iterations. This indicates that greedy strategies at every step are not
necessarily optimal.

4 Generator selection
In this section, we introduce some possible strategies to parametrize diagonal operators. We begin with
ansatze that are motivated analytically and then discuss those suitable for quantum compiling. Finally,
we present numerical results considering a 5-qubit Heisenberg model as the target and the off-diagonal
norm as the cost function.
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Figure 1: TFIM with L = 5, transverse field h = 3 and D̂0 = ∆(Ĥ0). a) We show f1 for DBI with steps
optimized using f1, f2 and f3. The inset shows that optimization with f3 is sensitive to the reference
state. b) We show the validity of the Taylor expansion for various orders n. For all n the DBR is well
approximated for short DBR durations s < 0.04. In order to match the first local minimum of the σ-
decrease curve, we find that a relatively high polynomial degree is needed.

4.1 Min-max inspired parametrizations
Moore, Mahony, and Helmke proved that if D∗ is non-degenerate then the BHMM DBI converges [18].
A simple example of such an operator is the min-max parametrization where the values on the diagonal
are arranged from the smallest to the largest element of the diagonal entries of Ĥ and are equidistant.
In other words, we set δ = dn−d1

n so that

D̂∗
min−max =

2L∑
i=1

(min(∆(Ĥ)) + iδ) |i⟩ ⟨i| . (10)

This ansatz can be difficult to implement on a quantum computer using local gates but it is an instructive
toy model regarding convergence properties of DBIs, e.g. it is sufficient if D̂∗ is non-degenerate.

Since the BHMM DBIs have sorting properties (the fixed point is sorted according to D̂∗), we also
investigated the inverted max-min parametrization with entries like min-max but in the reversed order,
i.e. we use max instead of min in Eq. (10). Remarkably, depending on the input basis of Ĥ one of these
two orderings might be closer to the initialization.

To explore the impact of the ordering, we apply a random permutation to the spectrum of the min-
max parametrization. We refer to this strategy as shuffled min-max parametrization. There are many
possible orderings of a min-max parametrization and a random sample of an ordering can reveal insights
that structured min-max and max-min parametrization does not exhibit.

To further investigate how degeneracy affects diagonalization efficiency, we consider a diagonal op-
erator whose diagonal entries are sampled with repetition from the spectrum spec(D̂∗

min−max). We sort
them in an ascending order to facilitate comparisons with the min-max parametrization. We refer to this
parametrization as sampled min-max parametrization.

If Ĥ has a non-degenerate spectrum then instead of the min-max parametrization we can choose
D̂∗

eigen = diag(λ1, λ2, ..., λn), where λ1, λ2, ..., λn are eigenvalues of Ĥ and we take them in ascending
order λ1 ≤ λ2 ≤ ... ≤ λn. Checking this operator should reveal whether the linear spectrum in min-max
should instead have a non-linearity.

4.2 Adaptive parametrizations
We now explore some adaptive strategies, in the sense that the parameters of the diagonal operators are
from now on considered to be optimized at each recursion step.



The first strategy is the dephasing channel parametrization and is based on the fact the GWW DBI
involves the dephasing channel which restricts matrices to their diagonal. Thus, for each k, we set
D̂k = ∆(Ĥk). This strategy can also be used to initialize the BHMM DBI and inform it about the initial

diagonal structure of the input matrix. For example, ∆(ĤTFIM) =
∑L

j=1 Ẑj , which coincides with a

constant magnetic field. The XXZ model has ∆(ĤXXZ) = δ
∑L

j=1 ẐjẐj+1, which means that the first

step of the GWW BHMM DBI agrees with a DBI parametrized by the classical nearest-neighbor (NN)
Ising model.

Motivated by the above, we introduce the magnetic field parametrization, which considers a local
magnetic field in the z-direction

D̂k(B(k)) =

L∑
j=1

α
(k)
j Ẑj , (11)

where α
(k)
j are the values of an artificial magnetic field of qubit j in step k. While α

(k)
j can be arbitrary, e.g.

arising from gradient descent optimization, for BHMM DBI we show the cases where αj = 1 (constant),
αj = j (linear), and αj = j2 (quadratic). For adaptive DBI we optimize these using gradient descent in
Qibo. These choices are motivated by the above min-max parametrization in the sense that by changing
the αj values we may try to lift degeneracies.

Next, we consider an ansatz which can have an entangling action on the qubits and such extension of
the non-interacting magnetic field can be useful for quantum many-body Hamiltonians. More specifically
we consider the classical Ising model with nearest-neighbor (NN) interactions

D̂k(B(k), J (k)) =

L∑
j=1

(
α
(k)
j Ẑj + β

(k)
j Ẑj+1Ẑj

)
, (12)

which gives also the name to the ansatz. For BHMM DBI we will choose uniform βi = 1 and for adaptive
DBI again use gradient descent.

Eigenstates of quantum many-body systems in the middle of the spectrum are very strongly entangled
so we also consider the case where there are local, i.e. 2-qubit, interactions as above but the range of
interaction is arbitrary

D̂k(B(k), J (k)) =

L∑
j,j′=1

(
α
(k)
j Ẑj + β

(k)
j,j′ẐjẐj′

)
. (13)

We call this strategy all-to-all classical Ising model and its all-to-all interactions are a hallmark advantage
of trapped-ion platforms. To be specific we will set βi,j = 1 to be the uniform all-to-all parametrization.
Note that selecting βi,j = δi,j−1 reduces this model to the NN model.

Finally, we can explore what changes if we take more qubits to participate in an interaction. Here we
shall choose a binary string µk ∈ {0, 1}L and consider

D̂k = (Z1)µ1(Z2)µ2 . . . (ZL)µL . (14)

This allows any subset of qubits to interact. The optimization in this case varies over the Hamming cube
aided by solving the scheduling task. We refer to this final strategy as Pauli-Z product parametrization.

All above models can be viewed as parametrizations for optimization over the parameters, e.g. α ∈ RL

and β ∈ RL2

for the all-to-all parametrization. The extreme case is to allow all matrix elements to vary

D̂k =

2L∑
i=1

d
(k)
i |i⟩⟨i| (15)

The disadvantage of this ansatz lies in its scalability as the number of parameters grows exponentially
with the system size O(2L).
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Figure 2: DBRs (top) and DBIs (bottom) for the XXZ model with L = 5 qubits and ∆ = 0.5. In panel
a) we show DBRs for the analytically motivated ansatze. The GWW parametrization ∆(Ĥ0) yields the
largest σ-decrease. Bullets indicate the first local minima extracted numerically. In panel b) we show
DBRs for parametrizations which can be easily compiled using CNOT and single-qubit rotation gates.
Here the global minimum is not necessarily the first. The GWW curve is repeated because it coincides
with the NN Ising strategy. In panels c) and d) we show the respective BHMM iteration. We stop, for
each adopted strategy, the DBI steps when they would have provided only marginal gain at the expense
of long evolutions. Due to the symmetries of XXZ the GWW and magnetic field strategies yield block-
diagonalization as opposed to full diagonalization. In panel d) for short s the local D̂ parametrization
strategies perform comparably well with those in panel c). These results set the benchmark when moving
from analytically prescribed BHMM DBIs to adaptive DBIs.

4.3 Benefits of normalized adaptive parametrizations
Given our structuring of optimization strategies, varying the norm of the diagonal operator D̂k will
not facilitate cost function gains. To see this, let us consider a rescaling factor r and we find that if

R̂ = e−sk[D̂k,Ĥk] was the optimal DBR for D̂k then s′k = sk/r is the optimal duration for D̂′
k = rD̂k.

This is because R̂′
k = e−s′k [D̂′

k Ĥk] = R̂k is optimal whenever R̂k is optimal.
We can use this fact together with the fact that adding a multiple of the identity zI to the diagonal

operator leaves the corresponding DBR invariant, namely because [D̂k+zI, Ĥk] = [D̂k, Ĥk]. If we optimize

the entries of D̂ over any interval [a, b], then the optimal diagonal operator can be found. Indeed, if the
true minimizer lies in the interval [a′, b′] then the rescaling and shifting invariance of DBRs allow to find
r and z such that [ra+ z, rb+ z] ⊂ [a′, b′].

Finally, we point out that one may use projected gradient approaches to optimize over unit-norm
operators. This can be implemented by taking a gradient descent step and dividing by the norm after
an update. Focusing on unit-norm parametrizations of diagonal operators is particularly useful for the
least-squares loss function f2. Here ordinary gradient descent will tend to focus on reducing the norm of
D̂ instead of the Tr(ĤkD̂k) which is more imporant for diagonalization. In fact, when using projected

gradient descent one could choose f2(Ĥk) = Tr(ĤkD̂k).



4.4 Numerical results for the BHMM DBI
In Fig. 2 we show the cost function landscape for the first DBI step which showcases how different
parametrizations yield different σ-decrease. We then show the performance of the BHMM DBI with the
numerically obtained scheduling. In Fig. 2 a) and c) we consider D̂’s which are analytically motivated.
We find, that even though they possess analytical convergence guarantees it is slow for XXZ. Additionally,
we find that for the first few steps, degeneracies do not inhibit σ-decrease. The DBIs in panel c) cannot
be efficiently implemented on a quantum computer e.g. eigenvalues have to be computed; due to their
large number, their compilation could be difficult even if they were known. In Fig. 2 b) and d) we consider

D̂’s relevant for near-term quantum computers. For the first few steps, these parametrizations perform
similarly to those Fig. 2 a) and c), again despite having spectral degeneracies.

For all parametrizations, we find that BHMM DBIs lose efficiency and would need many steps with
very short duration. This motivates us to optimize D̂k in every step and consider adaptive DBIs.

4.5 Numerical results for the adaptive DBIs
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Figure 3: DBI applied to XXZ model with L = 5 qubits, δ = 0.5 using variational strategies. Variational
strategies, except for the GWW strategy (blue) surpass the best diagonalization achieved with BHMM
(grey dotted line). See Fig.2. Pauli-Z strategy achieved the most diagonalization but is difficult to
implement physically. We also see that despite being more computationally exhaustive, gradient descent
with computational ansatz (green) is not necessarily better than gradient descent with magnetic field
(red) and Ising model ansatz (purple).

Fig. 3 shows results for adaptive DBIs again for the XXZ model on L = 5 sites. GWW DBI is both
analytically motivated and adaptive but saturates due to XXZ symmetries. Instead, we use standard
gradient descent with an optimized learning rate for the magnetic field parametrization B and NN Ising
parametrization B and J with open boundary conditions. Gradient descent targets local minima that
depend on initialization so choosing suitable parametrizations as above is important.

We find that within the same number of DBI steps the final cost function is significantly lower than
for BHMM. Thus if rounds of optimization are possible, which is true for future quantum hardware,
adaptive DBIs should be considered.

5 Group commutator
A DBI is a sequence of DBRs. However, DBR rotations cannot be directly implemented on a quantum
computer. Instead, quantum compiling in primitive gates should be used. We compile approximations to
DBR unitaries by means of group commutator formulas. These consist of unitaries which then are simple
exponentials of Hamiltonians and so Hamiltonian simulations can be used which combine primitive gates

into evolution operators e−itÂ, where Â is a local Hamiltonian.
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Figure 4: Group commutator approximation to DBR. In panel a) we apply DBR to the TFIM model with
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up to s < 0.02 and found the global minimum. Panel b) shows that on the XXZ model with L = 5
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Specifically the DBR unitary R̂0 = e−s0[D̂0,Ĵ0] can be approximated by the group commutator unitary

V̂
(GC)
0 = ei

√
s0Ĵ0e−i

√
s0D̂0e−i

√
s0Ĵ0ei

√
s0D̂0 = R̂0 +O(s

3/2
0 ) . (16)

Following Ref. [23] we use the higher-order product formula (HOPF) with ϕ = 1
2 (
√

5 − 1)

Q̂
(HOPF)
0 = eiϕ

√
s0Ĵ0e−iϕ

√
s0D̂0e−i

√
s0Ĵ0ei(ϕ+1)

√
s0D̂0ei(1−ϕ)

√
s0Ĵ0e−i

√
s0D̂0 = R̂0 +O(s20) . (17)

One may note that when using the operators, the normalization results are no longer usable and so the
optimization domain may correspond to the entire space.

In Fig. 4 we show the comparison of these approximations to the DBR unitary. We found that
consistently HOPF accurately matches the performance of DBR, even if the scheduling must be adjusted.
GC uses one less query to Hamiltonian simulation for Ĵ0 but it yields much less σ-decrease.

6 Conclusions
In this work, we presented strategies for optimizing double-bracket quantum algorithms. The overall goal
is to prepare eigenstate on a quantum computer and we discussed different diagonalization cost functions
which allow us to quantify the progress for this task. We then described the formulation of DBQAs as
being rooted in selecting the duration of the recursive steps and selecting the DBR generators.

Fig. 1 reports that the utilities featured in Qibo allow to reliably find schedulings that yield effective
diagonalization iterations. We next discussed parametrizations of DBR generators aimed at obtaining
effective DBIs through optimization. We also showcased parametrizations suitable for BHMM DBIs
which have analytical convergence guarantees. Fig. 2 explored the role played by spectral degeneracies
of the DBR generators. For practical applications, we did not find it to be particularly key, especially
when only a few recursion steps are available. Additionally, we showed that BHMM DBIs can get stuck
for exactly solvable models such as TFIM and XXZ which motivates using adaptive DBIs.

Fig. 3 shows that adaptive DBIs achieve more diagonalization in fewer steps than the BHMM DBIs
that we considered. We further showed that numerical optimizations of the DBR generators within
prescribed parameter spaces allow us to extend the diagonalization convergence beyond what BHMM
DBIs. Finally, we discuss the strategies for approximating DBIs in a way that is viable for quantum
compiling. This is done by means of product formulas, e.g. the group commutator and Fig. 4 shows that
much better results are obtained by a higher-order product formula approximation to each DBR in a
DBI.

In summary, we conceptually broke down the task of optimizing DBQAs into three distinct stages.
Our implementation in Qibo allowed us to showcase the performance of numerical optimization in each of
these steps. By this, double-bracket quantum algorithms are provided by a more systematic optimization
methodology which we hope will aid further progress in quantum compiling tasks such as eigenstate
preparation of quantum many-body models involving large numbers of qubits.
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