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Abstract. Let Mm be a minimal, properly immersed submanifold in a space

form Nn
k of curvature −k ≤ 0. In this paper, we are interested in the relation be-

tween the density function Θ(r) of Mm and the spectrum of the Laplace-Beltrami

operator. In particular, we prove that if Θ(r) has subexponential growth (when

k < 0) or sub-polynomial growth (k = 0) along a sequence, then the spectrum
of Mm is the same as that of the space form Nm

k . Notably, the result applies to

Anderson’s (smooth) solutions of Plateau’s problem at infinity on the hyperbolic

space, independently of their boundary regularity. We also give a simple condition
on the second fundamental form that ensures M to have finite density. In partic-

ular, we show that minimal submanifolds of the hyperbolic space that have finite

total curvature have also finite density.
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1. Introduction

Let Mm be a minimal, properly immersed submanifold in a complete ambient space
Nn. Observe that, in this case, M is complete. In the present paper, we are interested
in the case when N is close, in a sense made precise below, to a space form Nnk of
curvature −k ≤ 0. In particular, our focus is the study of the spectrum of the Laplace

Date: April 19, 2016.

2010 Mathematics Subject Classification. Primary 58J50; Secondary 58C21, 35P15.
The second author is supported by the grant PRONEX - Núcleo de Análise Geométrica e Aplicacões
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Beltrami operator −∆ on M and its relationship with the density at infinity of M ,
that is, the limit as r → +∞ of the (monotone) quantity

(1.1) Θ(r)
.
=

vol(M ∩Br)
Vk(r)

,

where Br indicates a geodesic ball of radius r in Nn and Vk(r) is the volume of a
geodesic ball of radius r in Nmk . Hereafter, we will say that M has finite density if

Θ(+∞)
.
= lim
r→+∞

Θ(r) < +∞.

To properly put our results into perspective, we briefly recall few facts about the
spectrum of the Laplacian on a geodesically complete manifold. It is known by works of
P. Chernoff [15] and R.S. Strichartz [49] that −∆ on a complete manifold is essentially
self-adjoint on the domain C∞c (M), and thus it admits a unique self-adjoint extension,
which we still call −∆. Since −∆ is positive and self-adjoint, its spectrum is the set of
λ ≥ 0 such that ∆ + λI does not have bounded inverse. Sometimes we say spectrum
of M rather than spectrum of −∆ and we denote it by σ(M). The well-known Weyl’s
characterization for the spectrum of a self-adjoint operator in a Hilbert space implies
the following

Lemma 1. [19, Lemma 4.1.2] A number λ ∈ R lies in σ(M) if and only if there exists
a sequence of nonzero functions uj ∈ Dom(−∆) such that

(1.2) ‖∆uj + λuj‖2 = o
(
‖uj‖2

)
as j → +∞.

In the literature, characterizations of the whole σ(M) are known only in few spe-
cial cases. Among them, the Euclidean space, for which σ(Rm) = [0,∞), and the
hyperbolic space Hmk , for which

(1.3) σ(Hmk ) =

[
(m− 1)2k

4
,+∞

)
.

The approach to guarantee that σ(M) = [c,+∞), for some c ≥ 0, usually splits into
two parts. The first one is to show that inf σ(M) ≥ c via, for instance, the Laplacian
comparison theorem from below ([42, 5]), and the second one is to produce a sequence
like in lemma 1 for each λ > c. This step is accomplished by considering radial
functions of compact support, and, at least in the first results on the topic like the one
in [21], uses the comparison theorems on both sides for ∆ρ, ρ being the distance from
a fixed origin o ∈ M . Therefore, the method needs both a pinching on the sectional
curvature and the smoothness of ρ, that is, that o is a pole of M (see [21, 25, 37] and
Corollary 2.17 in [8]), which is a severe topological restriction. Since then, various
efforts were made to weaken both the curvature and the topological assumptions. We
briefly overview some of the main achievements.

In [35], Kumura observed that to perform the second step (and just for it) it is
enough that there exists a relatively compact, mean convex, smooth open set Ω with
the property that the normal exponential map realizes a global diffeomorphism ∂Ω×
R+

0 → M\Ω. Conditions of this kind seem, however, unavoidable for his techniques
to work. On the other hand, in [36] the author drastically weakened the curvature
requirements needed to establish Step 2, by replacing the two-sided pinching on the
sectional curvature with a combination of a lower bound on a suitably weighted volume
and an Lp-bound on the Ricci curvature.

Regarding the need for a pole, major recent improvements have been made in a
series of papers ([50, 55, 41, 11]): their guiding idea was to replace the L2-norm in
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relation (1.2) with the L1-norm, which via a trick in [55, 41] enables to use smoothed
distance functions to construct sequences as in Lemma 1. Building on deep function-
theoretic results due to Sturm [50] and Charalambous-Lu [11], in [55, 41] the authors
proved that σ(M) = [0,∞) when

(1.4) lim inf
ρ(x)→+∞

Riccx = 0

in the sense of quadratic forms, without any topological assumption. This remarkable
result improves on [37] and [25] (see also Corollary 2.17 in [8]), where M was assumed
to have a pole. Further refinements of (1.4) have been given in [11]. However, when
(1.4) does not hold, the situation is more delicate and is still the subject of an active
area of research. In this respect, we also quote the general function-theoretic criteria
developed by H. Donnelly [22], and K.D. Elworthy and F-Y. Wang [24] to ensure that
a half-line belongs to the spectrum of M .

The main concern in this paper is to achieve, in the above-mentioned setting of
minimal submanifolds, a characterization of the whole σ(M) free from curvature or
topological conditions on M . It is known by [18] and [5] that for a minimal immersion
ϕ : Mm → Nnk the fundamental tone of M , inf σ(M), is at least that of Nmk , i.e.,

(1.5) inf σ(M) ≥ (m− 1)2k

4
.

Moreover, as a corollary of [35] and [4, 6], if the second fundamental form II satisfies
the decay estimate

(1.6)

lim
ρ(x)→+∞

ρ(x)|II(x)| = 0 if k = 0

lim
ρ(x)→+∞

|II(x)| = 0 if k > 0

(ρ(x) being the intrinsic distance with respect to some fixed origin o ∈ M), then M
has the same spectrum that a totally geodesic submanifold Nmk ⊂ Nnk , that is,

(1.7) σ(M) =

[
(m− 1)2k

4
,+∞

)
.

According to [1, 20], (1.6) is ensured when M has finite total curvature, that is, when

(1.8)

∫
M

|II|m < +∞.

Remark 1. A characterization of the essential spectrum, similar to (1.7), also holds for
submanifolds of the hyperbolic space Hnk with constant (normalized) mean curvature

H <
√
k. There, condition (1.8) is replaced by the finiteness of the Lm-norm of the

traceless second fundamental form. For deepening, see [10].

Inspecting the proofs of the above results it seemed to us that, for (1.7) to hold,
condition (1.8) and more generally (1.6) could be substantially weakened. Here, we
identify a suitable growth condition on the density function Θ(r) along a sequence as a
natural candidate to replace them, see (1.10). As a very special case, (1.7) holds when
M has finite density. It might be surprising that just a volume growth condition along
a sequence could control the whole spectrum of M ; for this to happen, the minimality
condition enters in a crucial and subtle way.

Regarding the relation between (1.8) and the finiteness of Θ(+∞), we remark that
their interplay has been investigated in depth for minimal submanifolds of Rn, but the
case of Hnk seems to be partly unexplored. In the next section, we will briefly discuss
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the state of the art, to the best of our knowledge. As a corollary of Theorem 2 below,
we will show the following

Corollary 1. Let Mm be a minimal properly immersed submanifold in Hnk . If M has
finite total curvature, then Θ(+∞) < +∞.

As far as we know, this result was previously known just in dimension m = 2 via a
Chern-Osserman type inequality, see the next section for further details.

We now come to our results, beginning with defining the ambient spaces which we
are interested in: these are manifolds with a pole, whose radial sectional curvature is
suitably pinched to that of the model Nnk .

Definition 1. Let Nn possess a pole ō and denote with ρ̄ the distance function from ō.
Assume that the radial sectional curvature K̄rad of N , that is, the sectional curvature
restricted to planes π containing ∇̄ρ̄, satisfies

(1.9) −G
(
ρ̄(x)

)
≤ K̄rad(πx) ≤ −k ≤ 0 ∀x ∈ N\{ō},

for some G ∈ C0(R+
0 ). We say that

(i) N has a pointwise (respectively, integral) pinching to Rn if k = 0 and

sG(s)→ 0 as s→ +∞
(
respectively, sG(s) ∈ L1(+∞)

)
;

(ii) N has a pointwise (respectively, integral) pinching to Hnk if k > 0 and

G(s)− k → 0 as s→ +∞
(
respectively, G(s)− k ∈ L1(+∞)

)
.

Hereafter, given an ambient manifold N with a pole ō, the density function Θ(r)
will always be computed by taking extrinsic balls centered at ō.

Our main achievements are the following two theorems. The first one characterizes
σ(M) when the density of M grows subexponentially (respectively, sub-polynomially)
along a sequence. Condition (1.10) below is very much in the spirit of a classical volume
growth hypothesis due to R. Brooks [9] and Y. Higuchi [31] to bound from above the
infimum of the essential spectrum of −∆. However, we stress that Theorem 1 below
seems to be the first result in the literature characterizing the whole spectrum of M
under just a mild volume growth assumption.

Theorem 1. Let ϕ : Mm → Nn be a minimal properly immersed submanifold, and
suppose that N has a pointwise or an integral pinching to a space form. If either

(1.10)

N is pinched to Hnk , and lim inf
s→+∞

log Θ(s)

s
= 0, or

N is pinched to Rn, and lim inf
s→+∞

log Θ(s)

log s
= 0.

then

(1.11) σ(M) =

[
(m− 1)2k

4
,+∞

)
.

The above theorem is well suited for minimal submanifolds constructed via Geo-
metric Measure Theory since, typically, their existence is guaranteed by controlling the
density function Θ(r). As an important example, Theorem 1 applies to all solutions
of Plateau’s problem at infinity Mm → Hnk constructed in [2], provided that they are
smooth. Indeed, because of their construction, Θ(+∞) < +∞ (see [2], part [A] at p.
485) and they are proper (it can also be deduced as a consequence of Θ(+∞) < +∞,
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see Remark 5). By standard regularity theory, smoothness of Mm is automatic if
m ≤ 6.

Corollary 2. Let Σ ⊂ ∂∞Hnk be a closed, integral (m− 1) current in the boundary at
infinity of Hnk such that, for some neighbourhood U ⊂ Hnk of supp(Σ), Σ does not bound
in U , and let Mm ↪→ Hnk be the solution of Plateau’s problem at infinity constructed
in [2] for Σ. If M is smooth, then (1.11) holds.

An interesting fact of Corollary 2 is that M is not required to be regular up to
∂∞Hnk , in particular it might have infinite total curvature. In this respect, we observe
that if M be C2 up to ∂∞Hnk , then M would have finite total curvature (Lemma 5 in

Appendix 1). By deep regularity results, this is the case if, for instance, Mm → Hm+1
k

is a smooth hypersurface that solves Plateau’s problem for Σ, and Σ is a C2,α (for
α > 0), embedded compact hypersurface of ∂∞Hnk . See Appendix 1 for details.

The spectrum of solutions of Plateau’s problems has also been considered in [3] for
minimal surfaces in R3. In this respect, it is interesting to compare Corollary 2 with
(3) of Corollary 2.6 therein.

Remark 2. The solution M of Plateau’s problem in [2] is constructed as a weak limit
of a sequence Mj of minimizing currents for suitable boundaries Σj converging to Σ.
and property Θ(+∞) < +∞ is a consequence of a uniform upper bound for the mass
of a sequence Mj (part [A], p. 485 in [2]). Such a bound is achieved because of the
way the boundaries Σj are constructed, in particular, since they are all sections of the
same cone. One might wonder whether Θ(+∞) < +∞, or at least the subexponential
growth in (1.10), is satisfied by all solutions of Plateau’s problem. In this respect, we
just make this simple observation: in the hypersurface case n = m + 1, if M ∩ Bm+1

r

is volume-minimizing then clearly

Θ(r) =
vol(M ∩Bm+1

r )

Vk(r)
≤

vol(∂Bm+1
r ⊂ Hm+1

k )

Vk(r)
= ck

sinhm(
√
kr)

Vk(r)
,

but this last expression diverges exponentially fast as r → +∞ (differently from its
Euclidean analogous, which is finite). This might suggest that a general solution of
Plateau’s problem does not automatically satisfies Θ(+∞) < +∞, and maybe not even
(1.10).

In our second result we focus on the particular case when Θ(+∞) < +∞, and we give
a sufficient condition for its validity in terms of the decay of the second fundamental
form. Towards this aim, we shall restrict to ambient spaces with an integral pinching.

Theorem 2. Let ϕ : Mm → Nn be a minimal immersion, and suppose that N has an
integral pinching to a space form. Denote with ρ(x) the intrinsic distance from some
reference origin o ∈M . Assume that there exist c > 0 and α > 1 such that the second
fundamental form satisfies, for ρ(x) >> 1,

(1.12)

|II(x)|2 ≤ c

ρ(x) logα ρ(x)
if N is pinched to Hnk ;

|II(x)|2 ≤ c

ρ(x)2 logα ρ(x)
if N is pinched to Rn.

Then, ϕ is proper, M is diffeomorphic to the interior of a compact manifold with
boundary, and Θ(+∞) < +∞.
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The assertions that ϕ be proper and M have finite topology is well-known under
assumptions even weaker than (1.12) and not necessarily requiring the minimality, see
for instance [4, 6]. Former results are due to [1] (N = Rm) and [20, 10] (N = Hk).
Here, our original contribution is to show that M has finite density. Because of a
result in [20, 46], if ϕ : M → Hnk has finite total curvature then |II(x)| = o(ρ(x)−1) as
ρ(x)→ +∞. Hence, (1.12) is met and Corollary 1 follows at once.

We briefly describe the strategy of the proof of Theorem 1. In view of (1.5), it
is enough to show that each λ > (m − 1)2k/4 lies in σ(M). To this end, we follow
an approach inspired by a general result due to K.D. Elworthy and F-Y. Wang [24].
However, Elworthy-Wang’s theorem is not sufficient to conclude, and we need to con-
siderably refine the criterion in order to fit in the present setting. To construct the
sequence as in Lemma 1, a key step is to couple the volume growth requirement (1.10)
with a sharpened form of the monotonicity formula for minimal submanifolds, which
improves on the classical ones in [48, 2]. Indeed, in Proposition 3 we describe three
monotone quantities other than Θ(s), that might be useful beyond the purpose of the
present paper. For example, in the very recent [27] the authors discovered and used
some of the relations in Proposition 3 to show interesting comparison results for the
capacity and the first eigenvalue of minimal submanifolds.

1.1. Finite density and finite total curvature in Rn and Hn. The first attempt to
extend the classical theory of finite total curvature surfaces in Rn (see [44, 32, 16, 17])
to the higher-dimensional case is due to M.T. Anderson. In [1], the author drew from
(1.8) a number of topological and geometric consequences, and here we focus on those
useful to highlight the relationship between total curvature and density. First, he
showed that (1.8) implies the decay

(1.13) lim
ρ(x)→+∞

ρ(x)|II(x)| = 0,

where ρ(x) is the intrinsic distance from a fixed origin, and as a consequence M is
proper, the extrinsic distance function r has no critical points outside some compact
set and |∇r| → 1 as r diverges, so by Morse theory M is diffeomorphic to the interior
of a compact manifold with boundary. Moreover, he proved that M has finite density
via a higher-dimensional extension of the Chern-Osserman identity [16, 17], namely
the following relation linking the Euler characteristic χ(M) and the Pfaffian form Ω
([1], Theorem 4.1):

(1.14) χ(M) =

∫
M

Ω + lim
r→+∞

vol(M ∩ ∂Br)
V ′0(r)

.

Observe that, since |∇r| → 1, by coarea’s formula the limit in the right hand-side co-
incides with Θ(+∞). We underline that property Θ(+∞) < +∞ plays a fundamental
role to apply the machinery of manifold convergence to get information on the limit
structure of the ends of M ([1, 47, 54]). For instance, Θ(+∞) is related to the number
E(M) of ends of M : if we denote with V1, . . . , VE(M) the (finitely many) ends of M ,
(1.8) implies for m ≥ 3 the identities

(1.15) Θ(+∞) =

E(M)∑
i=1

lim
r→+∞

vol(Vi ∩ ∂Br)
V ′0(r)

≡ E(M),

and thus M is totally geodesic provided that it has only one end and finite total
curvature ([1], Thm 5.1 and its proof). Further information on the mutual relationship
between the finiteness of the total curvature and Θ(+∞) < +∞ can be deduced under
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the additional requirement that M is stable or it has finite stability index. For example,
by work of J. Tysk [54], if Mm has finite index and m ≤ 6, then

(1.16) Θ(+∞) < +∞ if and only if

∫
M

|II|m < +∞.

Remark 3. Indeed, the main result in [54] states that, when Θ(+∞) < +∞ and
m ≤ 6, M has finite index if and only if it has finite total curvature. However, since
the finite total curvature condition alone implies both that M has finite index and
Θ(+∞) < +∞ (in any dimension∗), the characterization in (1.16) is equivalent to
Tysk’s theorem. We underline that it is still a deep open problem whether or not, for
m ≥ 3, stability or finite index alone implies the finiteness of the density at infinity.

Since then, efforts were made to investigate analogous properties for minimal sub-
manifolds of finite total curvature immersed in Hnk . There, some aspects show strong
analogy with the Rn case, while others are strikingly different. For instance, minimal
immersions ϕ : Mm → Hnk with finite total curvature enjoy the same decay property
(1.13) with respect to the intrinsic distance ρ(x) ([20], see also [46]), which is enough to
deduce that they are properly immersed and diffeomorphic to the interior of a compact
manifold with boundary. Moreover, Anderson [2] proved the monotonicity of Θ(r) in
(1.1). In order to show (among other things) that complete, finite total curvature
surfaces M2 ↪→ Hn have finite density, in [13, 14] the authors obtained the following
Chern-Osserman type (in)equality:

(1.17) χ(M) ≥ − 1

4π

∫
M

|II|2 + Θ(+∞),

see also [28]. However, in the higher dimensional case we found no analogous of (1.14),
(1.17) in the literature, and adapting the proof of (1.14) to the hyperbolic ambient
space seems to be subtler than what we expected. In fact, an equality like (1.14) is
not even possible to obtain, since there exist minimal submanifolds of Hnk with finite
density but whose density at infinity depends on the chosen reference origin [26]. We
point out that, on the contrary, inequality (1.17) holds for each choice of the reference
origin in Hn. This motivated the different route that we follow to prove Theorem 2
and Corollary 1. Among the results in [1] that could not admit a corresponding one
in Hnk , in view of the solvability of Plateau’s problem at infinity on Hnk we stress that
a relation like (1.15) cannot hold for each minimal submanifold of Hnk with finite total
curvature. Indeed, there exist a wealth of properly immersed minimal submanifolds
in Hnk with finite total curvature and one end: for example, referring to the upper
half-space model, the graphical solution of Plateau’s problem for Σm−1 ⊂ ∂∞Hnk being
the boundary of a convex set (constructed at the end of [2]) has finite total curvature,
as follows from Lemma 5 and the regularity results recalled in Appendix 1. It shall be
observed, however, that when II decays sufficiently fast at infinity with respect to the
extrinsic distance function r(x):

(1.18) lim
r(x)→+∞

e2
√
kr(x)|II(x)| = 0,

then the inequality Θ(+∞) ≤ E(M) still holds for minimal hypersurfaces in Hnk as
shown in [29], and in particular M is totally geodesic provided that it has only one

∗As said, finite total curvature implies Θ(+∞) < +∞ by (1.14), while the finiteness of the index
can be seen as an application of the generalized Cwikel-Lieb-Rozembljum inequality (see [38]) to the

stability operator L = −∆−|II|2, recalling that a minimal submanifold Mm → Rn satisfies a Sobolev
inequality. We refer to [45] for deepening.
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end, as first observed in [33, 34]. We remark that there exists an infinite family of
complete minimal cylinders ϕλ : S1 × R → H3 whose second fundamental form IIλ
decays exactly of order exp{−2r(x)}, see [43].

2. Preliminaries

Let ϕ : (Mm, 〈 , 〉) → (Nn, ( , )) be an isometric immersion of a complete m-
dimensional Riemannian manifold M into an ambient manifold N of dimension n
and possessing a pole ō. We denote with ∇,Hess ,∆ the connection, the Riemannian
Hessian and the Laplace-Beltrami operator on M , while quantities related to N will
be marked with a bar. For instance, ∇̄,dist,Hess will identify the connection, the
distance function and the Hessian in N . Let ρ̄(x) = dist(x, ō) be the distance function
from ō. Geodesic balls in N of radius R and center y will be denoted with BNR (y).
Moreover, set

(2.1) r : M → R, r(x) = ρ̄
(
ϕ(x)

)
,

for the extrinsic distance from ō. We will indicate with Γs the extrinsic geodesic spheres
restricted to M : Γs

.
= {x ∈ M ; r(x) = s}. Fix a base point o ∈ M . In what follows,

we shall also consider the intrinsic distance function ρ(x) = dist(x, o) from a reference
origin o ∈M .

2.1. Target spaces. Hereafter, we consider an ambient space N possessing a pole ō
and, setting ρ̄(x)

.
= dist(x, ō), we assume that (1.9) is met for some k ≥ 0 and some

G ∈ C0(R+
0 ). Let snk(t) be the solution of

(2.2)

{
sn′′k − k snk = 0 on R+,

snk(0) = 0, sn′k(0) = 1,

that is

(2.3) snk(t) =

{
t if k = 0,

sinh(
√
kt)/
√
k if k > 0.

Observe that Rn and Hnk can be written as the differentiable manifold Rn equipped
with the metric given, in polar geodesic coordinates (ρ, θ) ∈ R+ × Sn−1 centered at
some origin, by

ds2
k = dρ2 + sn2

k(ρ) dθ2,

dθ2 being the metric on the unit sphere Sn−1.
We also consider the model Mn

g associated with the lower bound −G for K̄rad, that is,

we let g ∈ C2(R+
0 ) be the solution of

(2.4)

{
g′′ −Gg = 0 on R+,

g(0) = 0, g′(0) = 1,

and we define Mn
g as being (Rn,ds2

g) with the C2-metric ds2
g = dρ2 +g2(ρ)dθ2 in polar

coordinates. Condition (1.9) and the Hessian comparison theorem (Theorem 2.3 in
[45], or Theorem 1.15 in [8]) imply

(2.5)
sn′k(ρ̄)

snk(ρ̄)

(
( , )− dρ̄⊗ dρ̄

)
≤ Hess (ρ̄) ≤ g′(ρ̄)

g(ρ̄)

(
( , )− dρ̄⊗ dρ̄

)
.

The next proposition investigates the ODE properties that follow from the assumptions
of pointwise or integral pinching.
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Proposition 1. Let Nn satisfy (1.9), and let snk, g be solutions of (2.3), (2.4). Define

(2.6) ζ(s)
.
=
g′(s)

g(s)
− sn′k(s)

snk(s)
.

Then, ζ(0+) = 0, ζ ≥ 0 on R+. Moreover,

(i) If N has a pointwise pinching to Hnk or Rn, then ζ(s)→ 0 as s→ +∞.
(ii) If N has an integral pinching to Hnk or Rn, then g/snk → C as s → +∞ for

some C ∈ R+, and

(2.7) ζ(s) ∈ L1(R+), ζ(s)
snk(s)

sn′k(s)
→ 0 as s→ +∞.

Proof. The non-negativity of ζ, which in particular implies that g/snk is non-decreasing,
follows from G ≥ k via Sturm comparison, and ζ(0+) = 0 depends on the asymptotic
relations sn′k/snk = s−1 + o(1) and g′/g = s−1 + o(1) as s→ 0+, which directly follow
from the ODEs satisfied by snk and g. To show (i), differentiating ζ we get

(2.8) ζ ′(s) = R(s)− ζ(s)B(s),

where R(s)
.
= G(s)− k and B(s)

.
=
g′(s)

g(s)
+

sn′k(s)

snk(s)
. Thus, integrating on [1, s], we can

rewrite ζ as follows:

(2.9) ζ(s) = ζ(1)e−
∫ s
1
B + e−

∫ s
1
B

∫ s

1

R(σ)e
∫ σ
1
Bdσ

Using that B 6∈ L1([1,+∞)), and applying de l’Hopital’s theorem, we infer

lim
s→+∞

ζ(s) = lim
s→+∞

R(s)

B(s)
≤ lim
s→+∞

snk(s)[G(s)− k]

sn′k(s)
.

In our pointwise pinching assumptions on G(s), for both k = 0 and k > 0 the last
limit is zero, hence ζ(s) → 0 as s diverges. To show (ii), suppose that N has an
integral pinching to Hnk or to Rn. We first observe that the boundedness of g/snk on
R+ equivalent to the property ζ ∈ L1(+∞), as it follows from

(2.10) log
g(s)

snk(s)
=

∫ s

0

d

dσ
log

(
g(σ)

snk(σ)

)
ds =

∫ s

0

ζ

(we used that (g/snk)(0+) = 1). The boundedness of g/snk is the content of Corollary
4 and Remark 16 in [7], but we prefer here to present a direct proof. Integrating (2.9)
on [1, s] and using Fubini’s theorem, the monotonicity of g/snk and the expression of
B we obtain

(2.11)

∫ s

1

ζ = ζ(1)

∫ s

1

g(1)snk(1)

g(σ)snk(σ)
dσ +

∫ s

1

e−
∫ σ
1
B

∫ σ

1

R(τ)e
∫ τ
1
Bdτ dσ

≤ ζ(1)snk(1)2

∫ s

1

dσ

sn2
k(σ)

+

∫ s

1

[∫ s

τ

e−
∫ σ
1
BR(τ)e

∫ τ
1
Bdσ

]
dτ

≤ C +

∫ s

1

R(τ)g(τ)snk(τ)

[∫ s

τ

dσ

g(σ)snk(σ)

]
dτ

≤ C +

∫ s

1

R(τ)g(τ)snk(τ)

[∫ +∞

τ

dσ

g(σ)snk(σ)

]
dτ
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for some C > 0, where we have used that sn−2
k , g−1sn−1

k ∈ L1(+∞). Next, since
g snk/sn

2
k is non-decreasing, Proposition 3.12 in [8] ensures the validity of the following

inequality:

g(τ)snk(τ)

[∫ +∞

τ

dσ

g(σ)snk(σ)

]
≤ sn2

k(τ)

[∫ +∞

τ

dσ

sn2
k(σ)

]
.

It is easy to show that the last expression is bounded if k > 0, and diverges at the
order of τ if k = 0. In other words, it can be bounded by C1snk/sn

′
k on [1,+∞), for

some large C1 > 0. Therefore, by (2.11)∫ s

1

ζ ≤ C + C1

∫ s

1

R(τ)
snk(τ)

sn′k(τ)
dτ = C + C1

∫ s

1

[
G(τ)− k

] snk(τ)

sn′k(τ)
dτ.

In our integral pinching assumptions, both for k = 0 and for k > 0 it holds (G −
k)snk/sn

′
k ∈ L1(+∞), and thus ζ ∈ L1(+∞). Next, we use (2.8) and the non-negativity

of ζ,B to obtain(
ζ(s)snk(s)

sn′k(s)

)′
=

[
G(s)− k − ζ(s)B(s)

] snk(s)

sn′k(s)
+ ζ(s)

[
1− k

(
snk(s)

sn′k(s)

)2
]

≤
[
G(s)− k

]
snk(s)

sn′k(s)
+ ζ(s) ∈ L1(+∞),

hence ζsnk/sn
′
k ∈ L∞(R+) by integrating. This implies that the function B in (2.8)

satisfies B ≤ Csn′k/snk for some constant C > 0. Therefore, from (2.8) we get ζ ′ ≥
−ζB ≥ −Cζsn′k/snk. Integrating on [s, t] and using the monotonicity of sn′k/snk we
obtain

−C sn′k(s)

snk(s)

∫ t

s

ζ ≤ ζ(t)− ζ(s).

Since ζ ∈ L1(R+), we can choose a divergent sequence {tj} such that ζ(tj) → 0 as
j → +∞. Setting t = tj into the above inequality and taking limits we deduce

ζ(s) ≤ C sn′k(s)

snk(s)

∫ +∞

s

ζ,

thus letting s→ +∞ we get the second relation in (2.7). �

2.2. A transversality lemma. This subsection is devoted to an estimate of the mea-
sure of the critical set

St,s =
{
x ∈M : t ≤ r(x) ≤ s, |∇r(x)| = 0

}
,

with the purpose of justifying some coarea’s formulas for integrals over extrinsic annuli.
We begin with the next

Lemma 2. Let ϕ : Mm → Nn be an isometric immersion, and let r(x) = dist(ϕ(x), ō)
be the extrinsic distance function from ō ∈ N . Denote with Γσ

.
= {x ∈ M ; r(x) = σ}.

Then, for each f ∈ L1({t ≤ r ≤ s}),

(2.12)

∫
{t≤r≤s}

f dx =

∫
St,s

f dx+

∫ s

t

[∫
Γσ

f

|∇r|

]
dσ.

In particular, if

(2.13) vol(St,s) = 0,
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then

(2.14)

∫
{t≤r≤s}

f dx =

∫ s

t

[∫
Γσ

f

|∇r|

]
dσ.

Proof. We prove (2.12) for f ≥ 0, and the general case follows by considering the
positive and negative part of f . By the coarea’s formula, we know that for each
g ∈ L1({t ≤ r ≤ s}),

(2.15)

∫
{t≤r≤s}

g|∇r|dx =

∫ s

t

[∫
Γσ

g

]
dσ.

Fix j and consider Aj = {|∇r| > 1/j} and the function

g = f1Aj/|∇r| ∈ L1({t ≤ r ≤ s}).

Applying (2.15), letting j → +∞ and using the monotone convergence theorem we
deduce

(2.16)

∫
{t≤r≤s}\St,s

f dx =

∫ s

t

[∫
Γσ\St,s

f

|∇r|

]
dσ =

∫ s

t

[∫
Γσ

f

|∇r|

]
dσ,

where the last equality follows since Γσ ∩ St,s = ∅ for a.e. σ ∈ [t, s], in view of Sard’s
theorem. Formula (2.12) follows at once.

�

Let now N possess a pole ō and satisfy (1.9), and consider a minimal immersion
ϕ : M → N . Since, by the Hessian comparison theorem, geodesic spheres in N centered
at ō are positively curved, it is reasonable to expect that the “transversality” condition
(2.13) holds. This is the content of the next

Proposition 2. Let ϕ : Mm → Nn be a minimal immersion, where N possesses a
pole ō and satisfies (1.9). Then,

(2.17) vol(S0,+∞) = 0.

Proof. Suppose by contradiction that vol(S0,+∞) > 0. By Stampacchia and Rademacher’s
theorems,

(2.18) ∇|∇r|(x) = 0 for a.e. x ∈ S0,+∞.

Pick one such x and a local Darboux frame {ei}, {eα}, 1 ≤ i ≤ m, m+1 ≤ α ≤ n around
x, that is, {ei} is a local orthonormal frame for TM and {eα} is a local orthonormal
frame for the normal bundle TM⊥. Since ∇r(x) = 0, then ∇̄ρ̄(x) ∈ TxM⊥. Up to
rotating {eα}, we can suppose that ∇̄ρ̄(x) = en(x). Fix i and consider a unit speed
geodesics γ : (−ε, ε) → M such that γ(0) = x, γ̇(0) = ei. Identify γ with its image
ϕ ◦ γ in N . By Taylor’s formula and (2.18),

|∇r|(γ(t)) = o(t) as t→ 0+.

Using that |∇r| =
√

1−
∑
α(∇̄ρ̄, eα)2, we deduce

(2.19) 1−
∑
α

(∇̄ρ̄, eα)2
γ(t) = o(t2).

Since ∇̄ρ̄(x) = en(x), we deduce from (2.20) that also

(2.20) u(t)
.
= 1− (∇̄ρ̄, en)2

γ(t) = o(t2),
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thus u̇(0) = ü(0) = 0. Computing,

u̇(t) = 2(∇̄ρ̄, en)
[
(∇̄γ̇∇̄ρ̄, en) + (∇̄ρ̄, ∇̄γ̇en)

]
ü(t) = 2

[
(∇̄γ̇∇̄ρ̄, en) + (∇̄ρ̄, ∇̄γ̇en)

]2
+2(∇̄ρ̄, en)

[
(∇̄γ̇∇̄γ̇∇̄ρ̄, en) + 2(∇̄γ̇∇̄ρ̄, ∇̄γ̇en) + (∇̄ρ̄, ∇̄γ̇∇̄γ̇en)

]
.

Evaluating at t = 0 we deduce

0 = ü(0)/2 = (∇̄ei∇̄ei∇̄ρ̄, ∇̄ρ̄) + 2(∇̄ei∇̄ρ̄, ∇̄eien) + (en, ∇̄ei∇̄eien).

Differentiating twice 1 = |en|2 = |∇̄ρ̄|2 along ei we deduce the identities (en, ∇̄ei∇̄eien) =
−|∇̄eien|2 and (∇̄ei∇̄ei∇̄ρ̄, ∇̄ρ̄) = −|∇̄ei∇̄ρ̄|2, hence

0 = ü(0)/2 = −|∇̄ei∇̄ρ̄|2 + 2(∇̄ei∇̄ρ̄, ∇̄eien)− |∇̄eien|2 = −
∣∣∇̄ei∇̄ρ̄− ∇̄eien∣∣2,

which implies ∇̄ei∇̄ρ̄ = ∇̄eien. Therefore, at x,

(II(ei, ei), en) = −(∇̄eien, ei) = −(∇̄ei∇̄ρ̄, ei) = Hess (ρ̄)(ei, ei).

Tracing with respect to i, using that M is minimal and (2.5) we conclude that

0 ≥ sn′k(r(x))

snk(r(x))
(m− |∇r(x)|2) = m

sn′k(r(x))

snk(r(x))
> 0,

a contradiction. �

3. Monotonicity formulae and conditions equivalent to Θ(+∞) < +∞

Our first step is to improve the classical monotonicity formula for Θ(r), that can
be found in [48] (for N = Rm) and [2] (for N = Hnk ). For k ≥ 0, let vk, Vk denote
the volume function, respectively, of geodesic spheres and balls in the space form of
sectional curvature −k, i.e.,

(3.1) vk(s) = ωm−1snk(s)m−1, Vk(s) =

∫ s

0

vk(σ)dσ,

where ωm−1 is the volume of the unit sphere Sm−1. Although we shall not use all the
four monotone quantities in (3.3) below, nevertheless they have independent interest,
and for this reason we state the result in its full strength. We define the flux J(s) of
∇r over the extrinsic sphere Γs:

(3.2) J(s)
.
=

1

vk(s)

∫
Γs

|∇r|.

Proposition 3 (The monotonicity formulae). Suppose that N has a pole ō and satisfies
(1.9), and let ϕ : Mm → Nn be a proper minimal immersion. Then, the functions

(3.3) Θ(s),
1

Vk(s)

∫
{0≤r≤s}

|∇r|2

are absolutely continuous and monotone non-decreasing. Moreover, J(s) coincides, on
an open set of full measure, with the absolutely continuous function

J̄(s)
.
=

1

vk(s)

∫
{r≤s}

∆r

and J̄(s), Vk(s)
[
J̄(s) − Θ(s)

]
are non-decreasing. In particular, J(s) ≥ Θ(s) a.e. on

R+.
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Remark 4. To the best of our knowledge, the monotonicity of J(s) (aside from its
differentiability properties) has first been shown, in the Euclidean setting, in a paper
by V. Tkachev [51].

Proof. We first observe that, in view of Lemma 2 and Proposition 2 applied with
f = ∆r,

(3.4) vk(s)J̄(s)
.
=

∫
{r≤s}

∆r ≡
∫ s

0

[∫
Γσ

∆r

|∇r|

]
dσ

is absolutely continuous, and by the divergence theorem it coincides with vk(s)J(s) for
regular values of s. Consider

(3.5) f(s) =

∫ s

0

Vk(σ)

vk(σ)
dσ =

∫ s

0

1

vk(σ)

[∫ σ

0

vk(τ)dτ

]
dσ

which is a C2 solution of

f ′′ + (m− 1)
sn′k
snk

f ′ = 1 on R+, f(0) = 0, f ′(0) = 0,

and define ψ(x) = f(r(x)) ∈ C2(M). Let {ei} be a local orthonormal frame on M .
Since ϕ is minimal, by the chain rule and the lower bound in the Hessian comparison
theorem 2.5

(3.6) ∆r =

m∑
j=1

Hess (ρ̄)
(
dϕ(ej),dϕ(ej)

)
≥ sn′k(r)

snk(r)

(
m− |∇r|2

)
.

We then compute

(3.7)

∆ψ = f ′′|∇r|2 + f ′∆r ≥ f ′′|∇r|2 + f ′
sn′k
snk

(m− |∇r|2)

= 1 +
(
1− |∇r|2

)(
f ′(r)

sn′k(r)

snk(r)
− f ′′(r)

)
.

It is not hard to show that the function

z(s)
.
= f ′(s)

sn′k(s)

snk(s)
− f ′′(s) =

m

m− 1

Vk(s)v′k(s)

v2
k(s)

− 1.

is non-negative and non-decreasing on R+. Indeed, from

(3.8) z(0) = 0, z′(s) =
m

vk(s)

[
kVk(s)− 1

m− 1
v′k(s)z(s)

]
we deduce that z′ > 0 when z < 0, which proves that z ≥ 0 on R+. Fix 0 < t < s
regular values for r. Integrating (3.7) on the smooth compact set {t ≤ r ≤ s} and
using the divergence theorem we deduce

(3.9)
Vk(s)

vk(s)

∫
Γs

|∇r| − Vk(t)

vk(t)

∫
Γt

|∇r| ≥ vol
(
{t ≤ r ≤ s}

)
.

By the definition of J(s) and Θ(s), and since J(s) ≡ J̄(s) for regular values, the above
inequality rewrites as follows:

Vk(s)J̄(s)− Vk(t)J̄(t) ≥ Vk(s)Θ(s)− Vk(t)Θ(t),

or in other words,

Vk(s)
[
J̄(s)−Θ(s)

]
≥ Vk(t)

[
J̄(t)−Θ(t)

]
.
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Since all the quantities involved are continuous, the above relation extends to all t, s ∈
R+, which proves the monotonicity of Vk[J̄ − Θ]. Letting t → 0 we then deduce that
J̄(s) ≥ Θ(s) on R+. Next, by using f ≡ 1 and f ≡ |∇r|2 in Lemma 2 and exploiting
again Proposition 2 we get
(3.10)

vol
(
{t ≤ r ≤ s}

)
=

∫ s

t

[∫
Γσ

1

|∇r|

]
dσ,

∫
{0≤r≤s}

|∇r|2 =

∫ s

0

[∫
Γσ

|∇r|
]

dσ,

showing that the two quantities in (3.3) are absolutely continuous. Plugging into (3.9),
letting t→ 0 and using that z ≥ 0 we deduce

(3.11)
Vk(s)

vk(s)

∫
Γs

|∇r| ≥
∫ s

0

[∫
Γσ

1

|∇r|

]
dσ,

for regular s, which together with the trivial inequality |∇r|−1 ≥ |∇r| and with (3.10)
gives

(3.12)

Vk(s)

∫
Γs

|∇r| ≥ vk(s)

∫ s

0

[∫
Γσ

|∇r|
]

dσ,

Vk(s)

[
d

ds
vol
(
{r ≤ s}

)]
≥ vk(s)vol

(
{r ≤ s}

)
.

Integrating the second inequality we obtain the monotonicity of Θ(s), while integrating
the first one and using (3.10) we obtain the monotonicity of the second quantity in
(3.3). To show the monotonicity of J̄(s), by (3.6) and using the full information coming
from (2.5) we obtain

(3.13)
sn′k(r)

snk(r)

(
m− |∇r|2

)
≤ ∆r ≤ g′(r)

g(r)

(
m− |∇r|2

)
.

In view of the identity (3.4), we consider regular s > 0, we divide (3.13) by |∇r| and
integrate on Γs to get

(3.14)
sn′k(s)

snk(s)

∫
Γs

m− |∇r|2

|∇r|
≤
(
vk(s)J̄(s)

)′ ≤ g′(s)

g(s)

∫
Γs

m− |∇r|2

|∇r|
.

Writing m− |∇r|2 = m(1− |∇r|2) + (m− 1)|∇r|2, setting for convenience

(3.15) vg(s) = ωm−1g(s)m−1, T (s)
.
=

∫
Γs
|∇r|−1∫

Γs
|∇r|

− 1,

rearranging we deduce the two inequalities

(3.16)

(
vk(s)J̄(s)

)′ ≥ v′k(s)J̄(s) +m
sn′k(s)

snk(s)
T (s)vk(s)J̄(s)

(
vk(s)J̄(s)

)′ ≤ v′g(s)

vg(s)
vk(s)J̄(s) +m

g′(s)

g(s)
T (s)vk(s)J̄(s).

Expanding the derivative on the left-hand side, we deduce

(3.17)

J̄ ′(s) ≥ m
sn′k(s)

snk(s)
T (s)J̄(s),(

vk(s)

vg(s)
J̄(s)

)′
≤ m

g′(s)

g(s)
T (s)

(
vk(s)

vg(s)
J̄(s)

)
.
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The first inequality together with the non-negativity of T implies the desired J̄ ′ ≥ 0,
concluding the proof. The second inequality in (3.17), on the other hand, will be useful
in awhile. �

Remark 5. The properness of ϕ is essential in the above proof to justify integrations
by parts. However, if ϕ is non-proper, at least when N is Cartan-Hadamard with
sectional curvature K̄ ≤ −k the function Θ is still monotone in an extended sense. In
fact, as it has been observed in [54] for N = Rm+1, Θ(s) = +∞ for each s such that
{r < s} contains a limit point of ϕ. Briefly, if x̄ ∈ N is a limit point with ρ̄(x̄) < s,
choose ε > 0 such that 2ε < s − ρ̄(x̄), and a diverging sequence {xj} ⊂ M such that
ϕ(xj) → x̄. We can assume that the balls Bε(xj) ⊂ M are pairwise disjoint. Since

dist(ϕ(x), ϕ(xj)) ≤ dist(x, xj), we deduce that ϕ(Bε(xj)) ⊂ {r < s} for j large enough,
and thus

vol
(
{r ≤ s}

)
≥
∑
j

vol(Bε(xj)).

However, using that K̄ ≤ −k and since N is Cartan-Hadamard, we can apply the
intrinsic monotonicity formula (see Proposition 7 in Appendix 2 below) with chosen
origin ϕ(xj) to deduce that vol(Bε(xj)) ≥ Vk(ε) for each j, whence vol({r ≤ s}) = +∞.

We next investigate conditions equivalent to the finiteness of the density.

Proposition 4. Suppose that N has a pole and satisfies (1.9). Let ϕ : Mm → Nn be
a proper minimal immersion. Then, the following properties are equivalent:

(1) Θ(+∞) < +∞;
(2) J̄(+∞) < +∞.

Moreover, both (1) and (2) imply that

(3)
sn′k(s)

snk(s)

[∫
Γs
|∇r|−1∫

Γs
|∇r|

− 1

]
∈ L1(R+).

If further N has an integral pinching to Rn or Hnk , then (1)⇔ (2)⇔ (3).

Proof. We refer to the proof of the previous proposition for notation and formulas.
(2)⇒ (1) is obvious since, by the previous proposition, J̄(s) ≥ Θ(s).
(1) ⇒ (2). Note that the limit in (2) exists since J̄ is monotone. Suppose by contra-
diction that J̄(+∞) = +∞, let c > 0 and fix sc large enough that J̄(s) ≥ c for s ≥ sc.
From (3.10) and (3.2), and since J̄ ≡ J a.e.,

Θ(s) =
1

Vk(s)

∫ s

0

[∫
Γσ

1

|∇r|

]
dσ ≥ 1

Vk(s)

∫ s

0

vk(σ)J(σ)dσ

≥ 1

Vk(s)

∫ s

sc

vk(σ)J(σ)dσ ≥ cVk(s)− Vk(sc)

Vk(s)
.

Letting s → +∞ we get Θ(+∞) ≥ c, hence Θ(+∞) = +∞ by the arbitrariness of c,
contradicting (1).
(2)⇒ (3). Integrating (3.17) on [1, s] we obtain
(3.18)

c1 exp

{
m

∫ s

1

sn′k(σ)

snk(σ)
T (σ)dσ

}
≤ J̄(s) ≤ c2

vg(s)

vk(s)
exp

{
m

∫ s

1

[
g′(σ)

g(σ)

]
T (σ)dσ

}
,
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for some constants c1, c2 > 0, where vg(s), T (s) is as in (3.15). The validity of (2) and
the first inequality show that sn′kT/snk ∈ L1(+∞), that is, (3) is satisfied.
(3)⇒ (2). In our pinching assumptions on N , (ii) in Proposition 1 gives

g′

g
=

sn′k
snk

+ ζ, with ζ ≤ C sn′k
snk

on R+, and g ≤ Csnk on R+,

for some C > 0. Plugging into (3.18) and recalling the definition of vg we obtain

J̄(s) ≤ c3 exp

{
c4

∫ s

1

[
sn′k(σ)

snk(σ)

]
T (σ)dσ

}
,

for some c3, c4 > 0, and (3)⇒ (2) follows by letting s→ +∞. �

Remark 6. It is worth to observe that a version of Propositions 3 and 4 that covers
most of the material presented above has also been independently proved in the very
recent [27], see Theorems 2.1 and 6.1 therein. We mention that their results are stated
for more general ambient spaces subjected to specific function-theoretic requirements,
and that, in Proposition 4, it holds in fact J̄(+∞) ≡ Θ(+∞). For an interesting
characterization, when N = Rn, of the limit J̄(+∞) in terms of an invariant called the
projective volume of M we refer to [51].

4. Proof of Theorem 1

Let Mm be a minimal properly immersed submanifold in Nn, and suppose that N
has a pointwise or integral pinching towards a space form. Because of the upper bound
in (1.9), by [18] and [5] the bottom of σ(M) satisfies

(4.1) inf σ(M) ≥ (m− 1)2k

4
.

Briefly, the lower bound in (3.13) implies

∆r ≥ (m− 1)
sn′k(r)

snk(r)
≥ (m− 1)

√
k on M.

Integrating on a relatively compact, smooth open set Ω and using the divergence
theorem and |∇r| ≤ 1, we deduce Hm−1(∂Ω) ≥ (m − 1)

√
kvol(Ω). The desired (4.1)

then follows from Cheeger’s inequality:

inf σ(M) ≥ 1

4

(
inf

ΩbM

Hm−1(∂Ω)

vol(Ω)

)2

≥ (m− 1)2k

4
.

To complete the proof of the theorem, since σ(M) is closed it is sufficient to show that
each λ > (m− 1)2k/4 lies in σ(M).

Set for convenience β
.
=
√
λ− (m− 1)2k/4 and, for 0 ≤ t < s, let At,s denote the

extrinsic annulus
At,s

.
=
{
x ∈M : r(x) ∈ [t, s]

}
.

Define the weighted measure dµk
.
= vk(r)−1dx on {r ≥ 1}. Hereafter, we will always

restrict to this set. Consider

(4.2) ψ(s)
.
=

eiβs√
vk(s)

, which solves ψ′′ + ψ′
v′k
vk

+ λψ = a(s)ψ,

where

(4.3) a(s)
.
=

(m− 1)2k

4
+

1

4

(
v′k(s)

vk(s)

)2

− 1

2

v′′k (s)

vk(s)
→ 0
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as s → +∞. For technical reasons, fix R > 1 large such that Θ(R) > 0. Fix t, s, S
such that

R+ 1 < t < s < S − 1,

and let η ∈ C∞c (R) be a cut-off function satisfying

0 ≤ η ≤ 1, η ≡ 0 outside of (t− 1, S), η ≡ 1 on (t, s),

|η′|+ |η′′| ≤ C0 on [t− 1, s], |η′|+ |η′′| ≤ C0

S−s on [s, S]

for some absolute constant C0 (the last relation is possible since S− s ≥ 1). The value
S will be chosen later in dependence of s. Set ut,s

.
= η(r)ψ(r) ∈ C∞c (M). Then, by

(4.2),

∆ut,s + λut,s = (η′′ψ + 2η′ψ′ + ηψ′′)|∇r|2 + (η′ψ + ηψ′)∆r + ληψ

=

(
η′′ψ + 2η′ψ′ − v′k

vk
ηψ′ − ληψ + aηψ

)
(|∇r|2 − 1) + aηψ

+(η′ψ + ηψ′)

(
∆r − v′k

vk

)
+

(
η′′ψ + 2η′ψ′ + η′ψ

v′k
vk

)
.

Using that there exists an absolute constant c for which |ψ| + |ψ′| ≤ c/
√
vk, the

following inequality holds:

‖∆ut,s + λut,s‖22 ≤ C

(∫
At−1,S

[
(1− |∇r|2)2 +

(
∆r − v′k

vk

)2

+ a(r)2

]
dµk

+
µk(As,S)

(S − s)2
+ µk(At−1,t)

)
,

for some suitable C depending on c, C0. Since ‖ut,s‖22 ≥ µk(At,s) and (1 − |∇r|2)2 ≤
1− |∇r|2, we obtain
(4.4)

‖∆ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1

µk(At,s)

∫
At−1,S

[
1− |∇r|2 +

(
∆r − v′k

vk

)2

+ a(r)2

]
dµk

+
1

(S − s)2

µk(As,S)

µk(At,s)
+
µk(At−1,t)

µk(At,s)

)
Next, using (2.5),

∆r =

m∑
j=1

Hess (ρ̄)(ei, ei) =
sn′k(r)

snk(r)
(m−|∇r|2)+T (x) =

v′k(r)

vk(r)
+

sn′k(r)

snk(r)
(1−|∇r|2)+T (x),

where, by Proposition 1,

(4.5)

0 ≤ T (x)
.
=

m∑
j=1

Hess (ρ̄)(ei, ei)−
sn′k(r)

snk(r)
(m− |∇r|2)

≤
(
g′(r)

g(r)
− sn′k(r)

snk(r)

)
(m− |∇r|2) = ζ(r)(m− |∇r|2) ≤ mζ(r).
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We thus obtain, on the set {r ≥ 1},

(4.6)

(
∆r − v′k

vk

)2

+ 1− |∇r|2 + a(r)2 ≤
[

sn′k(r)

snk(r)
(1− |∇r|2) +mζ(r)

]2

+1− |∇r|2 + a(r)2

≤ C
(
ζ(r)2 + 1− |∇r|2 + a(r)2

)
for some absolute constant C. Note that, in both our pointwise or integral pinching
assumptions on N , by Proposition 1 it holds ζ(s)→ 0 as s→ +∞. Set

F (t)
.
= sup
σ∈[t−1,+∞)

[a(σ)2 + ζ(σ)2],

and note that F (t) → 0 monotonically as t → +∞. Integrating (4.6) we get the
existence of C > 0 independent of s, t such that

(4.7)

∫
At−1,S

[(
∆r − v′k

vk

)2

+ 1− |∇r|2 + a(r)2

]
dµk

≤ C

(
F (t)

∫
At−1,S

1

vk(r)
+

∫
At−1,S

1− |∇r|2

vk(r)

)
.

Using the coarea’s formula and the transversality lemma, for each 0 ≤ a < b

(4.8) µk(Aa,b) =

∫
Aa,b

1

vk(r)
=

∫ b

a

J
[
1 + T

]
,

∫
Aa,b

1− |∇r|2

vk(r)
=

∫ b

a

JT,

where J and T are defined, respectively, in (3.2) and (3.15). Summarizing, in view of
(4.7) and (4.8) we deduce from (4.4) the following inequalities:

(4.9)

‖∆ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1∫ s

t
J
[
1 + T

] [F (t)

∫ S

t−1

J
[
1 + T

]
+

∫ S

t−1

JT

]

+

∫ S
s
J
[
1 + T

]
(S − s)2

∫ s
t
J
[
1 + T

] +

∫ t
t−1

J
[
1 + T

]∫ s
t
J
[
1 + T

] ) .
= Q(t, s).

If we can guarantee that

(4.10) lim inf
t→+∞

lim inf
s→+∞

‖∆ut,s + λut,s‖22
‖ut,s‖22

= 0,

then we are able to construct a sequence of approximating eigenfunctions for λ as
follows: fix ε > 0. By (4.10) there exists a divergent sequence {ti} such that, for
i ≥ iε,

lim inf
s→+∞

‖∆uti,s + λuti,s‖22
‖uti,s‖22

< ε/2.

For i = iε, pick then a sequence {sj} realizing the liminf. For j ≥ jε(iε, ε)

(4.11) ‖∆uti,sj + λuti,sj‖22 < ε‖uti,sj‖22,
Writing uε

.
= utiε ,sjε , by (4.11) from the set {uε} we can extract a sequence of approx-

imating eigenfunctions for λ, concluding the proof that λ ∈ σ(M). To show (4.10), by
(4.9) it is enough to prove that

(4.12) lim inf
t→+∞

lim inf
s→+∞

Q(t, s) = 0.
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Suppose, by contradiction, that (4.12) were not true. Then, there exists a constant
δ > 0 such that, for each t ≥ tδ, lim infs→+∞Q(t, s) ≥ 2δ, and thus for t ≥ tδ and
s ≥ sδ(t)

(4.13) F (t)

∫ S

t−1

J
[
1+T

]
+

∫ S

t−1

JT +

∫ S

s

J
[
1 + T

]
(S − s)2

+

∫ t

t−1

J
[
1+T

]
≥ δ

∫ s

t

J
[
1+T

]
,

and rearranging

(4.14) (F (t)+1)

∫ S

t−1

J
[
1+T

]
−
∫ S

t−1

J+

∫ S

s

J
[
1 + T

]
(S − s)2

+

∫ t

t−1

J
[
1+T

]
≥ δ

∫ s

t

J
[
1+T

]
.

We rewrite the above integrals in order to make Θ(s) appear. Integrating by parts and
using again the coarea’s formula and the transversality lemma,
(4.15)∫ b

a

J
[
1 + T

]
=

∫
Aa,b

1

vk(r)
=

∫ b

a

1

vk(σ)

[∫
Γσ

1

|∇r|

]
dσ =

∫ b

a

(
Vk(σ)Θ(σ)

)′
vk(σ)

dσ

=
Vk(b)

vk(b)
Θ(b)− Vk(a)

vk(a)
Θ(a) +

∫ b

a

Vkv
′
k

v2
k

Θ.

To deal with the term containing the integral of J alone in (4.14), we use the inequality
J(s) ≥ Θ(s) coming from the monotonicity formulae in Proposition 3. This passage is
crucial for us to conclude. Inserting (4.15) and J ≥ Θ into (4.14) we get
(4.16)

(F (t) + 1)
Vk(S)

vk(S)
Θ(S)− (F (t) + 1)

Vk(t− 1)

vk(t− 1)
Θ(t− 1) + (F (t) + 1)

∫ S

t−1

Vkv
′
k

v2
k

Θ

−
∫ S

t−1

Θ +
1

(S − s)2

[
Vk(S)

vk(S)
Θ(S)− Vk(s)

vk(s)
Θ(s) +

∫ S

s

Vkv
′
k

v2
k

Θ

]
+
Vk(t)

vk(t)
Θ(t)

−Vk(t− 1)

vk(t− 1)
Θ(t− 1) +

∫ t

t−1

Vkv
′
k

v2
k

Θ ≥ δ Vk(s)

vk(s)
Θ(s)− δ Vk(t)

vk(t)
Θ(t) + δ

∫ s

t

Vkv
′
k

v2
k

Θ.

To reach the desired contradiction, the idea is to prove that (1.10) cannot hold by
showing that

(4.17)

∫ S

t−1

Θ

must grow sufficiently fast as S → +∞. To do so, we need to simplify (4.16) in order
to find a suitable differential inequality for (4.17).
We first observe that, both for k > 0 and for k = 0, there exists an absolute constant
ĉ such that ĉ−1 ≤ Vkv′k/v2

k ≤ ĉ on [1,+∞). Furthermore, by the monotonicity of Θ,

(4.18)

∫ S

s

Vkv
′
k

v2
k

Θ ≤ ĉ(S − s)Θ(S).

Next, we deal with the two terms in the left-hand side of (4.16) that involve (4.17):

(F (t) + 1)

∫ S

t−1

Vkv
′
k

v2
k

Θ−
∫ S

t−1

Θ = F (t)

∫ S

t−1

Vkv
′
k

v2
k

Θ +

∫ S

t−1

Vkv
′
k − v2

k

v2
k

Θ

≤ ĉF (t)

∫ S

t−1

Θ +

∫ S

t−1

Vkv
′
k − v2

k

v2
k

Θ.
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The key point is the following relation:

(4.19)
Vk(s)v′k(s)− vk(s)2

vk(s)2

{
= −1/m if k = 0;

→ 0 as s→ +∞, if k > 0.

Define

ω(t)
.
= sup

[t−1,+∞)

Vkv
′
k − v2

k

v2
k

, χ(t)
.
= ĉF (t) + ω(t).

Again by the monotonicity of Θ,

(4.20)

(F (t) + 1)

∫ S

t−1

Vkv
′
k

v2
k

Θ−
∫ S

t−1

Θ ≤
[
ĉF (t) + ω(t)

] ∫ S

t−1

Θ = χ(t)

∫ S

t−1

Θ

≤ χ(t)Θ(t) + χ(t)

∫ S

t

Θ.

For simplicity, hereafter we collect all the terms independent of s in a function that
we call h(t), which may vary from line to line. Inserting (4.18) and (4.20) into (4.16)
we infer

(4.21)

[(
F (t) + 1 +

1

(S − s)2

)
Vk(S)

vk(S)
+

ĉ

S − s

]
Θ(S) + χ(t)

∫ S

t

Θ

≥ h(t) +

(
δ +

1

(S − s)2

)
Vk(s)

vk(s)
Θ(s) + δĉ−1

∫ s

t

Θ.

Summing δĉ−1(S − s)Θ(S) to the two sides of the above inequality, using the mono-
tonicity of Θ and getting rid of the term containing Θ(s) we obtain

(4.22)

[(
F (t) + 1 +

1

(S − s)2

)
Vk(S)

vk(S)
+

ĉ

S − s
+ δĉ−1(S − s)

]
Θ(S) + χ(t)

∫ S

t

Θ

≥ h(t) + δĉ−1

∫ S

t

Θ.

Using (4.19), the definition of χ(t) and the properties of ω(t), F (t), we can choose tδ
sufficiently large to guarantee that

(4.23) δĉ−1 − χ(t) ≥ ck
.
=


1
m + δĉ−1

2 if k = 0,

δĉ−1

2 if k > 0,

hence
(4.24)[(

F (t) + 1 +
1

(S − s)2

)
Vk(S)

vk(S)
+

ĉ

S − s
+ δĉ−1(S − s)

]
Θ(S) ≥ h(t) + ck

∫ S

t

Θ.

We now specify S(s) depending on whether k > 0 or k = 0.

The case k > 0.
We choose S

.
= s+ 1. In view of the fact that Vk/vk is bounded above on R+, (4.24)

becomes

(4.25) c̄Θ(s+ 1) ≥ h(t) + ck

∫ s+1

t

Θ ≥ ck
2

∫ s+1

t

Θ,
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for some c̄ independent of t, s. Note that the last inequality is satisfied provided
s ≥ sδ(t) is chosen to be sufficiently large, since the monotonicity of Θ implies that
Θ 6∈ L1(R+). Integrating and using again the monotonicity of Θ, we get

(s+ 1− t)Θ(s+ 1) ≥
∫ s+1

t

Θ ≥
[∫ s0+1

t

Θ

]
exp

{ck
2c̄

(s− s0)
}
,

hence Θ(s) grows exponentially. Ultimately, this contradicts our assumption (1.10).

The case k = 0.
We choose S

.
= s+

√
s. Since Vk(S)/vk(S) = S/m, from (4.24) we infer

(4.26)

[(
F (t) + 1 +

1

s

)
S

m
+

ĉ√
s

+ δĉ−1
√
s

]
Θ(S) ≥ h(t) + ck

∫ S

t

Θ.

Using the expression of ck and the fact that F (t)→ 0, up to choosing tδ and then sδ(t)
large enough we can ensure the validity of the following inequality:[(

F (t) + 1 +
1

s

)
S

m
+

ĉ√
s

+ δĉ−1
√
s

]
<

[
1

m
+
δĉ−1

4

]
S =

[
ck −

δĉ−1

4

]
S

for t ≥ tδ and s ≥ sδ(t). Plugging into (4.24), and using that Θ 6∈ L1(R+),

SΘ(S) ≥ h(t) +
ck

ck − δĉ−1/4

∫ S

t

Θ ≥ (1 + ε)

∫ S

t

Θ,

for a suitable ε > 0 independent of t, S, and provided that S ≥ sδ(t) is large enough.
Integrating and using again the monotonicity of Θ,

SΘ(S) ≥ (S − t)Θ(S) ≥
∫ S

t

Θ ≥

[∫ S0

t

Θ

](
S

S0

)1+ε

,

hence Θ(S) grows polynomially at least with power ε, contradicting (1.10).
Concluding, both for k > 0 and for k = 0 assuming (4.13) leads to a contradiction
with our assumption (1.10), hence (4.10) holds, as required.

5. Proof of Theorem 2

We first show that ϕ is proper and that M is diffeomorphic to the interior of a
compact manifold with boundary. Both the properties are consequence of the following
lemma due to [6], which improves on [1, 20, 10, 4].

Lemma 3. Let ϕ : Mm → Nn be an immersed submanifold into an ambient manifold
N with a pole and suppose that N satisfies (1.9) for some k ≥ 0. Denote by Bs = {x ∈
M ; ρ(x) ≤ s} the intrinsic ball on M . Assume that

(5.1)

(i) lim sup
s→+∞

s‖II‖L∞(∂Bs) < 1 if k = 0 in (1.9), or

(ii) lim sup
s→+∞

‖II‖L∞(∂Bs) <
√
k if k > 0 in (1.9).

Then, ϕ is proper and there exists R > 0 such that |∇r| > 0 on {r ≥ R}, where r
is the extrinsic distance function. Consequently, the flow

(5.2) Φ : R+ × {r = R} → {r ≥ R}, d

ds
Φs(x) =

∇r
|∇r|2

(
Φs(x)

)
is well defined, and M is diffeomorphic to the interior of a compact manifold with
boundary.
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The properness of ϕ enables us to apply Proposition 4. Therefore, to show that
Θ(+∞) < +∞ it is enough to check that

(5.3)
sn′k(s)

snk(s)

∫
Γs

[
|∇r|−1 − |∇r|

]∫
Γs
|∇r|

∈ L1(+∞).

To achieve (5.3), we need to bound from above the rate of approaching of |∇r| to 1
along the flow Φ in Lemma 3. We begin with the following

Lemma 4. Suppose that N has a pole and radial sectional curvature satisfying (1.9),
and that ϕ : Mm → Nn is a proper minimal immersion such that |∇r| > 0 outside
of some compact set {r ≤ R}. Let Φ denote the flow of ∇r/|∇r|2 as in (5.2) and let
γ : [R,+∞)→M be a flow line starting from some x0 ∈ {r = R}. Then, along γ,

(5.4)
d

ds

(
snk(r)

√
1− |∇r|2

)
≤ snk(r)|II(γ(s))|

Proof. Observe that r(γ(s)) = s − R. By the chain rule and the Hessian comparison
theorem 2.5,

d

ds
|∇r|2 = 2Hess r(∇r, γ̇) =

2

|∇r|2
Hess r(∇r,∇r)

=
2

|∇r|2
Hess (ρ̄)

(
dϕ(∇r),dϕ(∇r)

)
+

2

|∇r|2
(
∇̄ρ̄, II(∇r,∇r)

)
≥ 2

sn′k(r)

snk(r)
(1− |∇r|2) + 2|∇̄⊥ρ̄||II|,

where ∇̄⊥ρ̄ is the component of ρ̄ perpendicular to dϕ(TM) and |∇̄⊥ρ| =
√

1− |∇r|2.
Then,

d

ds
|∇r|2 ≥ 2

sn′k(r)

snk(r)
(1− |∇r|2) + 2|II|

√
1− |∇r|2.

Multiplying by sn2
k(r) gives

d

ds

(
sn2
k(r)(1− |∇r|2)

)
≤ 2sn2

k(r)|II|
√

1− |∇r|2,

which implies (5.4). �

The above lemma relates the behaviour of |∇r| to that of the second fundamental
form. The next result makes this relation explicit in the two cases considered in
Theorem 2.

Proposition 5. In the assumptions of the above proposition, suppose further that
either

(5.5)

(i) ‖II‖L∞(∂Bs) ≤
C

s logα/2 s
if k = 0 in (1.9), or

(ii) ‖II‖L∞(∂Bs) ≤
C

√
s logα/2 s

if k > 0 in (1.9).

for s ≥ 1 and some constants C > 0 and α > 0. Here, ∂Bs is the boundary of the
intrinsic ball Bs(o). Then, |∇r|(γ(s)) → 1 as s diverges, and if s > 2R and R is
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sufficiently large,

(5.6)

in the case (i), 1− |∇r(γ(s))|2 ≤ Ĉ

logα s

in the case (ii), 1− |∇r(γ(s))|2 ≤ Ĉ

s logα s

for some constant Ĉ depending on R.

Proof. We begin by observing that, in (5.5), ∂Bs can be replaced by Γs. Indeed, since
r(x) ≤ r(o) + ρ(x), we can choose R large enough depending on r(o), α in such a way
that, for instance in (i),

|II(x)| ≤ C

ρ(x) logα/2 ρ(x)
≤ C1

r(x) logα/2 r(x)

for some absolute C1 and for each r ≥ R. Thus, from (i) and (ii) we infer the bounds

(5.7) ‖II‖L∞(Γs) ≤
C1

s logα/2 s
for (i), ‖II‖L∞(Γs) ≤

C1√
s logα/2 s

for (ii).

Because of (5.7), up to enlarging R further there exists a uniform constant C2 > 0
such that, on [R,+∞),

(5.8) snk(s)|II(γ(s))| ≤


C1

logα/2 s
≤ C2

d

ds

(
s

logα/2 s

)
if k = 0;

C1snk(s)
√
s logα/2 s

≤ C2
d

ds

(
snk(s)

√
s logα/2 s

)
if k > 0.

Integrating on [R, s] and using (5.4) we get

√
1− |∇r(γ(s))|2 ≤


C3(R)

s
+

C4

logα/2 s
≤ C5

logα/2 s
if k = 0,

C3(R)

snk(s)
+

C4√
s logα/2 s

≤ C5√
s logα/2 s

if k > 0,

for some absolute constants C4, C5 > 0 and if s > 2R and R is large enough. The
desired (5.6) follows by taking squares.

�

We are now ready to conclude the proof of Theorem 2 by showing that M has finite
density or, equivalently, that (5.3) holds.

Let η(s) be either

(5.9)
1

logα s
when k = 0, or

1

s logα s
when k > 0,

where α > 1 and C is a large constant. In our assumptions, we can apply Lemma 4
and Proposition 5 to deduce, according to (5.6), that, for large enough R,

1− |∇r(γ(s))|2 ≤ Cη(s) on (R,+∞),

where γ(s) is a flow curve of Φ in (5.2) and C = C(R) is large enough. In particular,
|∇r(γ(s))| → 1 as s→ +∞. We therefore deduce the existence of a constant C2(R) > 0
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such that

sn′k(s)

snk(s)

∫
Γs

[
|∇r|−1 − |∇r|

]∫
Γs
|∇r|

≤ C sn′k(s)

snk(s)
η(s)

∫
Γs
|∇r|−1∫

Γs
|∇r|

≤ C2
sn′k(s)

snk(s)
η(s).

In both our cases k = 0 and k > 0, since α > 1 it is immediate to check that
sn′kη/snk ∈ L1(+∞), proving (5.3).

6. Appendix 1: finite total curvature solutions of Plateau’s problem

In this appendix, we show that (smooth) solutions of Plateau’s problem at infinity
Mm → Hn have finite total curvature whenever M is a hypersurface and the boundary
datum Σ ⊂ ∂∞Hn is sufficiently regular. Consider the Poincaré model of Hn, and let
M → Hn be a proper minimal submanifold. We say that M is Ck,α up to ∂∞Hn if its
closure M in the topology of the closed unit ball Hn = Hn ∪ ∂∞Hn is a Ck,α-manifold
with boundary. We begin with a lemma, whose proof have been suggested to the
second author by L. Mazet.

Lemma 5. Let ϕ : Mm → Hn be a proper minimal submanifold. If M is of class C2

up to ∂∞Hn, then M has finite total curvature.

Proof. The Euclidean metric 〈 , 〉 is related to the Poincaré metric 〈 , 〉 by the formula

〈 , 〉 = λ2〈 , 〉, with λ =
1− |x|2

2
.

Given a proper, minimal submanifold ϕ : (Mm, g) → (Hn, 〈 , 〉), we associate the

isometric immersion ϕ̄ : (M, (λ2 ◦ϕ)g)→ (Hn, 〈 , 〉), ϕ̄(x)
.
= ϕ(x). Fix a local Darboux

frame {ei, eα} on (M, g) for ϕ, with {ei} tangent to M and {eα} in the normal bundle,
and let ēi = ei/λ, ēα = eα/λ be the corresponding Darboux frame on (M,λ2g) for ϕ̄.
Let dV and dV̄ = λmdV be the volume forms of (M, g) and (M,λ2g), and denote with
hαij and h̄αij the coefficients of the second fundamental forms of ϕ and ϕ̄, respectively.
A standard computation shows that

h̄αij =
1

λ
hαij −

λα
λ
δij ,

where λα = eα(λ). Evaluating the norms of II and ĪI, since hαij is trace-free by
minimality we obtain

|ĪI|2 = λ−2|II|2 +m|∇⊥ log λ|2 ≥ λ−2|II|2,
and thus |ĪI|mdV̄ ≥ |II|mdV . Integrating on M it holds∫

M

|II|mdV ≤
∫
M

|ĪI|mdV̄ .

However, the last integral is finite since M is C2 up to ∂∞Hn, and thus ϕ has finite
total curvature. �

In view of Lemma 5, we briefly survey on some boundary regularity results for
solutions of Plateau’s problem. To the best of our knowledge, we just found regularity
results for hypersurfaces. Let Mm → Hm+1 be a solution of Plateau’s problem for a
compact, (m− 1)-dimensional submanifold Σm−1 ⊂ ∂∞Hm+1. Then, a classical result
of Hardt and Lin [30] states that if Σm−1 ↪→ ∂∞Hn is properly embedded and C1,α,
with 0 ≤ α ≤ 1, near Σ each solution Mm → Hn of Plateau’s problem is a finite
collection of C1,α-manifolds with boundary, which are disjoint except at the boundary.
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Therefore, near Σ, M can locally be described as a graph, and the higher regularity
theory in [39, 40, 53, 52], applies to give the following: if Σ is Cj,α, then M is Cj,α up
to ∂∞Hn whenever

- 1 ≤ j ≤ m− 1 and 0 ≤ α ≤ 1, or
- j = m and 0 < α < 1, or
- j ≥ m+ 1 and 0 < α < 1, under a further condition on Σ if m is odd.

(see the statement and references in [40]). In particular, because of Lemma 5, if Σ is
C2,α for some 0 < α < 1 then M has finite total curvature (provided that it is smooth).

7. Appendix 2: the intrinsic monotonicity formula

We conclude by recalling an intrinsic version of the monotonicity formula. To state
it, we premit the following observation due to H. Donnelly and N. Garofalo, Proposition
3.6 in [23].

Proposition 6. For k ≥ 0, the function

(7.1)
Vk(s)

vk(s)
is non-decreasing on R+.

Proof. The ratio v′k/vk is monotone decreasing by the very definition of vk. Then,
since v′k > 0, the desired monotonicity follows from a lemma at p. 42 of [12]. �

Proposition 7 (The intrinsic monotonicity formula). Suppose that N has a pole ō
and satisfies (1.9), and let ϕ : Mm → Nn be a complete, minimal immersion. Suppose
that ō ∈ ϕ(M), and choose o ∈ M be such that ϕ(o) = ō. Then, denoting with ρ the
intrinsic distance function from o and with Bs = {ρ ≤ s},

(7.2)
vol(Bs)

Vk(s)

is monotone non-decreasing on R+.

Proof. We refer to Proposition 3 for definitions and computations. We know that the
function ψ = f ◦ r, with f as in (3.5), solves ∆ψ ≥ 1 on M . Integrating on Bs and
using the definition of ψ we obtain

vol(Bs) ≤
∫
Bs

∆ψ =

∫
∂Bs

〈∇ψ,∇ρ〉 ≤
∫
∂Bs

Vk(r)

vk(r)
.

Next, since ō = ϕ(o), it holds r(x) ≤ ρ(x) on M . Using then Proposition 6, we deduce

vol(Bs) ≤
Vk(s)

vk(s)
vol(∂Bs).

Integrating we obtain the monotonicity of the desired (7.2). �
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Dep. Matemática, UFC, Campus do Pici - Bloco 914, 60.455-760, Fortaleza - CE
E-mail address: fabio@mat.ufc.br
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