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Abstract

Mixtures of matrix Gaussian distributions provide a probabilistic framework for
clustering continuous matrix-variate data, which are increasingly common in various
fields. Despite their widespread use and successful applications, these models suf-
fer from over-parameterization, making them not suitable for even moderately sized
matrix-variate data. To address this issue, we introduce a sparse model-based clus-
tering approach for three-way data. Our approach assumes that the matrix mixture
parameters are sparse and have different degrees of sparsity across clusters, enabling
the induction of parsimony in a flexible manner. Estimation relies on the maximiza-
tion of a penalized likelihood, with specifically tailored group and graphical lasso
penalties. These penalties facilitate the selection of the most informative features
for clustering three-way data where variables are recorded over multiple occasions,
as well as allowing the identification of cluster-specific association structures. We
conduct extensive testing of the proposed methodology on synthetic data and vali-
date its effectiveness through an application to time-dependent crime patterns across
multiple U.S. cities. Supplementary files for this article are available online.
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1 Introduction

Matrix-variate data, where a matrix is observed for each statistical unit, are becoming more

common in a large number of applications and data analysis routines. This data structure

is often referred to as three-way and characterized by the presence of three different layers

or modes; namely the units, the variables and the occasions. These data are nowadays

often occurring in applications such as basketball analytics (Yin et al., 2023), export trade

networks (Melnykov et al., 2021), image and brain scan data (Gao et al., 2021; Liu et al.,

2022), multivariate time-dependent analysis (Anderlucci and Viroli, 2015). In this work,

we focus on analyzing the evolution of crime trends across multiple U.S. cities (see, e.g.,

Melnykov and Zhu, 2019). In the dataset considered, each city serves as a statistical unit,

with annual crime rates recorded for seven types of crimes (the variables) over a 13-year

span from 2000 to 2012, representing distinct time occasions. Consequently, the data for

each statistical unit can be naturally structured as a 7 × 13 matrix.

In spite of their potential in terms of informative content, matrix-variate data intro-

duce several challenges which need to be dealt with in the modeling process. In fact, each

of the three different layers induce specific peculiarities in terms of intricate dependency

structures. In this landscape, clustering is often of interest to reduce the aforementioned

complexities by proposing parsimonious summaries of the data and highlighting their most

important patterns. To this extent, both distance-based (Vichi, 1999; Vichi et al., 2007) and

nonparametric techniques (Ferraccioli and Menardi, 2023) have been proposed. Neverthe-

less, parametric or model-based approaches are undoubtedly the ones that have received the

most attention: taking steps from Basford and McLachlan (1985) and building on mixtures

of matrix-variate Gaussian distributions, the seminal papers by Viroli (2011a,b) have paved

the way for a new and lively stream of research. Recently, several flexible approaches have

been proposed for model-based clustering of matrix-variate data of different nature. These

methodologies considered alternative distributional assumptions for skewed data (Chen and

Gupta, 2005; Melnykov and Zhu, 2018; Gallaugher and McNicholas, 2018), transformations

(see, among others, Chen and Gupta, 2005; Melnykov and Zhu, 2018; Gallaugher and Mc-

Nicholas, 2018; Tomarchio et al., 2020, 2022; Tomarchio, 2022) and alternative models for
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count data (Silva et al., 2023; Subedi, 2023).

Despite being practically useful, matrix-variate model-based clustering faces significant

limitations in high-dimensional settings. These limitations are particularly pronounced in

the three-way framework where the tendency to over-parameterization, inherited from the

vector-valued setting (Bouveyron and Brunet-Saumard, 2014), becomes even more prob-

lematic. In fact, when employing matrix Gaussian distributions (Dawid, 1981) as compo-

nent densities, two covariance matrices are employed to accommodate the data structure.

Consequently, when dense parameterizations are assumed for these matrices, the number

of parameters to be estimated grows quadratically with both row and column dimensions.

This undermines the practical utility of the approach, even when a moderate number of

variables and/or occasions are observed.

To address these limitations, in this work we introduce a novel approach where each

parameter in the specification of the matrix Gaussian mixture model has its own cluster-

specific degree of sparsity. This greatly increases the flexibility of the model, leads to

a parsimonious modeling framework, and provides more interpretable insights regarding

the clustering partition. The approach relies on the maximization of a penalized likeli-

hood which automatically enforces sparsity. More specifically, we impose a graphical lasso

penalty on row and column precision matrices, promoting a reduction in the number of as-

sociation parameters while facilitating interpretation in terms of conditional dependencies,

thanks to the connection with Gaussian graphical models. Additionally, we impose a group

lasso penalty on the rows of the component mean matrices. In the common scenario where

variables are observed over time for a set of statistical units, this penalization scheme allows

to perform automatic variable selection in a three-way model-based clustering framework.

As a supplementary contribution, we briefly generalize the applicability of the work by Heo

and Baek (2021), where they consider a lasso entry-wise penalty for the elements of the

mean matrices.

The remainder of the paper is structured as follows. Section 2 provides an overview of

model-based clustering of matrix-variate data, with a specific focus on the issues arising

in large dimensional scenarios. In Section 3, our proposal is introduced and motivated,
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alongside with the description of the associated estimation and model selection methods.

In Section 4 and 5, the performance of the proposed framework is tested on synthetic and

real data, respectively. Conclusions and considerations about further improvements and

future research directions end the paper in Section 6.

2 Model-based matrix-variate clustering

2.1 Mixture of matrix normal distributions

Model-based clustering (Fraley and Raftery, 2002; Bouveyron et al., 2019) assumes that

the data are generated by a finite mixture distribution, which describes the presence of

heterogeneous sub-populations. In this context, maximum likelihood estimation is usually

implemented by means of the EM algorithm (Dempster et al., 1977), resorting to a data

augmentation scheme where the latent group indicator variables are treated as missing

data. Operationally, once the model is fitted, a partition is obtained by assuming a one-

to-one correspondence between the groups and the mixture components, and assigning the

i-th observation to a given cluster according to the maximum a posteriori (MAP) rule (see

Fraley and Raftery, 2002; Bouveyron et al., 2019, for a detailed discussion).

When dealing with standard continuous vector-variate data, where multiple variables

are measured for a set of units, it is routinely assumed that the mixture components cor-

respond to multivariate Gaussian distributions (Fraley and Raftery, 2002). Nonetheless,

nowadays it is becoming increasingly common to encounter three-way data structures,

where multiple variables are measured over different occasions. This additional layer (or

mode) introduces new modeling challenges that need to be taken into account when clus-

tering samples is the final goal. Indeed, as noted by Anderlucci and Viroli (2015), models

have to “account simultaneously for three goals of the analysis, which arise from the three

layers of the data structure; heterogeneous units, correlated occasions and dependent vari-

ables”. Matrix Gaussian mixture models have originally been proposed by Viroli (2011a,b)

with the aim of concurrently accounting for these sources of complexity.

Consider the sample X = {X1, . . . , Xn}, which in this framework is a collection of p × q
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matrices, with Xi ∈ Rp×q, i = 1, . . . , n. While the n matrices can generally contain any

type of measurement, in the following we assume a temporal structure where p variables

are observed in q different time occasions. This is suitable for most applications, including

the one considered in Section 5, where crime time evolution is explored. Lastly, note that

in this setting we assume that each unit has precisely the same p variables observed at the

same q occasions. The natural Gaussian mixture model (GMM) extension for model-based

clustering of three-way data is given by the matrix Gaussian mixture model (MGMM),

expressed as follows:

f(Xi; Θ) =
K∑

k=1
τkϕp×q(Xi; Mk, Σk, Ψk), (1)

where τk’s are the mixing proportions with τk > 0, ∀k = 1, . . . , K and ∑K
k=1 τk = 1, K is the

number of mixture components, while Θ denotes the collection of all mixture parameters.

Here, ϕp×q(·; Mk, Σk, Ψk) denotes the density of a p×q matrix normal distribution (Dawid,

1981), reading as

ϕp×q(Xi; Mk, Σk, Ψk) = (2π)− pq
2 |Σk|−

q
2 |Ψk|−

p
2

exp
{

−1
2tr(Σ−1

k (Xi − Mk)Ψ−1
k (Xi − Mk)′)

}
,

where Mk is the p×q mean matrix, Σk and Ψk are the row- and column-covariance matrices

of the k-th component, with dimensions p×p and q×q, respectively. Similar to the two-way

scenario, the model in (1) can be estimated by means of the EM-algorithm, see for example

Viroli (2011a); Glanz and Carvalho (2018); Gao et al. (2021). Alternatively, the model can

also be formulated and estimated under a Bayesian framework, as proposed for example in

Viroli (2011b); Yin et al. (2023).

An alternative specification of the matrix-variate Gaussian distribution may be given,

since the following relation holds

Xi ∼ mNp×q(M, Σ, Ψ) ⇐⇒ vec(Xi) ∼ Npq(vec(M), Ψ ⊗ Σ), (2)

where vec(·) and ⊗ denote the vectorization operator and the Kronecker product, respec-

tively, while mNp×q denotes a matrix Normal distribution of dimensions p and q. From

this relation, the matrix-variate Gaussian can be regarded as a direct generalization of
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the normal distribution to the three-way matrix framework. For more details about the

matrix Gaussian distribution, its properties, and its connection to the multivariate normal

distribution, readers can refer to Gupta and Nagar (2018). The presence of the Kronecker

product in (2) highlights an identifiability issue, since Ψ ⊗ Σ = cΨ ⊗ c−1Σ for any c ∈ R+.

Enforcing constraints on the trace or on the determinant of one of the two matrices is

regarded as a viable solution to solve the problem (see e.g., Viroli, 2012; Melnykov and

Zhu, 2018; Glanz and Carvalho, 2018); the latter approach will be considered in the rest of

the paper. As a final point, note that, as is customary in penalized model-based clustering

(see, for example Pan and Shen, 2007; Xie et al., 2008b,a; Zhou et al., 2009), we assume

that the data matrix X is mean-centered element-wise. This enables the component means

to be interpreted as weighted shifts around a global zero mean, clarifying which variables

contribute to distinguishing the clusters. The reasoning behind this approach will become

evident in the model specification discussed in Section 3.1.

2.2 Issues in matrix mixture models for high-dimensional data

Finite mixture models are routinely used for probabilistic cluster analysis. However, both

in the two-way and in the three-way framework, they present a cumbersome issue which

is related to their tendency to be over-parameterized even with a moderate number of

variables. When dealing with vector-variate data, the cardinality of the parameter space |Θ|

scales quadratically with the number of variables. This problem is even more exacerbated

in the matrix-variate scenario, where |Θ| scales quadratically with both dimensions p and

q of the component row and column covariance matrices. To deal with this challenge,

different approaches have been proposed in the two-way setting (see e.g., Bouveyron and

Brunet-Saumard, 2014; Fop and Murphy, 2018, for exhaustive reviews of the topic), which

can be grouped into three distinct types: constrained modeling, variable selection, and

sparse modeling; a brief overview is provided in Casa et al. (2022).

In line with this taxonomy, recent efforts have been devoted to addressing the issue

of over-parameterization within the framework of matrix mixture modeling. Specifically,

some of the existing approaches either adopt parsimonious parameterizations, or implement
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variable selection to discard irrelevant variables and reduce the number of parameters. In

Sarkar et al. (2020), the authors extend the family of covariance eigendecomposition models

considered for vector-valued data (Banfield and Raftery, 1993; Celeux and Govaert, 1995)

to the matrix-variate scenario. They introduced a collection of 98 constrained models and

further enhanced parsimony by proposing an additive formulation for the mean matrices,

resulting in a family of 196 matrix mixture models. On the other hand, Wang and Mel-

nykov (2020) propose a variable selection approach where the work by Maugis et al. (2009)

is extended to the matrix-variate framework. A stepwise variable selection procedure is pro-

posed, which alternates variable inclusion and exclusion steps, where the resulting models

are compared by means of the Bayesian Information Criterion (BIC, Schwarz, 1978). These

two approaches present some relevant drawbacks: they can be computationally intensive,

as they involve fitting and comparing a large number of models, and they implement a

rigid way to induce parsimony, not allowing the association patterns among the variables

and the structure of the mean matrices to vary across clusters.

For the above reasons, in this work we take a different perspective, based on the for-

mulation of a sparse matrix mixture model, by extending the framework of sparse and

penalized mixture models (Fop and Murphy, 2018; Fop et al., 2019; Casa et al., 2022,

among others) to matrix-variate data. Building primarily upon the literature on sparse

matrix graphical models (Leng and Tang, 2012; Chen and Liu, 2019, for example) and

sparse model-based clustering (Pan and Shen, 2007; Zhou et al., 2009), sparse approaches

for matrix-variate data clustering have been recently introduced and are gaining increasing

attention. In application to brain imaging data, Gao et al. (2021) develop a penalized Gaus-

sian matrix mixture model, where penalty functions on the entries of the component mean

matrices are introduced to shrink the mean parameters. The method is shown to recover

the low rank mean signal, however, it does not allow a flexible modeling of the association

structure across the clusters. On a similar vein, Liu et al. (2022) presents a multi-step

approach for clustering and sparse correlation estimation in application to functional mag-

netic resonance imaging data. Here, in contrast to Gao et al. (2021) and motivated by the

application, the authors propose an optimization framework that focuses on recovering the
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different association structures across the clusters, but covariance parameters rather than

the means are employed to cluster the units, which could be a limitation if clusters are

well separated in terms of mean signals. Additionally, the authors remark that the method

suffers from the need to pre-specify the number of clusters beforehand and the lack of a

principled method for its selection. Lastly, in Heo and Baek (2021), the authors describe

a penalized matrix normal mixture model for clustering that employs penalty functions on

both means and precision matrix parameters to induce sparsity. However, this approach

relies on implicit restrictive independence assumptions during estimation that may hinder

the correct identification of the actual clustering partition. In fact, neglecting the associa-

tions among variables and occasions often leads to a larger number of components needed

to appropriately capture the shape of the clusters (Biernacki et al., 2000, for example).

Moreover, the specific formulation of the penalty functions on the mean parameters does

not allow for an effective variable selection in the context of three-way data where variables

are measured over multiple occasions.

In what follows, we propose a sparse matrix Gaussian mixture model where we overcome

the drawbacks of the aforementioned frameworks for three-way data clustering. Our pro-

posed approach offers several advantages: it allows clusters to be characterized by different

association structures, accommodating the estimation of sparse component inverse covari-

ance matrices. Moreover, it allows mean parameters to have different sparsity patterns

across clusters, and it implements variable selection in a matrix-variate context where the

variables are observed over multiple time occasions. Lastly, it leverages a computationally

efficient estimation procedure based on lasso-type penalties, and it considers a principled

criterion to perform model selection. The proposed method is based on a penalized likeli-

hood framework, presented in the next section.
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3 Sparse matrix mixture models

3.1 Model specification

We hereafter introduce Sparsemixmat, a novel sparse matrix Gaussian mixture model for

model-based clustering of matrix-variate data. Estimation of this model relies on the

maximization of a penalized likelihood, which, following from the model in (1), is defined

as follows:

ℓP (Θ; X) =
n∑

i=1
log

{
K∑

k=1
τkϕp×q(Xi; Mk, Ωk, Γk)

}
− pλ(Θ). (3)

The first term represents the standard MGMM log-likelihood, pλ(Θ) is a penalty term de-

pending on a set of shrinkage hyperparameters generally denoted with λ, while Ωk = Σ−1
k

and Γk = Ψ−1
k for k = 1, . . . , K are the rows and column precision matrices, respectively.

The collection of parameters is denoted with Θ = {τk, Mk, Ωk, Γk}K
k=1. The choice of

parameterizing the MGMM density in terms of precision matrices is motivated by their

relation to Gaussian graphical models and their interpretation in terms of conditional de-

pendencies (Whittaker, 1990; Leng and Tang, 2012). However, other options could be

considered, and a discussion is reported in Section 6.

Different routes can be taken when specifying the penalty pλ(Θ) to obtain sparse esti-

mates of the mixture component matrix parameters; readers may refer to the recent book

by Hastie et al. (2019) for a detailed discussion. In this work, we consider the following

penalty term:

pλ(Θ) = λ1

K∑
k=1

p∑
r=1

∥mr·,k∥2 + λ2

K∑
k=1

∥P2 ⊙ Ωk∥1 + λ3

K∑
k=1

∥P3 ⊙ Γk∥1, (4)

where mr·,k is the r-th row of matrix Mk, while ∥ · ∥1 and ∥ · ∥2 are the L1 and the L2-norm

respectively, with ∥A∥1 = ∑
jh |Ajh|. Moreover, λ = (λ1, λ2, λ3) is a vector of positive

shrinkage hyper-parameters controlling the strength of the penalization. Lastly, P2 and P3

are matrices with non-negative entries, and ⊙ denotes the element-wise product.

The first term in (4) corresponds to a group lasso penalty (Yuan and Lin, 2006) imposed

on the rows of the K mean matrices Mk. Group lasso aims to simultaneously shrink to

zero a set of grouped parameters. While being primarily used in regression frameworks
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where some covariates may be structurally connected (see Ch.4.3 in Hastie et al., 2019, and

references therein), this type of penalty has also been employed in model-based clustering of

vector-variate data in Xie et al. (2008a) and Xie et al. (2008b). In these works, group lasso

is used for joint penalization of the mixture parameters across clusters in the case where

variables are grouped based on available prior information. Differently, in the present

paper we propose to generalize the group lasso penalty to an unsupervised setting for

matrix-variate clustering and variable selection. Specifically, we consider the parameters

as being grouped according to the rows of Mk. With the grouped lasso penalty on Mk, for

a given k, either the whole row mr·,k = (mr1,k, . . . , mrq,k) is estimated to be zero, or else its

elements are shrunk towards zero by an amount depending on λ1. If a row mean mr·,k = 0

for all k, the r-th row of Mk is constant across all occasions and clusters. As a result, the

variable is not useful for discriminating the mean levels of the clusters, since the cluster

centers over that dimension and across time instants are indistinguishable from the zero

center in the mean-centered data. Even when mr·,k = mr·,h = 0 for some components k and

h, the r-th variable does not contain discriminating information to separate these clusters,

resulting in overlap with the center of the data along that dimension. This penalization

is therefore adopted to perform variable selection in model-based clustering of three-way

data in the common scenario when p variables are observed over q time occasions. Note

also that shrinking towards zero the row mean mr·,k of cluster k in the mean-centered data

is equivalent to shrinking the component row mean towards the corresponding sample row

mean in the original, un-centered data.

Going back to Equation (4), with the second and the third terms we impose graphical

lasso penalties (see Banerjee et al., 2008; Friedman et al., 2008; Witten et al., 2011) on the

group-specific precision matrices. This represents an extension of the work by Leng and

Tang (2012) to the framework of mixture models. By shrinking to zero some parameters,

the penalty terms allow to alleviate the over-parameterization problems outlined in Section

2.2 when dealing with matrix data of moderate-to-large dimensions. The resulting sparse

representation of Ωk and Γk, for k = 1, . . . , K, provides a convenient interpretation of the

dependencies among rows and columns of the observed matrices. In fact, zero entries in
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the precision matrices imply that the corresponding variables are conditionally indepen-

dent given the others, following the principles of Gaussian graphical models (Whittaker,

1990). The matrices P2 and P3 in the graphical lasso penalty terms provide an higher

degree of flexibility, since particular specifications allow to introduce prior beliefs regarding

the dependencies between the variables. Indications on how to choose these matrices can

be found in Bien and Tibshirani (2011). Here the authors suggest to use all-ones matri-

ces, ensuring homogeneous and uninformative penalization for all the terms. To prevent

shrinkage of the diagonal entries, zeros can be placed on the main diagonal. Alternatively,

P2 and P3 can be defined as adjacency matrices with user-defined patterns, thus allowing

the a priori specification of the expected conditional dependence structures. More recently,

Casa et al. (2022) introduced a data-driven method for specifying these matrices, which

promotes cluster separation within the context of sparse model-based clustering and does

not require initial knowledge of the association structure between the variables. In what

follows we employ all-one matrices with zero diagonal entries for both P2 and P3, as this

aspect is not the primary focus of the present paper.

The above-mentioned methodology is based on the assumption that all the parameter

matrices in (3), namely {Mk, Ωk, Γk}K
k=1, have different component-specific levels of spar-

sity. This leads to a realistic and flexible modeling framework, where a variable may be

relevant only for a subset of clusters, and where the conditional dependence patterns are

allowed to vary across groups. Our proposal represents a natural extension to the three-way

data scenario of the approach outlined by Zhou et al. (2009). Coherently with their work,

the penalty on Mk aims to perform variable selection. On the other hand, the penalizations

on Ωk and Γk are implemented to obtain sparse representations of the precision matrices

and to reduce the number of free parameters to be estimated.

3.2 Model estimation

For a fixed number of components K and penalty vector λλλ = (λ1, λ2, λ3), the parameters

are estimated by maximizing (3) with respect to Θ. The maximization is carried out by

means of a tailored EM algorithm for maximum penalized likelihood estimation (Green,
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1990; McLachlan and Krishnan, 2008), where the maximization step (M-step) is comprised

of three partial optimization cycles. Let us firstly define the penalized complete-data log-

likelihood associated with (3) as

ℓC (Θ; X, Z) =
n∑

i=1

K∑
k=1

zik

[
log τk − pq

2 log 2π + q

2 log |Ωk| + p

2 log |Γk|+

−1
2 tr

{
Ωk (Xi − Mk) Γk (Xi − Mk)

′}]
− pλλλ(Θ), (5)

where zik is the realization of the latent group membership indicator variable Zik, with zik =

1 if matrix Xi belongs to the k-th component, and 0 otherwise. The posterior probability

of Zik is updated at each expectation step (E-step), allowing to obtain the conditional

expectation of (5), usually called Q-function, which defines the objective function to be

maximized in the M-step. The estimation algorithm is described in detail in the following

subsections.

3.2.1 Initialization strategy

Initialization plays a crucial role when resorting to EM-type algorithms to perform model

estimation. In fact, whenever the likelihood surface has multiple modes, the convergence

to the global maximum is not guaranteed and poorly chosen initial values may lead to sub-

optimal solutions (McLachlan and Krishnan, 2008). Thanks to the correspondence between

GMM and MGMM in Equation (2), initialization strategies developed for vector-variate

data can be directly employed in the matrix-variate framework. In this regard, after the

data have been vectorized, we resort to model-based agglomerative hierarchical clustering

(Scrucca and Raftery, 2015). This initialization strategy, already employed in the popular

mclust software (Scrucca et al., 2016), has been proven effective in partitioning the data

into K initial groups.

Once the starting partition is obtained, the first iteration of the M-step also requires the

initialization of the matrices Ωk and Γk, k = 1, . . . , K. For this purpose, identity matrices

of dimensions respectively equal to p × p and q × q are employed as initial values.
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3.2.2 E-step

At iteration t, the estimated a posteriori probabilities ẑ
(t)
ik = P̂r (Zik = 1 | Xi) are updated

as follows:

ẑ
(t)
ik =

τ̂
(t−1)
k ϕp×q

(
Xi; M̂(t−1)

k , Ω̂(t−1)
k , Γ̂(t−1)

k

)
∑K

v=1 τ̂
(t−1)
v ϕp×q

(
Xi; M̂(t−1)

v , Ω̂(t−1)
v , Γ̂(t−1)

v

) , i = 1, . . . , n, k = 1, . . . , K,

where with the superscript (t − 1) we denote the parameter estimates obtained in the

previous EM iteration.

3.2.3 M-step

The M-step requires the maximization of the penalized Q-function, defined as

Q
(
τ , {Mk, Ωk, Γk}K

k=1

)
=

n∑
i=1

K∑
k=1

ẑ
(t)
ik

[
log τk + q

2 log |Ωk| + p

2 log |Γk|+

−1
2 tr

{
Ωk (Xi − Mk) Γk (Xi − Mk)

′}]
+

− λ1

K∑
k=1

p∑
r=1

∥mr·,k∥2 − λ2

K∑
k=1

∥P2 ⊙ Ωk∥1 − λ3

K∑
k=1

∥P3 ⊙ Γk∥1. (6)

The direct maximization of Q(·) with respect to all parameters at once is an unfeasible

task, so a partial optimization strategy is required. The closed-form expression for the

mixing proportions τ is readily available:

τ̂
(t)
k = n̂

(t)
k

n
, n̂

(t)
k =

n∑
i=1

ẑ
(t)
ik , k = 1, . . . , K.

Updates for Mk, Ωk, and Γk, k = 1, . . . , K are implemented using custom procedures

described in what follows.
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Sparse estimation of the mean matrices Mk

When maximization of (6) is performed with respect to Mk, given current estimates of the

precision matrices Ω̂(t−1)
k and Γ̂(t−1)

k , the Q-function simplifies as follows

QM(Mk) =
n∑

i=1
ẑ

(t)
ik

[
tr
{
Ω̂(t−1)

k XiΓ̂(t−1)
k M′

k

}
− 1

2 tr
{
Ω̂(t−1)

k MkΓ̂(t−1)
k M′

k

}]
− λ1

p∑
r=1

∥mr·,k∥2

= tr
{
Ω̂(t−1)

k SM Γ̂(t−1)
k M′

k

}
− n̂

(t)
k

2 tr
{
Ω̂(t−1)

k MkΓ̂(t−1)
k M′

k

}
− λ1

p∑
r=1

∥mr·,k∥2,

(7)

where SM is the sum of the matrix-variate observations weighted by ẑ
(t)
ik :

SM =
n∑

i=1
ẑ

(t)
ik Xi.

The optimization of (7) with respect to Mk is solved via a proximal gradient descent

algorithm (Parikh and Boyd, 2014). Briefly, proximal gradient methods address a general

class of convex problems where the objective function may be decomposed into two terms:

the first, generally denoted with f(·), is convex and differentiable, while the other, g(·),

may not be everywhere differentiable. On that account, proximal gradient methods, also

known as forward backward splitting procedures, can be seen as an extension of gradient

descent for optimization problems whose gradient is not available for the entire objective

function. In recent years, such approaches have gained increasing popularity in the field of

statistics and machine learning, as they provide reliable and numerically efficient solutions

to regularized models with non-differentiable penalties (Mosci et al., 2010; Klosa et al.,

2020). In our case, the maximization of (7) can be recast as follows:

minimize
Mk

f(Mk) + g(Mk),

where

f(Mk) = n̂
(t)
k

2 tr
{
Ω̂(t−1)

k MkΓ̂(t−1)
k M′

k

}
−tr

{
Ω̂(t−1)

k SM Γ̂(t−1)
k M′

k

}
and g(Mk) = λ1

p∑
r=1

∥mr·,k∥2.

Define ∇ml·,k to be the l-th row, l = 1, . . . , p, of

∂f(Mk)
∂Mk

= n̂
(t)
k Ω̂(t−1)

k MkΓ̂(t−1)
k − Ω̂(t−1)

k SM Γ̂(t−1)
k , (8)
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where (8) is the p × q matrix of first-order partial derivatives of f(·) with respect to Mk.

A proximal gradient update for the l-th row of matrix Mk is constructed as follows:

b = ml·,k − ν∇ml·,k, (9a)

m̂l·,k = proxνλ1(b), (9b)

where ν is a step-size parameter and proxνλ1(·) is the proximity operator of the considered

group lasso penalty, namely the row-wise soft thresholding operator:

proxνλ1 (b) =


b
(
1 − λ1ν

∥b∥2

)
if ∥b∥2 > λ1ν,

0 if ∥b∥2 ≤ λ1ν.

(10)

Iterating equations (9a) and (9b) until convergence sequentially along the p rows yields

M̂(t)
k , the estimate of the k-th component mean matrix for the t-th iteration of the EM

algorithm. This estimate is the proximal gradient solution to the maximization problem in

(7). When λ1 is sufficiently large, the rows of M̂(t)
k are set to zero as a result of the proximity

operator. In practice, the weighted sample mean matrix ∑n
i=1 ẑ

(t)
ik Xi/n̂

(t)
k is employed as an

initial guess for starting the proximal gradient search, while the step-size parameter ν is

kept fixed at 10−4.

Sparse estimation of the row-precision matrices Ωk

When (6) is to be maximized with respect to Ωk, given the current estimates of the precision

matrices Γ̂(t−1)
k and of the mean parameters M̂(t)

k , the Q-function simplifies as follows:

QΩ(Ωk) =
n∑

i=1
ẑ

(t)
ik

[
q

2 log |Ωk| − 1
2 tr

{
Ωk

(
Xi − M̂(t)

k

)
Γ̂(t−1)

k

(
Xi − M̂(t)

k

)′}]
−λ2||P2⊙Ωk||1.

(11)

By rearranging terms in (11), we obtain:

QΩ(Ωk) = log |Ωk| − tr {ΩkSΩ} − 2
n̂kq

λ2||P2 ⊙ Ωk||1, (12)

where

SΩ =
n∑

i=1
ẑ

(t)
ik

(
Xi − M̂(t)

k

)
Γ̂(t−1)

k

(
Xi − M̂(t)

k

)′

n̂
(t)
k q

.

15



Maximization of (12) with respect to Ωk corresponds a graphical lasso problem, which

is solved using the coordinate descent algorithm by Friedman et al. (2008), where in our

context their penalty coefficient is equal to 2
n̂kq

λ2P2. The algorithm is implemented in the

R (R Core Team, 2023) package glassoFast (Sustik et al., 2018) and returns the estimates

of the row precision matrices Ω̂(t)
k , for k = 1, . . . , K.

Sparse estimation of the column-precision matrices Γk

In the maximization of (6) with respect to Γk, given the current estimates Ω̂(t)
k and M̂(t)

k ,

the Q-function simplifies to:

QΓ(Γk) =
n∑

i=1
ẑ

(t)
ik

[
p

2 log |Γk| − 1
2 tr

{
Γk

(
Xi − M̂(t)

k

)′

Ω̂(t)
k

(
Xi − M̂(t)

k

)}]
− λ3||P3 ⊙ Γk||1.

(13)

By rearranging terms in (13), we obtain the following objective function:

QΓ(Γk) = log |Γk| − tr {ΓkSΓ} − 2
n̂kp

λ3||P3 ⊙ Γk||1, (14)

where

SΓ =
n∑

i=1
ẑ

(t)
ik

(
Xi − M̂(t)

k

)′

Ω̂(t)
k

(
Xi − M̂(t)

k

)
n̂

(t)
k p

.

Maximization of (14) with respect to Γk corresponds again to the graphical lasso, where in

this case the original penalty coefficient is equal to 2
n̂kp

λ3P3. Also in this case the estimation

is performed using the algorithm implemented in the package glassoFast, retrieving Γ̃(t)
k

for k = 1, . . . , K. Note that, to address the non-identifiability issue highlighted at the

end of Section 2.1, we require the estimates of the column precision matrices Γ̂(t)
k to have

determinant equal to 1. In practice, this is achieved by rescaling Γ̃(t)
k as follows:

Γ̂(t)
k = Γ̃(t)

k /|Γ̃(t)
k |1/q, (15)

where the scaling can be applied either at each iteration or at the conclusion of the algorithm

upon convergence, with virtually no impact on the final solution (Tomarchio et al., 2022);

in our case, the scaling is applied at each iteration of the algorithm.

The updates based on the graphical lasso expressions (12) and (14-15) are iterated

sequentially within the M-step at each cycle of the EM algorithm until convergence is
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reached, returning sparse estimates of the precision matrices Ωk and Γk. The global

convergence is evaluated by monitoring the increase in the penalized log-likelihood at

each full EM iteration. The algorithm is considered to have reached convergence when

ℓP (Θ̂(t); X) − ℓP (Θ̂(t−1); X) < ε for a given ε > 0. In our analyses, ε is set equal to 10−5.

The procedure described in this section is available within an R package at

https://github.com/AndreaCappozzo/sparsemixmat, where some of the routines have

been implemented in C++ to reduce the overall computing time.

3.3 A note on related penalty specifications

As briefly mentioned in Section 3.1, several options can be considered when specifying the

penalty term in (3). An alternative approach to our proposal could involve applying a

standard lasso penalty to the matrices Mk, which would be consistent with the penalty

used for the precision matrices. In this case, the penalty term would read as follows

pλλλ(Θ) = λ1

K∑
k=1

∥P1 ⊙ Mk∥1 + λ2

K∑
k=1

∥P2 ⊙ Ωk∥1 + λ3

K∑
k=1

∥P3 ⊙ Γk∥1, (16)

where P1 is a p × q matrix with non-negative entries, while the other quantities are defined

as in the previous sections. Compared to the formulation in (4), this penalty offers a

less-structured way to inducing sparsity in the mean matrices. In general, it does not

facilitate proper variable selection, as the dimensions of the mean matrices are not jointly

shrunk to zero. Nevertheless, the sparsity patterns could provide relevant insights and

the method can be useful in some specific applications, as for example when no temporal

dimension is present in the data. As highlighted in Section 2.2, Gao et al. (2021) consider

lasso cell-wise penalization of matrix mixture mean parameters. However, the authors

do not consider penalization of the component covariance matrices. Consequently, the

method may still necessitate the estimation of a large number of parameters and does

not offer a flexible model for the association structures within row and column variables.

To overcome these limitations, recently Heo and Baek (2021) derive a penalized matrix

normal mixture model where sparsity is also induced on the precision matrices, by using

a penalty function similar to (16). Nonetheless, in their proposed estimation procedure,
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and in particular in the M-step update for Mk, the authors implicitly assume that both

the precision matrices corresponding to rows and columns, respectively, are diagonal. This

assumption can lead to inaccurate estimates, especially in those applications where complex

conditional dependency patterns exist. For these reasons, in the following we derive an

estimation scheme where the independence assumption is not required. We refer to this

approach as Sparsemixmat-lasso, to remark that the approach implements a sparse matrix

Gaussian mixture, but where a cell-wise lasso penalty is placed on the entries of the mean

parameters Mk. Note that Ωk and Γk are estimated as in Section 3.2.3, therefore in

what follows we only outline the updating formula for Mk. Furthermore, the E-step and

the considerations about the initialization strategy and the convergence criterion remain

unchanged.

Consider the current estimates of the precision matrices Ω̂k and Γ̂k, where we omit the

iteration superscript for ease of notation. When the penalty term is defined as in (16), in

the maximization step with respect to Mk, the Q-function can be expressed as follows:

QM(Mk) =
n∑

i=1
ẑ

(t)
ik

[
tr
{
Ω̂kXiΓ̂kM′

k

}
− 1

2 tr
{
Ω̂kMkΓ̂kM′

k

}]
− λ1||P1 ⊙ Mk||1. (17)

We propose a cell-wise coordinate ascent estimation for mls,k, where mls,k denotes the el-

ement in the l-th row and s-th column of matrix Mk. Similarly, let ω̂ls,k, γ̂ls,k and pls,1

denote the elements in the l-th row and s-th column of matrices Ω̂k, Γ̂k and P1, respec-

tively. Lastly, xls,i is similarly defined in relation to a matrix observation Xi. The following

proposition characterizes the updating formula:

Proposition 1: The sufficient and necessary conditions for m̂ls,k to be a (global) max-

imizer of (17) (for fixed l, s, and k) are

N∑
i=1

ẑik

p∑
r=1

q∑
c=1

ω̂lr,kxrc,iγ̂cs,k − n̂k

p∑
r=1

q∑
c=1

ω̂lr,km̂rc,kγ̂cs,k = λ1pls,1 sign(m̂ls,k), if m̂ls,k ̸= 0

(18)
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and∣∣∣∣∣∣∣∣
n∑

i=1
ẑik

 p∑
r=1
r ̸=l

ω̂lr,k

( q∑
c=1

(xrc,i − m̂rc,k) γ̂cs,k

)
+

+ω̂ll,k

 q∑
c=1
c ̸=s

(xlc,i − m̂lc,k) γ̂cs,k

+ ω̂ll,kxls,iγ̂ss,k


∣∣∣∣∣∣∣∣ ≤ λ1pls,1, if m̂ls,k = 0. (19)

Thus, at the t-th iteration of the EM algorithm m̂
(t)
lsk = 0 if

∣∣∣∣∣∣∣∣
n∑

i=1
ẑ

(t)
ik

 p∑
r=1
r ̸=l

ω̂
(t−1)
lr,k

( q∑
c=1

(
xrc,i − m̂

(t)
rc,k

)
γ̂

(t−1)
cs,k

)
+

+ ω̂
(t−1)
ll,k

 q∑
c=1
c ̸=s

(
xlc,i − m̂

(t)
lc,k

)
γ̂

(t−1)
cs,k

+ ω̂
(t−1)
ll,k xls,iγ̂

(t−1)
ss,k


∣∣∣∣∣∣∣∣ ≤ λ1pls,1, (20)

otherwise, m̂
(t)
ls,k is obtained by solving

n̂
(t)
k ω̂

(t−1)
ll,k m̂

(t)
ls,kγ̂

(t−1)
ss,k + λ1pls,1 sign

(
m̂

(t)
ls,k

)
=

n∑
i=1

ẑ
(t)
ik

p∑
r=1

q∑
c=1

ω̂
(t−1)
lr,k xrc,iγ̂

(t−1)
cs,k +

−n̂
(t)
k

 p∑
r=1
r ̸=l

q∑
c=1
c ̸=s

ω̂
(t−1)
lr,k m̂

(t)
rc,kγ̂

(t−1)
cs,k

 (21)

with respect to m̂
(t)
ls,k.

The proof of Proposition 1 is reported in Section S1 of the Supplementary Material. This

result corrects an inaccuracy introduced in Equation (5) of Heo and Baek (2021), and it can

be seen as the matrix-variate extension of Theorem 1 of Zhou et al. (2009). Convergence

to the global maximum is assured due to the theoretical properties of coordinate descent

algorithms (see e.g., Wright, 2015). The described procedure, for sufficiently large λ1, forces

some m̂
(t)
lsk to be shrunk to 0, ultimately inducing sparsity in Mk, k = 1, . . . , K. However,

as previously noted, this type of penalty does not allow for direct variable selection within a

matrix-variate data framework. Direct variable selection can only be achieved by employing

a group-lasso penalization scheme, as highlighted in Section 3.1.
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3.4 Model selection

The model estimation strategy in Section 3.2 has been outlined by considering K and

λλλ = (λ1, λ2, λ3) fixed. However, in practical applications, the number of clusters and the

penalty hyperparameters are not known a priori and need to be chosen using model selection

strategies. In this work, we select K and λλλ to maximize a modified version of the Bayesian

information criterion (BIC, Schwarz, 1978), already considered in Pan and Shen (2007) and

Casa et al. (2022). In detail, we use the following criterion:

BIC = 2 log L(Θ̂) − d0 log(n), (22)

where d0 is the number of non-zero estimated parameters and log L(Θ̂) is the log-likelihood

evaluated at Θ̂, the estimate of the parameters obtained by the algorithm described in

Sections 3.2 and 3.3.

The adequacy of the BIC for selecting the number of mixture components has been

thoroughly studied (see e.g., Roeder and Wasserman, 1997; Keribin, 2000), and the criterion

has been widely used both in the two-way, and, more recently, the three-way model-based

clustering frameworks (Sarkar et al., 2020; Tomarchio et al., 2022; Sharp et al., 2022).

Moreover, the formulation in (22) has been proven useful also to tune the intensity of the

penalization in both lasso (Zou et al., 2007) and sparse precision matrix estimation contexts

(Lian, 2011). Nevertheless, other model selection strategies may be pursued, especially in

situations where exhaustive grid searches are considered too computationally demanding.

Possible alternatives include stochastic optimization algorithms, such as genetic algorithms

(Holland, 1992), or conditional search schemes. Another interesting approach is outlined

in Jiang et al. (2015), where the authors develop the E-MS algorithm, in which model

selection is performed within each iteration of the standard EM algorithm.
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Figure 1: Heatmaps of the true 10 × 20 mean matrices Mk, k = 1, 2, 3, considered in the

simulated data experiment. A zero entry in the matrices is indicated with the symbol ×.

4 Simulation study

4.1 Experimental Setup

In this section, we assess the performance of the proposed method on synthetic data, eval-

uating its ability in recovering the underlying sparse patterns and the clustering structure.

For each replication of the simulation experiment, we generate n = 1000 samples from a

3-component matrix Gaussian mixture model, in which mean matrices and both row and

column precision matrices have some degree of sparsity. The row and column precision

matrices have dimensions p × p and q × q, with p and q equal to 10 and 20, respectively.

The 10 × 20 mean matrices Mk, k = 1, 2, 3, have a row-wise sparse structure, displayed in

Figure 1. The data-generating process purposely reproduces a situation in which some of

the p variables measured on q occasions are irrelevant for clustering. In this specific context,

the second, fourth, sixth, eighth, and tenth rows do not convey any grouping information,

being identically equal to 0 in all clusters. We consider two distinct scenarios according to

the sparsity structure enforced for the row precision matrices Ωk:

• Alternated-blocks row precision matrices: the 10 × 10 row precision matrices Ωk,
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M1 M2 M3

Ω1 Ω2 Ω3

Γ1 Γ2 Γ3

Figure 2: True sparsity patterns of the parameters associated to the Alternated-blocks row

precision matrices simulated data scenario.

k = 1, 2, 3, have a block-wise sparse structure, as shown in Figure 2.

• Sparse-at-random row precision matrices: the row precision matrices have a sparse-

at-random Erdős-Rényi graph structure (Erdős and Rényi, 1960) with probabilities

of connection equal to 0.2, 0.5 and 0.8 for Ω1, Ω2 and Ω3, respectively. These are

displayed in Figure 3.

In both scenarios, the column precision matrices Γk are generated according to a sparse-

at-random Erdős-Rényi graph structure, while the mixing proportions τk are assumed equal

to 1/K, K = 3. The experiment is repeated 100 times, and for each replication the following

models are fitted to the synthetic data samples:
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Figure 3: True sparsity patterns of the parameters associated to the Sparse-at-random row

precision matrices simulated data scenario.
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• Full MGMM: the finite mixtures of matrix normal distributions originally introduced

in Viroli (2011a), where full matrix parameters are estimated for each component.

This model specification corresponds to a G-VVV-VV model following the nomen-

clature introduced in Sarkar et al. (2020).

• Sparsemixmat: the penalized MGMM method introduced in this paper, with a group-

lasso penalization imposed on the rows of the mean matrices according to the penalty

term in (4).

• Sparsemixmat-lasso: the modification of the penalized MGMM methodology intro-

duced in Heo and Baek (2021), which uses entry-wise lasso penalization on the mean

matrices as in (16). Unlike Heo and Baek (2021), the precision matrices are not

assumed to be diagonal, as outlined in Section 3.3.

In addition, we tested also procedures for clustering two-way data on the vectorized matri-

ces; however, due to their poorer performance compared to methods tailored specifically for

matrix-variate data, these results are omitted from the main text and are provided instead

in Section S2 of the Supplementary Material.

For Sparsemixmat and Sparsemixmat-lasso, a search over an equispaced grid of elements

for each penalty term λ1, λ2 and λ3 is conducted, and the best model according to the BIC

in (22) is retained. All competing methods are initialized via model-based agglomerative

hierarchical clustering, as discussed in Section 3.2.1. The methods are evaluated based on

their ability in performing variable selection, recovering the true sparsity structure, and

correctly retrieving the cluster allocations. The issue of matching the estimated clustering

with the actual classification is addressed using the matchClasses function from the e1071

R package (Meyer et al., 2020). Simulation results are reported in the next subsection.

4.2 Simulation study results

4.2.1 Alternated-blocks row precision matrices

In Figure 4, we present the heatmap plots associated to the 10 × 10 row precision matrices

Ωk, k = 1, 2, 3 for the alternated-blocks row precision matrices scenario. The top row
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Ω1 Ω2 Ω3

True

Sparsemixmat

Sparsemixmat − lasso

0.00 0.25 0.50 0.75 1.00

Figure 4: Alternated-blocks row precision matrices scenario. In the top row, the true spar-

sity patterns of the row precision matrices Ωk, k = 1, 2, 3. In the middle and bottom rows,

heatmap plots displaying the proportion of times parameters in the row precision matrices

have been estimated as non-zero across 100 replications of the simulated experiment.
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True

Sparsemixmat

Sparsemixmat − lasso

0.00 0.25 0.50 0.75 1.00

Figure 5: Alternated-blocks row precision matrices scenario. In the top row, the true

sparsity patterns of the column precision matrices Γk, k = 1, 2, 3. In the middle and

bottom rows, heatmap plots displaying the proportion of times parameters in the column

precision matrices have been estimated as non-zero across 100 replications of the simulated

experiment.
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0.00 0.25 0.50 0.75 1.00

Figure 6: Alternated-blocks row precision matrices scenario. In the top row, the true

sparsity patterns of the mean matrices Mk, k = 1, 2, 3. In the middle and bottom rows,

heatmap plots displaying the proportion of times parameters in the mean matrices have been

estimated as non-zero across 100 replications of the simulated experiment.
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displays each heatmap representing the association structure corresponding to a component

row precision matrix, where each black square denotes the presence of a non-zero parameter,

and hence an association between a pair of variables. The second and third rows show

the heatmaps indicating the proportion of times a non-zero precision parameter has been

estimated between pairs of variables. As illustrated in the graphs, both Sparsemixmat

and Sparsemixmat-lasso satisfactorily recover the true underlying sparsity structure. A

moderate penalty on the row-precision matrices induces shrinkage to zero of some of the

elements of Ωk, enabling the correct identification of the conditional association structures

among the variables in the clusters. Figure 5 displays similar heatmaps for the 20 × 20

column precision matrices, where the association structure is again well recovered by both

methods.

Different results emerge when examining the estimates of the cluster mean matrices

Mk, reported in Figure 6. In the figure, the heatmaps report the non-zero entries of the

data-generating mean matrices and the proportion of zero entries in the estimated matrices,

averaged over 100 replications. The row-wise shrinkage of Sparsemixmat, enforced by the

group-lasso penalty, enables more accurate recovery of the mean matrices compared to the

entry-wise lasso shrinkage of Sparsemixmat-lasso. This is further supported by the metrics

displayed in Table 1 where we report the average Frobenius distance between true and

estimated parameters for each mixture component. Notably, Sparsemixmat outperforms

the competing methods, exhibiting the lowest average distance for every mean matrix across

all three clusters. While Sparsemixmat-lasso and Full MGMM seem to perform slightly

better when examining row and column precision matrices, the difference is often negligible.

Moreover, Sparsemixmat achieves superior results in terms of recovery of the underlying

cluster partition, as measured by the adjusted Rand index (ARI, Hubert and Arabie, 1985),

as well as in overall model parsimony, quantified by the number of estimated parameters.

Sparsemixmat shows a higher ARI and a lower number of non-zero parameters compared

to Full MGMM and Sparsemixmat-lasso. It is important to note that Full MGMM does

not employ any shrinkage, resulting in a total of (K − 1) + K(pq + p(p + 1)/2 + q(q + 1)/2)

estimated parameters in all cases. Lastly, it is worth noting that while the proximal gradient
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Table 1: Alternated-blocks row precision matrices scenario. Frobenius distance between true

and estimated parameters, adjusted Rand index (ARI), number of non-zero parameters (d0),

and computing time (in seconds) per iteration averaged over 100 repetitions of the simulated

experiment. Bold font indicates the best performing method according to the considered

metric. Standard errors are reported in brackets.

Full MGMM Sparsemixmat Sparsemixmat-lasso

||M1 − M̂1||F 10.032 (27.196) 8.015 (26.333) 8.54 (25.808)

||M2 − M̂2||F 4.709 (10.43) 2.252 (6.781) 2.751 (6.643)

||M3 − M̂3||F 4.716 (12.375) 1.939 (6.572) 1.952 (6.597)

||Ω1 − Ω̂1||F 0.334 (1.084) 0.577 (0.809) 0.527 (0.813)

||Ω2 − Ω̂2||F 0.241 (0.729) 0.325 (0.693) 0.311 (0.697)

||Ω3 − Ω̂3||F 0.436 (1.342) 0.303 (0.901) 0.305 (0.928)

||Γ1 − Γ̂1||F 28.648 (88.923) 32.541 (81.452) 29.83 (83.172)

||Γ2 − Γ̂2||F 22.428 (72.793) 21.871 (67.351) 21.544 (68.748)

||Γ3 − Γ̂3||F 31.787 (99.288) 26.026 (82.058) 26.168 (84.907)

ARI 0.995 (0.047) 1 (<0.01) 0.997 (0.058)

d0 1397 (0) 720.051 (34.151) 750.051 (24.829)

Average time per iteration (s) 1.206 (0.07) 2.482 (0.078) 143.907 (9.422)

algorithm of Sparsemixmat is slower than the model with no penalty, as expected, it is

considerably faster than the Sparsemixmat-lasso approach.

Another aspect to examine is the performance of the proposed methods in terms of

variable selection. Given the matrix-variate nature of the data, we are interested in mon-

itoring a method’s ability to correctly identify the zero rows of the mean matrices, and

hence detect those variables that have constant means across occasions and clusters. To

measure this, we make use of the F1 score, defined as follows:

F1 = tp
tp + 0.5(fp + fn) , (23)

where tp denotes the number of zero rows in Mk correctly estimated as such, while fp

and fn denote the number of non-zero rows wrongly shrunk to zero and the number of
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Figure 7: Alternated-blocks row precision matrices scenario. Boxplots of the F1 score for

100 replications of the simulated experiment.

zero rows not shrunk to zero, respectively. Figure 7 presents boxplots of the F1 score for

the Sparsemixmat and Sparsemixmat-lasso methods. By enforcing entire rows of M̂k to

be shrunk to zero via the group-lasso penalty, Sparsemixmat achieves better variable selec-

tion performance. Conversely, for the Sparsemixmat-lasso, which applies entry-wise lasso

shrinkage, there is no guarantee that entire rows will be ultimately set to zero. Therefore,

when the primary aim is multivariate variable selection within a matrix mixture context,

our proposed Sparsemixmat is preferable.

Similar results are observed when more complex dependence structures between the p

variables are considered, as will be reported in the next subsection.

4.2.2 Sparse-at-random row precision matrices

In the second scenario, the row precision matrices have a sparse at random Erdős-Rényi

graph structure. By inspecting Figure 8, we notice how the less trivial dependence pat-

terns among the variables affect the performance of the penalized models. Regardless of

the methods considered, the number of non-zero edges is greatly overestimated, resulting

in solutions where the sparsity in Ωk is underrated. Similar results are observed, albeit

less remarkably, for the column precision matrices and the mean matrices reported in Fig-
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ure 9 and 10, respectively. Nonetheless, Sparsemixmat displays the best results also in

this more challenging scenario, as it is indicated in Table 2. Particularly, our proposal

outperforms the competitors in terms of Frobenius distance, parsimony, and recovering of

the true clustering, demonstrating only a slightly longer execution time than Full MGMM

for estimation. Similarly to the previous scenario, with regard to the ability to perform

variable selection, a group-lasso penalty on the rows of Mk is preferred. This is highlighted

in the boxplots of Figure 11, where Sparsemixmat shows consistently higher F1 score val-

ues compared to Sparsemixmat-lasso. Interestingly, the variable selection performance of

both methods in terms of the F1 score is slightly lower in this scenario compared to the

previous one. This finding suggests that variable selection performance depends not only

on the penalty imposed on the mean matrices, but also on how accurately the dependence

structure among the p variables in the K clusters is recovered.

In summary, the proposed Sparsemixmat adequately tackles the problem of clustering

matrix-variate data with sparse model parameters. The method is flexible, capable of

capturing cluster-wise different dependence structures in both variables and occasions, it

enables row-wise variable selection when variables are recorded over multiple occasions, and

it effectively detects the clustering structure in matrix data. These considerations hold true

not only in an experimental setup but also in the analysis of real-world data, as reported

in the next section.

5 Application: criminal trends in the US

5.1 Data description

We analyze data from the United States Department of Justice Federal Bureau of Inves-

tigation concerning violent and property crimes of 236 American cities. The aim of the

analysis is to cluster cities with similar crime trends and to identify which crime types

exhibit relevant differences in the time patterns across clusters. In the data, for each city,

p = 7 variables corresponding to the rates of murder, rape, robbery, aggravated assault,

burglary, larceny-theft, and motor vehicle theft are measured over q = 13 years in the pe-
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0.00 0.25 0.50 0.75 1.00

Figure 8: Sparse-at-random row precision matrices scenario. In the top row, the true spar-

sity patterns of the row precision matrices Ωk, k = 1, 2, 3. In the middle and bottom rows,

heatmap plots displaying the proportion of times parameters in the row precision matrices

have been estimated as non-zero across 100 replications of the simulated experiment.
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Figure 9: Sparse-at-random row precision matrices scenario. In the top row, the true

sparsity patterns of the column precision matrices Γk, k = 1, 2, 3. In the middle and

bottom rows, heatmap plots displaying the proportion of times parameters in the column

precision matrices have been estimated as non-zero across 100 replications of the simulated

experiment.
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Figure 10: Sparse-at-random row precision matrices scenario. In the top row, the true

sparsity patterns of the mean matrices Mk, k = 1, 2, 3. In the middle and bottom rows,

heatmap plots displaying the proportion of times parameters in the mean matrices have been

estimated as non-zero across 100 replications of the simulated experiment.
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Figure 11: Sparse-at-random row precision matrices scenario. Boxplots of the F1 score for

100 replications of the simulated experiment.
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Table 2: Sparse-at-random row precision matrices scenario. Frobenius distance between true

and estimated parameters, adjusted Rand index (ARI), number of non-zero parameters (d0)

and computing time (in seconds) per iteration averaged over 100 repetitions of the simulated

experiment. Bold numbers indicate the best performing method according to the considered

metric. Standard errors are reported in brackets.

Full MGMM Sparsemixmat Sparsemixmat-lasso

||M1 − M̂1||F 19.492 (33.406) 10.29 (29.308) 12.04 (29.127)

||M2 − M̂2||F 19.062 (40.251) 3.729 (12.083) 6.213 (11.418)

||M3 − M̂3||F 18.122 (42.517) 2.64 (7.504) 2.792 (7.925)

||Ω1 − Ω̂1||F 3.116 (7.586) 2.31 (6.597) 2.321 (6.63)

||Ω2 − Ω̂2||F 2.311 (5.814) 1.904 (5.355) 1.908 (5.357)

||Ω3 − Ω̂3||F 2.314 (5.679) 1.572 (4.251) 1.583 (4.248)

||Γ1 − Γ̂1||F 50.2 (118.507) 43.46 (101.632) 41.5 (103.282)

||Γ2 − Γ̂2||F 36.462 (90.953) 27.947 (75.949) 28.065 (77.504)

||Γ3 − Γ̂3||F 49.875 (117.018) 34.301 (88.208) 34.095 (90.846)

ARI 0.991 (0.061) 1 (<0.01) 1 (<0.01)

d0 1397 (0) 794.97 (40.029) 813.737 (13.536)

Average time per iteration (s) 1.415 (0.127) 7.705 (0.859) 266.736 (26.616)

riod between 2000 and 2012. Thus, the data can be conveniently arranged in a 7×13×236

array, where each statistical unit Xi, i = 1, . . . , 236, takes the form of a 7 × 13 matrix. The

dataset is publicly available in the MatTransMix R package (Zhu et al., 2022) and has been

previously analyzed in Melnykov and Zhu (2019), where the authors introduced a method

based on mixture of matrix transformation regression time series. In the next subsection,

we discuss the results of our modeling approach and compare them with the findings from

Melnykov and Zhu (2019).
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5.2 Results

We implement an initial pre-processing step in which the statistical units are log-transformed

to alleviate skewness, and subsequently centered cell-wise for the reasons described in Sec-

tion 3.1. Specifically, if the row mean parameters of certain clusters are shrunk to zero, the

average log rate of the crimes associated with those zero rows align with the center of the

data. As a result, when a given cluster has a row shrunk toward zero, this suggests that

the cluster-specific trend associated with that variable is not appreciably different from

the global trend for that variable. After this pre-processing step, the Sparsemixmat model

introduced in Section 3 is fitted to the transformed crime data. The shrinkage parameters

are varied within a pre-specified grid of values, and we consider K ∈ {3, 4, 5, 6}.

The BIC as introduced in Equation (22) selects K = 3 clusters, with corresponding

shrinkage hyperparameters λ1, λ2, and λ3 equal to 3.81, 0, and 14.3, respectively. The

penalty coefficient λ2 = 0 implies that the estimated row precision matrices Ω̂k for the

selected model are non-sparse, indicating relevant associations between the crime types

across clusters. On the other hand, with both the selected λ1 and λ3 greater than zero,

the estimated mean matrices and column precision matrices measuring the dependence

between the time occasions exhibit certain degrees of sparsity. Visual representations of

these estimated parameters are shown in Figures 12 and 13. From Figure 12, we observe

that no crime type presents estimated cluster mean log rates equal to zero across all clusters,

indicating that all variables contain some discriminating information. However, in light of

the considerations outlined in Section 3.1, clusters tend to be differentiated over the log

rates of certain crimes across the years. For example, all clusters have dissimilar burglary

and larceny-theft log rates, while cluster 1 and 3 tend to overlap in terms of murder,

rape, and motor vehicle theft log rates. In addition, robbery and assault crime log rates

tend to stay constant over time for the cities in cluster 3, while they vary for those in

clusters 1 and 2. Figure 13 shows that the estimated column precision matrices, which

embed the conditional association structure of the crime log rates between years, tend to

have a banded structure. The entries along the diagonal are generally non-zero, while

entries between occasions far in time are generally shrunk to zero, indicating higher levels
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Figure 12: Crime data. Estimated mean matrices M̂k, k = 1, 2, 3, for the Sparsemixmat

model. Colors denote the values of the estimates; a 0 entry in the matrices is indicated by

the symbol ×.

of association among consecutive years.

The clustering of the cities in the data is displayed in the map of Figure 14. To aid

interpretation of the results, Figure 15 reports the average crime rate profiles computed on

the original non-transformed data, obtained by calculating the average rate of the cities

assigned to each cluster. In more detail, cluster 3 (blue color) identifies the safest cities

in the country, which tend also to be the smallest in size. Higher concentration of safe

cities can be observed in Northern Texas, the Los Angeles-San Diego area, and parts of the

northern states, together with a few coastal areas in Florida and in the south of Indiana.

Cluster 2 (red color) includes the cities with the highest crime rates of the considered types.

From the map, it appears that these cities tend to be unevenly distributed across the US,

with a concentration in the eastern part of the country, which is also the most densely

populated. Lastly, cluster 1 (orange color) comprises cities that are slightly less safe, for

which the mean crime rates over time tend to be higher than those in cluster 3. However,

as remarked previously, the cities in these clusters tend to have overlapping mean rates of

murder, rape, and motor vehicle theft over time (see Figure 12).

We highlight several similarities in the results discussed here and those of the analyses
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Figure 13: Crime data. Estimated column precision matrices Γ̂k, k = 1, 2, 3, for the

Sparsemixmat model. Colors denote the values of the entries; a 0 entry in the matrices is

indicated by the symbol ×.
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Figure 14: Crime data. Map of the USA showing the clustering of the cities obtained from

the sparsemixmat model. The sizes of the circles are proportional to the city population.

Colors indicate different clusters.
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Figure 15: Crime data. Mean profiles for the sparsemixmat model. The mean profiles

are computed for the variables in original scale. Colors and line types illustrate different

clusters.
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Figure 16: Crime data. Sparse structure associated to the mean matrices Mk, k = 1, 2, 3,

for the Sparsemixmat and Sparsemixmat-lasso models. Black squares denote a non-zero

entry.

reported in Melnykov and Zhu (2019). First off, compared to the partition obtained in

their 3-cluster model, we observe an agreement of approximately 75% of cases, along with

a similar interpretation of the resulting clusters. Dependence patterns across time, similar

to those in Figure 13, were also observed in Melnykov and Zhu (2019), in which a first

order autoregressive model was employed to reduce the number of parameters and model

the time dependence. While this is indeed a sensible modeling choice given the temporal

nature of the crime data, this highlights the flexibility of our procedure in automatically

capturing an autoregressive-like structure in the time occasions. This is achieved through

the penalization on the column precision matrices, without the need to pre-specify any

pattern or dependence structure. In addition, to overcome the over-parametrization issue

associated with the mean matrices, Melnykov and Zhu (2019) consider regressing crime

rates on years. In contrast, our proposed method employs a group-lasso penalty which

effectively serves the same purpose, without the specification of a regression model.
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We conclude this section by comparing the results obtained with our Sparsemixmat pro-

cedure with those of Sparsemixmat-lasso of Heo and Baek (2021) as modified in Section 3.3.

The two models yield very similar partitions, with almost perfect agreement and only 9

cities assigned to different clusters. Figure 16 shows the sparse structures of the estimated

cluster mean matrices, obtained with the two different penalties. For Sparsemixmat-lasso,

all the crime types have non-zero mean log rates for some of the years and clusters, making

difficult to differentiate the clusters based on overall mean crime log rate patterns across

years. By contrast, the group-lasso penalty in Sparsemixmat facilitates easier interpreta-

tion, making it a more favorable option for clustering matrix-variate data with variables

recorded over multiple time occasions.

6 Conclusion

The complex structure of three-way data makes clustering matrices a particularly difficult

task. By framing the problem within a well-defined probabilistic framework, model-based

methods are widely adopted to address these challenge. However, these approaches have

to face severe over-parameterization issues, even with three-way data of moderate dimen-

sions. In this work, we propose a methodology that alleviates these drawbacks, enabling

the clustering of matrix-variate data even when the number of variables p or the number of

occasions q is not small. Specifically, the proposed method relies on a penalized likelihood

approach that allows to induce sparsity in the model parameters. The penalties on the

row and column precision matrices greatly reduce the number of parameters to estimate,

while also simplifying the interpretation of the dependence patterns through their connec-

tion to Gaussian graphical models. Furthermore, the group lasso penalty on the rows of

the component mean matrices enables variable selection when three-way data arise from

variables recorded over multiple occasions. This enhances model parsimony and provides

valuable indications regarding which variables are useful in separating clusters across occa-

sions. Assessments on both synthetic data and US crime rate data have shown the validity

and effectiveness of our proposed method, overcoming several drawbacks of the approaches

currently existing in the literature.
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The paper opens several paths for future research. Firstly, while the group lasso penalty

effectively performs variable selection, it may be too restrictive in some applications. In

fact, as highlighted in Section 3.1, this specification sets to zero entire rows of the mixture

component mean matrices. However, in some cases, sparsity within rows may be desirable,

thus requiring only some occasions and not the entire variable to be shrunk to zero. This

could be achieved by adapting the sparse group lasso (Simon et al., 2013) to the framework

considered in our work. In fact, this penalty is a convex combination of the group-lasso and

the entry-wise lasso penalty described in Section 3.3, potentially extending the application

of the proposed method to other contexts. Another alternative approach could involve the

use of a fused lasso penalty, as for example, in Guo et al. (2010) and Ren et al. (2022).

This penalty could induce shrinkage of the rows of the matrix means toward each other,

both within and between clusters, thereby facilitating the grouping of variables and the

identification of those capable of differentiating some, but not all, clusters.

Throughout the manuscript, matrix Gaussian mixture models have been parameterized

in terms of precision matrices. Nonetheless, the penalized approach can be adapted to a

setting where sparsity is imposed on the covariance matrices, extending the method pro-

posed by Fop et al. (2019) to the matrix-variate case. This extension would still lend itself

to a convenient representation in terms of covariance graphs, where a missing edge between

two nodes implies that the corresponding variables are marginally independent (Chaudhuri

et al., 2007). Furthermore, in this work we focused on matrix Gaussian distributions, as

they are commonly used for modeling continuous data. However, it would be interesting

to explore whether the proposed penalized method could be employed in conjunction with

alternative choices for the component densities, potentially encompassing situations with

heavy-tails or skewness (see e.g., Melnykov and Zhu, 2018; Tomarchio et al., 2020). Lastly,

alternative model selection strategies could be developed. While the grid search adopted

in our numerical assessments produced good results, it may be computationally demand-

ing in some applications, as discussed in Section 3.4. Therefore, stochastic optimization

techniques could be adapted to our setting, as well as the E-MS algorithm introduced by

Jiang et al. (2015).
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As a final observation, we note that even in the matrix-variate scenario, the works

focusing on precision matrices estimation in multi-class settings often enforce similarities

between the underlying graphical models (Huang and Chen, 2015). While this assumption

may be reasonable in various applications, it could compromise the quality of the results

when clustering is the primary aim. Therefore, we believe that the strategy adopted in

Casa et al. (2022) could be combined with the method proposed in this paper to encompass

situations where different component precision matrices exhibit markedly different degrees

of sparsity.

Supplementary materials

README: The supplemental files include a README file that describes the contents of

the supplementary materials.

Appendix: The supplemental files contain the proof of Proposition 1 and additional re-

sults from the simulation study.

R code: The supplemental files include the source code for the sparsemixmat R package,

which implements the clustering procedure described in the paper (also available at

github.com/AndreaCappozzo/sparsemixmat).
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