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Abstract

In the framework of continuous time symmetric stochastic differential games in open loop
strategies, we introduce a generalization of mean field game solution, called coarse correlated
solution. This can be seen as the analogue of a coarse correlated equilibrium in the N-player
game. We justify our definition by showing that a coarse correlated solution for the mean
field game induces a sequence of approximate coarse correlated equilibria with vanishing
error for the underlying N-player games. Existence of coarse correlated solutions for the
mean field game is proved by a minimax theorem. An example with explicit solutions is
discussed as well.
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1 Introduction

Coarse correlated equilibria are a concept of equilibria for games with many players which allows
for correlation between players’ strategies, thus generalizing the notion of Nash equilibria. In
this paper, we propose a notion of coarse correlated equilibria for a class of continuous time
symmetric stochastic differential games and study the corresponding mean field formulation as
the number of players N goes to infinity.

Mean field games (MFGs) have been an active theme of research for almost two decades, started
in the mid 2000’s from the seminal works of Lasry and Lions [29] and of Huang, Malhamé and
Caines [22]. Roughly speaking, MFGs arise as the limit formulation of symmetric stochastic
N-player games with mean field interactions between the players. Thanks to the mean field
interaction and propagation of chaos type results, one expects that the empirical distribution of
players’ states converges to the law of some representative player. In the limit, the concept of
Nash equilibrium translates into a fixed point problem in the space of flows of measures. For
a probabilistic approach to MFGs, we refer to the two-volume book by Carmona and Delarue
[12, 13]. The relation between the MFG and the N-player game is commonly understood in two
ways: on the one hand, a solution of the MFG allows to construct approximate Nash equilibria
for the corresponding N-player games, if N is sufficiently large, see, e.g., [8, 11, 22]. On the other
hand, approximate Nash equilibria can be shown to converge to solutions of the corresponding
MFG. The choice of admissible strategies, while always important, is crucial for results of this
kind: see [17, 26] for earlier results in open loop strategies and Cardaliaguet et al. [10], Lacker
[27], and Lacker and Le Flem [28] for convergence in closed loop strategies.

The notion of coarse correlated equilibrium (CCE) makes its first appearances implicitly in
Hannan’s work [I8] and explicitly in Moulin’s and Vial’s [32]. The idea of CCEs can be sum-
marized as follows: The game includes a correlation device or a mediator, who picks a strategy
profile randomly according to some probability distribution over the set of strategy profiles,
which is assumed to be common knowledge among the players. Each player must decide whether
to commit or not to the strategies selected for her by the mediator before the mediator runs the
lottery. If a player deviates, she will do so without any information on the outcome of the lottery.
If a player commits, the mediator informs her of her own recommendation, without revealing
the recommendation to any other player. In equilibrium, it is best to commit to the anticipated
outcome of the lottery if one believes that every other player is doing the same. This notion of
equilibrium is weaker than that of correlated equilibrium (CE) & la Aumann (see [I], 2]), where
players decide whether to accept the mediator’s recommendation after having been informed



(in private) of the strategies extracted for them. When the distribution used by the mediator
is a product distribution, CCEs reduce to usual Nash equilibria in mixed strategies, because in
this case the mediator’s recommendations do not carry any additional information over what is
common knowledge. Among the nice features of CCEs, we notice the fact that they may lead to
higher payoffs than Nash equilibria, even when true CEs do not exist (see Moulin et al. [31, 30]
for an example in a two-person static linear quadratic game), and they naturally arise from a
learning procedure of the players, such as the so called regret-based dynamics (see, e.g., Hart
and Mas-Colell [I9] and Roughgarden [38] Section 17.4]).

Recently, correlation between players’ strategy choices has been considered in the context of
mean field games, although only for a class of symmetric games with discrete time and finite
states and finite actions. Campi and Fischer [9] establish the existence of symmetric CEs in
such a class of games, give a definition of CE in the mean field limit and provide both approxi-
mation and convergence results. In their formulation, players are allowed to use only restricted
strategies, that is, feedback strategies that depend only on time and each player’s private state.
As usual, the mean field interaction in the N-player game is modeled via the empirical measure
of players’ private states. In the mean field limit, they propose a notion of correlated MFG
solution, which is defined as a probability distribution over all the pairs of strategies and flows
of measures. Remarkably, in the mean field limit, the flow of measures is naturally stochastic,
as the aggregation of individual behaviours preserves the stochasticity of the correlation device.
The subsequent work with Bonesini [6] extends the notion of correlated solution for the MFG to
allow for progressive deviations and presents a new formulation based on open loop stochastic
controls. In a second group of papers by Miiller et al. [34] 33], notions of both CCEs and CEs
are studied for a class of symmetric games with discrete time, finite states and finite actions, in
a setting close to the one in [9] [6]. Interestingly, they propose a different definition of CE for the
mean field game from that in [9], and in [33] the authors discuss on how the two definitions of
CE can be seen as equivalent. In addition, [34] [33] contain an extensive discussion of learning
algorithms for approximating Nash equilibria, CEs and CCEs in the mean field limit.

In the N-player game, the state dynamics follow stochastic differential equations (SDEs),
driven by independent standard Brownian motions representing additive idiosyncratic noise, and
the interaction between players is given through the empirical distribution of their states, which
appears both in the drift of the SDEs and in each player’s payoff functional. Players’ strategies
are assumed to be open loop, i.e., the correlation device would recommend the players to use
strategies adapted to the filtration generated by noises and initial data. More precisely, the
correlation device, or recommendation to the N players, is modeled as a random variable taking
values in the set of open loop strategy profiles; we require it to be independent of the random
shocks and the initial states which determine players’ states’ evolution. We deal very carefully
with the measurability properties the recommendation has to fulfill so that the players’ states
are well-defined and the recommended strategies are implementable by the players. In the mean
field limit, the notion of coarse correlated solution we present corresponds to a pair given by a
recommendation with values in the set of open loop strategies for the representative player and
a random flow of measures fulfilling the following two properties:

— Optimality: the representative player has no incentive to deviate from the recommended
strategy before the extraction has happened.

— Consistency: the flow of measures at any time ¢ equals the marginal law of the represen-
tative player’s state conditioned on the o-algebra generated by the whole flow of measures
up to terminal time.



Through the study of a simple example, our notion of coarse correlated solution to the MFG is
compared to the more usual notion of MFG solution, (as defined, e.g., in [11]) and the notion of
weak MFG solution of [26]. Our main contributions are as follows:

— We justify our notion of coarse correlated solution for the MFG by showing that any coarse
correlated solution for the MFG induces a sequence of approximate CCEs in the N-player
game, with vanishing error as IV goes to infinity.

— Under an additional convexity assumption, we prove the existence of a coarse correlated
solution for the mean field game.

Both results will be established using a genuinely probabilistic approach. To prove existence, we
associate a zero-sum game to the search of a coarse correlated solution for the MFG, inspired
by the works of Hart and Schmeilder [20] (for static games), Nowak [35, [36] (for continuous
time dynamic games) and Bonesini [5, Appendix 1.B] (for mean field games with discrete time
and finite states and actions, in the setting of [9]), which require us to apply a minimax theo-
rem. Therefore, compactness arguments are exploited, adapting some of the techniques used in
Lacker’s works [25] 27]. On the other hand, the approximation relies on propagation of chaos
arguments, which are reminiscent of [11].

The rest of the paper is organised as follows: in Section [2] we collect some notations and state
the main assumptions, which will be in force throughout the whole paper. In Section [3] we
define the N-player game and present a notion of CCE; coarse correlated solutions for the MFG
are defined in Section [d] The approximation and existence results are presented in Sections [5]
and [0} respectively. In Section [7] we consider a simple class of games, already discussed in the
literature (see [3} 26}, 27]): we show that it has coarse correlated solutions which are different from
the classical MFG solution, and we compare them with the notions of solution of the previous
literature. Finally, some auxiliary technical results are gathered in the Appendix.

2 Notations and standing assumptions

Here, we collect the most frequent notations that occur in this work and state the assumptions.
For a metric space (F,dg), we denote by Bg the Borel o-algebra generated by the topology
of E. When the context allows, we will drop the dependence upon FE, and just denote it by B.
We denote by C,(E) the set of continuous bounded function f: E — R.
We will denote by P(F) the set of probability measures on (E, Bg). For p > 1, we denote by
PP(E) the set of probability measures m € P(E) so that, for some point z¢ € E, and thus for
any, the p-moment of m is finite:

m € PP(E) <= m € P(E) and /Ed%(:v,xo)m(dx) < 0.

Let Wy, g(m1, m2) denote the p-Wasserstein distance on PP(F), defined as

W;E(ml,mg) = inf {/E

Any time we will be given two metric spaces (E,dg) and (E,dg), we will regard E x E’ as a
metric space itself, with the distance d((e, f), (¢/, f')) = dg(e, f) +dgr(€, f). The p-Wasserstein
distance on PP(E x E') will always be meant with respect to such distance on E x E’.

We recall some well-known equivalences for convergence in p-Wasserstein distance, which will
be used extensively:

. db(z,y)m(dz,dy) : ™ € P(E x E), 7 has marginals my, mg} .
X



Proposition 2.1 ([40], Theorem 7.12). Let (E,dg) be a metric space, and suppose p",p €
PP(E). Then the following are equivalent:

(1) Wy, g™, ) — 0.

(2) u"™ — p weakly and for some (and thus any) xo € E we have

lim sup

B, 20 paldz) = 0 Y
T—00 g /{x: dp(@.a0)2r}

(3) [ ¢(x)pun(dz) = [ ¢(z)u(dx) for all continuous functions ¢ : E — R such that there exist
xo € E and ¢ >0 so that |p(z)| < (1 + diy(z,x0)) for all z € E.

In particular, a sequence (pin)n C PP(E) is relatively compact if and only if it is tight and satisfies

2.

For T > 0 fixed, we denote by C? the set of continuous functions from [0, 7] in R, d € N, i.e.
c? = C ([0, T];R?). We endow C? with the norm [|z[|ca = Supgepo,1) [7s]- Occasionally, we will
use the semi-norm ||z |, ca = sup,cp g |5/, for z € C?4. We will denote as We € P(C%) the law of
a standard d-dimensional Brownian motion, and by C(P?) the set of continuous functions from
[0, 7] in P2(RY), i.e. C(P?) = C([0, T]; P?(RY)), where P?(R%) is endowed with the 2-Wasserstein
distance. We endow C(P?) with the supremum distance SUDsefo,7] W po (Rd)(mtl,mt) for any

m! = (m%)te[O,T] and m? = (m%)te[O,T] n C(P2)~

When given a filtered probability space (2, F, (Gi):,P), we regard as the P-augmentation of
the filtration (G;); the filtration F = (F;);, where Fy = Nes00(Grie, N) and N stands for the
P-null sets of . Such a filtration satisfies the usual assumptions.

We end this section by stating our standing assumptions on the state dynamics and on the
costs of the players in both the N-player game and the limit game. We are given a finite time
horizon T" > 0, a control actions space A, an initial state distribution v € P(Rd), and the
following functions:

(b, f) : [0,T] x R? x P2(RY) x A — RY,
g: R x P2(R?Y) = RY,

which will be referred to, respectively, as the drift function, the running cost and the terminal
cost.
The following Assumptions [A] will be in force throughout the whole manuscript.

Assumptions A.
(A.1) ACR!, for somel > 1, is a compact set.

(A.2) v e PP(RY), for some P > 4.

(A.3) The functions b, f and g are jointly measurable in (t,x,m,a).

(A.4) b(t,z,m,a) is Lipschitz in a € A, m € P*(R?) and x € RY, uniformly in t:

b(t, 2,m, a) = b{t,a ') < L (la = a/| + 2 = @' + W, gu(m,m))

for every t € [0,T), (x,m,a) and (z',m’,a’) in R x P?(R%) x A.

(A.5) The functions [0,T] > t — (b, f)(t,0,00,a0) are bounded, for some ag € A.



(A.6) f and g are locally Lipschitz in (x,m,a) for every fized t € [0,T] with at most quadratic
growth, i.e., there exists a positive constant L > 0 so that

|(f,9)(t,x,m,a) — (f,9)(t, 2’ ,m/,d")]

<L (1 el + ||+ (/R |y12m<dy>>5 i (/R |y12m’<dy>)% + o] + M)

: (\x = | + Wy ga(m,m') + |a — a’]) ;

for every t € [0,T), (x,m,a) and (z',m’,a’) in R x P?(RY) x A.

3 Formulation of the N-player game

Consider the following canonical space
Q' =XR*x ¢ F'= Q) Bra @ Bea, P = Qv W (3.1)
1 1 1

We define a sequence of random variables (£%);>; and of Brownian motions (W?);>1, by taking
the projections:
Ewr) = (@, w)j>1) = 2%, Wi(w) = Wi (@, w’)j>1) = wj, t €[0,T). (32)

By definition of P!, (¢%);51 and (W?);>1 are mutually independent, (£%);>; are independent and
identically distributed with law v € PP(R?) and (W?);>1 are independent d-dimensional standard
Brownian motions.

Let N € N, N > 2, be the number of players. We define the filtration FMV as the P!-
augmentation of the filtration generated by the first N random variables (fi)gil and Brownian
motions (VV’)Z]\;1 Therefore, for the N-player game, we work on the space

Qf, FLFLY Pl (3.3)

We stress that, for every N > 2, we keep the probability space (2!, F! P!) fixed while the
filtration FLV varies.

Consider the set Ay of FL.¥-progressively measurable processes taking values in A:
Ay = {a 0, T x 0 - A ‘ o is FHY-progressively measurable } . (3.4)
Provided that we identify processes which are equal Lebjg 7 ® Pl-a.e., we can regard Ay as
Ay =L*([0,T] x Q', PN, Lebyy 71 @ P'; A)

where PV stands for the progressive o-algebra on [0,7] x Q', using the filtration FLV. We
call any element @ € Ay an open loop strategy for the N-player game. We regard a vector
(al,...,a™) e AY = X]1V A as an open loop strategy profile for the N players, which will be
occasionally denoted by a. We endow such a space A with the norm

T 3
a2 = E” [/ |0‘t2dt] (3.5)
0

and consider the Borel o-algebra By, associated to that. We observe that, since ([0,77] x
O, B[O,T}xﬂl) is Polish and A is closed, Ay is a separable Banach space. In the following, we will
make no distinction between an F1V-progressively measurable process a and any other process

o/ which is equal to it Lebjy ) @ P!-almost everywhere.



Definition 1 (Admissible recommendation profile and correlated strategy profile). We call ad-
missible recommendation profile to the N players a pair ((Q°, F°~,P%), A) so that the following
holds:

1. (Q0, 7%=, P% is a complete probability space; Q° is a Polish space and F%~ is its corre-
sponding Borel o-algebra.

2. A= (AY,...,A") is a random vector with values in AY:

A (@, FO7 B — (AN, Byy)

wo — Awo) = (o, ..., o) [0,T] x Q' — AN, (36)

3. A is admissible in the following sense: Let (€2, F,P) be the product space of (Q°, 79~ P0)
and (Q', F1,Pl):
(Q,F,P)=(Q° x Q' 7~ o FL P @ P1).
We complete the o-algebra F with the P-null sets and endow the product probability space
with the P-augmentation of the filtration

]F = .F.Oi ® ]FLN = (.F07 ® ‘FtLN)tE[O,T]'

Given an (A%,BA%)—valued random variable A = (Al,...,AY) as in (3.6), we say that A
is admissible if there exists a process A = (A},..., AN )telo,r] With values in AN | defined
on (Q,F,P) and F-progressively measurable, so that, for every i = 1,..., N, for P’-a.e.
wo € Q°, the section (Af(wo,-))sefo,r] is equal to A’(wp) in Ap:

H()‘i(WOa '))tE[O,T] - Ai(WO)HLz([O,T}Xﬂl) =0, Po'a-s-v i=1,...,N. (3.7)
If A= (A',...,A") is an admissible recommendation to the N players, we write
Mo(w) = Ni(wo, w1) = A'(wo)¢(wi), i=1,...,N, (3.8)

where equality is to be understood in the sense of (3.7)). We call correlated strategy profile associ-
ated to the admissible recommendation profile ((Q2Y, 9=, P%), A) the F-progressively measurable

process A = (A¢)ejo,r) satisfying (3.8)).

We remark that, by Proposition [B:2] given any admissible recommendation to the N players
(20, FO=,PY), A), the correlated strategy profile A associated to it is unique Lebg 1) ® P-almost
everywhere. We point out that in general, for instance when a recommendation profile A takes
uncountably many values, we cannot recover the progressive measurability property of the strat-
egy A associated to the recommendation A. The essential reason is that we cannot deduce the
measurability of a set in the product o-algebra from the measurability of its sections, as shown,
e.g., in [39, p.5]. Therefore, the admissibility requirement on ((Q°, 79~ PY), A) is necessary. Nev-
ertheless, we give some examples of admissible recommendations in Example [1| in the following
Section [l

Remark 1. As usual, we can extend random variables defined on Q' to random variables
defined on €. Indeed, suppose X : (Y, F!) — (E,&) is a random variable with values in
some measurable space (F,£). We can then regard X as defined on the space ({2, F) via the
identification X (wp,w;) = X (w1), and analogously for Q0. In this sense, via the identification
(&, W) (wo,w1) = (&, WH)(wy) for every i = 1,...,N, we can regard the Brownian motions
and initial data as defined on €2; we observe that (W%, are independent standard Brownian

7



motions with respect to the filtration F as well. Moreover, we can identify each process o € Ay,
which is defined on Q!, with a process & defined on Q via the identification G(wp,w1) = a(wy).
Such a process is progressively measurable with respect to the filtration F and independent of

Fo-.

We interpret the admissible recommendation as follows: A correlation device or a mediator
runs a lottery over open loop strategy profiles according to some publicly known distribution
PY and communicates privately to each player a strategy according to the selected profile. The
extraction of the strategy profile happens before the game starts and it is independent of the
idiosyncratic shocks that determine the random evolution of players’ states. These features are
captured by the construction of the underlying probability space as a product of (QY, 70~ P?),
which contains the information used to correlate players’ strategies, and (Q', F1,P!), where
noises and open loop strategies are defined, and by the choice of the filtration F, since F'~ C F;
for every t € [0,T]. We stress that, by definition, the realization A?(wpg) is an F*V-progressively
measurable process in Ay, for any scenario wg € QY and i = 1,..., N. Observe that, even though
A and (&, W7 );VZI are independent, the correlated strategy profile A = (A¢);c(o,r) is in general
not independent of either of them, since it is the result of both the recommendation profile and
the random shocks and initial data.

Let ((Q2°, 7%=, P%),A) be an admissible recommendation profile. On the space (Q, F,F,P)
defined at point [3|of Definition[I] we assign players state dynamics and define the cost functionals.
If all players follow the recommendation A, players’ state dynamics are given by the following
system of stochastic differential equations:

dX7 =b(t, X}, ¥, M)dt +dW7,  0<t<T, (39)
Xj=¢, |
for every j € {1,..., N}, where p} is the empirical measure of the state processes of all players
at time t:
1 N
N _ .
= 25)(5. (3.10)
]:

Suppose player ¢ deviates, while the other players follow the recommendations they receive
from the mediator. The deviating player will pick instead an open loop strategy 5 € An. In
other words, at every time ¢ and for every scenario w, player ¢ plays the action Bt(w) = Bi(w1)
instead of playing the recommended action \i(w) = A*(wp)(w1). Then, players’ state dynamics
are given by the following system of stochastic differential equations:

szwxm&£W+M% 0<t<T, Xj=¢, j#i (3.11)

AXE=b(t, XE N, B)dt +dWi,  0<t<T, Xi=¢,

where 1 is defined as in . We note that ¥ belongs to P?(R%) almost surely, since it is a
superposition of Dirac’s deltas, which makes equations and well defined. We observe
that Assumption [A] ensures that there always exists an F-adapted continuous solution to both
equations and so that E[supcp ) maxi<j<n |X7]2] < oo and pathwise uniqueness
holds. By Theorem , uniqueness in law holds as well.

Remark 2. Asin Remark we can further stress the dependence upon w = (wp,w;) € NOxQ! =
Q: as for (3.9), we write, with the same abuse of notation of Remark

dth(UJo,wl) = b(t, X7 (wo,w), 1 (wo, w1), M (wo, wi))dt + dW] (wr),
X (wo,w1) = & (w1),



for every j € {1,..., N}, where )\{ (wo,w1) = A (wp)¢(w1) in the sense of (3.7). Analogously, in
presence of a deviating player 4, instead of (3.11)), we write
{dX] (wo,w1) = b(t, X7 (wo, w1), i (wo, w1), N (wo, w1))dt + dWY (wr), it

X (wo,w1) = & (wr),

&l
{dxti(wo,wn b(t, Xi(wo,wr), i (wo, wi), Be(wr))dt + dWi (w),
X (wo,wr) = €' (wn).

Remark 3. We notice that there is an asymmetry between the information available to the me-
diator and the deviating player: if a player deviates, she chooses her strategy on her own, ignoring
the information contained in mediator’s recommendation, since, by definition of the process
on the product space, deviating player’s strategy [ is independent of the recommendation profile
A. We can interpret player i’s deviation in the following way: either the player commits to the
moderator ex-ante or she does not; if she does not, she will not exploit any of the additional
information the mediator would give away when communicating the recommended strategies to
the players.

As for the cost functional, let ((2°, 7%=, P%), A) be an admissible recommendation profile. If
all players follow the recommendation, then the cost functional of each player j = 1,..., N is
given by

T . i .
V) =E [ /0 F(t, X7l ,A£>dt+g<X%,u¥>] |

with dynamics given by (3.9)). If instead player i does not play according to the recommendation
A" and plays a different strategy 8 € A, while the other players stick to the recommendation
profile A=% = (A',... A" A" AN), we define the cost functional of each player j as

3§V<A>=E[/O f(thf,MivJ\i)dt+9(X%,M¥)], i
. T . .
VA ) = [ /0 Pt X ,ﬁt>dt+g<XZT,u¥>] ,

where the dynamics are given by (3.11). Finally, we give the notion of e-coarse correlated
equilibrium:

Definition 2 (e-coarse correlated equilibrium). Let ¢ > 0. An admissible recommendation
profile ((Q°0, FO= PY), A) is an e-coarse correlated equilibrium for the N-player game (e-CCE) if

INA) <IN B) +e (3.12)

for all open loop strategies 8 € Ay and all players i = 1,..., N. We call an admissible recom-
mendation profile ((2°, O~ P%), A) a coarse correlated equilibrium for the N-player game if it
is an e-coarse correlated equilibrium with € = 0.

The usual notion of Nash equilibrium in open loop strategies is consistent with the definition
of coarse correlated equilibrium: Suppose we are given an e-Nash equilibrium (o!,..., o) in
open loop strategies. We choose (20, 9~ P?) as the trivial probability space and A as constant
and equal to (al,...,a!V). It is then straightforward to see that the triple ((Q°, FO0= PY), A) is
an e-CCE according to Definition [2]

Notice that a Nash equilibrium in open loop strategies (a?, ..., a") is F1"N-progressively mea-
surable, while a correlated strategy profile A associated to an admissible recommendation A



contains the information carried by A itself, which is the information the mediator uses to ran-
domize players’ strategies. Moreover, while in both cases the deviating player will use an open
loop strategy, CCEs present a certain asymmetry between the information available to the me-
diator and the deviating player, as pointed out in Remark |3 while, when dealing with Nash
equilibria, the deviating player has access to the same information of the other players, since
they all use FV-progressively measurable strategies.

Remark 4 (Role of the probability space (Q°, F°~,P%)). According to Definition [1} the prob-
ability space (20, 0=, P?) is part of the definition of admissible recommendation. The natural
interpretation is that the mediator chooses the auxiliary space he uses to correlate players’ strate-
gies. Moreover, according to equations and , it determines the probability space on
which state processes are defined. In order to keep the notation as simple as possible, by abuse

of notation, we mostly refer only to A as the admissible recommendation instead of the pair
(2%, 707, P%), A).

Remark 5 (Relationship with correlated equilibria of [0, []). It is worth to briefly compare
our notion of coarse correlated equilibria with the notion of correlated equilibria of [9] and
[6]. Besides the fact that the sets of times, individual states and control actions are finite,
therein strategies recommended to the players are in restricted closed loop form, that is, they
are Markovian functions of each player’s private state, hence of the form (u? (¢, X}));ep0,r], with
ul 2 [0,T) x R? — A measurable, for each j = 1,..., N. Recommendations thus take values in
the set of such functions of time and state. Most importantly, in their framework, the deviating
player reacts to the recommended strategy: she observes the recommendation the mediator gives
her and decides whether or not to play accordingly after receiving it. Therefore, using our
notation, the deviating player ¢ has access to the information carried by A’. This feature is not
present in our model, as previously discussed.

Remark 6 (Expressing e-CCE in terms of the law of the admissible recommendation profile).
For the sake of comparison with the literature, see, e.g., [31), B0] in the static case and [35] [36]
in the differential one, we restate the equilibrium condition taking advantage of regular
conditional probabilities. Let A be an e-CCE. Since both QY and Q' are Polish, we get that
AN and (©, F) are Polish as well, so that we are allowed to consider the regular conditional
probability of P given A = (a!,...,a!), which we denote by P*. Let vy € P(AY) be the
law of A and V;,i € P(A%‘l) be the law of A™%. It is straightforward to see that, for yy-a.e.
(al,...,a™) € AY, under P®, the process X solution to satisfies the equation

dX] = b(t, X], 1, a)dt +dW],  0<t<T,
X3=¢,

and analogously holds for equation (3.11). Denote by J*(a) the cost functional for player i
associated to an open loop strategy profile a. The equilibrium condition (3.12)) reads as

/ 3£V(a)7N(da)§/ N BN (da™ ) +e VBE AN, i=1,...,N. (3.13)
AN AN-L

N

We stress that the right-hand side depends only on the marginal law of A~ for every 5 € Ay,
for every i =1,..., N.

4 Formulation of the mean field game

Consider the following canonical space

Q" =RIxCY F*=Bga®Bea, P'=veW. (4.1)
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Define £ and W = (W})ycp0,1] as
E(wy) =&(z,w) =2, Wiws) = Wi(z,w) = wy. (4.2)

By definition of P*, ¢ and W are independent, ¢ is an R%valued random variable with law v
and W is a standard Brownian motion. Define the filtration F* as the P*-augmentation of the
filtration generated by & and W.

Consider the set A of F*-progressively measurable processes taking values in A:
A= {a ([0, T] x Q" — A ‘ a is F*-progressively measurable } : (4.3)
Provided that we identify processes which are equal Lebjy 71 @ P*-a.e., we can regard A as
A=L*([0,T] x Q*,P*, Leby 1) @ P*; A) |

where P* stands for the progressive o-algebra on [0, 7] x ¥, using the filtration F*. We call any
element o € A an open loop strategy for the mean field game. We endow such a space A with
the norm

1
T 2
Jalls =57 | [ o (44
0

and consider the Borel o-algebra By associated to that. We observe that, since ([0,7] x
Q*, Bjo,Tx0+) is Polish and A is closed, A is a separable Banach space. Finally, we will make no
distinction between an F*-progressively measurable process a and any other process o which is
equal to it Lebjg 7] ® P*-almost everywhere.

Definition 3 (Admissible recommendation for the mean field game). We call admissible recom-
mendation a pair ((Q°, 9=, P%), A) where:

1. (Q0, F0=, P% is a complete probability space; Q° is a Polish space and F%~ is its corre-
sponding Borel o-algebra.

2. A is a random variable with values in A:

A (Q0,FO7 PY) — (A, By) (45)
wo — Awp) = :[0,T] x Q° — A. .

3. A is admissible, in the following sense: let (Q2, F,P) be the product space of (Q°, 79~ P0)
and (Q*, F*, P*):
(Q, F,P) = (Q° x O, F'~ @ F*, P' @ P*).
We complete the o-algebra F with the P-null sets and endow the product probability space
with the P-augmentation of the filtration

F=F"@F = (F" ® F )icp-

Given an (A, By)-valued random variable A as in (4.5)), we say that A is admissible if
there exists an A-valued process A\ = (A¢)e[o,7), defined on (€2, F,P) and F-progressively
measurable, so that, for P%-a.e. wy € 7, the section (A(wo, -))seo,r] is equal to A(wp) in
A:

| (Ae(wo, ))eero,r) — A(wo)HLQ([O’T}XQ*) =0, Plas. (4.6)

11



If A is an admissible recommendation, we write
At(w) = Ae(wo, wi) = A(wo)i(ws), (4.7)

where equality is to be understood in the sense of (4.6). We call strategy associated to the admis-
sible recommendation ((Q°, F°~,PY),A) the F-progressively measurable process A = (A)e[o7]

satisfying (4.7)).

We remark that, by Proposition given any admissible recommendation ((Q°, 79~ P%), A),
the strategy A associated to it is unique Lebj 1) ® P-almost everywhere.

Definition 4 (Correlated flow). A correlated flow is a triple ((Q°, FO= PY), A, u) where:
L. ((Q° F°=,PY), A) is an admissible recommendation.

2. p: (Q0, F0~ PO — (C(PQ),BC(fPQ)) is a random continuous flow of measures with values
in P2(RY).
The same considerations as in Remark [0 about the extension of random variables on the
product space (€2, F,P) hold for correlated flows as well.

Let ((Q°, F9=,P%), A, 1) be a correlated flow. On the product probability space (Q, F,P)
defined at point [3] of Definition [3, we assign state dynamics. If the representative player decides

to play according to the admissible recommendation A, the dynamics is given by the following
SDE:

{dXt = b(t, Xy, e, M )dt +dW,,  0<t<T, 48)

Xp = &.

If instead the representative player decides to ignore the mediator’s recommendation and to use
a possibly different strategy § € A, the dynamics is given by the following SDE:

{dXt = b(t, Xp, e, By)dt +dW;,  0<t<T, (19)

X, = &.

By Assumptions [A} on any space (2, F,F,P) there exists a solution to equation (4.8) and path-
wise uniqueness holds. By Theorem [A] uniqueness in law holds. Analogous considerations

apply to equation ({4.9)).

Remark 7. As in Remarks [I| and |2, we can further stress the dependence upon w = (wp,ws) €
00 x O* = Q: If the player implements the recommendation, we rewrite (4.8) as

dXi(wo,ws) = b(t, Xi(wo,ws), e (wo), Ae(wo, w))dt + dWi(w),
X()(Wo,w*) = E(w*))

for Ai(wo,ws) = (A(wo))t(ws), where equality is meant in the sense of (4.6). If the representative
player deviates, we write instead

{dXt(wo,w*) = b(t, Xy (wo, ws), e (wo), By (ws))dt + AWy (w,),
Xo(wo, ws) = §(wx)-

12



Let ((Q2°, F9=,P%), A, i) be a correlated flow. The cost functionals for the representative player
and the deviating player, whose state dynamics follow (4.8)) and (4.9)), respectively, are given by:

T
JAp) =E [/ f(t, X, g, Ay)dt +9(XT7MT)] ;
0 (4.10)

T
3(67”) =K |:/0' f(ta Xt:utaﬂt)dt + g(XT7/"LT):| :

Finally, we give the definition of coarse correlated solution of the mean field game:

Definition 5 (Coarse correlated solution). A correlated flow ((Q°, F9=,P%), A, 1) is a coarse
correlated solution of the mean field game if the following properties hold:

(i) Optimality: for every deviation § € A, it holds
J(A, ) < J(B, ). (4.11)

(ii) Consistency: for every time ¢ € [0, 7], p is a version of the conditional law of X, given p,
that is,
pi() =P(Xy € - | u) P-as. Vte[0,T]. (4.12)

We will refer to coarse correlated solutions of the mean field game as coarse correlated mean field
solutions and mean field coarse correlated equilibria (CCE) as well.

As in [6] and [9], the consistency condition should be read in the following way: the
mediator imagines what the flow of measures will be, up to the terminal horizon T, before the
game starts, and gives a recommendation to each player according to his idea. If all players
commit to the mediator’s lottery for generating recommendations before having been informed
of the actual outcomes, then the flow of measures should arise from aggregation of the individual
behaviors. This interpretation sheds light on the measurability requirement of both A and u:
since the recommendation is given before the beginning of the game and it is formulated on the
mediator’s idea about the future flow of measures, it is natural to require p to be measurable
with respect to F°~, as A is so. Moreover, in general, the recommendation A and ju are not
mutually independent: since the flow of measures p should be thought of as the limit point of
the N-player empirical measure p defined by and, analogously, the recommendation A
should be the limit point to the recommendations given to any of the players in the N-player
game, some mutual dependency between them should be expected. Regarding the strategy of
the deviating player, as in the N-player game, if the player deviates, she chooses her strategy on
her own, without using any of the information carried by A or u: the only information she has
about A or p comes from the knowledge of the distribution P°, which is assumed to be known
by the representative player, in analogy to the N-player game.

Remark 8 (Role of (20, 7%=, P%)). Analogously as in the N-player game, although the prob-
ability space (90, FO= PY) is part of the definitions of admissible recommendation and cor-
related flow, when it is clear from the context we refer to A and (A, p), instead of the pair
(90, FO= PY), A) and the triple ((2°, F°=,P%), A, i), as admissible recommendation and corre-
lated flow, respectively.

Remark 9 (Expressing mean field CCEs in terms of the law of the correlated flow). Let (A, p
be a mean field CCE. Denote by v € P(A x C(P?)) the joint law of (A, i) and by p € P(C(P?)
the marginal law of . Since both (QY, 797) and (Q!, F') are Polish spaces, so are A and (Q, F),

~— —
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so that there exist a version of the regular conditional probability of P given (A, pu) = (a, m),
which we denote by P*™. By conditioning on o(A, 1), we get that X is a solution to the SDE

dX; =b(t, X dt + dW, <t<T
{ t (t, X¢,my, ou)dt + dWy, 0<t<T, (4.13)

Xy =0,

on the probability space (2, F,P%™), for y-a.e. (o, m) € A x C(P?). To see this, observe that W
is an F-Brownian motion under P®™ as well, since by construction W and (A, u) are independent
under P, and it obviously holds P“™(A = a, u = m) = 1, which implies

P (b(L, 2, e, Ae) = b(t, w,my, ), Vo € R) = 1, Leby rj-a.e. t € [0,T],

for y-a.e. (a,m) € A x C(P?). This is enough to conclude that X satisfies equation (4.13)) under
P*™ and that the equality

3@Lu>=:/" (o, m)y(da, dm),
AxP(Cd)

holds. Here, J(, m) stands for the cost functional associated to a correlated flow (A, u) P%-a.s.
equal to (o, m) € A x C(P?). Analogous reasoning holds for J(8, i), except that the conditioning
on o(A, p) does not modify the dependence upon the deviating strategy 5 € A. Therefore, the
optimality condition (4.11) reads as

/ J(a, m)y(da, dm) < / J(a, B)p(dm), (4.14)
AxC(P?) C(P?)

for all g € A. Comparing this inequality with (3.13]), we observe that the dependence upon the
non-deviating players in the left hand-side of ([3.13) is replaced by the law of the flow of measures
1, which captures the behavior of the population.

Example 1 (Admissible recommendations). Fix a complete probability space (20, 70— P?).
We provide some simple examples of random variables A : (20, 70~ P%) — (A, B) which are
admissible recommendations in the sense of Definition [3l

1. Suppose that A takes only finitely many values, say a',...,af € A, k > 1, ie. PO(A =
a') = p;, with p; > 0 for every i = 1,...,k, Zlepi = 1. We can easily define the associated

strategy (Ar)icpry as
k

A(wo,ws) = Y Tia—aiy(wo)aj(ws).
=1

We explicit the dependence upon the scenario w = (wo,ws):

k
Awo)e(wn) = 3 L pary (Al (ws)-
=1

By the same line of reasoning of Remark [I}, we have that this process is F-progressively measur-
able, since the processes o', i = 1,..., k, are F-progressively measurable and the F°~-measurable
real-valued random variables 1¢,13(A(wp)) can be regarded as defined on the product space
00 x O and F°~ @ {0, Q*}-measurable, therefore F-progressively measurable. Finally, condition
is satisfied by A itself.

14



2. Suppose A takes at most countably many values. We can define A = (A(wo, wx))iefo,1] @8

)\t(w(]a w*) = Z ]l{A:ai} (WO)O‘:;(W*)'

=1

Set A} (wo,ws) = D i 1y A:ai}(wo)ai(w*) and observe that, by the same argument of the pre-
vious point, A} is an F-progressively measurable process for each n > 1. Furthermore, for each
(t,wo,ws) € [0, T] x Q0 x Q*, the sequence AP (wp, ws) is eventually constant, being ({A = a'});>1
a partition of Q°. Therefore, the sequence A" converges pointwise to A = ()‘t)te[O,T]- Being A the
pointwise limit of A", we deduce that A is a progressively measurable process with values in A

which satisfies (4.6)), so that A is admissible.

3. Let (20, F°=,P%) be a complete probability space, with Q° Polish and 7%~ the correspond-
ing Borel o-algebra, and let ()\t)te[o,T} be an A-valued process defined on the P? ® P*-completion
of the product space (20 x Q*, FO~ @ F, P ®@P*) with values in A. Assume that it is progressively
measurable with respect to the P’ @ P*-augmentation of the filtration F = (F~ @ F; Jeelo,r)- We
can define a function A : Q0 — A by setting

A (wo, - 20,7 x Q" — A
(At(wo, *))eqor = [0, T W e O\ N,
A(WO) == (t7w*) _> )\t(w07w*)a (415)
agp wo € N.
where N C Q0 is a PY-null set and ag is an arbitrary point in A. By Lemma in Appendix

the pair ((Q°, F°=,P%), A) is an admissible recommendation, with strategy associated to the
recommendation A given by the process A\ itself.

5 Approximate N-player coarse correlated equilibria

The next result shows how to construct a sequence of approximate N-player coarse correlated
equilibria with approximation error tending to zero as N — oo, provided we have a coarse
correlated solution to the mean field game.

Theorem 5.1. Let ((Q20, 70—, PY), A*, u*) be a coarse correlated solution of the mean field game.
For each N > 2, there exist:

(i) an admissible recommendation to the N players ((QON, FO—N PONY AN).

(i) a real valued ey > 0, with eny — 0 as N — oo,
so that ((QON | FO=N PONY ANY s an en-coarse correlated equilibrium for the N-player game.
5.1 Construction of the admissible recommendation profiles to the N-player

game

With respect to the probability space (Q!, F1,P!) defined in (3.3, let us denote by F®) the
Plaugmentation of the filtration generated by (&, W?). Let us introduce the following set of
strategies:

Ay = {a € Ay | a is F progressively measurable} . (5.1)
We stress that, by construction, for each N > 2, open loop strategies for the N-player game are

defined on the same probability space (2!, F1,P!) and we have the inclusions Ay C Ax,1 and
Ay C Ay for every i < N.
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We build a probability space (Q, F,P) large enough to carry any sequence (A*);>1 of admissible
recommendations such that

1. for every i, A’ is supported on the set Agy;
2. for every i, A* has the same distribution as A*,
3. for every N > 2, (A',..., A"N) is exchangeable.

Then, we define the probability space (Q%V, FO=N PONY a5 (Q, FO—N P), where FO—V is a
suitable sub o-field of F that will be defined below.

Let us denote by p € P(C(P?)) the distribution of u*. Let
K : F'~ xC(P?) = [0,1]

be the regular conditional probability of P? given u*, which exists and is unique since both
(20, F9= PY) and (C(P?), B) are Polish spaces. Here and in the following, B stands for the Borel
o-algebra on C(P?). Let v denote the joint law of (A*, u*) under P, let s be a version of the
regular conditional probability of  given p*, that is, the stochastic kernel & : By x C(P?) — [0, 1]
so that it holds

PO ((A*,u*) € C x B) = / k(C,m)p(dm) VC € By, VB € B. (5.2)
B

Define the probability space (ﬁ, 7‘) in the following way:
(X QO) C(P?), F= ((X) FO) ® B, (5.3)
1

and define IP so that, for every cylinder R with basis Ay x --- x Ay x B, with A; € F9~ for every
i=1,...,N, N >2, B e B, it holds

= /BHK(AZ-,m) p(dm). (5.4)

P) with the P-null sets. Let @ = ((wg)i>1, m) denote a scenario in
B

We complete the space (2, F
P?), B) be the projection on C(P?), that is

Q. Let p: (Q,F,P) — (C(P S
p (@) =m. (5.5)

Lemma 5.2. There exists a sequence of recommendations (A%);>1 from (Q, F,P) to X_; An
so that, for each i > 1, the following holds:

(a) A is an admissible recommendation, and it takes values in Ay

(b) The joint law of (AY,...,AN) under P is supported on Xij\il Ay C AN and it is given by

v (dat,. /P2) K (da’,m) p(dm). (5.6)

As a consequence, for everyi > 1, (AY, ) has the same distribution as (A*, u*) and (AY);>1
are conditionally independent given .
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Proof. Recall from (3.3) and (4.1)) the definitions of the spaces (Q', F1,P!) and (Q*, F*,P*).
Observe that, up to completion, it holds

@\, FL P = (X) (@, F*, P*) (5.7)
1

so that a scenario wy € Q' can be written as w; = (wi)J>1 Moreover, by definition of (&7, W7),>;
in (3.2)), for every ¢ > 1 it holds

(& W) (wr) = (2", w') = (£, W) (wh),
so that (£, W?);>1 can be seen as a sequence of independent copies of (£*,W*). Define the
filtered probability space (2, F,F,P) as in point [3| of Definition [I} Let A\’ = (Ai)te[o’T], 1> 1, be

independent copies of \* = (A);c[0,7], the strategy associated to the admissible recommendation
A* according to (4.7]), so that

X(@,w1) = A((Wd)j=1,m, (wl)j=1) = AF (wh,wl) -

For every i, A\' is F-progressively measurable: indeed, since by definition the measures P and
PY ® P* coincide on the cylinders A; of the form

A; = {(w, wi) = (w))j=1,m, (@)j>1) € A x Q| (wh,wl) € G} : (5.8)

for any G € F°~ @ F!, every P® ® P*-null set N can be identified with a P-null cylinder A; of
the form (5.8)) with basis N. Therefore, for every t € [0, 7], the P-augmentation of the filtration
FO~ ® F} contains all the cylinders with basis

A = {(@,w1) = (@h)z1,m, (@])21) € @ x Q| (whel) € G,

for any G in the PY ® P*-augmentation of 7%~ ® Ff. This is enough to conclude that A’ is
progressively measurable with respect to the P-augmentation of 79~ @ F/, and so with respect
to the filtration F as well. We define A’ as in (£.15)), that is

(B e 0TI X0 A

AN(w) = (t,w1) = A\j(@0,wr), (5.9)
agp weN ,

where NV C Q is a P-null set and ag is an arbitrary point in A. By Lemma A% is an
admissible recommendation from (£, F,P) to (A, Ba, ), for every N > i. Since the associated
strategies coincide pointwise, it holds A(@) = A*(wf) P-a.s., as ensured by Proposition .
In particular, this implies that A’ only takes values in A, since for every fixed w the control

process (M@, -))e 0,7] 18 F()-progressively measurable. This proves point
As for point |(b), for every N > 2, (Al,...  A) takes values in Xj.vzl A(j) by construction.
Hence, we may restrict the attention to Borel sets C; C A(;, for every j =1,...,N. Let B € B.

Since A/ (@) = A*(wg) for every j = 1,..., N P-a.s., by definition of P, we have

P(Alecl,...,ANECN,,U,GB):P<>]\é{ A*< )EC} X ;z QOXC<P2)>
j=1 j=N+1

({ AT (w )GC} p(dm) /HK ({wo : A" (wo) € C}},m) p(dm)
& (Cj, m) p(dm).

:AﬁK
Z/Bf{<
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This shows also that (A%, u) are identically distributed as (A*, u*) and that (A%);>; are condi-
tionally i.i.d. given u. O

For each N > 2, set FO=N = g(Al,... AN) and (QON, FO—N PONY = (O, FO=N P). Then,
(AL, AN) (@, 77N B) — (AN, Buy)

is the candidate epn-coarse correlated equilibrium to the N-player game, with ey to be deter-
mined.

Remark 10. The construction of the probability spaces (QO’N , FO—N pON ) is rather involved,
but has the advantage of making the admissible recommendation to the N-players (A!,... AY)
easy to define. Besides this technical reason, we notice that, both in the N-player game and
in the mean field game, the mediator may choose the space (20, 79~ P?) he uses to randomize
players’ strategies, as already pointed out in Sections[3land [l Then, it is natural to use the same
space (Q°, F9~,PY%) on which the coarse correlated solution to the mean field game is defined to
randomize players’ strategies in the N-player game as well.

5.2 Proof of Theorem [5.1

By symmetry, let us consider only possible deviations of player ¢ = 1. For every N > 2, let ey
be given by

en = sup (J7(AY) =JIF (AN B)) =3 (AY) — inf Jy(AMTB). (5.10)
BEAN BEAN

AN is an e y-coarse correlated equilibrium for every N > 2. We must show that ey NZe0 0. For

each N > 2, choose BV € Ay so that

1
~N(AN,~1 N e AN AN—1
A < inf A - —.
Jl( 75 )_ﬂg}%Ndl( 7/8) N
Let Z = (Zt)iepo,1] be the solution of
dZy = b(t, Zy, pu, By )dt + AWy, Zo = &, (5.11)

and define the corresponding cost as

T
S(BNMM) =E |:/0 f(S7ZSa,USaBéV)d$+g(ZTHuT):| .
Let X be the solution of
dXy = b(t, Xy, g, \p)dt + dW},  Xo = €1, (5.12)

with associated cost

T
J(AL, 1) —E [ / f<s,stu57A;>ds+g<XT,MT>] .

Observe that, by construction, (¢1, W', u, A1) under P is distributed as (&, W, u*, \*) under P*.
Therefore, by Theoremthe joint distribution of (X, A!, 1) under IP is the same as (X*, \*, u*)
under P*, where X* denotes the state process resulting from the mean field CCE (A*, u*).
Moreover, note that by construction \! is F“7517W1-progressively measurable, where

FEW — o) va(€) VoWl s <), te [0,7)
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By the Lipschitz continuity of b, X may be taken to be F”’gl’wl-adapted as well.

To prove the theorem, the following must be shown:

I ) <3N, ), (5.13a)
Jim gy (AY) = 3(A%, ), (5.13b)
Jim {5 (AT BY) = 3(8Y, m) = 0,. (5.13¢)

If these hold, then we can conclude as follows:

e~ . ~ ~ . 1
EN = J}V(AN) — inf 1;}V(AN7 17 B) < J}V(AN) - L‘}\/(AN7 17 BN) N2
ﬁGAN N

< INAN) = F(AY 1) +JA ) = 3BY, 1) + 33BN, 1) — I (AN BN —
< INAN) = JAL @) + 38N, 1) — IV AN BY)

and, taking the lim sup, we have limsupy ey < 0, which proves ey — 0 as N — oo.

L
N

We start by proving ([5.13a)). We observe that we cannot just deduce it from the optimality

property (£.11)) of (A*, u*): since ¥ may belong to Ay \ Ay, it may not be identifiable with
an open loop strategy for the MFG, for which inequality ([5.13a) would hold. Instead, we prove
it by using the regular conditional probability of P given (&¢, W#)¥,. Denote by (z, w) a point

(28, w Y, € (RIxCHN-L and let P, = ]1\771(1/®Wd) denote the joint law of (¢, W), under

P. Let P®% be a version of the regular conditional probability of P given (¢, W)X, = (2%, w®)¥,.

We rewrite (5.13a]) as
3(A17 ,LL) - 3(/8]\]7 :u) =

=E [(/OT f(s, X, ps, A\Dds + g(Xr, w)) - (/OT £(s, Zs, pis, BY )ds + g(ZT,uT))}

—F [E [(/OT f(s, X, s, A)ds —l—g(XT,MT))

_ (/OTf(s,Zs,us,ﬂiv)dS +9(ZT’“T)> ‘(gi’Wi)iinH

T
_ / <]EIP7cc,w |:/ f(s’ Xs, s, )\;)ds + g(XT, NT):|
(RAxCd)N-1 0

T
e [ /0 F(5, Zos pos BV )5 + g(ZT,m]) P, (d, dw).

(5.14)

We analyse separately the two terms in the last equality. Let us start with the term depending
upon AL Since p, A, W and ¢! are independent of (§i,Wi)Z-]\L2 under P and X is Frwé W'
adapted, X is independent of (ﬁl,W’)f\LZ as well. We deduce that, under P®% W is an F-
Brownian motion, X solves equation and PZ% o (X, A\, )™t = Po (X, AL u)™t =P*o
(X* 2%, 1*)7 L, for Porace. (x,w) € (R? x C*)N~L. In particular, this implies that

T
EF” UO f(s,Xs,us,Ai)dSJrg(XT,uT} E [/ Fs, X315, A5)ds + g(X7, i)
= J(A", 1)

for P-a.e. (x,w) € (R4 x cHN-1

(5.15)
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As for the term depending upon B, we note that, since 8V € Ay, there exists a progressively
measurable functional £ : [0, 7] x (R x CY)N — A so that

BN =g (Wt N W)
Under P*" | it holds
BY =B (t, e Wt w? eV W) Ve [0,T] PP¥-as., (5.16)

since (&7, I/Vi)?:1 are almost surely constant under P*%. Since the joint law of y, W' and ¢! is
the same under both P and P®", (5.16) implies that Z satisfies

dZ; = b(t, Zs, p, BY (e, w))dt + dW},  Zg = &', (5.17)

under P%% | with 4V (2, w) FW-progressively measurable. For every (x,w) € (R% x ¢H)N-1,
define the strategy

B(x,w) = (B (t,ﬁ,W,xZ,wQ,...,xN,wN» (5.18)

tefo,1]

Then S(x,w) belongs to A for every (z,w) € (R? x CHN=1 and it depends measurably upon
(z,w). For every (x,w), let Z be the solution of

dZ; = b(t, Zy, it By (@, w))dt + AWy,  Zo = €.
Since P=% o (Z, 3, 1)~} = P*% o (Z, BN(m,w),,u)_l =P*o (Z,B(:c, w), 1*) L, it follows that

T, w T €T, w T ~
EP 7 |:/ f(S7Z$7u$7B£V)dS + Q(ZTaﬂT)} = EP 7 |:/ f(87Z57M876.£V(w7w))d8 +g(ZT7:U’T)

0 0
T ~ ~ ~
_E? [ /0 f(s,zs,ﬂ:,ﬁsmw))ds+g<ZT,u*T>] — 3B, w), ).
(5.19)

We note that the left-hand side of (5.15)) depends measurably upon (x,w) due to a monotone
class argument. Being (A*, u*) a mean field CCE by assumption, (5.15)) and (5.19)) imply that

AN ) =3 = [ (Eﬂ”’"’ [ / * (5, X AL ds +g<XT,MT>]
_ ppEw r N
E [/0 F(5, Zor pns B )ds+g<ZT,uT>]>Py<dw,dw>
= [ (308 ) = 33 w)o ")) Puli. dw) <0,

which yields ([5.13a]).

As for (5.13b)) and ((5.13¢)), they must be handled by continuity arguments on the cost functions
and propagation of chaos as stated in Lemma We give the details only for ([5.13bl), since

(5.13c) is analogous. We have:
T 1,N
|3]1V(AN) _3(A17M)‘ < E |:/0 ‘f(tw)(t7 7#1{\[?)‘%) - f(t7Xta,ut>)‘%)‘ ds
o, 1)~ oCer, )] | =EIAF + ],
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For Af, Assumptions [A]ensure that f is locally Lipschitz with at most quadratic growth. There-
fore, by straightforward estimates, we have:

T % %
/ (1+\X3’N(+(/ y|2ﬂz’v<dy>) +\Xt\+(/ rymtuy)) +2\AH)
0 R4 Rd
r 2

E[/ (‘XN Xt“"WQRd(Mt,Mt)) dt]

r !
<CE[”X1N”6“”X”W+/ T dydt+/ [ a2 | W\dt]

[(HXIN XHcd /Wsz(Mth)dt)]

1 1
<C (1 + e E X a) ™+ E [1X 03] 2)

E[Af] < LE

1 1
5 71 1
(2l 2]+ s e [t ]
te[0,7)
By Lemma the right-hand side tends to 0 as N goes to infinity. The convergence of E[Ag]
is shown analogously.

6 Existence of a coarse correlated solution of the mean field game

Taking inspiration from [20], 35, B6] and [5, Appendix 1.B], we associate a zero-sum game to the
search of a mean field CCE. Loosely speaking, the game should be of the following type: player
A, the maximizer, chooses a correlated flow (A, u), while player B chooses a deviating strategy
B € A. The payoff functional is the following:

F(A, 1), B = 3(B, ) = I(A, ). (6.1)

Player A aims at maximizing F, while player B chooses her strategy in order to minimize F'. In
order to get an equilibrium, one should restrict to correlated flows (A, p) so that the consistency
condition is satisfied. If we could show that the game has a positive value and player A
has an optimal strategy (A*, u*) , then we would have established that such a strategy would
satisfy the optimality property as well, and therefore (A*, u*) would be a mean field CCE.
In order to get a convenient structure for the sets of strategies and good continuity and convexity
properties of the payoff functionals, we embed our auxiliary problem in a more general zero-sum
game which, roughly speaking, extends the payoff functional in equation . Care is needed
in dealing with the term depending both on 8 and u, since it must reflect independent strategy
choices of the opponents. Using Fan’s minimax theorem, we will show that the auxiliary game
has positive value and admits an optimal strategy for the maximizing player. Finally, such an
optimal strategy is used to induce a coarse correlated solution of the mean field game.

6.1 Relaxed controls

Since we are going to use compactness arguments, it is useful to provide some information about
relaxed controls before introducing the auxiliary zero-sum game in the next section. Relaxed
controls have a long history in control theory (see, e.g., [I5] and [21]), and also in mean field
games (see the series of works [14, 25 26l 27], or []] in a slightly different framework). We will
use them in a similar way.
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Denote by V the set of positive measures ¢ on [0,7] x A so that the time marginal is equal
to the Lebesgue measure, i.e., q([s,t] x A) =t — s for every 0 < s < ¢t < T. We endow V
with the topology of weak convergence of measures, which makes V a Polish space. It is a well
known fact that, when the set A is compact, V is compact as well. Moreover, for every measure
g € V, there exists a measurable map [0,7] > ¢t — ¢ € P(A) so that ¢(da, dt) = ¢:(da)dt, with
(@t)tefo,r] unique up to Leby rj-a.e. equality. We can equip the measurable space (V, By) with
the filtration (F}).ejo,7) defined by

ftv =c(Voq—qC): Cc B[o,t]xA)'

We observe that F) is countably generated for every ¢ € [0,7], by reasoning as in the proof
of [4, Proposition 7.25|. Finally, one can prove that there exists an J)’-predictable process
G :[0,T] xV — P(A) such that, for each ¢ € V, q(t,q) = ¢ for a.e. t € [0,T] (see, e.g., [25],
Lemma 3.2]). By an abuse of notation, we write g;(da) = q(t, ¢)(da).

Consider a filtered probability space (2, F,F,P). A relaxed control t is a V-valued random
variable. We say that v is F-adapted if t(C) is a real valued F;-measurable random variable for
every C' € Bjg . 4. Observe that every A-valued progressively measurable process a = () e, 17
which is often referred to as strict control, induces a relaxed control by setting

t¢(da)dt = 0q,(da)dt.

Finally, using the map g described above, we can safely identify every F-adapted relaxed control
t with the unique (up to Leby rj-a.e. equality) F-progressively measurable process (t¢)e[o, 7] With
values in P(A) so that

P(v(da,dt) = v;(da)dt) = 1.

In the following, we will use mostly the notation (t¢).c(o,7) for a relaxed control and will make
no distinction between a V-valued random variable and a P(A)-valued process.

6.2 The auxiliary zero-sum game
We now formally define and study the auxiliary zero-sum game.

Definition 6 (Strategies for player A). A strategy for player A is a probability measure I' €
P(C? x V x C(P?)) so that there exists a tuple U = ((Q, F,F,P),&, W, u,t) with the following
properties:

(i) (Q,F,F,P) is a filtered probability space satisfying the usual assumptions; 2 is Polish and
F is its corresponding Borel o-algebra.

(ii) W is an F-Brownian motion and ¢ is an JFy-measurable independent R%-valued random
variable with law v.

(iii) p is an Fo-measurable random variable with values in C(P?); it is independent of both &
and W.

(iv) tis an F-progressively measurable relaxed control v = (t¢);c[o,r) With values in A.

(v) Let X be the solution of
dX; = / b(t, X, 1t a)‘ct(da)dt +dWs, t € [0, T], Xg=¢. (62)
A
Then p(-) = P(X; € - | u) P-as for every t € [0,T].
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(vi) T is the joint law under P of X, g and v: T =Po (X,v, )" .
We denote by K the set of strategies for player A.

We observe that, by Assumptions , there exists a unique solution to equation (6.2)) for every
tuple U satisfying properties (i-iv).

Definition 7 (Strategies for player B). A stochastic kernel ¥ from C(P?) to C% x V is a strategy
for player B if there exists a tuple 4 = ((Q, F,F,P),&, W, t) so that

(i) (Q,F,F,P) is a filtered probability space satisfying the usual assumptions; €2 is Polish and
F is its corresponding Borel o-algebra.

(ii) W is an F-Brownian motion and ¢ is an JFo-measurable independent R%valued random
variable with law v.

(iii) v is an F-progressively measurable relaxed control v = (t;),c[o,7) With values in A.

(iv) For every m € C(P?), X(-,m) € P(C? x V) is the joint law under P of (X™,t), where X™
is the solution to

ngn = / b(t, in, myg, a)tt(da)dt + th, XO = 6, (63)
A
that is:
Y(B,m)=P((X™ )€ B) ¥Ym € C(P?),B € Bpa @ By. (6.4)
We denote by Q the set of strategies for player B.

By Lemma [D] the set of strategies Q for player B is well defined in the sense that the map
Y is truly a stochastic kernel.

We now define the payoff functional p for the zero-sum game. Let us introduce the function

F:C4x VY x C(P?) — R defined by

T
S(y7Q7m) = / / f(t,ytvmtﬂ)Qt(da)dt +g(yT7mT)‘ (65)
0 A
Definition 8 (Auxiliary zero-sum game). The auziliary zero-sum game is a zero-sum game

where:

e The set of strategies for player A, the maximizer, is the set K introduced in Definition [6]
e The set of strategies for player B, the minimizer, is the set Q introduced in Definition [7}

e The payoff functional is the function p : K x Q@ — R defined as

p(I,5) = / 3(y, ¢, m)(dy, dg, m)p(dm)
CixVxC(P?)

- / S(yucb m)r(dy7 dq’dm)v
CixVxC(P?)

where p denotes the marginal of I on C(P?).

We denote the lower and upper values of the game as, respectively, v4 and v?:
A : B .

v = sup inf p(I, X), v” = inf sup p(T', X).

FEEEGQP( ) EeQreEp( )

A

If the lower and upper values of the game are equal, we set v = v = v and call v the value of

the game. We say that a strategy I'* € K is optimal for player A if
inf p(I', %) = inf p(T,X).
3L P (%) = puax ol p(02)
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6.3 Relationship between the zero-sum game and the mean field game

The goal of this section is to show how to use an optimal strategy for the maximizing player
of the auxiliary game to induce a coarse correlated solution to the mean field game. The next
proposition shows that, for every correlated flow (A, p) so that consistency condition is
satisfied and every deviation 8 € A, there exists a pair of strategies (I', ¥) € K x Q so that the
following equality holds:

p(F,Z) = 3(‘/\’#) _3(Ba,u) = F[(A’N)aﬁ]' (67)

Proposition 6.1. Let ((Q°, FO~, PY), A, 1) be a correlated flow. Denote by p the law of p. Let
A= (/\t)te[O,T] be the strategy associated to the admissible recommendation A and let B € A.

(i) Let X be the solution to (4.8)). Suppose that consistency condition (4.12)) is satisfied. For
every t € [0,T), set v;(da)dt = &y,(da)dt. Then, the probability measure T =Po (X, v, )~}
belongs to the set IC.

(1t) For every t € [0,T], set by(da)dt = ds,(da)dt. Denote by Y the solution to (4.9). Then,
there exists X € Q so that

P((Y,b, 1) € B x S) = / (B, m)p(dm), VB € Boirn S € Bops).  (6.8)
S

(11i) The pair of strategies (I, X) satisfies equation (6.7]).

Proof. In the following, we work on the probability space (2, F,F,P) defined in point of
Definition [3] Recall that, as pointed out in Remark [I}, we can think of W,  and p as independent
random variables, each of them defined on the same probability space (€2, F,F,P). Observe that
the P(A)-valued process t = (dy,)se(o,r) is F-progressively measurable since A is admissible by
assumption. Let X be the solution to equation . Since X obviously satisfies for such
a process t and the condition u(-) = P(X; € - | p) holds by assumption, I' = P o (X, u,t) !
belongs to K.

As for point recall from Remark |1{ that we can regard § as defined on the product space
(Q,F,P), and that § and p are mutually independent by construction. Therefore, the P(A)-
valued process b = (g, (da))tﬁ)j] is independent of u. Let Y be the solution of equation (4.9)).

By Lemma in Appendix [D], equation holds.
Finally, since X and Y are defined on the same filtered probability space (2, F,F,P), we can

write the integrals in p as expectations:
/S Y,q,m dya dQ7 dm |:/ f t Xt?ﬂtv)‘t)dt+g(XT7HT):| :3(A):U’)7
/%' Yy, q,m dya dQ7 ) (dm |:/ f t Y;&,Nt;ﬁt)dt—Fg(YTa/-LT)] :3(57/0

This proves (6.7]). O

The next result ensures existence of an optimal strategy for the maximizing player:

Theorem 6.2 (Existence of the value of the game and of an optimal strategy for the maximizing

player). Consider the game described in Definition @ The following holds:
(i) The game has a value, i.e. v* =vP.

(ii) There exists a strategy T'* € K which is optimal for player A.
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(11i) The value v of the game is non negative: v > 0.

The proof of this theorem is deferred to Section [6.4l The following result is some sort of
mimicking result: it will allow us to find, given any measure I' € K, a probability measure I so
that I’ and T share the same payoff for every opponent’s strategy ¥ € Q and I is induced by a
correlated flow, as in Proposition [6.1}

Lemma 6.3. Let I' € K. There exists a measure I' € K so that the following holds:
e The marginal distributions of T and T on C(P?) are the same: T(C?xVx-) = T(C¢xVx-).

o Let (X,t, ) be such that T =Po (X,v,u)"". Then v is of the form v, = ¢:(Xy, 1), where
G:[0,T] x R% x C(P?) — P(A) is a measurable function.

o For every ¥ € Q, it holds )
p(l, %) =p(I', 5).

The proof of this lemma is postponed to Appendix [D] In order to prove Theorem we need
the following additional assumption, which are standard when dealing with relaxed controls (see,

e.g., [21]):
Assumption B. For every (t,z,m) € [0,T] x R? x P? (R?), the set

K(t,z,m) = {(b(t,x,m,a),z): a€ A, f(t,z,m,a) <z} CRYxR (6.9)
1s closed and convex.

Finally, we prove the existence of a coarse correlated solution to the mean field game:

Theorem 6.4 (Existence of a coarse correlated solution of the MFG). In addition to Assumptions
[A] suppose that Assumption [B| holds. Then there exists a coarse correlated solution of the mean
field game.

Proof. Let I'* € K be an optimal strategy for player A, which exists by Theorem [6.2] Consider
the strategy I'* given by Lemma so that it holds

inf p(I'*, %) = inf p(I'*, %) = inf p(I', %) > 0. 6.10
z”égp( ) Elrelgp( ) Iglg,gzuelgp(, ) > (6.10)

Let L = ((Q ]:",I@',I@’),é, W,/l,f) be as in Definition El, so that [* =Po (X t,1)~!. Recall that,
by Lemma , t(da)dt = G( Xy, p)(da)dt Lebjg ) ®@P-a.s.. By Assumption , the set K (t,x,my)
defined by is convex for every (t,z,m) € [0,T] x R? x C(P?). Therefore, by a well known
measurable selection argument (see, e.g., [21, Lemma A.9|) there exists a measurable function
&:[0,T] x R? x C(P?) — A so that

/ b(t, z,my, a)q(x, m)(da) = b(t,x, my, &(t, z,m)),
A

(6.11)
ft,zymy, &(t,z,m)) < / f(t,z,my, a)d(xz,m)(da).
A
It follows that X is a solution to equation
dXt = b(ta Xtaﬂta&(t7Xt7ﬂ))dt+th? XO = é (612)

as well, and the consistency condition (4.12) is still satisfied. By Lemma we deduce that
the solution X to equation (6.12)) can be taken adapted to the P-augmentation of the filtration
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~ ~

(a(@)Va(§)Va(Ws: s <t))elo,r), and therefore there exists a progressively measurable function
®:C(P?) x RY x C% — €4 so that

X =®(p, &, W) P-as. (6.13)

Set .
A [0,T] xC(PH) xRIxCc?— A

(t,m, x,w) = A(m,z,w) = du(By(m, z, w), my); (6.14)

A= ()‘t)tG[O,T} = (Xt(ﬂa éa W))tE[O,T]'

Then, the progressively measurable processes (dy (X, f))eejo,r) and (e, €, W))te[o,T] are equal
Lebjy 7 ® I@’—a.s., which implies that X solves

dXt = b(t7Xt7ﬂt7 Xt([%ga W))dt + dWh XO = é

as well, and the consistency condition is still satisfied. Set (Q°, F07,P%) = (C(P?), Be(pz), p)-
By Lemma there exists a P-null set N C Q0 so that the pair (A*, ux) defined by

A* (C(PQ),Bc(p2),p) — (A, BA)

m— A*(m) =

{@t(m S Doz, mEQAN, (6.15)

ag m € N,
M* =1Id: (C(P2)78C(732)7p) — (C(P2)>BC(P2)7P)
is a correlated flow, where ag is an arbitrary point in A. Let X* be the solution of (4.9 on
the product probability space (2, F,F,P) defined in point [3| of Definition Note that the

strategy associated to the admissible recommendation A* strategy A* is equal to S\t(,u,*,f W)
Lebjg 1) ® P-almost surely. Since uniqueness in law holds by Theorem it follows that

Po (X7, (5/\;‘(da))te[o,T]a M*)il =Po (Xa (5@(t,Xt,ﬂ)(da))te[o,T]vﬂ)ila (6.16)
which implies that the consistency condition (4.12)) is satisfied.

Finally, we verify that the correlated flow just defined satisfy the optimality condition (4.11)).

For any 8 € A, let ¥ € Q be as in point of Proposition [6.1 Then, by (6.16)), (6.11]) and
(6.10)), for every ¥ € Q it holds

. T . . R
3(A*7 M*) = E]P |:/ f(t, Xta ﬂta d(t, Xt, ﬂ))dt -+ g(XT’ ,aT):|
0
. T ) . A )
S ]EIP |:/ /A f(t7 Xt? :[j’ta a)(jt(Xta ﬂ)dt + g(XT7 ﬂT):| = /S(:’% q, m)r*(d% an dm)
0

< / 3y, ¢, m)(dy, dg, m)p(dm) = I(B, u*),

which proves that (A*, u*) satisfies the optimality condition and therefore is a mean field CCE.
O

6.4 Proof of Theorem [6.2.

The main instrument is the following Minimax Theorem, due to K. Fan:
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Theorem 6.5 ( [16], Theorem 2 ). Let X be a compact Hausdorff space and Y an arbitrary
set (not topologized). Let f : X XY — R be a real-valued function such that, for every y € Y,
x — f(x,y) is lower semi-continuous on X. If f(-,y) is concave on X for everyy € Y and
f(z,-) convex on'Y for every x € X, then

f = inf : 6.17
max inf f(z,y) ;gyggf(x,y) (6.17)

The following results aims at verifying that the auxiliary zero-sum game in Definition [§]satisfies
the assumptions of Theorem We start with some useful moment estimates for the solution

to 62):
Lemma 6.6 (Estimates). Let I' € K, let 34 = ((Q, F,F,P), &, W, u,t) be the tuple associated to

I', as in Deﬁm’tion@ and let X be the solution to (6.2). Then, for every 2 < p < p, there exists
a constant C = C(p,T,v,b, A) so that

E[IXIZ] < C. (6.18)
The proof is omitted as it is just a straightforward application of Gronwall’s lemma.

Lemma 6.7. K is pre-compact in (P*(C* x V x C(P?)),W, Cd><V><C(’P2))’

Proof. Let (I'"),>1 be a sequence in K, let us show that it is pre-compact, which, by Lemma
is equivalent to show that (I'"),>; is tight and condition is satisfied. Moreover, by
[25) Lemma A.2|, relative compactness of the sequence (I'"),>1 is equivalent to the relative
compactness of each sequence of marginals on C?, C(P?) and V.

Since A is compact by Assumption [A] the space V is compact as well. Then, we automatically
get both tightness of the sequence of the marginals on V of (I'™),>1 and property .

In the following, for every n > 1, let 4™ = (", F*, F", P"), " W", u™ ") and X" be as in
Definition @ so that I' = P" o (X", phe ™) ~L. Let T'? be the law of X™ under P". We prove the
tightness by means of Kolmogorov—Centsov criterion, as stated, e.g., in [24) Corollary 16.9]. Let
2<p<p 0<s<t<T. We have:

E™[| X} — X2|P] < CE" [/ / |b(u, X7}, prr, a)|P el (da)du + |Wy — Ws|p]

<o (- [= [ b X i) | duck e o).
s A

for some positive constant C' which is updated from line to line. For every u € [0,T], we have

n [/A |b(u’X3“uZ’a)|ptZ(da):|

g
xep s ([ P aitan) + [ o= aoleita + |b<u,o,6o,ao>\p]

<o(verr |Ixap+ [ bl un) ) = 0B (X0P+ B [X2P )

)<

where the last inequality follows from Lemma[6.6] with C' independent of n > 1. Such a uniform
bound implies that

t
E" [\X?—XQIP]SC<\t—sl“ [ = [ / |b<u,xs,uz,a>|prz<da>} du+|t—s|‘2’>
s A

< c(|t—s|P*1|t—s|0(p,T,u,b,A)+\t—sﬁ) < c(|t—s|p+|t—s|%) <Clt—s|t.

< CE"

(6.19)

sup [ X[?

— C(14 2B |X7P)) < C (1 LR
u€[0,T]
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Set 8 =r/2— 1, so that we get
B [IX7 — X2P) < CJt — |7 (6.20)

with p, 8 > 0. Since P" o (X})™1 =v € PP(R?) for every n > 1, we have the tightness of the
initial laws as well. This concludes of the proof of the tightness of (I'!),>1. As for condition

(2.1]), we have:

r—00 n

it sup/ lyll¢a T (dy) = Jim sup E" [HXnHQd Tgyxn2 }
(v 2>} ¢ oo e Ljxni2, >0}

1
2

1 1
< lim sup (IE" [HX"Hg‘;d]) 2 pr (Hxnngd > 1“) 2 < ¢ lim sup P (||X”H§d > r)
r—=00 p r—=00 p

for some positive constant C independent of n. By Markov’s inequality and estimate (6.18|)
again, we get

N

lim Sup/ |yl|Za T (dy) < C lim sup E" [HX"H?;d] rmT =0,
e Jy:yllZa>r} T

Finally, we turn to the sequence (p"),>1, where p" = P"o (u™)~!. Let P»™(-) = P"(- | u = m)

be the regular conditional distribution of P" given p® = m. Then, up = m; P™™-ass. and

P o (X)~! = my p-a.e. for every t € [0,T], which implies that, for every s,t € [0, T], we have

B WP 0] < B (LXF - XTP)
for p-a.e. m € C(P?). Integrating with respect to p yields

E" [W”

D o (1 12)] S E(IX7 = X2P) < Ot — 5

where the last inequality follows from with 8 = p/2—1. Since P"o ()1 = 6, it is enough
to apply again Kolmogorov—éentsov criterion and deduce the tightness of (p"),>1. Finally, we
verify condition (2.1]). To this extent, we note that, for every n > 1, there exists a continuous
modification of the process (E"[|X{"* | 1"])sefo,1), so that it holds

sup / |yl2u?(dy) = sup E" [|Xf’|2 ]u?} P"-a.s.
te[0,7] /R4 t€[0,T]

Indeed, estimate (6.20) on the moments of X™ implies that the process (E"[|X[|? | K eefo 1]
satisfies

il

E" |IX7? | | — B 1X2P | ]

TE [Ixee - x|

1
2

1
= E"[|X] - XIPIXp + X S B ||Xp - X TE ||IX7 o+ X < e - sl

where we have used Cauchy-Schwartz inequality, (6.18) and (6.20) to bound E™[| X} — X|?]'/?
and E"[| X + X7|?P]'2, respectively. Therefore, by choosing 2 < p < P/2 and § = p/2 — 1

as above, we deduce from [24, Theorem 3.3|, that there exists a continuous modification of
(E"|X7"* | #"])sefo,r)- Then, observe that

/Rd | i (dy) = E" [\Xm? |u"} vt e [0,7]NQ, P"-a.s.
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Since both processes are almost surely continuous, we can take the supremum over every t € [0, T
to conclude that

sup | |y ¥ (dy) = sup E"|IXp* | pn] <E [ sup | X7'|
te[0,7] /R4 t€[0,7] te[0,T]

u"] P"-a.s. (6.21)

We are now ready to show that (2.1]) holds for (p™),>1: by applying (6.21)) in the first inequality,
Cauchy-Schwartz and Markov inequalities, we have

lim sup / sup [ [yl> mu(dy)p"(dm)
"0 e J{m: supge(o 1) JralylPmae(dy)>r} t€[0,T] SR

: n n 2 n
< Jlim supE” (B [1X1G | 0°] Lz iz 1 oor}
1 1 1
< lim —supE" [ X" &) * B [| X" 2" < lim 0773 =0,
T—00 3 p r—00
since the suprema over n > 1 are finite by Lemma OJ

Lemma 6.8. K is closed in (P*(C* x V x C(P?)),W, Caxyxe(p?)):

Proof. It is enough to prove that, for every sequence (I'"),>; C K converging to I' as n — oo in

W2,Cd «Vxc(p2) We have I' € K. We work on the following canonical space: let (Q,G) be given

by
(ﬁ, ?) = (Cd X C(PQ) X V,Bcd ® BV &® BC(P2)> .

We equip such a space with the filtration G = (Gt);e[o,7] given by
G = Bt7cd & ftv & Bc(pz),

where B, ca = o(C? >z 25: s <t). Let z, m and ¢ denote the projection from Q in C?
C(P?) and V), respectively. Define the process w = (wy)sepo,r] as

t
wy = wy(x,q,m) = xp — o — / / b(s,xs, ms,a)qs(da)ds. (6.22)
0 JA

Observe that w is a continuous process on (2, F) and, by [25, Corollary A.5|, for every t € [0, T]
wy is a continuous with at most linear growth function of (z,q, m).

For every n > 1, let U™ = ((Q™, F"*,F™,P™), & W™, u™, ") and X" be as in Definition |§|, SO
that T™ = P" o (X™, u™,t")~!. Since I'™ o (zg,w,m,q, )"t = P" o (", W™, u",t", X")~ 1, we
have that the tuple 4" = ((Q,F, FFH,F"),:UO,w,m, q) satisfies the requirements of Definition

@ where T denotes the I'"-augmentation of the filtration G. We show that the tuple 4 =
(Q, F, FF, '), zo, w, m, q) satisfies the requirements of Definition IEL which implies T € K.

We start by the independence property of w, m and g under T'. Let (#)5_, C [0,T7], ¢* € Cp(R9)
fori=1,...,n,1 € C(C(P?)), ¢ € Cy(R?) be bounded continuous functions. Since W™, u™ and
&" are independent under P* and I'™ — T" weakly, we have

E™

k
1+ (o <x,q,m>>w<m>w<xo>]
i=1

k
_ [H o' (W) w(u")e <f”>] - [H o (W) [ B [(u)| B [ (€")
. i=1

k
_ g™ [H " (wyi(z,q,m)) | BT [p(m)] E [ (20)]
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where the first equality holds since w (X", ", u") = W} for every t € [0,T] P"-a.s.. Then, since
¢t o wyi is a continuous function of (x, g, m) for every i, weak convergence implies that

k
Tim BT [Hso wie(z,a,m) wlm)p ()| = B | T (s (o)) ) (o) |
i=1 =1
lim E' [Hso (wit (z,q,m ))] E™ [p(m)] EM [ (€7)) (6.23)
=1

k
=E" [H " (wei(x, g, m))] E" [y (m)] E" [¢p (w0)]
i=1
This is enough to ensure the mutual independence under I' of (wyi)i=1,.. k, o and m for every
(t")%_, C [0,T], which yields the independence of w, zy and m. Moreover, by taking 1 and
¢ identically equal to 1, equation implies that w is natural Brownian motion under I',
since the finite dimensional distributions of w coincide with the ones of a Brownian motion. Let
us verify the independence of increments properties. Let s > ¢, ¢ € Cp(C%) B, ca-measurable,

X € Cp(V) FY-measurable, ¢ € Cp(C(P?)) and ¢ € Cp(R?). Then, we have:

E' [¢ (ws — we) ¢ (2) x (a) ¥ (m)] = E [ (ws(z, q,m) — wi(z,q,m)) ¢ (2) x (@) ¥ (m)]
= lim E™ [¢ (ws(z,q,m) — wi(z, q,m)) @ () X (q) ¥ (m)]

= Jim B 6 (s (X", €%, 1) — (X7, 1) (X)X (+) (")
= lim B [ (W — W}") o(X")x (") ()] = 0.

where the last equality holds since W™ is a F"-Brownian motion under P", u™ is Fj-measurable
and X" and t"” are both F"-adapted. By working with an approximating sequence, this holds
also for bounded measurable ¢, x, ¥ and ¢, which is enough to conclude the independence of
increments. Finally, since w is G-Brownian motion, it remains so under the I'-augmentation of

G.

Since I'" o xal

. . =I' .
= v, we have that I' o zg = v as well. Moreover, since w is a F -Brownian

motion and z is Fr—adapted by definition of the filtration, equation (6.22)) implies that z is a
solution to (6.2)).

As for the consistency condition, observe that, for every ¢ € [0,T], ¢ € Cy(R%), 9 € Cy(C(P?)),
we have

B [ /R plyymaldy)uf ] EP"[ y)f(dy ) (i )]

=E" [ [p(X7 )0 (u™) | 1]
:IEP"[ (X (u™)] =B [ (z) w(m)]

since py is a version of the conditional law under P of X;* given p". Therefore, by weak
convergence we have both

lim E™ [ () ¥ (m)] = E [ () ¥ (m)]

n—oo

i 8| [ opmilanstm| =2 | [ e

n—oo

where the second limit holds since the function m — [, ¢(y)m(dy) € Co(C(P?)), which implies
B | [ timata)otm)| =B o o) om)].
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This is enough to conclude that m; = I'(z; € - | m) I'-a.s for every t € [0, 7], since the random
element (x;, m) takes values in a Polish space. O

Lemma 6.9 (Convexity). K and Q are convez.

Proof. We start by proving that K is convex. Let I, i = 1,2, be in K, and let a € (0,1). Let
U= ((QF, FLFLPY, €6 WE it t?) be as in Definition @ so that T" = P! o (X* ¢!, u")~!. Set
== (&L W ut, ', XY). Without loss of generality, we can suppose that the tuples are defined
on the same probability space (Q, F,F,P) which supports also a Bernoulli random variable

n ~ B(a), so that n and (Z%);—1 2 are mutually independent. If needed, we can enlarge the
filtration so that n is Fp-measurable. Let us consider the following random variables:

=g+ (1-n)&, p = npt 4 (1 =) @2,
We=gWl4+ 1 —n)W? =g +(1-n)? (6.24)
X*=nX'+(1-n) X%

Set Z% = (€9, W, u®, v, X) and ¥ = Po (X%, t% u®)~1. Observe that the law of Z! under P

is the same as the law of Z¢ conditionally to 7 = 1, as the two tuples coincide on the set {n = 1},
and analogously for n = 0. Therefore, for every Borel set B, we have

P(E*e B)=P (2" JP(n=1)+P(E*€ Bln=0)P(n=0)
=P(E'€B)P(n=1)+P(E* € B)P(n=0) (6.25)
=aP(E'eB)+(1-a)P(E*€B).

In particular, (6.25) implies that I'* = aI'! + (1 — a)T'?. Let us show that the tuple =% satisfies
the requirements of Definition @ By (6.25)), £ has law v and W is a natural Brownian motion.
To see that it is an F-Brownian motion, let s < t, G € F,, B € Bra: then

E[lp (W =W 1g] =E [1p (W = W) Iglp—yy] + E [1p (W = W) Lel gy
=E [1p (n (W} = W)) + (1 —n) (W? = W2) € B) Laly,_qy]
+E []13 (77 (th - Wsl) +(1—mn) (Wt2 - Ws2) € B) ]IG]I{TJ:l}}
=E [1p (W = W) Lonp=ny] +E [Ls (W = W) Longm=0y] =0,

since 7 is Fg-measurable by assumption. As for the mutual independence of €%, pu® and W,
we have that the joint law factorizes in the product of the marginals: by using (6.25)), since
(&', W?")i=1,2 share the same joint law, one gets

P(u* e A,W* e B,£% e C)
—aP(pt e AWreB eleC)+ (1 —a)P(u?> € A, W? € B,£2 € 0)
=aP(pt € APW! € B)P(¢! € C) + (1 — a)P(p? € A)P(W? € B)P(¢? € O)
= (aP(u' € A) + (1 — a)P(u? € A)) W4B)v(C) = P(u™ € A)P(W* € B)P(£™ € O).

With similar arguments, one can show that for every t € [0,7], g : R? — R, f : C(P?) — R
bounded and measurable, it holds

Bly (X7 1 ) = | [ 0 uttans )]

which implies that uf is a version of the conditional distribution of X§* given u®. Finally, consider
the set

{X1—§ +// (s, XL, pt, a)el(da)ds + W} Vte[O,T]}ﬂ{nzl},

31



and define analogously Q2. We have that Q' N Q% = () and P(Q!) = a, since X! satisfies the
equation above P-a.s., and analogously P(Q?) = 1 — a, so that P(Q! U Q?) = 1. On such a set,
X“ satisfies the equation

t
X0 = g0 +/ / b(s, X2, 12, a)e® (da)ds + W, ¢ € [0, ).
0o JA

Since X is F-adapted, X is a solution to equation (6.2)), which concludes this part of the proof.

Let us turn to the convexity of the set Q. Let X%, i = 1,2, be in Q, and « € (0,1). Let

= ((QF, FLFLPY), €, Wi, th) be as in Definition [7] so that (-, m) = P/((X™,t') € ), where

X™' is the solution to equation (6.3) on (2!, F*,F*,IP") when b is evaluated at m € C(P?). Let
O =Pl o (¢, Wi ")~ and consider the maps Zg: defined by

Toi : C(P?) — P(RY x €% x €% x V) (6.26)

m — Tgi(m) = Pl o (&, W, X™ )7L, .

Similarly as for the set IC, suppose that the tuples are defined on the same probability space
(Q, F,F,P) supporting also a Bernoulli random variable n ~ B(«), so that n and (£, W¥, t%);1 o
are mutually independent. If needed, we can enlarge the filtration so that n is Fg-measurable.

Let £, W and t® be as in (6.24)), and, for every m € C(P?), define
xom — ’I’]Xl’m + (1 o 77) X2,m‘

Let ©% = PYo (£%, W<, t*)~! and consider the map Zga, defined analogously to above. By point
of Lemma , it induces a stochastic kernel 3¢ € Q. By working in the same way as in the
case of K, we can show that Zga(m) = aZgi(m) + (1 — a)Zg2(m) for each m € C(P?), which
implies that ¢ = aX! + (1 — a)¥? € Q. O
Proposition 6.10. The map K x Q 5 (I', X) — p(I', X) is bilinear. Moreover, K 5T — p(I', %)
1s continuous for every ¥ € Q.

Proof. Bilinearity is clear, hence we focus on the continuity of p(-, X) for fixed . Take (I')p>1, I’
in K and suppose I' — I' in the 2-Wasserstein distance. We treat separately the term depending
just upon I' € K and the term depending also upon ¥ € Q in .

By Proposition 2.1} I'™ — T" in 2-Wasserstein metrics if and only if
/ ¥y, 4, )T (dy, dg, dm) > V(0. m)T(dy, dg.dm),  (6.27)
CixVxC(P?) CIxVxC(P2)

for every v continuous with at most quadratic growth, hence we just need to show that the
functional § defined in is continuous with at most quadratic growth. By Assumptions
and [25] Corollary A.5], we have that §(y, g, m) is continuous. It is straightforward to verify that
$§ has at most quadratic growth, in the sense that

T
s<y,q,m>sc<1+uyuzd+ s [ ol + [ f |a—ao|2qs<da>ds).
0

telo, T
Therefore, we get continuity of the term depending only upon I'.

Denote by p" and p the marginal of I and I" on C(P?). We can manipulate the term depending
both upon I' and X as

/ $(y, ¢, m)E(dy, dg, m)p(dm)
CixVxC(P?)

-/ o ( [, stamistay.da m>> plam) = | o S0l
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where we set

otm) = [ §(0.0.m) =y, dg.m).

We must show that g : C(P?) — R is continuous with at most quadratic growth with respect to
the 2-Wasserstein distance. As for the growth condition, estimate in Lemma proves
that g has at most quadratic growth in m € C(P?). As for the continuity, let (m™),>1,m € C(P?)
so that m"™ — m in W27cd. Note that X(dy,dq, m"™) — 3(dy,dg, m) in WZ,CdXV’ as implied by
Lemma Define ¢"(y,q) = F(y,q,m™). Since the cost functions are locally Lipschitz, we
have that ¢" converges to ¢ uniformly on bounded sets of C% x V. This is enough to conclude

that

g(m™) = / &Sy, dgm™) — [ by, )S(dy,dg,m) = g(m)  as m” = m.
Ccixy Cixy

O

We can now prove points|(i)|and[(ii)] of Theorem[6.2} take X = K, Y = Q and f(z,y) = p(T', X)
in the statement of Theorem [6.5] By Lemmata [6.7] and [6.8] K is compact with the topology of
convergence in 2-Wasserstein distance and both sets K and Q are convex by Lemma By
Proposition [6.10] the payoff p is both concave and continuous in I" for every fixed ¥ € Q and
convex in Y for every fixed I'. Therefore, Theorem yields the existence of both the value v of
the auxiliary zero-sum game and an optimal strategy for player A. The next proposition proves

point concluding the proof of Theorem

Proposition 6.11 (Positivity of the value of the auxiliary zero-sum game). Let v be the value
of the zero-sum game defined in Definition[§ has a value v. Then v > 0.

Proof. We show that, for every ¥ € Q there exists a strategy I's, € K so that p(I'y,X) = 0. Fix
Y e 9 let U= ((2,F,F,P),& W,b) be a tuple as in Definition [7| so that 3(-,m) =P((X™,b) €
1), for every m € C(P?). On this probability space, consider the following stochastic differential
equation of McKean-Vlasov type:

{dYt = [ b(t, Y1, pe, a)by(da)dt + dWy, t € [0,T], Yy =§; (6.28)

L(Y;) =p, t€[0,T], p=(pt)eepon) € C(P?).

Under Assumptions|A] there exists a unique pair (Y, p) satisfying , where Y = (Y})sc(0,1) is
an F-adapted continuous process so that E[supco 7| [Y;|?] < oo, as ensured by, e.g., [12, Theorem
4.21], which implies that p actually belongs to C(P?). Define the deterministic flow of measures
p by setting i = p. Define I's as Po (Y, u,b)"!. Since u = p is deterministic and (Y,p) is a
solution to , 1 is Fo-measurable and independent of £ and W, and consistency condition
holds trivially. This implies that I's; belongs to K. By writing the integrals in p as expectations,
we have:

p(Ts, %) = / $(y, ¢, m)S(dy, dg, m)ps:(dm) — / 3y, @, m)Ts(dy, dg, dm)
CaAxVxC(P2?) CiAxVYxC(P?)

=K ' f(t,Yt,pt,a)bt(da)dt+g(YT7pT) —-E ' f(tvyvtuptaa)bt(da)dt+g(YT7pT)
I |-=l

where px(-) = d,(-) denotes the marginal law of I's; on C(P?). Since such a construction holds
for every X € Q, we have

supp(I,X) > p(I'y,X) =0 VX € Q.
reK
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Taking the infimum with respect to ¥ € Q, we have

inf sup p(ra E) 2 p(FE, E) > 0,

2elrek
which shows that v? is non-negative. Since v4 = vB = v, this proves that the value of the
auxiliary zero-sum game is non-negative. O

7 An example of coarse correlated solution to the mean field game

Taking inspiration from the work of Bardi and Fischer [3] and Lacker’s papers [26} 27|, we provide
a simple example of a mean field game possessing mean field CCEs with non-deterministic flow
of measures p.

Let d = 1. Set A = [a,b], with a < 0 < b, and v = dy. For m € P(R), denote by m its mean
Jz ym(dy). Consider the following coefficients and cost functions:

b(t,z,m,a) =a, f(t,z,m,a)=0, g(z,m) = cxm,

with ¢ > 0 a positive constant. Observe that they satisfy the requirements of Assumption [A]
We want to find a coarse correlated solution for the mean field game whose payoff functional, to
be maximized, is given by

3(A, 1) = E[eXofi, (7.1)

under the constraint

t
X = / Asds + Wy, 0<t<T, (72)
0

where ) is the strategy associated to an admissible recommendation A in the sense of (4.7)).

Set Q¥ = {1,2}2, FO= = 29° the power set and, given some probability measure P? &
P(Q°, FO7), we set PO((4,5)) = pij, so that p; ; > 0 for all i, j and E?,j:l pi; = 1. Consider the
following open loop strategies and flows of measures:

uf (wi) = b, pt = (P* o (th+ Wy) icp.;

- B B (7.3)

uy (W) = a, po = (P o (ta+ Wy) 1)te[o,T]-
It was shown in [3] that the pairs (u',u™) and (u~,pu~) are two non-equivalent open-loop
solutions of the mean field game, with initial distribution v = §p, where by “non-equivalent” we
mean that the flows of measures ™ and g~ do not coincide. We point out that this result holds
for more general initial distributions v € P(R), see [3, Definition 3.1 and Theorem 3.1]. Choose
ay,as € [0,1], and set:

/JJ1 = (aluj +(1- al)M;)te[QT} )

¥ = (axp + (1= a2)ig ) o - -
Define (A, p) in the following way:
(ut,ph) (i,5) =(1,1)
.. (u+7M2) (Zaj) = (172)
A i = .
Q) = o = (75)
(u™p?) (i,5) = (2,2)
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We claim that, as long as a < 0 < b, for every T,c > 0 there exists a probability measure
(pi.j)ij=12 and a suitable choice of the parameters (a;);=1,2 so that the tuple ((Q°, FO=,PY), A, u)
is a coarse correlated solution of the mean field game according to Definition [3]

First of all, as shown in Example[I]in Section[d] since A takes only two values, it is admissible.
Therefore, the tuple ((Q20, F0=,P°), A, i) is a correlated flow.

Let us begin with the consistency condition. We first observe that, when the state equation
is controlled by u™t (respectively, u™), the law of the state process at time t, Xy, is exactly uf
(respectively, p; ), for every time ¢ € [0, 7.

Suppose that p1 1 + p21 and py2 + p2 2 are both strictly positive. Then, observe that

P(X; € |p=p) if plwo) = ',

P(Xi € | pm)(w) = P(X € - | jr)(wo) = {P(Xt e ) i) — i

We can compute explicitly such a conditional probability. Fix A € Bga:

PXee Alp=p") [ P € A)+ i PIX € A)if plwo) = ul
P(X; € Al p=p?) s P € A) + 222 —P(X, € A)if p(wo) = 4.

In order to satisfy the consistency condition, it must hold

P1,1+tp21 P1,1+Dp2;1 (A)

1
t
e P(X € A) + 522 P(X, € A) = i (A)

{ PLL_p(XF e A)+ P21 _P(X7 € A) =p
P1,2+p22

for every A € Bga. By definition of u! and 2,

{pl,{’:;Q,luf<A> o (A) = g (A) + (1 - )y (A),

P2 (A) + 22— (A) = agp (A) + (1 — ag)py (A)

P1,2+Pp2,2 P1,2+p2,2

which holds if and only if

P11 =a
p1,1+p2,1

N (7.6)
protpao 42

We can regard (7.6|) as the consistency condition.

We now turn our attention to the optimality condition. Set v =P o (A, )"t =PYo (A, u)~!

and p =Popu ' =P%0 !, As described in Remark |§|, since A takes only two values, we can

rewrite the optimality condition using disintegration of measures as

/Axm(cd)Tj(a,m)W(da,dm) 2/ J(B,m)p(dm)

P2 (Cd)
under the constraint

t
Xt:/95d5+Wt, 0<t<T,
0

for § = a in A(Q°) := {u",u"} C A on the left-hand side of the inequality above and 6 = 3 in
A on the right-hand side. We rewrite explicitly the inequality as

JA ) =3B p) = pra (Fut, 1) =3B, p)) +p12 (F(u™, 1?) — 3(B, 1?))
J J



Therefore, using (7.1)), we have

(A 1) — 3B, 1) = pra (cT?b(arb + (1 — ar)a) — eM(B)T(arb + (1 — a1)a))
+ p1,2 (T?b(azb + (1 — az)a) — eM(B)T(azb + (1 — as)a))
+ p2q (cT?a(arb+ (1 — a1)a) — cM(B)T(arb + (1 — a1)a))
+ pa2 (cT?alagb + (1 — as)a) — eM(B)T(azb + (1 — az)a)),

where M(p) := E[fOT Brdt] = E[Xg} We can set m(8) := 1/rM(f) = 1/TIE[fOT Bidt]. Observe
that m(58) € [a,b], being the mean of an A-valued process, and m(A) = [a,b], since for every
¢ € [a,b] the constant process 3 = ¢ belongs to A. We divide by ¢T? to obtain the following
condition:

p1,1 (b(arb + (1 — ar)a) — m(B)(a1b + (1 — a1)a))
+ p1,2 (b(azb + (1 — az)a) — m(B)(azb + (1 — az)a))
+ p2,1 (alarb + (1 — ar)a) — m(B)(ar1b + (1 — a1)a)) (7.8)
+ p2,2 (alazd + (1 — az)a) — m(B)(azb + (1 — az)a))
> 0.

m(

The condition above can be seen as a positivity condition for a real affine function of g(m),
m € [a,b], ie.

inf g(m)=inf h((Pz‘,j)z‘,j:L% (az’)z‘:m;a, b)ym + k((pi,j)i,j:1,27 (ai)i:1,2§a7 b) >0

mela,b] me|a,b]
h((pig)ij=1,2, (@i)i=1,2;0,0) =  —{p1,1(a1b + (1 — a1)a) + p12(azb + (1 — az)a)
+p21(aib+ (1 —a1)a) + p22(azb + (1 — az)a)}, (7.9)
k((pig)ij=1,2, (@i)i=1,2;0,0) = p11b(arb + (1 — a1)a) + p1,2b(azb + (1 — az)a)
+p2,1a(a1b + (1 — a1)a) + p22a(azb + (1 — az)a).
We now impose the consistency condition (|7.6) to get:
2 2
P11 T D2,1P11  Pio T D12p22
h((pij)ij=1,2;a,b) = =b | — + =
P11+ P21 P12 + P22
. P31+ p2apii n Do+ Pr2pas
P11+ P21 D12 + D22 (7.10)

2 2 2 2
p b p p
L 1,2 e 21 2,2
P11 +p21 P12+ P22 P11+Dp21 P12+ D22

P1,1P2,1 i P1,2P02,2 )
P11+p21 P12+ P22

N——

k((pig)ig=1.2:0,b) = b <

+2ab<

Observe that imposing the consistency condition (7.6 reduces the number of parameters but
makes the problem nonlinear in the probabilities (p; ;)i j=1,2-

Looking at (7.9) and ([7.10), we observe that it covers the case treated in [3], for any choices
of a < 0 < b. Consider a probability measures PV = (pij)ij=1,2 so that p1o = pa1 = 0 and,
therefore, po2 =1 — p;,1. Equations (7.10) take the simpler form

h((p1,1,0,0,1 = p11);a,b) = —bp11 —a(l —p11),

(7.11)
k((p11,0,0,1 —p11);a,b) = b*p11 +a*(1 —pi1).
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Sending p; 1 to 1, by continuity, we get h((1,0,0,0);a,b) = —b and k((1,0,0,0);a,b) = b2, so
that the condition becomes
inf —bm 4+ b >0,
meEla,b]
which is satisfied for every b > 0. On the other hand, by sending p; ; to 0, we get £((0,0,0,1);a,b) =
—a and k((0,0,0,1);a,b) = a® and condition takes the form

inf —am +a? >0,
me[a,b

which is satisfied for every a < 0. Observe that, when p;; = 1, u = pu! = pT, while, when
p22 =1, u = p? = p~. This shows that the deterministic correlated flows (A, u) = (u™, u*) and
(A, p) = (u™,pu~) are indeed mean field CCE in the sense of Definition [5]

Turning to more interesting cases, consider [a,b] = [—1,1]. The choice of a symmetric interval
is not necessary, but it has been made to ease the comparison with previous results in the
literature (see the next subsection). Figure [l shows the existence of coarse correlated mean field
equilibria as the probability measure (p; ;)i j—1,2 varies. In particular, it shows the existence of
infinitely many coarse correlated mean field equilibria for the system.

White spots in Figure [1] refer to those probability measures on (Q°, F0~) so that (A, ) is
indeed a mean field CCE. Observe that, on the dashed diagonals, it always holds p11 +p22 = 1,
which implies that the coarse correlated solution (A, ) is a randomization of the open loop MFG
solutions (u™, u*) and (u™, u~). On the other hand, there exist infinitely many coarse correlated
solutions of the mean field game so that A is not a deterministic function of p, i.e., they are not
a randomization of the solutions (u*, u™) and (u™, u™).

Comparison with Lacker’s notion of weak mean field game solution without
common noise of [26]

Consider A = [—1,1], T' = 2. With this choice of control actions and time horizon, the example we
proposed matches the setting of Lacker’s “illuminating example” of |26, Section 3.3]. We show
that there exists a coarse correlated solution of the MFG which is not a weak MFG solution
without common noise as defined in Definition 3.1 therein. In particular, the most important
feature is the fact that the recommendation A can not be expressed as a deterministic function
of the flow of measures.

To be consistent with the notation and the setup of Lacker’s paper, we use the notion of relaxed
controls, which are used extensively in Section |§| (see, in particular, Section for definitions,
notation and some important properties). Let (p; ;)i j=1,2 be so that pi1 + p21 and p12 + p2o
are strictly positive. We introduce the relaxed controls 6+ = (6,7 Jeefo,r) and 6~ = (&; )eefo,1]> bY

setting
5, (wy; da) = 6ut+(w*)(da) =01(da), Vtel0,T],w. e Q7
0; (wysda) =0, \(da) =0_1(da), Vtel[0,T],w.e Q"

uy (w)

Consider the correlated flow (A, u) defined by (7.5) and observe that the strategy A = (A\)secpo,1]
associated to the admissible recommendation A can be rewritten as a relaxed control as

vy (w; da) = v (wo, wss da) = Lgy_y+y (w0)d; (da) + Lip—y—y(wo)dy (da). (7.12)

We point out that t does not depend on wy since 6" and §~ do not depend on w,. Starting from
(A, 1), we define a random variable ji with values in P(C? x V x C%) by setting

() = P(W,6, X) € - | p). (7.13)
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Figure 1: Existence of correlated equilibria as probability measure (p; ;)i j—1,2 varies for
[a,b] = [~1,1]. White points correspond to the values of (p; ;) so that inf,,c[q5 g(m) > 0, black
points to the other ones.

The probability measure has been generated in different ways above and below the dashed
diagonal. Above the diagonal, p11 and ps 2 vary from 0 to 1 as indicated by the axis. We set
pr2=oa(l —p11—p22), p21 = (1 —a)(1l —p1,1 — p22) for some value a € [0, 1].

Under the diagonal, we have a symmetric choice of probability: again, pi;; and pyo vary
from 0 to 1, although in the opposite directions respect to above the diagonal, and we set
pi2=(1—a)(1l—pi1—p22), p21 = a(l —p11 — p22), for the same choice of a € [0,1] as for
above the diagonal. Different choices of o are considered.
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We observe that o(p) = o(f1): we have o(ft) C o(u) since, by definition of regular conditional
probability, & must be o(u) measurable; to get the opposite inclusion, for every t € 0,7, let
fi¥ be the push forward of fi through the map C? x V x C% 5 (w,q,z) — z; € R%. Then, by
exploiting the consistency condition , we have

AF(A) = i{e € €% 2y € AY) = B(X, € A | p) = pul(A),

for every A € Bga, ie. jif = p P-as, for every t € [0,T]. Let (B;ca)ico,r] be the natural
filtration of the identity process on C?, i.e. B ca = oC?> 2z x, R 0< s <t), and let
(]:tﬁ)te[O,T] be the natural filtration of fi, that is

Fl=0(ji(C): C€Byea®F @Byca)
We observe that, for every ¢ € (0,T], we have F/* = o(u). To see this, observe that
o) DFFDo(i®: s<t)=o(us: s <t)=o(u),

where the last equality holds for every ¢ > 0, as can be verified by explicit calculations. Finally,
for t = 0, we have .7-'6‘ = {0,0°}. Having established the relations between such o-algebras, it
is straighforward to verify that the tuple ((Q, F,F,P), W, i, ¢, X) satisfies properties (1-4) and
(6) of |26 Definition 3.1]. Now, pick a probability measure PV so that min(p;2,pa1) > 0 and
ﬁlT > 0, H2T < 0. Figure [1{ shows that such a choice is possible (actually, there exist infinitely
many measures P? with the desired property). For such a choice of PY, the relaxed control t does
not satisfy the optimality condition (5) of [26, Definition 3.1], since, as shown in [26], Section
3.3], every optimal control t* must be of the form v} (da)(w) = 4 () (da) for Lebjg rj-a.e. t, with

af = sign (E [ﬂ% | fﬂ)

Here, sign (0) = 0. Since ]:g is trivial and ff = o(p) for t > 0, the optimal control off must be
equal to
-1 if ﬂT(w(]) <0,

_ 0<t<T, (7.14)
1 if Tip(wo) > 0,

aj(w) = aj(wo) = {
and equal to an arbitrary value at ¢ = 0. In particular, observe that such a control is a deter-
ministic function of the measure ji. For every PV so that p1,2 +p2,1 > 0, this is not the case of
the correlated flow (A, ) defined in ([7.5)), since A is not a deterministic function of p.

The essential reason for the lack of optimality, in the sense of Lacker, of the relaxed control
t defined by resides in the differences between allowed deviations: on one hand, for weak
mean field games solutions in the sense of [26], all adapted compatible controls b = (b¢).e(o,7
are allowed, where “compatible” means that o(bs : s < t) is conditionally independent of .F%’ﬂ W
given ]-"f’ﬂ W for every t, which leads to a very rich class of controls. On the other hand, for

coarse correlated solution of the MFG, only F*-progressively measurable strategies are allowed
as deviations. Therefore, many more solutions exist.

More generally, one can not compare weak MFG solutions without common noise of [26] and
mean field CCEs, due to the difference between the respective consistency conditions. Nev-
ertheless, we can make an additional assumption on the random measure ji which makes it
possible to define a mean field CCE starting from a weak MFG solution. Let ji be a weak
MFG solution without common noise. Let p; be the push forward of & through the map
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ChxVxC¥> (w,q,2) — 2, € RY Define a random flow of measures by setting u = (11t)eejo,1)-
Assume that the flow of measures p carries the same information as the random measure fi, i.e.

o(ps: 0<s<t)=FF Vtelo,T] (7.15)

If a weak MFG solution ji satisfies condition , then [i does induce a mean field CCE. Indeed,
set p=Pop~!. By (7.17)), we have iy =P(X € - | i) =P(X € - | p), i.e. consistency condition
is satisfied. Moreover, the assumption on equality of the filtrations ensures that there
exists a progressively measurable function ¢ : [0, 7] x C(P?) — A so that

oy = sign (E [MT \ fﬂ) =t p).
Then, we define (20, FO= P%) and (A*, u*) as
(QO’]_-O—’]P)O) = (C(P2)’BC(P2)ap) )
p* =1d: (C(P?), Bepzy, p) = (C(P?), Begpzy, p)
A" (C(P2),Bc(p2),p) — (A,BA)
m = A*(m) = (o(t,m))sepo,1)-

By Lemma the tuple ((Q20, F°=,PY%), A* u*) is a correlated flow. Let X* be the solution
of on the product probability space (£, F,F,P) defined in point |3| of Definition (3| Since
uniqueness in law holds by Theorem [A.1] it follows that (X™*,p*) has the same joint law as
(X, p), which implies that the consistency condition is satisfied. Since A\j = (¢, u*),
(A*, *) satisfies optimality condition as well and therefore it is a mean field CCE.

We observe that the additional assumption on the filtrations is satisfied both by the
weak MFG solution exhibited in [26, Proposition 3.7| and in our case, as shown above. We
point out that this CCE has been already considered: suppose that the flow of measures as
law p = ad,+ + (1 —a)é,-, a € (0,1), for ™ and p~ given by (7.4). Then, the correlated flow
(A*, u*) corresponds to the white spots on the dashed diagonal of Figure , i.e. to the probability
measures P? so that p12 =p21 =0, p1,1 = a and pao = 1 — a. Roughly speaking, it correspond
to the case when A* = ¢(u*) P%-a.s., for some deterministic measurable ¢.

(7.16)

Appendix

A Weak and strong existence for controlled equations

We state and prove a Yamada-Watanabe type result for stochastic differential equations with
random coefficients as the ones encountered so far. Recall from Section the definition of the
space V and of relaxed controls.

Let & = ((Q2, F,F,P),& W, u, t) be a tuple composed by a filtered probability space satisfying
usual assumptions, an F-Brownian motion W, an R%valued Fy-measurable random variable &,
an Fo-measurable random flow of measures yu taking values in C(P?) and an F-adapted V-valued
random variable t, in the sense that the random variables t(C') are Fi-measurable for every
C € Bjy,qxa- Let us consider the following stochastic differential equation:

dX, = G(t, Xy, p,x)dt + dWy, X = €. (A1)

where G : [0,T] x R? x C(P?) x V — R? is jointly measurable and progressively measurable in
V; progressive measurability must be understood in the following sense: for every ¢,q € V, for
every (t,z,m) € [0,T] x R% x C(P?), it holds:

q(C) =4 (C) VC € Bjpyxa = G(t,x,m,q) = G(t,z,m, 7).
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Definition 9 (Strong solution and pathwise uniqueness). Let 4 = ((Q, F,F,P),&, W, u,t) be
a tuple as above. A strong solution to equation (A.1)) on i is a continuous F-adapted process
X = (Xt)ejo,r) adapted to the P-augmentation of IF so that

t
Xt:§+/ G(s, Xsyp,v)ds+ Wy, 0<t<T, (A.2)
0

holds P-almost surely.
Patwhise uniqueness holds for equation (A.1)) if, given two strong solutions X and X’ to (A.1)
on i, they are indistinguishable:

P(X; = X Vt€[0,T]) = 1.

Definition 10 (Weak solution and uniqueness in law). A weak solution to equation (A.l) is a
tuple 4 = ((Q, F,F,P), &, W, u,t) as above so that there exists a continuous F-adapted process

X = (Xt)iejo,r) satisfying equation (A.1)).
Weak uniqueness holds for equation (A.1)) if for any two weak solution of (A.1]) ¢, i = 1,2, so
that Pt o (&1, W pt, o)~ = P2 o (62, W2, 12, ¢?) 7L, it holds
Plo (XL, el, Wt b o)L = P2 o (X2, €2, W2, 12,¢%) 7,
where X are the continuous F’-adapted processes that satisfy equation (A.1]) on ¢, i = 1,2.

Theorem A.1. Suppose pathwise uniqueness holds for equation (A.1]), in the sense of Definition
[9 Then, uniqueness in law in the sense of Definition [I( holds as well.

Proof. Let ' and 42 be two weak solutions of equation in the sense of Deﬁnition above.
Since pathwise uniqueness holds for equation by assumption, our goal is to bring together
the solution on the same filtered probability space. Let us define the following probability
measures:

Q' =Po (&, W', X') e PR x ' x C(P?) x V x %), i=1,2,
Q="Po (¢, W', ¢') e PR x C? x C(P?) x V),
Q=P o (W, u) " e PR xC?x C(P?).

Observe that Q and Q are well defined, since (€8, W% ut, ") share the same joint law by assump-
tion. Let us consider the following space:

Qeam = ¢d 5 04 x R x €4 x C(P?) x V;
F = Bpa @ Bpa @ Bra @ Bea @ Bc(pz) ® By;
e = By ca @ By ca @ Bra @ By ca @ Bep2y @ ]:tv’

where
Biea=0(C'3z—a,eR: s<t), FY=0(V3q—q(C)ER: CEBpyxa)

In order to equip the space (2", F", (Gf*" ),c(0,r)) With a probability measure, we disintegrate
the measures QF, i = 1,2, in the following way: let K : Bea x REx C4 x C(P?) xV — [0,1] be a
regular conditional probability of Q! for Bea given (z,w,m, q), so that it holds

Q'(A x B) = / K (A, 2.m,w, q)P(de, dm, dw, dg),
B
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for every A € Bea, B € Bra ® Bea @ Be(p2y ® By, or more briefly
Qi(dm,dw,dm,dq,dy) = K'(dy, z,m,q,w)P(dz,dw,dm,dq), i = 1,2.
Then, we set
Q(dy*, dy?, dx, dm, dw,dq) = K (dy*, z,m, q, w)K?(dy?, x,m, ¢, w)Q(dz, dm, dw, dq).

Observe that the joint law under Q of the coordinate projections y', z, m, w and ¢ is exactly
Q*, and analogously when considering the coordinate process y? instead of y*. Finally, complete
the o-algebra F¢ with the Q-null sets N'? and consider the complete right continuous filtration

(J:tcan)te[o,T] given by B
ftcan = m g <Qt+g,./\f@) .

e>0

By Lemma the coordinate process w is a (F{*").[o,r)-Brownian motion under Q. Further-
more, it holds

t
Yy, =z —|—/ G(s,yL, m,q)ds +wy, Vt € [0,T], Q-a.s.
0

for i = 1,2. Since pathwise uniqueness in the sense of Definition [0 holds by assumption, it follows
that y! and y? are indistinguishable under Q, which implies Q' = Q2. This proves the desired
result. O

Lemma A.2. In the construction of Theorem w = (ws)selo,) 18 @ Brownian motion under
Q with respect to the filtration (F5") selo,1)-

Proof. Observe that w is a natural Brownian motion under Q. In order to show that it is

a Brownian motion with respect to the filtration (Gf*");c(o,77, we just need to prove that its

increments are independent, and the conclusion follows.
Fix A1, A2 € By ca, B € Bga, C € Byca, D € Bepzy and F € FY. By Cauchy-Schwartz
inequality, we have, for every H € Bpra and s > t:

EC [157(ws — we) Loy x Agx Bx DxOxF (Y 4% 2, m, w, q)]
SE@[]IH(U)S — we)La, xBxDxOxF (Y T, MW, Q)}
: E@[]lﬂ(ws —w) LAy Bxpxox (Y% z,m,w, Q)]
Therefore, it suffices to show that

E@[]]-H(ws - wt)1A1XBXDXCXF(y17x7m7w7 Q)] =0. (A3)

Since the integrand does not depend upon y?, we may rewrite such an expectation only with
respect to Q':

EY []lH(ws — wi) L a, xBxDxoxr (Yt z,m,w, Q)}

:/]IH(ws - wt)]lAleXDXCXF(ylaxa m,w, Q)Ql(dylv d$7 dm7 dw,dq)

Then, we introduce another disintegration of the measure Q: let ©! be a regular conditional
probability for Bes @ By given (z,w,m):

Q'AXxBxCxDxF)= / O (A x F,z,m,w)Q(dz, dm, dw), (A.4)
BxCxD
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for every A € Bea, B € Bra, C € Bea, D € Be(p2y and F € By, or more briefly
QY(dy', dq, dz, dw,dm) = ©'(dy*, dq, z, m, w)Q(dz, dw, dm).
As in [23, Lemma IV.1.1], it can easily be shown that, for every A x F' € B, ca @ FY, the map
(z,m,w) — YA x F,z,m,w)

is Bra ® Be(p2) ® B, ca-measurable, for every s € [0,T]. Therefore, we can compute the left-hand
side of (A.3)):

E@[]IH —wi) LA, xBxpxox Yyt T, m,w, q)
Z/ﬂH — w) LA, xBxpxoxr (YL T, m, w, q)Q(dy', dz, dm, dw, dq)
:/]lH OY(A; x F,z,m,w)lgxpxc(z,m, w)@ (dz,dm, dw)

=E" [1 [Lp (W, —WhHe' (A x F,¢, p', Whlpupxe(E w',Wh] =

since ©1(A; x F, &4, pt, Wl gy pxo(€l, pt, W) is Fl-measurable and W' is an F!-Brownian
motion under P! by assumption. O

B On admissible recommendations

Lemma B.1. Let (Q°, FO= PY) be a complete probability spaces and (Q*, F*,F* ,P*) be a filtered
probability space satisfying the usual assumptions. Fiz a bounded A-valued process ()\t)te[O,T]
defined on the completion of the product space (0 x Q*, FO~ @ F, P’ @ P*). Assume that it is
progressively measurable with respect to the filtration F = (F4)ejo,r), where F is the P ® P*-
augmentation of the filtration (F°~ ® Fi ejo,m- Define a function A : 00 — A by setting

At (wo, - ([0, T x Q" — A
(At(wo, *))eefo,r) = 0, T W e O\ N,
A(wo) = (taw*) — )\t(W07w*)a (Bl)

where N C Q0 is a PO-null set and aq is some point in A. The function A defined in (B.1]) is an
admissible recommendation.

Proof. Take any bounded (F);c[o,r)-progressively measurable process (At);cjo,7] defined on the
product space (Q° x Q*, FO~ @ F*, P’ @ P*) taking values in R, and not necessarily in A.

Observe that it is always possible to define a function A from (Q°, 7= PY) to (L2([0,T] x
Q*;P*, Lebjg 1 @P*), Br2) as in , where P* denotes the progressive o-algebra associated to
the filtration F*. Indeed, by construction of the filtration I, since A is F-progressively measurable,
there exists a set N C Q°, PY(N) = 0, so that the section (A¢(wo, ))tefo,r) is P*-measurable for
every wp € Q% \ N. Set A(wo) = (Me(wo, )tefor)) for wo € Q°\ N and A(wo) = ag for wy € N,
where ag is any point in R, which is exactly (B.1)).

Let H be the set of bounded progressively measurable processes A so that the function A defined
according to (B.1]) is a F~ \ B2 measurable random variable. We show that H is a monotone
class which contains the set £ of progressively measurable processes A : [0,7] x Q0 x Q* — R of

the form
n

)\t - Z Ci]l[ti7ti+1)(t)7 (B2)

=1
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where n > 1, t; € [0, T}, t; < t;41 for every i = 1,...,n, ¢* are bounded Fj,-measurable random
variables. Having established such properties, we apply monotone class theorem (as stated,
e.g., in [37, Theorem II.3.1]) to conclude that H contains the set of F-progressively measurable
bounded processes defined on the product space Q0 x Q*.

To see that H is a monotone class, observe that H is clearly a vector space and contains all
processes A so that Ay = ¢ for every ¢ € [0,T7], for all ¢ € R. Let (A\"),>1 € H, with A" T X asn
goes to infinity, A™ positive and bounded by the same constant C' > 0 for every n. By monotone
convergence, \ is bounded and F~ ® P*-measurable as well, so that we can define A as in ,
as previously discussed. Let A™ be the L2-valued random variables defined starting from A"
according to , which are %~ \ B2 measurable since A" belongs to H for every n > 1, by
assumption. Without loss of generality, we can suppose that the PO-null set N appearing in the
definition of A™ and A is the same for every n > 1. Notice that, for every wy € Q°\ N, the
sections (A (wo, *)refo,11) T (Ae(wo, +)eejo,r)) for every (¢, wi) € [0, T] xQ*. Therefore, by monotone
convergence, it holds

IA™(wo) — Alwo)l[32 = || (A (w0, Yeeporr)) — Ae(wo, Veefo.r))| 22

/T (B.3)
=FF [/ A" (t, wo, ws) — A(t,wo, w) > dt| — 0

0
for every wp € QV\ NV, i.e. A = lim,,_ oo A" P’-a.s., which implies that A is F°~\ B2 measurable,
since the probability space is complete and L2([0,T] x Q*, P*, Lebyy 71 @ P*) is a complete norm
space. Finally, A is admissible, since the process A obviously satisfies 7 choosing the same
PY-null set N used in the definition A.

To see that £ C H, suppose first that A is of the form

n
At = E]lAi (WO)]IBi (w*)]l[ti7ti+1)(t)7
i=1
where n > 1,t; € [0,T), t; < tiyq foreveryi=1,...,N, A; € F'~ and B; € Fi. We can regard
each variable 1p, (wi)1, +,,,)(t) as a bounded progressively measurable process a'. Therefore,

(B.1) takes the following form:

Alwo) ol wy € A, i1=1,...,N,
W, fry
Y000 we e (U Ay

which shows that A is F9~ \ Bjz-measurable. By Dynkin Lemma, conclusion holds true for
progressively measurable simple processes of the form

At = Z ]lci (wo’w*)]l[ti7ti+1)(t)v (B4)
=1

where n > 1, t; € [0,T], t; < ti41 for every i € {1,...,n}, C; € FO~ @ F;. Finally, let A be of
the form . Thanks to the boundedness assumption on ¢?, we can find a sequence of simple
processes (A"),>1 of the form so that [A\"| < |A| and A} (wo, wx) — A¢(wo, wy) pointwise for
every (t,wo,ws). Let A™ and A be defined according to starting by the processes A". Due
to point 2.b) above, conclusion holds true for each A™. Using dominated convergence, we can
prove that holds for P%-a.e. wy € Q°, so that A is the a.s. pointwise limit of A", which
implies that A is F°~ \ Bz2 measurable. O

Proposition B.2. Let (20, FO= P%) be a complete probability space.
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i) Let A : (Q°, F9=,P%) — (A,Ba) be an admissible recommendation. Let \' and A\* be
two F-progressively measurable processes with values in A so that ([&.6) holds. Then A' = \?
Lebjy ) ® P-almost surely.

i) Let A, T : (Q0, FO= PY) — (A, By) be admissible recommendations; let \,~y be the strategies
associated to A, T, according to (4.6). Suppose that A\ = v Lebjg ) @ P-almost surely. Then,
A =T P-aq.s.

Proof. As for point [i)} let N?, i = 1,2, be two PY-null sets so that, for every wy € Qg \ N* the
sections (A% (wo, *))tefo,) are F*-progressively measurable processes and equation holds true.
Without loss of generality, we can assume that N! = N2 = N. Since for every wg € Q°\ N it
holds HA — (A\i(wo, )eelo,1) HL2 =0, 7 =1,2, we deduce that

1M (w0, Nieozy = OF(@o, Vseppry ;2 = 0

for every wy € QY \ N. Therefore, by taking the integral with respect to P?, we obtain
0 2
0=E" [H()\tl<w07 '))te[o,T] - (A?(w()a ‘))te[O,T]HLz}

T T
—E [EP* [/ Ab(wo, ) - A§<wo,w*>2d5H - [/ A5 (w0, @) = X (wo, wn) Pds
0 0

by Fubini’s theorem. This is enough to conclude that A = A2 Lebjy 1) @ P-a.s.

As for point , by the same line of reasoning, if A\ = « Leby ) @ P-a.s., the the sections
(At(wo, *))ejo,m) and (yi(wo, *))iejo,r) are Leby ) @ P*-almost everywhere equal, which implies
that

2
[A(wo) — F(WO)H%2 = H(/\t(wo, ‘))te[o,T] — (7 (wo, '))te[o,T}HLg

T
_EP [ | s =t P =0
0

PY-a.s., so that A =T P-as.. O

C Propagation of chaos

Here, we prove the propagation of chaos type result which is needed in the proof of Theorem [5.1]
The probability spaces and the random variables we use here are defined in Section [5.1]
We work on the product probability space

(Q,F,P)= (0L F,P) o (Q', F',P),

with (Q, F,P) defined by and and (Q!, F1,P!) by or, equivalently, by .
Consider the random measure flow p defined by and the recommendations (A%);>; defined
by , which we recall are conditionally i.i.d. given p under P. We endow such a probability
space with the filtration F given by the P-augmentation of the filtration generated by F, the
initial data (¢');>1 and the Brownian motions (W?%);>1. We observe that for every N > 2, each
B € Ay is also F-progressively measurable and, for every i > 1, each strategy A’ associated to
the admissible recommendation A’ is F-progressively measurable as well.

Fix N>2 BceAyand1<i<N. Let X = X[AN’*i,ﬂ] = (Xj[AN’fi,ﬂ])jV:l be the solution
of
dX] =b(t, X], p¥ , N)dt +dW}, X} =¢&, j#i,
dX} = b(t, X, pl¥, B)dt + AW, X§=¢
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The process X[AN~% 3] is the state process of the N-players when every player j # i follows
the recommendation A’ and player i deviates by picking the strategy /3, where u) denotes the
empirical measure of the N-players’ states at time ¢ defined in . Let us introduce also the
empirical measure of the processes X = X[AM~ g]:

=

i 1
N[AN’ Bl = NZ(SXJ'[AN,—Z'7B] € C(PQ). (C.1)

Let us denote X = X[A] = X[AN~% A?] the state process of the N players when every player
1 = 1,...,N follows the recommendation A’. Then, let us consider the following auxiliary
processes: let (ZI[AN- ﬁ]) be the solution of

dZd = b(t, 2, e, NDdt + dWi,  Z0 =g, j#i,
dZ} = b(t, Zj, p, B)dt + AW},  Zj = ¢

and vN[A™%, 8] be the empirical measure of the processes Z[A™, A]:

I/N "B

||Mz

Lemma C.1. Let B be either an open-loop strategy in Ag for some K > 2, or be equal to N,
the strategy associated to the admissible recommendation A* to player i. It holds:

tes[ng]E[WSRd (' [A "}ﬁ],ut)] =0, (C.2)
max E [HXJN A=, 8] — Zj[A—i,ﬁ]Hid} N=ge ), (C.3)
sup max I [[[XPN A Bl oo + 1271077 B[] < oo (C4)
Proof. Because of the symmetry properties of the systems of SDEs, we can suppose i = 1.

Throughout the proof, to make notation as simple as possible, we omit the dependence upon
[A=%, B]. For the same reason, define, for each j > 1, the following process 77:

7_7 _ Bt J=1
b= j .
pY Jj>2.
Obviously, in the case that 8 is A, we have ¥4 = M for every j. Moreover, let us introduce the
following auxiliary processes: let (Y7);>1 be the solution of
d}/tj :b(t’Y;fjnuth{)dththjv Yoj :gj‘
Let n be the empirical measure of the processes Y7:

N
1
nN = = > by €C(P?).

j=1
Denote by X* the state process resulting from the coarse correlated solution of the MFG; i.e.

AX; =b(t, X7, i, N dt +dWy,  Xg = ¢
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Since, for every j > 1, (&, W7, u, M) are distributed as (£*, W*, u*, \*), by Theorem the
processes (Y7 )j>1 are identically distributed copies of X*; moreover, the joint distribution of
(Y7, ;1) under P is the same of (X*, *) under P*, which, by marginalizing at every time ¢ € [0, T,
implies that Y7 satisfies the consistency condition as well.

For every fixed ¢t € [0,T], by the triangular inequality, it holds

E [W22,]Rd<:u’1]€V7Mt):| S CE [WQ (Mt » Vi ) + WQZ]Rd (VtNanN) + WQQ’Rd (771{\[7/%)} . <C5)

We start from the third term in : let P be a version of the regular conditional probability
of P given 1 = m, and denote by E™[-] the expectation with respect to the measure P™. By
construction, the strategies (\);>1 associated to the admissible recommendations (A7), are
i.i.d. under P™, for p-a.e. m € C(P?). Since y is independent of (W7);>1 and (&/);>1 under P,
the processes (Y7);>; are independent under P™. Moreover, since uy(-) = P(Y/ € - | u) P-as.
for every t € [0,T] and p; = my P™-a.s. for p-a.e. m € C(P?), we have

my =P"o (Y)),  p-ae., Vte[0,T], (C.6)

for every j > 1. We can conclude that the processes (Yf )j>1 are independent and identically
distributed square integrable random variables with law m; under P, for every ¢ and for p-a.e.
m. Therefore, as ensured, e.g., by [12, (5.19)], it holds

lim E™ {WZQM (77{\[7/%)} =0, p-ae., Vtel0,T].

N—o0

We observe that there exists a function g : C(P?) — R so that g € L'(p) and E™[W; Rd (Y, )] <

g(m), p-a.e., for every t: indeed, since, under P™, Y;j are i.i.d with law m; and u; = m; a.s., we
have

E™ (W3 g (" a0) | < 2B™ [ Wi gt (. 60) -+ W3 (0, )|
2 (Ziff:Em Uytkﬂ " /Rd Iy\th(dy)> <2 (;,g:ﬂim [\Ytlﬂ +E™ “Ytl‘zD
k=1 —
< 4B [ < g ]

The function g(m) = E™ [||Y*||c] belongs to L(p), since

_ 1|2 N 1112
e 2ot =B [5 [ 1] =E [ 2] < o0 )
Therefore, by dominated convergence theorem, we have
Jim E W2 ga (¥, e) | = 0 (C:8)

for every t € [0, T]. The convergence in (C.8]) is actually uniform in time. Indeed, fix ¢, s € [0, T:
then

E [WZQRd (névnut) - WQ JRd (775 a,us)]

=E [(WZRd (Uiv,ﬂt) _WQ,Rd nd, s ) (W2 Rd 77t te) + W, Rd (773 vNS))}
< CE 2] [ (W 00 = Wy 0)) ]
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where we used Cauchy-Schwartz inequality together with the uniform in time bound given by
(C7). By triangulating with 7 and ps, we get

E |:(W2 Rd (vajut) - W27Rd (néva,us))Z] <C (E [WQQRd (7772]\]777;\[)] +E [WQ Rd (IUDMS)})

N
1 kK okl 2
_C(E N;‘Zt - Z, +E[E [WZRd (fet, frs) |,u”)
N
2
LS gt -z

gC(E +E[\Yt1Y;\2]>,

where in the last inequality we used (C.6) and tower property. By using Lipschitz continuity of
b, the triangular inequality and E[||[Y!]|ca] < oo, it is straightforward to see that E[||Z¥||.4] < C
for every k > 1, for some positive constant C independent of k. By the same arguments, we have

2 [t 2
} < CE / du]
LY S
[ 2 k|
< CE / <1 + -l—/ [yl pu(dy) + |7, ) du}
LJ s R4
[ k|| 1|2 2
< CE /<1+HZ H + Yo + >du}§0|t—s|,
LS S cd
where the constant, C' depends upon T', b, E[[|[Y!]|2,] < oo and diam(A), which is a ﬁnite quantity

since the set A of actions is compact by Assumptlon Analogously holds for E[|Y,! —Y!|], which
implies that

E [)Zfzf

b(w, ZL, o, i)

k
Tu

B (W2 (s 0) = Wi (0, 1) | < Clt = 517 (C.9)

This is enough to conclude, by Arzela-Ascoli theorem, that the convergence in (C.8) is uniform
in time.

Remind from Section [2] that ||z ||, ca = sup,ejo g |[#s], t € [0,T]. To handle the second term in
(C.5), we use the coupling of vV and nV given by % Z]]{;V:]_ d(zk vk, together with the Lipschitz

continuity of b:
s 2
sup (/ (b (u Zq’f,uu,%'i) —b (u Yuk,uu,kfi)) dU> ]
0<s<t 0

[ R
Yk 1 ds+/tEU)\f—wfﬂ ds).
0

t
<’ </ E [ sup
0 0<u<s
By definition of (v¥);>1, we have
T 1 2
2 —_ =
) }du_ J R =Bl e k=1,
0 k> 2.

zk

u

Y-

I

Therefore, by Gronwall’s lemma, we sum over £k = 1,..., N to obtain the estimate

Sup Wega (¥ v)| < B WEca (¥, 0™) ] < ﬁém (- 2*

co o . (C.10)
NZ/ BN, =] du= 0 B[N, — 8] du < = =0,



where the constant C' depends only upon 7', b and diam(A).

Finally, for the first term of (C.5]), we use the coupling of y)¥ and v} given by % Zszl 5(Xk,N 75y
t 't
together with the Lipschitz continuity of b:

9 t
B[ 2 <o (5] e,

t 2
<c| (E [ sup ] +E [Wiga(ul )| +E [WSRW;V,MS)D ds
0 0<u<s ’ ’

t
< C/ E [ sup
0 0<u<s

t
<C< max E[sup

0 k=1,..n 0<u<s

k,N k
Xu - Zu

B ] )

k,N k
Xu - Zu

k,N k
Xu - Zu

2] + 1ZN:]E X2 = Z1*| + B V2 ga v o) | ds
Nj:l 4 s 2,Rd Vs

k,N k
Xu - Zu

2
] ds+ sup E [Wng(yéV,us)]> .
s€[0,¢] ’

By taking the maximum over k = 1,..., N on the left-hand side and applying Gronwall’s lemma,
we get

2
max [E [HX’“’N - ZkH ] <C sup E [WQQRd(VéV,ut)} — 0,
k=1,...N cd te[0,T] ’

by (C.8)), (C.9) and (C.10), which proves (C.3)). Coming back to (C.2|), we have

N
1 BN ok|? LN k|
sup ]E[W2 ,uN,VN]S sup — ]E“X’ Z‘]g max ]E[HX’ fZ‘ — 0.
refoT] 2,Rd( t oVt ) w0 ] N;; t t X o
This estimate together with estimates (C.8]), (C.9)) and (C.10]) implies (C.5)) and therefore (C.2)).
Finally, (C.4) follows from the above calculations. O

D Auxiliary results for the existence of mean field CCE

In this section, we state and prove some auxiliary results that were used in Section [f] to prove
the existence of a mean field CCE. In particular, Lemmata and provide the technical
instruments we used in Proposition to show that, for every deviating strategy 8 € A and
random flow of measures p, we can represent the joint law of u, 8 and deviating player’s state
process in terms of a strategy for player B in the zero-sum game[§land the the law of u. Lemmata
and [D.3] were needed in the proof of Theorem in order to define a mean field CCE starting
from an optimal strategy for player A in the zero-sum game [§

Consider any tuple & = ((Q2, F,F,P), &, W, i, t), composed of a filtered probability space sat-
isfying usual assumptions, a d-dimensional F-Brownian motion, an R%valued Fy-measurable
random variable, an Fy-measurable random continuous flow of measures in P?(RY) and an F-
progressively measurable P(A)-valued process. Assume that p, W and £ are mutually indepen-
dent. Let us consider the following equations:

dX; = / b(t, Xy, e, a)ee(da)dt + dWy,  Xo =&, (D-1)
A

dxXm = / b(t, X;", my, a)e(da)dt + dWy,  Xo = €, (D.2)
A

where m is a point of C(P?). In order to stress the dependence upon the deterministic flow of
measures m, we write X" for the solution of (D.2)).
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By Assumptions on any such tuple 4 there exists a solution to equation (D.1]) and path-
wise uniqueness holds. If needed, we can suppose that the filtration F on (Q, F,P) is the P-
augmentation of the filtration F&W:#t given by

FoE = o) Va(u) Va(Ws:s <t)Vo(C): C € Bygxa) (D.3)

By Theorem uniqueness in law holds. Analogous reasoning holds for equation (D.2|) as well,
for every m € C(P?).

Lemma D.1. Let s = ((Q, F,F,P), &, W, u,t) be as above, let © € P(R? x C? x V) be the joint
law of &, W and t. Let us define the map

Zo : C(P?) — PRI x % x ¢4 x V)

(D.4)
m—s To(m) = Po (€, W, X™, 1)L,
where X™ is the solution to equation (D.2)).
(i) The map Lg is continuous, in the sense that
sup WZ’Rd(m?,mt) =0 asn— oo = Zg(m") nose Zo(m) in W2,]RdxcdexCd'

t€[0,T]

(ii) The map Te induces a stochastic kernel X from C(P?) to C x V, by setting
(B, m) =P((X™,t) € B) = To(m)(R? x C? x B) Vm € C(P?), B € Bpa ® By.

¥ is a strategy for player B, as described in Definition |7

Proof. Note that, by Theorem Zo(m) is the unique weak solution of when the joint
law of £, W and t is given by © and b is evaluated at m € C(P?). Let & € Q, let (m"),>1 C C(P?)
so that m™ — m. For every n > 1, denote by X and X" the solution to equation when
b is evaluated at m and m'™, respectively. For every 2 < p < p, by Lipschitz continuity of b, we
have:

< C sup W;Rd(m?,mt), (D.5)

E| sup [X7— X,
0<s<T t€[0,7

n>1 te[0,T]

supE | sup |X}'|P
n>11t€[0,T)

<C (1 +sup sup < y \y[Qm?(dy)) 2) . (D.6)

Therefore, for p = 2, we have that m™ — m in C(P?) implies that || X" — XHgd — 0 in expecta-
tion, which in turns implies that (£, W,t, X™) — (£, W, t, X) in distribution. In order to have
convergence in 2-Wasserstein metrics, it is enough to check uniform integrability, according to
([2-1). Since (Zo(m™)), have the same marginals on R? x C? x V, we just need to check for
the laws of (X™),: for every n > 1, r > 0, we have

E [IX"60 Loz ony) < (B [”Xn”édbé (ke [Mnxn@mﬂf
<

1 1
< (B [1X"1&])* B [1X" 2] * r 7t < 03

by using Cauchy-Schwartz inequality, Markov inequality, (D.5) and . By taking the limit
as r — 00, we get condition (2.1)) satisfied and so point |(i)|is proved.

50



As for point let 7 : RIxC¥xC%xV — C%xV be the projection on the last two components.
Note that (Zg o 7 1)(m) = P o (X™,t)~!, which shares the same continuity properties of the
map Zg. Therefore, in particular, it is Borel measurable, where P(C? x V) is endowed with the
usual Borel o-algebra associated with the topology of weak convergence. Then, the thesis follows
from the fact that, for a Polish space E, the usual Borel o-field on P(E) coincide with the o-field
generated by the maps P(E) > m — m(S), with S € Bg, (see, e.g., [4, Corollary 7.29.1]). O

Lemma D.2. Let U = ((Q, F,F,P),&, W, u,¢) be a tuple so that (£, W,t) and p are independent.
Denote by p € P(C(P?)) the law of u under P. Suppose without loss of generality that F is the
P-augmentation of the filtration (ff’W’“’t)t defined by . Let X be the unique solution of
on the tuple .. Then, the following decomposition of measure holds

P((X,t, 1) € B x §) = / S(B,m)p(dm), VB € Bgar, S € Be(pe).
S

In particular, X(B,m) =P((X,tv) € B | p=m) =P((X™,t) € B) for every B € Bpayy, p-a.e.

m € C(P?).

Proof. Let P(- | u) denote the regular conditional probability of P given p. Set P"*(-) = P(- | u =
m). Since (£,W,t) and p are independent by assumption, we have that P o (&, W,t)~! =
Po (¢, W,t)~! for p-a.e. m € C(P?). Therefore, it is enough to prove that X is a solution to
on the tuple 4 = ((Q, F,F,P™), & W,t) for p-a.e. m € C(P?). Then, since uniqueness in
law holds for , we deduce that P™ o (&, W,t, X)~! = Tg(m) p-a.s. Observe that, since the
joint law of (&, W, t) is the same under P and P™ for p-a.e m, W is a natural Brownian motion
under P™ as well. By definition of the filtration F, it can be easily verified that

EF[L4(W; —Wo)g | pu] =0 P-as
for every 0 < s <t < T, A € Bya, g bounded and Fs-measurable. This implies that
E7" [La(Wy = Wo)g] = EF [La(W, = Wy)g | p=m] =0

p-a.s., for every g bounded and Fs-measurable. By working with a countable measure determining
class of sets, which is possible since the o-algebra ]-"f’W’“ " is countably generated for every
t € [0,T], the equality holds for every g bounded and Fs-measurable, for p-a.e. m € C(P?),
which in turn implies that W remains an F-Brownian motion under P™ as well. Under P one
has

P (/ b(t,x, p, a)ei(da) = / b(t,z,my¢,a)vi(da) Vo e Rd) =1 Lebyg-ae. te[0,T]
A A

and therefore X solves (D.2) for b evaluated at m € C(P?). The thesis follows from marginalizing
as in the proof of point in O

We turn our attention to the proof of Lemma [6.3] which for convenience we restate below.
Lemma Let T € K. There exists a measure I' € K so that the following holds:
e The marginal distributions of I and T' on C(P?) are the same: T(C4xVx-) = T(CIxVx"-).

o Let (X,v,pu) be such that I'=Po (X, v, )" Then v is of the form v = Gi(Xs, 1), where
G:10,T] x R x C(P?) — P(A) is a measurable function.

e For every X € Q, it holds R
p([, %) =p(I, %).
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Proof. In the following, for a metric space (E,dg), ¢ : E — R continuous and bounded and

m € P(E), we set (¢, m) = [ (e)m(de).
Let U = ((Q, F,F,P), f W, p,t) be as in Definition |§|, so that T'=Po (X,t,u)"!. As ensured

by [27, Lemma C.2|, we have that, by choosing Y; = (X;, 1) taking values in Rd x C(P?) as
conditioning process, there exists a jointly measurable function ¢ : [0,7] x R? x C(P?) — P(A)
so that, for every ¢ : [0,T] x R? x C(P?) x A — R bounded and measurable it holds

/ ¢( X, p, a)Ge(Xe, ) (da) = [/ O(Xe, p,a)ve(da)| Xy, u|  P-as., ae t€[0,T], (D.7)

which we abbreviate as
Gt(Xt, p)(da) = E [ri(da)| Xy, p]  P-as., ae. t €[0,7].

Next, we manipulate the term of the functional p in which depends only upon I':

[ (.. m)r(dy,dm, d) = [ / / £t X, >tt<da)dt+g<XT,uT)]

:/0 E [/ftXt,,ut, a)vy(da) ‘Xt, Hdt+E[ (Xr, ur)]

:/TE / f(t, Xt,Mt;a)Qt<Xt7ﬂ)(da):| dt + E [g(XT, pr)] (D.8)
0 LJ A

:/OTE :IE UA f(t,Xt,m,a)ét(Xt,u)(da)iM” dt + B [E ig(XT’“T)i“ii

:/OTE :</Af(t,',Mt,a)(jt('vu)(da)a#t>:| dt + E [{g(-, pr), pr)] -

Second equality holds by Fubini’s theorem and tower property of conditional expectation, third
equality holds by definition of the control (D.7)), third and fourth equalities hold by tower property
again, and fifth equality holds since, by consistency condition, p;(-) = P(X; € - | p).

We observe that, by choosing ¢(t, z, m,a) = b(t,z, my,a) in (D.7)), we have

/ b(tht7Mtaa)dt(Xt7ﬂ)(da) =K |:/ b(thb,utva‘)tt(da)iXtau ]P’—a.s., a.e. t e [O,T]
A A

This is enough to apply [7, Theorem 3.6]: indeed, in its terminology, we can take & = R? x C(P?),
®:ExCY— C([0,T];€) defined by ®4(z,m,y) = (v +y,m) € R x C(P?), where C§ = {y €
C%: xo=0}. Set Z; = ®(X; — Xo, Xo, t) = (Xy, ), where we note that the second component
of Z is constant in time as it is equal to the whole flow y = (ps)seco,7)- Then, such a result
ensures that there exists a probability space (Q f' 1) ]f”) with (2 Polish and F its Corresponding
Borel o- algebra supporting an [F-Brownian motion W a continuous &£-valued process Z so that
there exists an F- adapted process X that satisfies

T
X=Xt [ [ oo Ko (K ) da)ds + Wi 2 = (K ~ Ko, Ko, )
0 A
so that for every ¢ € [0, 7] it holds Po Z; 1 =P o Z; 1. This implies both that f and p have the
same law p and that the consistency condition is satisﬁed since Po (Xy, ) ' =Po (X, pu)~ ! =

my(dx)p (dm) Finally, since Z is F-adapted, we deduce that X, and /i are Fo-measurable and
therefore W, X; and ji [t are mutually independent.
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Set I' = Po (X', t,/1)~'. Since the last term in the chain of equalities depends only upon
u and p and i share the same law, we can exploit the fact that f and X satisfy the consistency
condition as well to get

/3(1/,61, m)I(dy, dm, dq) = / [</f s s @)Ge (- )(da),ut>]dt+E[<g(-,uT),uT>]
-/ "g? ([ et o, ada) e | i+ B [l ), )

:/OTEE” P [/ f(t,Xty,&t,a)dt(Xta/l)(da)] dt + B [Q(XT’[LT)‘/:LH

_ /TEP / F(t X fu, a)e (X, ><da>] dt +EF [g(Xr. ir)
/3 y, ¢, m)L(dy, dm, dg).

Analogously, for every ¥ € Q, we have

/% Yy, q,m)X(dy, dg,m)p(dm) /% y, ¢, m)X(dy, dg, m)p(dm),

which proves the desired statement about the payoff functional p. O

Finally, we show that it is always possible to find a strong solution to equation (6.2)) in the
case of a feedback in state control process ¢:(z,m), as given by Lemma

Lemma D.3 (Strong solutions for feedback in state controls). Let (Q, F,F,P) be a filtered
probability space satisfying the usual assumptions, with Q) Polish and F its Borel o-algebra,
supporting a d-dimensional F-Brownian motion W, an Fy-measurable R -valued random & with
law v and a Fo-measurable random flow of measures p in C(P?) with law p. Assume that &, W
and p are mutually independent. Let G : [0,T] x RY x C(P?) — P(A) be a measurable function,
and suppose that there exists a solution of the SDE

dx; — / b(t, Xe, pr ) (X, 1) (da)dt + AW, (D.9)
A

so that it holds
() =P(Xy €| pn) P-as.

for every t € [0,T]. Then, X may be taken adapted to the P-augmentation of the filtration
ForW = (&) vV a(u) VEWY. In particular, there exists a progressively measurable function ® :

C(P?) x RY x €4 — C4 so0 that ®(u, &, W) = X P-a.s.

Proof. Set B(t,z,m) = [, b(t,x,my,a)g(x, m)(da). B is jointly measurable in (¢, z,m) € [0,T]x
R? x C(P?) with at most linear growth in (z,m) € R? x C(P?) for every t € [0, T]. The following
hold:

1. For every m € C(P?), equation
dX;" = B(t, X[",m)dt + dW;, X' =¢. (D.10)

admits a unique strong solution. Moreover, let P™ = Po (X™)~!. Then, the map C(P?) >
m — P™ € P(C%) is measurable.
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2. There exist a continuous F-adapted process X solution to
dX; = B(t,Xt,[L)dt—l-th, Xo=¢. (Dll)
X is adapted to the P-augmentation of the filtration F&#W

3. Pathwise uniqueness holds, in the following sense: suppose there exists a pair of continuous
F-adapted processes (X!, X?) which satisfy equation (D.11)) so that (X!, X2)s<; is condi-
tionally independent of ]—'%“’W given ]-"f’“’w for every t € [0,7]. Then, P(X} = X?, 0 <
t<T)=1.

4. The joint law of X and u is given by

Po (X,u)"t = P™(dx)p(dm).

This properties can be proven with the same methods of [27, Appendix A] and [28, Appendix A|.
We just point out that the results therein do not hold automatically in our case, since B is not
progressively measurable in the measure flow m, in the sense of [27, 28]. Nevertheless, since we
require p to be Fp-measurable, the same arguments lead to the results above.

Let X be as in the statement of the lemma. We first show that the joint law of X and p is given
by P™(dx)p(dm). Let P™(-) = P(-|u = m) be a version of the regular conditional probability of
P given 1 = m. Then, since &, W and p are mutually independent, P™ o (¢, W)™! =Po (¢, W)~}
for p-a.e. m, and, by exploiting the fact the ]-"f’“ WX g countably generated for every t, W
is an F&*W'X_Brownian motion under P™ as well. Therefore, X satisfies equation on
(Q, F,F&nWX Pm) for p-ae. m € C(P?). By point , Pmo X~1 = P™ for p-a.e. m € C(P?),
which implies that P o (X, u)~' = P™(dx)p(dm).

It can be shown by straightforward calculations that (Xs)s<¢ is conditionally independent of

]-_%“ W given ]:f & ’W, for every t € [0, 7). Since pathwise uniqueness holds by point [3| this implies
that X is indistinguishable from an F&#W_adapted solution to equation (D.11]). O
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