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Abstract Imaging using cardiac computed tomography (CT) or magnetic resonance (MR) imaging has become an important option for 
anatomic and substrate delineation in complex atrial fibrillation (AF) and ventricular tachycardia (VT) ablation procedures. 
Computed tomography more common than MR has been used to detect procedure-associated complications such as oe-
sophageal, cerebral, and vascular injury. This clinical consensus statement summarizes the current knowledge of CT and MR 
to facilitate electrophysiological procedures, the current value of real-time integration of imaging-derived anatomy, and sub-
strate information during the procedure and the current role of CT and MR in diagnosing relevant procedure-related com-
plications. Practical advice on potential advantages of one imaging modality over the other is discussed for patients with 
implanted cardiac rhythm devices as well as for planning, intraprocedural integration, and post-interventional management 
in AF and VT ablation patients. Establishing a team of electrophysiologists and cardiac imaging specialists working on specific 
details of imaging for complex ablation procedures is key. Cardiac magnetic resonance (CMR) can safely be performed in 
most patients with implanted active cardiac devices. Standard procedures for pre- and post-scanning management of the 
device and potential CMR-associated device malfunctions need to be in place. In VT patients, imaging—specifically MR— 
may help to determine scar location and mural distribution in patients with ischaemic and non-ischaemic cardiomyopathy 
beyond evaluating the underlying structural heart disease. Future directions in imaging may include the ability to register 
multiple imaging modalities and novel high-resolution modalities, but also refinements of imaging-guided ablation strategies 
are expected.

Keywords Cardiac computed tomography • Cardiac magnetic resonance imaging • Imaging-guided ablation • Imaging-aided 
ablation • Atrial fibrillation • Catheter ablation • Ventricular tachycardia • Active cardiac devices • Complications • 
Oesophago-atrial fistula
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1. Introduction
Imaging has evolved as a cornerstone for the management of patients 
with complex arrhythmia substrates by helping to better understand 
the anatomy and the underlying structural abnormalities and to identify 
catheter treatment–related complications. In this regard, the current 
manuscript summarizes the current knowledge of cardiac computed 
tomography (CCT) and cardiac magnetic resonance imaging (CMR) 
to facilitate electrophysiological (EP) procedures. The current value 
of real-time integration of imaging-derived anatomy and substrate in-
formation during EP procedure and the role of CT and MR in diagnosing 
relevant procedure-related complications are reported.

The authors, as a joint group of electrophysiologists and experts in car-
diovascular imaging, intend to provide practical advice on how to use CT 
and MR in different scenarios in patients with arrhythmia including patients 
with implanted active rhythm devices [cardiovascular implantable elec-
tronic device (CIED)]. It is intended to help electrophysiologists to decide 
on which technology and which specific techniques to use in clinical set-
tings of atrial fibrillation (AF) and ventricular tachycardia (VT) ablation.

2. Basic concepts of computed 
tomography and magnetic 
resonance imaging
Echocardiography is the most used imaging modality for pre- 
procedural planning, intraprocedural monitoring, and post-procedural 
evaluation, because of absence of radiation, low costs, ready availability, 
and rapidity. However, CMR and CCT are valuable and may provide 
complimentary information. The choice of the imaging technique is de-
termined by the indication, the specific advantages and limitations of the 
imaging modality, the availability, safety and convenience for the patient, 
and preferences and experiences of the physicians. In addition, when 
deciding between CCT or CMR, the existence of implanted cardiac de-
vices in the target area (with potential for hindering artefacts) and pa-
tient baseline characteristics like renal and thyroid function need to be 
taken into account. Cardiac computed tomography but not CMR also 
implies radiation exposure. In regard to imaging the heart, an additional 
consideration is the higher spatial resolution in CCT vs. higher temporal 
resolution and most appropriate tissue characterization in CMR (see 
Table 1).

In patients with congenital heart disease, imaging can create a three- 
dimensional (3D) roadmap to understand the complex anatomy. In 
these younger patients, free-breathing 3D CMR acquisition may be 

preferred over CCT as long contrast transit times may result in need 
for large amounts of contrast and long acquisition times exposing the 
patient to high radiation exposure.

Intraprocedural co-registration of electroanatomical mapping data 
with the 3D morphological reconstructions from CCT and/or CMR 
can facilitate mapping, may reduce the use of fluoroscopy during interven-
tions, and may increase the safety for the patient and the operator.1,2

2.1. Cardiac computed tomography
Cardiac computed tomography is increasingly being implemented in 
clinical routine due to advances in the technology offering high spatial 
resolution and high diagnostic image quality. Recently introduced 
photon-counting detector CT is equipped with X-ray detectors which 
count the quantity and quality of incoming photons and photon energy 
allowing optimized spectral imaging capabilities with high temporal 
resolution. Further improvement in myocardial characterization in 
CCT may be achieved in high resolution, like iodine quantification in al-
tered myocardium, the so-called iodine mapping.3

Pre-interventional CCT can be used to identify the (variation in) car-
diac anatomy including pulmonary veins (PVs), non-invasive assessment 
of coronary artery anatomy and disease, and pulmonary pathologies. 
Computed tomography offers several advantages over echocardiog-
raphy, as it provides high spatial resolution, is not related to specific 
echo windows of view, involves standardized measurements, and may 
use contrast-enhanced depiction of vasculature and chambers. It is the 
first-line imaging modality to non-invasively assess left atrial appendage 
(LAA) anatomy and size and can detect LAA thrombus.4 Cardiac com-
puted tomography can identify PV stenosis and (asymptomatic) stenosis 
of coronary arteries. All cardiac and related structures can be segmented 
and made available during the ablation procedure (see image integration). 
Appropriate timing of contrast in the targeted chambers is important, 
and the window of imaging around the field may be modified to include 
relevant anatomic substrates (like the aortic arch in VT procedures) used 
for intraprocedural image registration (merging).

In VT procedures, pre-procedural CCT is an alternative to echocar-
diography and CMR for detecting underlying cardiac pathology and re-
lated abnormalities, such as ventricular thrombus.

In addition, CCT provides information on wall thickness, intramyo-
cardial and epicardial fat, and myocardial calcification and, albeit with 
lesser accuracy than CMR, depicts delayed enhancement in myocardial 
scars. Wall thinning, e.g. after myocardial infarction (MI), can be visua-
lized with a higher spatial resolution than CMR (CCT 128-slice scanner 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Benefits and limitations of CCT and CMR

Considerations for using CMR vs. CCT

(1) Indication

(2) Availability/urgency (CCT > CMR)

(3) Need for higher spatial resolution (CCT > CMR)

(4) Need for higher temporal resolution (CMR > CCT)

(5) Need for most appropriate tissue characterization (CMR > CCT)

(6) Imaging limitations (especially artefacts from devices in CMR)

(7) Patient baseline characteristics (renal function, allergies, thyroid 

function)

(8) Radiation exposure (CCT)

Specific indications including benefits and limitations of the two imaging modalities 
useful to electrophysiologists for optimized implementation of imaging. 
CCT, cardiac computed tomography; CMR, cardiac magnetic resonance imaging; 
> appears favourable/better.
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spatial resolution 0.4 mm; 1.5 T CMR spatial resolution 1.3 mm) and 
can be used for planning VT interventions.5–7 Left ventricular (LV) func-
tional parameters can be determined reliably by CCT, but radiation ex-
posure must be considered. Depending on the scanner technology 
used, regional wall motion abnormalities can be detected, but with low-
er temporal resolution compared to echocardiography or CMR.

In CCT, radiation exposure is of concern, especially when multiple 
image acquisitions are required. Radiation exposure has been reduced 
in the last decades and depends on body weight, heart rate and rhythm, 
tube voltage, and selected scan protocols8–12 (Table 2). Dose-saving 
protocols should be used whenever possible. Recent technological in-
novations have substantially reduced exposure to radiation. Acquisition 
modes with prospective electrocardiogram (ECG) triggering, including 
prospectively ECG-triggered high-pitch spiral acquisition, and the use of 
low kV protocols have led to a significant reduction in effective radi-
ation doses.8 In principle, the use of modern scanner technology like 
64-slice CT generation or higher is advised, similar to the advice for 
CT of the coronary arteries.

In general, effective patient doses appear to be lower in CCT for 
LAA thrombus detection compared to CCT angiography or CCT for 
tissue characterization but highly dependent upon triggering and scan 
protocols.11

2.1.1. Tissue imaging
Cardiac computed tomography can be used for tissue characterization 
including late iodine enhancement, a methodology comparable to late 
contrast enhancement imaging using CMR.13 However, CCT has a lim-
ited contrast of myocardial scars and is inferior to scar depiction in 
CMR. A significant improvement in CT-based late enhancement may 
be achieved by using spectral CT and iodine maps (late iodine enhance-
ment CCT). Scar delineation comparable to CMR has been 
described.14Cardiac computed tomography can detect fatty infiltra-
tions, which have been correlated with low-voltage areas and 
VT-related sites in patients with arrhythmogenic cardiomyopathy 
(ACM).15,16 Cardiac computed tomography is sensitive for the detec-
tion of myocardial calcifications which may be relevant for VT ablation 
in patients with ischaemic cardiomyopathy (ICM).17,18

2.1.2. Post-procedural lesion imaging
So far, no studies have evaluated post-procedural ablation lesion im-
aging using CCT.

2.2. Cardiac magnetic resonance
Cardiac magnetic resonance is a technique with excellent resolution 
and reproducibility, allowing for anatomical evaluations and functional 
studies. Specific acquisition techniques, including late gadolinium en-
hancement (LGE) imaging, allow for detailed tissue characterization. 
Cardiac magnetic resonance can be used to define the anatomy, to as-
sess the (likely) underlying disease, and to detect procedure-related 
complications. In general, functional MRI sequences (cine) can be differ-
entiated from static tissue characterizing sequences (e.g. black-blood 
sequences, mapping and/or LGE).

CMR studies are more time-consuming, are of relatively high costs 
regarding acquisition and personnel, and have lower scanner distribu-
tion compared to CCT. Cardiac magnetic resonance studies are limited 
by inadequate motion correction and require a relatively stable heart 
rhythm which can be an important limitation in patients with arrhyth-
mia. Contrast studies with gadolinium agents may have a low but in-
creased risk of toxicity in patients with severely impaired renal 
function, and indication should be carefully weighed.19 There are differ-
ences in image quality comparing 1.5 T MR scanners and 3 T scanners. 
In general, 1.5 T MR scanners are mainly used as standard for cardiac 
scanning, and rarely, 3 T scanners may be used for advanced imaging 
information.

The existence, potential compatibility, and resulting artefacts of ac-
tive implantable cardiac devices (CIED) like pacemakers (PMs) or im-
plantable cardioverter–defibrillators (ICDs) need to be considered 
when performing CMR. Estimations show that around half of PM and 
patients with ICD will require an MRI scan during the lifetime of their 
device, mainly for non-cardiac reasons.20 Most PMs are CMR condition-
al with 1.5 T MR scanners (information on 3 T scanners is scarce), but in 
particular, patients with ICDs or cardiac resynchronization therapy 
(CRT) devices may need specific management when undergoing 
CMR (see Section 3). Alternative image modalities should be consid-
ered in patients with non-compatible devices.

2.2.1. Tissue imaging
In general, CMR is considered the gold standard for tissue characteriza-
tion and enables visualization of ablation lesions. In the acute stage of 
myocardial damage, CMR identifies oedema, necrosis, and intramyocar-
dial haemorrhage, whereas in the chronic state (after months), it iden-
tifies myocardial scar and fibrosis. Quantitative parametric mapping 
imaging may lead to less inter-operator variability compared to pure 
qualitative analysis. There are different scanning sequences that may 
be helpful to differentiate between different degrees and acuity of myo-
cardial damage (see Table 3).

Whereas LGE sequences provide information on irreversible myo-
cardial damage and scar, novel techniques with T1 and T2 mapping 
and assessment of extracellular volumes (ECVs) have an established 
role for tissue characterization by CMR and can be useful for diagnostic 
considerations.21 These techniques can identify oedema and increased 
interstitial volume, which is not necessarily due to fibrosis, and 
are independent of whether myocardial disease is focal or diffuse. T1 
relaxation times decrease by fat or iron infiltration and increase by fi-
brosis and amyloid, while T2 relaxation times increase by oedema. 
Based on T1 mapping in patients receiving gadolinium agents, ECV 
can be assessed and provides a good estimate of diffuse fibrosis. 
There are currently technical limitations including CMR system-related 
variability and issues of normal/reference ranges. The clinical value of 
these techniques in the setting of EP interventions requires further 
studies.22,23

Continuously adaptive windowing strategy has been described as a 
fully automated, fast, and efficient technique for high-resolution free- 
breathing acquisition. It allows acquisition of the entire blood pool 
free breathing and shortens scan times while generating high-resolution 
non-contrast 3D image quality.24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Estimated and published effective patient doses 
(calculated using the chest coefficient (0.014) from dose length 
product)

Imaging technique Approximated effective patient 
dose

CCT for LAA thrombus 

detection

1–4.7 mSva

CCT angiography 1.5–4.7 mSv

CCT for tissue characterization 1.5–9 mSv

Coronary angiography 2–8 mSv

AF ablation 1.6–59.6 mSv

VT ablation 3.0–45.0 mSv

Approximated patient radiation exposure for different x-ray-based imaging modalities 
in cardiac imaging.9–11

AF, atrial fibrillation; CCT, cardiac computed tomography; LAA, left atrial appendage; 
mSv, millisievert; VT, ventricular tachycardia. 
ahighly dependent on scan protocol and triggering.
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2.2.1.1. Specific consideration of cardiac magnetic resonance sequences
2.2.1.1.1. T1-weighted imaging. The longitudinal relaxation T1 is defined as 
time required for longitudinal magnetization to recover from the transverse 
plane to 63% of its value after 90° excitation. Any increase in interstitial 
space e.g. from oedema or diffuse fibrosis causes elevated T1 relaxation 
times. Water has a slow longitudinal magnetization resulting in long T1 re-
laxation times and thereby appears dark on CMR. Denaturized proteins 
within necrotic areas and conversion of ferrous iron in myoglobin and 
haemoglobin may account for shorter T1 relaxation times. Native, non- 
contrast agent-enhanced T1-weighted (T1w) imaging can visualize acute 
myocardial damage related to ablation (within the first hours). T1 relaxation 
times are longer than normal in hypertrophic myocardium (hypertrophic 
cardiomyopathy), inflammation/myocarditis, and amyloidosis (global in-
crease), whereas they are shorter than normal in fatty dysplasia, iron over-
load, and Morbus Fabry.25 T1-weighted long inversion time imaging allows 
imaging of acute ablation lesions without using contrast agents.

2.2.1.1.2. T2-weighted imaging. The transverse relaxation T2 is defined 
as the time required for transverse magnetization to decay to 37% of its 
value after 90° excitation. Tissue with high water content has pro-
longed T2 relaxation times and therefore shows up as increased signal 
intensity (SI) on T2-weighted (T2w) images. Therefore, T2w imaging al-
lows identification of oedema, visible as bright high-intensity signal, or 
inflammation (myocarditis).

T2-weighted imaging techniques have a low spatial resolution, high 
sensitivity to cardiac motion, and arrhythmias, which may lead to non- 
uniform signal detection and may reduce reproducibility and reliability.

2.2.1.1.3. Extracellular volume. Expansion of the ECV may occur second-
ary to fibrosis. The calculation of ECV is based on the observation that 
gadolinium contrast in the interstitium shortens T1. The ratio of pre- 
and post-contrast T1 of the myocardium and blood corrected for haem-
atocrit is evaluated. Extracellular volume can be longitudinally followed 
and compared and is usually used for tracking diffuse myocardial fibrosis.

2.2.1.1.4. First-pass gadolinium perfusion imaging. First-pass perfusion 
imaging is used to evaluate myocardial blood flow and perfusion and in-
volves injection of a contrast medium and early imaging during the first 
pass of the contrast medium. First-pass perfusion is used to identify dis-
tribution and differences in blood flow within the myocardium at rest 
and during hyperaemia. Perfusion defects indicating coronary artery 
and also microvascular obstruction can be identified and may be seen 
in the early stage of myocardial damage.

2.2.1.1.5. Late gadolinium enhancement imaging. Late gadolinium en-
hancement (LGE) imaging is based on the delay of contrast agent 
wash out of the myocardium with a high proportion of extracellular 

space. This is typically found in focal fibrosis, inflammation, or fat infil-
tration but also as a result of ablation-induced chronic fibrosis and in-
flammation. Late gadolinium enhancement imaging identifies 
irreversible myocardial damage.

Late gadolinium enhancement is visualized by T1w imaging 10– 
20 min after contrast injection. Sequential two-dimensional (2D) 
images are usually used to identify LGE in the ventricle, but 3D high- 
resolution sequences are available. Higher concentrations of gadolinium 
appear bright in LGE-CMR. In acute myocardial damage, dark zones 
may be identified within LGE areas characterizing relevant microvascu-
lar injury that leads to intramural haemorrhage and aggregation of ery-
throcytes outside the vasculature.

Late gadolinium enhancement can also be assessed in the atria al-
though this image modality is hampered by the spatial resolution for 
the thin atrial wall. Atrial LGE may be of prognostic value for the out-
come of AF ablation success,26 but atrial imaging using MR, especially 
LGE, remains controversial and reproducibility remains an issue.

2.2.2. Lesion imaging
Imaging to document ablation lesions has mostly been performed in 
patients after AF ablation using CMR technology. Radiofrequency (RF) 
ablation results in a variety of changes on LGE with hyper- or 
non-enhancement. In patients undergoing immediate post-ablation LGE, 
non-enhancement lesions demonstrate no-reflow characteristics and 
may allow prediction of definitive scar formation after AF ablation.27

Current data suggest that 3-month LGE imaging best characterizes chronic 
RF ablation-induced atrial scar formation.27,28

In ventricular myocardium, CMR may also detect RF ablation lesions 
within 3 days after the procedure as non-enhanced lesions during early 
gadolinium enhancement scans (3 min after gadolinium contrast injec-
tion) surrounded by hyperenhanced zones resembling the no-reflow 
phenomenon observed in patients with acute stages of MI. The size 
and depth of early non-enhanced lesions appear to correlate with 
the ablation energy and impedance drop during ablation and may not 
be associated with acute success.29 Late gadolinium enhancement 
months after an ablation procedure have identified hyperenhanced le-
sions in approximately two-thirds of patients.30 The translation of these 
findings into efficacy of EP procedures requires further studies and may 
also involve data from real-time MRI-guided ablation.31

2.3. Workflow of image integration
Cardiac computed tomography or CMR data sets can be imported into 
electroanatomic mapping systems (EAMS). There are specific precondi-
tions for image acquisition depending on the EAMS (Digital Imagin and 
Communications in Medicine; DICOM format). The structures of interest 
can be identified and separated from each other and from the remaining 
imaged structures (process of SEGMENTATION). In the EAMS, segmen-
tation can be performed semiautomatically or automatically via seeding. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3 Relevance of different scanning sequences of CMR in regard to detection of myocardial pathology

Descriptive results Disease/entity

Normal Oedema Regional fibrosis/scar Diffuse fibrosis Myocarditis Acute ablation lesion Chronic ablation lesion

T1 0 + + + + + (TWILITE) +

T2w 0 + 0 0 + + 0

ECV 0 + + + + + +

LGE 0 0 + 0 0 0 +

ECV, extracellular volume; LGE, late gadolinium enhancement; TWILITE, T1-weighted long inversion time sequence; T2w, T2-weighted.
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Different algorithms and work processes exist in the different EAMS. 
Manual editing is possible and may be needed. Segmentation of cardiac 
and related structures can also be performed using image processing soft-
ware and uploaded into the EAMS either in DICOM or presegmented VTK 
files. The 3D reconstruction of the segmented structures of interest can be 
displayed in the electroanatomic mapping (EAM) system. Integration of 
segmented images with EAM data can be achieved either by the alignments 
of landmarks which can be tagged during catheter mapping and are also 
identifiable on imaging or by surface registration of the 3D anatomical 
(endocardial) shell of the mapped chamber(s) of interest and the segmen-
ted imaging-derived contours (REGISTRATION). In most cases, a mix of 
both techniques is applied and may warrant higher precision of registration.

Some portions of the mapped structures may be susceptible to de-
formation when approached with catheters which may affect anatomy. 
Respiratory phase filter, gating per beat, and exclusion of premature 
beats (e.g. premature ventricular complexes) are applicable to all EAM 
systems and may help to generate more reliable anatomical maps. 
Manual correction may be needed. Differences of registration processes 
exist between current 3D mapping systems, CARTO (CARTOMERGE), 
EnSite (NavX Fusion), and Rhythmia (Rhythmia automated alignment) 
and may affect registration accuracy. So far, no comparative study exists. 
The registration process is critical if imaging-aided or imaging-guided ap-
proaches are intended. The more accurate the registration process, the 
more operators can rely on the integrated imaging information.

3. Magnetic resonance imaging in 
active device patients
Cardiac magnetic resonance can safely be performed in the majority of 
patients with CIED.32–36 While there is growing evidence on the safety 
of MR in patients with MR-conditional and non-conditional devices as 

well as in patients with abandoned leads, no data on patients with frac-
tured leads or lead extenders are available. Cardiovascular implantable 
electronic devices introduce susceptibility artefacts that may preclude 
analysis of MR images. Close coordination between imaging and 
CIED experts to ensure proper pre-, intra-, and post-scanning manage-
ment of patients with CIED is important. Careful selection of the 
needed imaging modality (CMR vs. CCT) and shared decision making 
is key. All medical information on CIEDs including leads, potentially 
abandoned or fractured leads, and lead extenders should be collected. 
Magnetic resonance-conditional CIEDs are only tested for 1.5–3 T MR 
scanners, and 1.5 T CMR may be selected for non-conditional devices. 
Cardiac computed tomography may also display artefacts from CIED 
scans and electrodes.32 Manufacturers of CIEDs have developed newer 
devices with non-ferromagnetic components and have improved 
shielding to allow MR imaging.33–38

3.1. Safety
Data from multiple registries support the safety of CMR imaging in pa-
tients with CIED with extremely low complication rates.32–36,39–42

However, adherence to standard operating protocols is strongly ad-
vised.38,43 Important aspects are patient selection, patient information 
and consensus, device interrogation and programming before CMR, sub-
sequent device interrogation, and re-programming after CMR (Figure 1). 
There is an ongoing debate regarding CMR in patients with abandoned 
leads. While abandoned leads potentially lead to tissue heating at the 
tip of the lead, registry data indicate that CMR imaging may also be 
safe in these patients with low complication rates.44,45 Newer CIEDs 
are often labelled as ‘MR-conditional’, while older devices are not. This 
implies that such devices have a so-called MR mode which can be used 
to programme settings that are deemed preferable during MR scanning 
by the device manufacturer. Real-world data show that even in devices 
that do not have this option, it is possible to programme pacing modes 

Review all medical information about PM/ICD and leads

Complete device interrogation

Pacer dependent?

Yes

Program to asynchronous
mode (VOO or DOO)

D
ire

ct
ly

 b
ef

or
e 

C
M

R
D

ur
in

g
C

M
R

D
ire

ct
ly

af
te

r 
C

M
R

Deactivate antitachy
therapies

Antitachy/ICD function?

Continuous haemodynamic monitoring (blood pressure,
oxygenation, ECG, symptoms)

Complete device interrogation
Activate antitachy therapies
Reprogramme to pre-imaging
or optimized settings
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Figure 1 Standardized CMR protocol for patients with PM or ICD undergoing a 1.5 T CMR at timepoint before, during, and after CMR. CMR, cardiac 
magnetic resonance imaging; ECG, electrocardiogram; ICD, implantable cardioverter–defibrillator (modified from43); PM, pacemaker.
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that are well suited for CMR scanning. A combination of components 
from different manufacturers of CIEDs has not been tested and there-
fore cannot be declared MRI-conditional (Table 4).

Time in the scanner should be kept as short as possible to reduce the 
potential for interferences. It is advised to perform device interrogation 
and programming immediately before and after CMR. An expert in de-
vice handling and trained in advanced cardiac life support should be 
stand-by for emergency treatment during the scan. In the case of gen-
erator malfunction, standard operating procedures on evacuation of 
the patient from the scanner and how to perform emergency care 
like defibrillation or assure ventricular capture pacing need to be 
established.

Patients with need for ventricular stimulation and those with need 
for ICD interventions are specifically in need of close follow-up strat-
egies, and remote monitoring may become essential. Patients with 
CIEDs should be rhythm-monitored throughout the time period within 
the scanner and until reprogramming of the device. In Implantable Loop 
Recorders (ILR) patients, stored data should be interrogated before 
scanning as otherwise this information could get lost.

3.2. Image quality
Cardiovascular implantable electronic devices are made of various metals 
and impair CMR images by introducing artefacts. Depending on the de-
vice manufacturer, type of CIED (ILR vs. PM vs. ICD), device position, and 
number of connected leads, artefacts greatly vary in size and location. 
Both the generator and the leads introduce loss of signal and hyper- 
intensity artefacts. While signal loss is easily identifiable, hyper-intensity 
artefacts need to be carefully evaluated to avoid false interpretation 
(e.g. as fibrosis) in LGE images. In general, a generator that has been im-
planted on the right side is less likely to produce relevant artefacts com-
pared to left-sided generators. Patients with left pectoral CIEDs are most 
prone to artefacts. The distance between the lower edge of the gener-
ator and the heart’s silhouette may determine artefact intensity. 
Changing patient location within the scanner may help to manipulate 
the device can out of the area of interest. The most extensive artefacts 
and least number of evaluable cardiac segments on CMR are seen in 
CRT–ICD devices. Artefacts usually are focused on the anterior and sep-
tal portion of the heart. Different sequences may have different severity 

of artefacts being lower in black-blood sequences than in LGE sequences 
and highest in cine images.26 Fast gradient echo sequences for cine and 
wideband sequences for LGE (Figure 2) may reduce artefacts.33,37

4. Computed tomography and 
magnetic resonance imaging for 
atrial fibrillation ablation
Advanced imaging modalities provide information about PV and left at-
rial (LA) anatomy, help to detect LAA thrombus, and may aid in individ-
ual risk stratification for thromboembolism and AF recurrences after 
ablation.

4.1. Pre-procedural imaging
Cardiac computed tomography and CMR systematically detect higher 
LA volume compared with 2D echocardiography with a trend of over-
estimation with CCT as compared to CMR. No differences are de-
scribed in terms of diagnostic accuracy of PV patterns between the 
two imaging modalities.46,47

Cardiac computed tomography and CMR are accurate in delineating 
LA anatomy and are able to categorize LAA morphologies as cactus, 
chicken wing, windsock, or cauliflower pattern48 with relevance to 
risk of stroke (cauliflower morphology was associated with an 8.0-times 
higher likelihood of stroke compared to chicken wing morphology).48

Characterization of LAA morphology may therefore be additional help-
ful information for stratifying stroke risk.

Cardiac computed tomography and CMR are able to rule out LAA 
thrombus with a high sensitivity and specificity. The diagnostic accuracy 
of CCT vs. transoesophageal echocardiography (TOE) is 94%. Delayed 
imaging on top of arterial phase acquisition in CCT increases the posi-
tive predictive value to 92% with an overall diagnostic accuracy of 99% 
(see Figure 3).

Cardiac magnetic resonance is equally effective in assessing LAA 
thrombus as compared to TOE with inversion time myocardial delayed 
enhancement (MDE) acquisition having the highest diagnostic accuracy 
(99.2%), followed by contrast-enhanced CMR angiography (94.3%) and 
cine CMR (91.6%).49

The oesophagus can be imaged using CCT and CMR. The right peri-
cardiophrenic artery can be visualized by CCT to locate the right 
phrenic nerve potentially helping to identify patients at risk of phrenic 
nerve injury during Pulmonary Vein Isolation (PVI).50,51 Cardiac com-
puted tomography and CMR can visualize the oesophagus, but the vari-
ability of the oesophagus position due to its mobile nature limits their 
intraprocedural use.52

4.2. Association between imaging and AF 
ablation outcomes
Several studies have shown an association between the amount of epi-
cardial fat and outcomes after AF ablation. The most accurate tech-
nique for quantification is by volumetric quantification53 by CCT or 
CMR. Whereas CCT can detect epicardial fat with high reproducibility 
(contrast attenuation ranges between −195 and −45 HU), it may be 
appropriate to consider CMR as the true ‘gold standard’ as it is the 
only imaging modality that has been validated ex vivo.54

In CMR, LV myocardial native T1 time was greater in patients with 
AF conferring a six-fold increased risk of AF recurrence.55 Patients 
with LV-LGE had a two-fold higher rate of AF recurrence compared 
to patients without.56 In regard to recurrent AF, there are a positive as-
sociation with LV-ECV, LA volume, and LV mass and a negative associ-
ation with diastolic function.57

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Specifications, definitions, and management strategies for 
patients with CIED undergoing MR procedures

Device specifications Definitions Advice for MRI

MRI-conditional All components of the 
device are tested as 

MRI-conditional

Cleared for 1.5 T 
and if specified 

also for 3.0 T 

MRI, monitored 
setting advised

MRI-non-conditional Manufacturer not 
cleared for use in 

MRI conditions, 

combination of parts 
of different 

manufacturers

1.5 T MRI may be 
performed, 

precautions and 

monitoring 
advised

MRI-unsafe Fractured leads, lead 

extenders

No data on MRI 

safety available

MRI, magnetic resonance imaging.
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Figure 2 Wideband sequences (B and D) suppressing device-related artefacts (arrows): two patients with implanted ICDs [A, C Patient 1 imaged without 
wideband sequences showing relevant device-related artefacts (red arrows) and B, D Patient 2 imaged with wideband sequences]. A, B Cine sequence and B, D 
LGE imaging. circle: RV device lead. ICDs, implantable cardioverter–defibrillators; LGE, late gadolinium enhancement; RV, right ventricular.

Figure 3 Left atrial appendage thrombus (circle) in early arterial (A) and early venous (later) phase (B) CCT imaging. CCT, cardiac computed 
tomography.
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4.3. Intraprocedural image integration: 
role of CCT and CMR to aid/guide AF 
ablation procedures
Two single-centre observational studies58,59 suggested a superior efficacy of 
pre-acquired imaging integration for catheter ablation of AF. In both studies, 
a shorter procedure duration and superior outcome were documented 
when image integration was used. Two randomized trials60,61 showed no 
benefit in regard to rhythm outcome. The CAVERN trial59 compared image 
integration using either the Carto or the NavX system and found no differ-
ence in terms of freedom from arrhythmia but faster 3D image registration, 
lower fluoroscopic dose, and overall procedural time with Carto system as 
compared to NavX system. A recent meta-analysis of comparative trials did 
not identify an effect of image integration on AF ablation outcome.62

4.4. Left atrial and left atrial appendage 
fibrosis detection
Atrial fibrosis is the consequence of several individual and multifactorial 
processes. It is involved in the occurrence and perpetuation of focal and 
re-entry arrhythmia mechanisms63,64 as well as a major contributing 
factor to AF occurrence and persistence. Cardiac magnetic resonance 
has been used to detect location and degree of LA fibrosis, but no data 
on CCT to image atrial fibrosis are available. Post-ablation CMR may 
allow to also detect residual fibrosis and non-effective PVs isolation, 
both strong predictors of arrhythmia recurrence.28,65–67

In the DECAAF I study,68 LA fibrosis was evaluated with high- 
resolution 3D LGE respiration-navigated and fat-saturated sequence 
in order to develop the Utah score based on the amount of LA wall en-
hancement expressed as a percentage of the total LA wall surface: stage 
I, defined as <10%, stage II ≥10–<20%, stage III ≥20–<30%, and stage 
IV ≥30%. Left atrial tissue fibrosis was associated with the likelihood of 
recurrent atrial arrhythmias.

King et al.69 found a 1.67 hazard ratio comparing patients with stage IV 
vs. stage I for the composite arrhythmic events. However, LA wall image 
intensity on LGE is influenced by several parameters such as amount of 
gadolinium contrast, surface coil proximity, delayed time of image acquisi-
tion, patient haematocrit, glomerular filtration rate, and body mass 
index.70 In order to standardize LA fibrosis quantification, LGE analysis 
technique has been normalized by blood pool intensity.70

The LAA has been reported to be an under-recognized trigger site 
for AF. Patients with a high LGE extent involving the LAA have an ap-
proximately four-fold increased risk of AF recurrences compared to 
patients without LAA involvement.59 A limitation is the reproducibility 
of LA fibrosis detection especially for small scar areas.71

Processed data of LA fibrosis can be integrated into EAM to guide AF 
ablation. This concept was tested in the controlled randomized 
DECAAF II study but did not show benefit related to rhythm outcome 
in cases with persistent AF (see Figure 4).72

Late gadolinium enhancement imaging 3 months after ablation has been 
used to identify gaps in ablation lines and guide redo procedures to termin-
ate LA macro-re-entrant tachycardias.28,73 It appears that CMR imaging 3 
months after AF ablation best describes chronic ablation scar formation 
and may be helpful for redo procedure planning and guidance.

Cardiac magnetic resonance scans after pulsed field ablation for AF 
have shown different patterns of LGE and T2w images with large acute 
LGE volume and less oedema (in T2w imaging) without microvascular 
damage or intramural haemorrhage, whereas at 3 months most LGE 
had disappeared.74

4.5. Optimal computed tomography imaging 
modalities for patients with atrial fibrillation
Computed tomography imaging of the left atrium may differ from the 
standard CCT approach used to image coronary anatomy. On the one 

hand, the contrast medium dynamics in the left atrium and LAA are differ-
ent, and on the other hand, the left atrium is generally exposed to move-
ment artefacts to a much lesser extent due to cardiac pulsation than the 
coronary arteries. It is advised to acquire an early arterial phase, in which 
the LAA is normally not yet fully contrasted and subsequently an early ven-
ous phase including only the LAA later after contrast injection (usually  
<60 s). In this phase, the LAA should be completely contrasted if no 
thrombus is present. Due to the only modest movement of the left atrium 
during the cardiac cycle, it is in principle possible to completely dispense 
ECG triggering for LA imaging if fast scanning protocols are used (e.g. high- 
pitch mode). This enables a reduction in the amount of contrast medium 
required and shortens the examination time.

Axial thin-slice image reconstructions are used for 3D planning data 
sets. Three-dimensional reconstructions of the left atrium are helpful 
for the depiction of accessory PVs (Table 6).

4.6. Optimal cardiac magnetic resonance 
imaging modalities for patients with atrial 
fibrillation
The CMR minimum requirement is a 1.5 T scanner with a phased-array 
coil system. Several protocols have been described to evaluate LA and 
right atrial chamber anatomy, PV anatomy, and LAA morphology using 
late gadolinium-enhanced MR angiography.75 In addition to LGE acquisi-
tion, MDE obtained approximately 10 min after intravenous gadolinium 
contrast administration using a long inversion time or a 3D MDE fat sat-
uration sequence with navigator is required to rule out LAA thrombus 
and LA fibrosis, respectively49 (see Figure 3). Late gadolinium enhancement 
can be assessed in the atria although this image modality is hampered by 
the spatial resolution for the thin atrial wall. Atrial LGE may be of prognos-
tic value for the outcome of AF ablation success26,76 (Table 5).

4.7. Important considerations for the use 
of cardiac computed tomography and 
cardiac magnetic resonance in patients 
with atrial fibrillation and procedures
(1) Cardiac computed tomography and CMR are accurate in delineating 

LA anatomy and are able to categorize LAA morphologies as cactus, 
chicken wing, windsock, or cauliflower pattern.48 Cauliflower morph-
ology was 8.0 times more likely to have had a stroke vs. chicken wing 
morphology.48 Characterization of LAA morphology can be helpful 
information and may be integrated into stroke risk assessment, but 
consequences regarding oral anticoagulation need to be determined.

(2) Cardiac computed tomography has a higher spatial resolution than CMR 
in delineating LA and right atrial anatomy. No differences are described in 
terms of diagnostic accuracy of PV patterns between the two imaging 
modalities.46,47 A recent meta-analysis of comparative trials did not iden-
tify an effect of image integration on AF ablation outcome.

(3) Cardiac computed tomography and CMR are useful to rule out LAA 
thrombus. Cardiac computed tomography has a documented diagnostic 
accuracy of 94% vs. TOE. Delayed imaging (venous phase) in addition to 
early arterial phase acquisition in CCT increases the positive predictive 
value to 92% with an overall diagnostic accuracy of 99%. Cardiac magnet-
ic resonance is equally effective in assessing LAA thrombus compared to 
TOE with inversion time MDE acquisition having the highest diagnostic 
accuracy (99.2%), followed by contrast-enhanced CMR angiography 
(94.3%) and cine CMR (91.6%).49

(4) Cardiac magnetic resonance has been used to detect location and de-
gree of LA fibrosis, but no data on CCT to image atrial fibrosis are 
available. Late gadolinium enhancement-quantified relative LA fibrosis 
was used in the Utah score and affects AF ablation efficacy. Late gado-
linium enhancement-guided LA fibrosis ablation was not superior to 
PVI in patients with persistent AF.15,77,78

Pre- and post-procedural cardiac imaging (CT and MRI) in electrophysiology                                                                                                           9



Figure 4 Example of 3D LA reconstruction with contrast-enhanced CMR angiography (A, B) and 3D LA fibrosis reconstruction (C, D) (using 
Merisight technology) (green: dense fibrosis; blue: normal atrial myocardium). CMR, cardiac magnetic resonance; LA, left atrial.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Advice table for CMR imaging in active device patients

Advice for MR imaging in active device patients Strength of 
advice

(1) It is advised to carefully evaluate indication to perform CMR in patients with CIED

(2) In patients with CIEDs CCT may be preferred to CMR if primary anatomic information is warranted

(3) CMR may be appropriate in patients with CIED to specify the underlying cardiac abnormalities and target regions for VT ablation

(4) A dedicated team of imaging specialist and electrophysiologist may be implemented to consensus on indication, optimum mode of 
imaging, goal of imaging, and need for follow-up

(5) CMR in patients with CIED is advised to only be performed if an expert in device handling is available on site

(6) Complete interrogation of PMs and ICDs is advised to be performed directly before and after CMR imaging

(7) Emergency standard operating procedures for device malfunction during CMR are advised to be in place

(8) Close follow-up of patients with CIED after CMR following a predefined plan is advised to identify potential malfunction, most 

effectively using frequent remote monitoring

CIED, cardiovascular implantable electronic device; CCT, cardiac computed tomography; CMR, cardiac magnetic resonance imaging; ICD, implantable cardioverter–defibrillator; MR, 
magnetic resonance; PM, pacemaker; VT, ventricular tachycardia.
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5. Computed tomography/ 
magnetic resonance for ventricular 
tachycardia procedures
There is unambiguous evidence that most re-entry VT-related sites in dif-
ferent structural cardiac abnormalities arise from scar as detected by im-
aging. Late gadolinium enhancement appears to be the superior and most 
studied modality to identify myocardial scar. Post-processing approaches 
either categorize tissue into scar vs. normal myocardium or aim to identify 
scar core and border zone based on SI thresholds. Different methods and 
SI thresholds have been applied, which may affect scar delineation. Cardiac 
computed tomography has also been used, particularly in patients with 
contraindications for CMR, to identify wall thinning, delayed enhancement, 
or fat infiltration. Cardiac computed tomography has a significantly higher 
spatial resolution, but drawbacks are the unfavourable signal-to-noise ratio 
with suboptimal results particularly for chronic scars and the required high 
doses of highly concentrated iodine-based contrast agents.

Real-time integration of imaging-derived scar at the beginning of the 
ablation procedure enables the operator to focus high-resolution map-
ping on scar sites harbouring potential VT substrates. Real-time integra-
tion of CCT-derived anatomic information on coronary vessels and 
phrenic nerve course may be helpful for epicardial VT ablation.

Cardiac computed tomography and CMR may be used to aid or guide 
ablation, but knowledge of the monomorphic sustained VT substrate in 
various structural heart diseases and the capability of imaging modalities 
to visualize this substrate are crucial. High registration accuracy of data 
sets (imaging, EAM data) is required and needs to be confirmed. 
Promising first results to localize crucial VT channels have been published 
for ICM and ACM using processed CMR and CCT data, complementary 
to mapping information.79,80 However, further studies are required.

5.1. Role of cardiac computed tomography 
and magnetic resonance imaging in 
ventricular tachycardia ablation
5.1.1. General recommendations
If LV endocardial ablation is planned, pre-procedural assessment for the 
presence of LV thrombi is warranted. Cine CMR and LGE have been 
shown to be superior to transthoracic echocardiography for the detection 
of LV thrombus (Figure 5). Late gadolinium enhancement provides a better 

diagnostic accuracy than cine CMR in the detection of laminated mural 
thrombi.81,82 Cardiac computed tomography has also been used, but stud-
ies comparing the diagnostic accuracy of CT for the exclusion of LV 
thrombus with other imaging modalities are scarce.83

5.1.2. Epicardial mapping and ablation
Cardiac computed tomography and CMR may be useful for the plan-
ning of the optimal epicardial access. Cardiac computed tomography 
can detect anatomic variations of thoracic and abdominal structures 
that are at risk during subxiphoid puncture. Cardiac computed tomog-
raphy is the gold standard for the assessment of epicardial fat distribu-
tion and thickness. A thick fat layer can attenuate voltages and can 
prevent effective RF lesions. Cardiac computed tomography can be 
also useful for accurate landmark settings, which facilitates real-time in-
tegration of cardiac and extracardiac structures.84,85 Cardiac computed 
tomography can accurately delineate the course of the coronary arter-
ies in 74–85% of patients and the pericardiophrenic bundle. Accurate 
segmentation and integration in the setting of epicardial ablation may 
obviate the need for repeated coronary angiography and guide high- 
output pacing for phrenic nerve localization.

Cardiac magnetic resonance may delineate epicardial anatomic struc-
tures and may allow appropriate epicardial target identification. 
Thereby, the best epicardial access route may be indicated. In regard 
to spatial resolution, CCT has benefits over CMR. Epicardial adhesions 
have not been adequately identified with either technology.

5.2. Post-myocardial infarction 
cardiomyopathy ventricular tachycardia 
ablation
5.2.1. Scar detection
In post-MI patients, there is a significant body of evidence demonstrat-
ing a correlation between CMR-defined scar and low-voltage areas 
identified by EAM.2,86–92 Bipolar and unipolar voltage amplitudes tend 
to decrease progressively with increasing scar transmurality and are af-
fected by scar heterogeneity.93 The commonly used bipolar voltage 
cut-off of 1.5 mV has been shown to underestimate the size of non- 
transmural scars.90

Contrast-enhanced multidetector CT (MDCT) is an alternative im-
aging technique for delineating post-infarct scars by assessment of myo-
cardial wall thinning. Small observational studies have shown a 
moderate-to-good correlation between areas of wall thinning <5 mm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6 Advice table for the use of CCT and CMR in patients with AF and procedures

Advice for the use of CCT and CMR in patients 
with AF and procedures

Strength of 
advice

Imaging 
modality

CT specifications MR specifications

(1) If imaging is available, LAA morphology is advised to be 
categorized to assess stroke risk

CCT or CMR i.v. contrast injection and imaging 
in arterial phase

CEMRA

(2) CCT or CMR may be appropriate to assess LA and PV 
anatomy which may be integrated into the mapping 

system

CCT or CMR i.v. contrast injection and imaging 
in arterial phase

CEMRA

(3) Imaging may be an appropriate alternative to TOE to 

rule out LAA thrombus

CCT or CMR i.v. contrast injection and imaging 

in arterial and delayed phase

Inversion time MDE, 

CEMRA and cine CMR

(4) Degree of atrial fibrosis may be measured by CMR to 

identify the appropriate candidate for ablation and to 
guide treatment options

CMR — 3D inversion time MDE 

navigator fat sat

AF, atrial fibrillation; CT, computed tomography; CCT, cardiac computed tomography; CEMRA, contrast enhancement magnetic resonance angiography; CMR, cardiac magnetic 
resonance imaging; LAA, left atrial appendage; LA, left atrium; MDE, myocardial delayed enhancement; MR, magnetic resonance; PV, pulmonary vein; TOE, transoesophageal 
echocardiography.
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Figure 5 Cardiac magnetic resonance of a patient with history of anterior MI prior to VT ablation in cine (A, B) and LGE (C, D) (circle: thrombus in the 
LV apex). LGE, late gadolinium enhancement; MI, myocardial infarction; VT, ventricular tachycardia.

Figure 6 Three-dimensional reconstruction of cardiac chambers with colour-coded information on regional wall thickness using the InHeart tech-
nology. Critical anatomical structures (coronary arteries and veins) are visualized to guide the ablation procedure. Colour coding of LV depicting myo-
cardial thickness: dark red: 1 mm thickness, orange: 3 mm thickness, and yellow: 4 mm thickness; coronary arteries in red, coronary venous system in 
blue, and left phrenic nerve in green. LV, left atrial.
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on MDCT and bipolar voltages below 1.5 mV on EAM.5,94–96 In one 
study, severe wall thinning <2 mm was associated with the presence 
of transmural scar.97 Cardiac computed tomography allows also for 
the detection of myocardial calcification and fat98,99 (Figure 6).

5.2.2. Real-time integration of imaging-derived scar
Real-time integration of LGE- and/or MDCT-defined scar during EAM 
has been successfully performed allowing to focus mapping and abla-
tion.1,2,5,79,92,94–97,100,101 The use of image integration has been asso-
ciated with a shorter procedural time1,92,102 and a shorter 
fluoroscopic time1 in non-randomized studies including post-MI or 
mixed cohorts of patients with scar-related VT. Improved procedural 
outcome has been reported if compared to historical cohorts without 
available imaging1,2,92, but data are inconsistent.102

5.2.3. Cardiac imaging of ventricular tachycardia channels
It has been demonstrated that sites critical for VT maintenance were 
located in areas with transmural scar and core–border transition 
zones.2,87–91 In one study, heterogeneous conduction channels identi-
fied by LGE coincided spatially with conduction channels identified by 
EAM.88,103–105 However, these findings could not be confirmed by 
others.106 The feasibility of CMR-guided ablation based on 
LGE-derived pixel SI maps integrated into the EAM to target the poten-
tial VT substrate has been recently evaluated.1 Results showed shorter 
procedure duration and shorter fluoroscopy and RF delivery times in 
the CMR-guided group.

The ability of MDCT to identify potential post-infarct VT substrates 
is also under investigation with promising first results. Studies have 
shown that the majority of electrograms compatible with slow conduc-
tion as surrogate for the VT substrate were located in areas of wall thin-
ning.5,95–97,100 The majority of ablation target sites were located in 
CCT-imaged VT channels, defined as corridors of abnormal but 
more preserved wall thickness than the surrounding edges79,96

(Table 7).

5.3. Non-ischaemic cardiomyopathy 
ventricular tachycardia ablation
5.3.1. Pre-procedural imaging/planning
Cardiac magnetic resonance is a helpful tool in the diagnostic work-up 
of patients with unclear aetiology of VTs107 and is recommended 
in the European Society of Cardiology guidelines in all patients with 
non-ischaemic dilated cardiomyopathy.108,109 It is the gold standard 
for measuring LV and right ventricular (RV) volumes and ejection frac-
tion. It also provides tissue characterization and may suggest the cause 
of ventricular dysfunction. Cardiac magnetic resonance is a valuable 
tool for the diagnosis of cardiac sarcoidosis, which is associated with 
a poorer outcome after ablation.110 If active myocardial inflammation 
is suspected and VTs can be temporarily controlled by antiarrhythmic 
drugs, catheter ablation should be postponed.111 18F- 
Fluordeoxyglucose Positron Emission Tomography is the best clinically 
available tool for imaging myocardial inflammation.112 Cardiac magnetic 
resonance findings are limited by a relatively low specificity to distin-
guish scar from active inflammation.112 Areas with LGE on CMR have 
been associated with the VT substrates in different non-ischaemic car-
diomyopathy (NICM) aetiologies, and the specific location can deter-
mine the access to the substrate113,114 (Figure 7). The role of LGE for 
individual risk stratification for sudden cardiac death has not been con-
clusively established. However, there is evolving evidence that amount 
and location of LGE on CMR are associated with ventricular arrhythmia 
in different non-ischaemic aetiologies115–117, and future studies will ad-
dress this topic also including artificial intelligence and modelling 
algorithms.

Data suggest that VTs in patients with NICM are related to areas 
with LGE on CMR.114,118 Scar distribution and location can be highly 
variable.119,120 Accordingly, pre-procedural LGE-CMR is advised to 
identify scar location, scar transmurality, and scar depth to determine 
the best access and ablation strategy of the potential VT sub-
strate.87,121–124 Specifically for deep intramural scar locations, the 
need for additional techniques and bail-out strategies, such as 
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Table 7 Advice table for the use of CCT and CMR in ischaemic VT ablation procedures

Advice for the use of CCT and CMR in 
ischaemic VT ablation procedures

Strength of 
advice

Imaging 
modality

CT specifications MR specifications

(1) Pre-procedural imaging is advised to rule out 
intracavitary ventricular thrombus

CMR or CCT i.v. contrast injection and 
imaging in arterial and 

delayed phase

Early and late gadolinium 
enhancement sequences/LGE, 

steady-state free precession 

sequence (cine)

(2) Pre-procedural imaging may be appropriate to 

determine scar location
CMR or CCT i.v. contrast injection and late 

iodine enhancement

LGE

(3) Pre-procedural imaging may be appropriate to 

determine scar transmurality
CMR or CCT i.v. contrast injection and late 

iodine enhancement

LGE

(4) Pre-procedural imaging (CMR) may be 
appropriate to determine core–border zone 

transition

CMR — LGE

(5) Post-processing of imaging-derived scar (VT 

substrate) and integration into 3D mapping 

system may be appropriate to aid or guide VT 
ablation

CMR or CCT i.v. contrast injection arterial 

phase and late iodine 

enhancement

LGE

CCT, cardiac computed tomography; CT, computed tomography; CMR, cardiac magnetic resonance imaging; LGE, late gadolinium enhancement; MR, magnetic resonance; VT, ventricular 
tachycardia.
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transcoronary or transvenous alcohol ablation or bipolar ablation, may 
be anticipated from pre-procedural imaging. Late acquisition CCT may 
allow depiction of the coronary venous anatomy and potentially select 
targets for ethanol ablation.

5.3.2. Real-time integration of imaging-derived scar
Integration of the segmented scar from pre-procedural LGE into 3D 
mapping systems can be useful also in NICM patients with VT.125

Accurate delineation of non-ischaemic scars by EAM, in particular in 
the case of intramural location, has important limitations.84,123,126

Accordingly, if EAM is inconclusive for intramural scar detection, inte-
gration of the segmented scar can support ablation.123 For 
imaging-guided ablation, high integration accuracy needs to be achieved 
to prevent damage of viable myocardium.

Data on CCT for scar delineation in NICM are scarce. Contradictory 
and discouraging reports regarding the relationship between (rarely ob-
served) wall thinning (<5 mm) and low-voltage areas94,97 have been 
published. In contrast, first experience with delayed enhancement on 
CCT (late iodine enhancement) is promising. In a small series of 19 pa-
tients with NICM, delayed enhanced CCT could predict low-voltage 
areas with a sensitivity of 78%, suggesting a potential role for both pre- 
procedural planning and intraprocedural scar localization.95,127,128

5.3.3. Cardiac imaging for substrate-based ablation
Data on specific scar characteristics associated with VT in NICM are 
not available, and accurate delineation of non-ischaemic scars by im-
aging has important limitations.126 However, VT-related sites have 
been colocalized with LGE-derived scar features. In one small series, 

Figure 7 Different locations of LGE in non-ischaemic (A–C) and ischaemic (D) cardiomyopathy. Circles and arrows indicate the location of LGE:A 
subepicardially (in a patient after myocarditis), B intramural septal (in a patient with documented cardiac sarcoid), C intramural non-septal, D transmural/ 
subendocardial in a patient with history of anterior transmural MI. Access route and ablation options could include epicardial access (A), bipolar septal 
ablation (B), bipolar endocardial–epicardial ablation (C ), and primary endocardial access (D). LGE, late gadolinium enhancement; MI, myocardial 
infarction.
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Table 8 Advice table for the use of CCT and CMR in non-ischaemic VT ablation procedures

Advice for the use of CCT and CMR in 
non-ischaemic VT ablation procedures

Strength of 
advice

Imaging 
modality

CT specifications MR specifications

(1) Pre-procedural imaging is advised to rule out 
intracavitary ventricular thrombus

CMR or CCT i.v. contrast injection and 
imaging in arterial and 

delayed phase

Early and late gadolinium 
enhancement sequences/LGE, 

steady-state free precession 

sequence (cine)

(2) Pre-procedural imaging is advised to determine 

scar location
CMR or CCT i.v. contrast injection and 

late iodine enhancement

LGE

(3) Pre-procedural imaging may be appropriate to 
determine scar transmurality

CMR or CCT i.v. contrast injection and 
late iodine enhancement

LGE

(4) Pre-procedural imaging may be appropriate to 
determine intramural scar location

CMR i.v. contrast injection and 
late iodine enhancement

LGE

(5) Pre-procedural imaging may be appropriate to 
identify areas of fibrofatty replacement in ARVC

CCT i.v. contrast injection and 
imaging in arterial phase

Cine, black-blood sequences, LGE

(6) Whether post-processing imaging-derived scar 

(VT substrate) and integration into 3D mapping 

system is useful to aid or guide VT ablation is 
uncertain

CMR i.v. contrast injection arterial 

phase and late iodine 

enhancement

LGE

ACM, arrhythmogenic cardiomyopathy; CCT, cardiac computed tomography; CMR, cardiac magnetic resonance imaging; CT, computed tomography; LGE, late gadolinium enhancement; 
MR, magnetic resonance; VT, ventricular tachycardia.
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all concealed entrainment sites and 77% of VT termination sites were 
located in areas with ≥75% scar transmurality and in areas of 
core–border zone transition.87 In contrast, in a second series of a 
heterogeneous group of Dilated Cardiomyopathy patients 
(one-third with cardiac sarcoidosis), 15 of 18 VT-related sites oc-
curred in areas of 25–75% scar transmurality.91 Inconsistency may 
be explained by the different patient cohorts and the different image 
processing methods for scar delineation. Further research on specific 
VT substrates and the optimal imaging modalities for the heteroge-
neous population of NICM is required and needs to be evaluated 
in larger patient cohorts (Table 8).

5.4. Arrhythmogenic right ventricular 
cardiomyopathy ventricular tachycardia 
ablation
5.4.1. Pre-procedural planning
The role of pre-procedural CMR for scar detection to optimize EAM 
has not been specifically addressed in arrhythmogenic right ventricular 
cardiomyopathy (ARVC), and data regarding the correlation between 
the VT substrate and scar localization are sparse.129 A significant correl-
ation between abnormal epicardial right ventricular EGMs and standar-
dized LGE-CMR SI z-scores has been reported.130 In another study, 
dense scar areas and VT-related sites as identified by EAM correlated 
better with CMR abnormalities when regional strain-analysis and LGE 
findings were combined.131 Whether these findings may help to predict 
the need for epicardial access requires further studies.

Fibrofatty replacement can also affect the LV. Left ventricular intra-
myocardial fat was present on MDCT imaging in the majority132 of pa-
tients fulfilling the modified Task Force Criteria for ARVC. The most 
affected regions were lateral, inferior, and apical LV segments with a 
lower fat burden compared to the RV. Although CCT-derived LV fat 
was associated with abnormal electrogram characteristics, voltage 
mapping could not accurately delineate LV fat areas. Accordingly, pre- 
procedural CCT may be useful to focus mapping on CCT-derived fat 
areas.133

5.4.2. Real-time integration of imaging-derived fibrofatty 
areas
Segmented MDCT-derived intramyocardial fat can be integrated into 
EAMS and may guide mapping to the area of interest. In a series of 
16 patients with ARVC, 80% of local abnormal ventricular activity elec-
trograms were located within areas of intramyocardial fat on CCT.134

Homogeneous areas of intramyocardial fat may not necessarily be ar-
rhythmogenic. In a cohort of 17 patients with ARVC, areas with 
CCT-derived high right ventricular tissue heterogeneity, which may 
better reflect the fibrofatty replacement, could detect areas with late 
potentials as surrogate for a VT substrate with high accuracy.16

Whether these CCT-derived and post-processed data will impact ab-
lation outcome requires further studies.

5.5. Optimal computed tomography 
imaging modalities for patients with 
ventricular tachycardia
Cardiac computed tomography angiography can be used to detect sig-
nificant coronary artery disease, chronic MI by using wall thickness as 
reference,135 to rule out LV thrombus,136 and to quantify epicardial 
fat137 and may help to visualize the large cardiac vessels and the pericar-
diophrenic bundle.138 A late acquisition can be obtained 7–10 min after 
contrast injection with the same prescription but with lower tube cur-
rent and voltage (e.g. 80–100 kV) to increase the contrast-to-noise 

ratio and limit radiation dose in order to identify location and distribu-
tion of scar and to calculate ECV139,140 (Table 7).

5.6. Optimal cardiac magnetic resonance 
imaging modalities for patients with 
ventricular tachycardia
Cardiac magnetic resonance scan protocols focus on cardiac morphology, 
function, and tissue characterization in the work-up for the underlying aeti-
ology. Cine images allow to evaluate wall motion and to quantify right and 
left volume and function.141 This data set allows to identify the presence of 
wall motion abnormalities suspicious for ICM vs. NICM142 and to 
distinguish between dilated, hypertrophic, or arrhythmogenic pheno-
types.142–144 Cine images can be used for epicardial fat quantification. 
Mapping allows for pre-contrast tissue characterization and for the differ-
ential diagnosis of NICM subtypes. Black-blood T1w images, T1 mapping, 
black-blood T2w, and T2 mapping allow to identify fat infiltration, intersti-
tial fibrosis, and oedema, respectively. Late gadolinium enhancement 
images should be obtained using 2D or 3D segmented inversion recovery 
gradient echo with the addition of post-contrast T1 mapping at least 
10 min after the injection of gadolinium-based contrast agent.

5.7. Important considerations for the use 
of cardiac computed tomography and 
cardiac magnetic resonance in ischaemic 
ventricular tachycardia ablation 
procedures
(1) Cardiac computed tomography and CMR can detect LV thrombus and 

may be more accurate compared to transthoracic echo including echo 
contrast medium. Late gadolinium enhancement provides a better diag-
nostic accuracy than cine CMR in the detection of laminated mural 
thrombi.81,82 Data on the diagnostic accuracy of CCT compared to 
other imaging modalities are scarce.83

(2), (3), (4) Late gadolinium enhancement and CCT using late iodine enhance-
ment can identify myocardial scar/fibrosis areas. Late gadolinium enhance-
ment is the gold standard for identifying myocardial areas with different 
degrees of fibrosis. Late iodine enhancement CCT and myocardial thick-
ness may identify areas with myocardial scar. Cardiac magnetic resonance 
and CCT may identify conducting channels within scar areas that may serve 
as diastolic conducting pathways. Cardiac magnetic resonance may also 
identify scar border zone depending on definition.

(5) Integration of CMR- or CCT-derived VT substrate information has been 
tested to aid or guide VT ablation. Cardiac magnetic resonance and CCT 
may be helpful in identification of VT channels in ICM. These channels may 
serve as targets for imaging-aided or imaging-guided VT ablation. Currently, 
randomized studies testing imaging-guided VT ablation are underway.

5.8. Important considerations for the use 
of cardiac computed tomography and 
cardiac magnetic resonance in 
non-ischaemic ventricular tachycardia 
ablation procedures
(1) Cardiac computed tomography and CMR can detect LV thrombus and 

may be more accurate compared to transthoracic echo including echo 
contrast. Late gadolinium enhancement provides a better diagnostic ac-
curacy than cine CMR in the detection of laminated mural thrombi.81,82

Data on the diagnostic accuracy of CCT compared to other imaging 
modalities are scarce.83

(2), (3), (4) Late gadolinium enhancement and CCT using late iodine en-
hancement can identify myocardial scar/fibrosis areas in patients with 
non-ICM. Late gadolinium enhancement is the gold standard for 
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identifying myocardial areas with different degrees of fibrosis including 
intramural location of scar areas in NICM. Late iodine enhancement 
CCT may identify areas with myocardial scar.

(5) Identification of areas with fibrofatty infiltration in patients with ACM is 
the domain of CCT. These areas may correspond to sites of abnormal 
electrograms related to VT circuits.

(6) Only limited data exist on integration of imaging-derived non-ischaemic VT 
substrate information on outcome of VT ablation. Future studies are needed.

6. Imaging for detection of 
ablation-related complications
Imaging can be exceptionally helpful in detection and risk characteriza-
tion of ablation-induced complications. Computed tomography is the 
most commonly used modality as it is readily available and easier and 
faster to use in most ablation centres. In general, CT and MRI may be 
used to detect and classify oesophageal complications and PV stenosis 

after AF ablation as well as cerebral ischaemia and stroke after any 
left-sided ablation procedure. For characterization of vascular compli-
cations or detection of active vascular/access site bleeding, mostly CT 
imaging has been used. For documentation of oesophageal perforation, 
oral contrast application is helpful and therefore CT has been used 
more commonly in this scenario (Table 9).

6.1. Oesophageal perforation after atrial 
fibrillation ablation
Both RF- and laser-induced heat and cryoballoon-based cooling may ex-
tend beyond the atrial myocardium and result in collateral damage to ad-
jacent structures. Esophago-atrial fistula (or atrio-esophageal fistula, AEF) 
is a rare (≤ 0.2% of ablation procedures) but devastating complication with 
an estimated mortality of 60–80%.145 Symptoms include fever, chest pain, 
odynophagia, and neurological deficits. Due to the difficulty of diagnosis 
and the delay of presentation typically 2–6 weeks after the index ablation 
procedure, the occurrence of AEF is likely underestimated. Hence, rapid 
recognition and prompt treatment (usually by surgical repair) is of crucial 
importance.

Computed tomography of the chest is the preferred diagnostic test 
for AEF146–149 and to differentiate between AEF (72%) pericardial– 
oesophageal fistulas (14%) and oesophageal perforation (14%).150,151

In a published literature search,145,149 CT of the chest was the most 
common mode of diagnosis (68%) (Figure 8). Contrast CT of the chest 
was abnormal in 95/97 patients (98% of cases), although 7 cases (7%) 
required repeated testing. A repeat CT was diagnostic 4–12 days later, 
but it is unclear whether this may be due to inaccuracy of detecting oe-
sophageal perforation on initial imaging (false negative) or progression 
of oesophageal injury during the course (true negative). Results of a re-
cently published multicentre registry included 138 patients. Chest CT 
was used for diagnosis in 80.2%; overall mortality was 65.8% and highest 
if conservative management (89.5%) was pursued.145 An MRI study of 
the chest can be used alternatively, even though chest CT remains the 
diagnostic option of choice for fast and reliable evaluation including oral 
contrast medium application (Figure 8). It is critical that if AEF is sus-
pected, no manipulation of the oesophagus (TOE or gastroscopy) 
should be performed prior to definitive diagnosis or exclusion of 
AEF. Air and material from the oesophagus may be introduced in the 
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Table 9 Imaging for detection/classification of complications

Imaging for detection/classification of complications

CCT CMR

(1) Atrio-oesophageal fistula, oesophageal perforation

(2) Vascular complications, active bleeding

(3) Stroke, cerebral ischaemia

(4) PV stenosis

Imaging modalities and their role for detection of ablation-related complications. 
CCT, cardiac computed tomography; CMR, cardiac magnetic resonance imaging; PV, 
pulmonary vein.

Figure 8 Characteristic CT (A–E, G) and endoscopy (F ) findings in patients with A + B) oesophageal perforation, C + D) atrio-oesophageal fistula, 
E) oesophago-pericardial fistula, and F + G) perforating oesophageal ulcer. A) Air in mediastinum (red circle) with exit of water-soluble oral contrast 
into the mediastinum, B) i.v. contrast and documentation of air in mediastinum (red circle), C and D) air in mediastinum (red circle) and air and thrombus 
in the left atrium (arrow), E) i.v. contrast and identification of air in mediastinum (red circle) and pericardium (green circle), F ) endoscopic finding 5 days 
after PV isolation with perforated oesophageal ulcer (yellow square), and G) corresponding CT with air in mediastinum (red circle). CT, computed 
tomography; PV, pulmonary vein.
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left atrium and can embolize via the atrium to the brain, potentially pro-
ducing catastrophic neurological injury and death.148 Computed tom-
ography scan of the chest is advised using i.v. and po water-soluble 
contrast and may need to be repeated (Table 10).

As neurologic symptoms frequently occur in patients with AEF, early 
brain imaging is mandatory to assess the severity of brain damage and to 
determine prognosis.149

Endoscopy is the gold standard for identifying and categorizing oe-
sophageal thermal injury. Late gadolinium enhancement MRI of the oe-
sophagus has been tested but appears to have a low positive predictive 
value when compared with endoscopy acutely after AF ablation. A 
negative LGE-MR appears to correlate well with no oesophageal ther-
mal lesion detectable on post-ablation endoscopy.152–154

6.2. Important considerations for the use 
of computed tomography and magnetic 
resonance in the diagnosis and 
management of oesophageal perforation
(1) Chest CT using intravenous and oral contrast medium as an emer-

gency diagnostic procedure is key in patients presenting with classical 

symptoms of oesophageal perforation or AEF within the first 6 weeks 
after AF ablation. Computed tomography is readily available and can 
be performed as an emergency procedure. No data on the accuracy 
of MR in identifying oesophageal perforation are available.

(2) Brain imaging (in most published cases CT) in order to determine se-
verity and extent of brain damage is helpful in patients with neuro-
logical symptoms in patients presenting with AEF. Neurological 
symptoms are a negative prognostic indicator in patients with oe-
sophageal perforation.

(3) Any manipulation of the oesophagus in patients suspicious of having 
oesophageal perforation may aggravate oesophageal damage and 
must be avoided until oesophageal perforation has been excluded 
by CT [see also (1)]. Oesophagogastroscopy may be performed in pa-
tients with documented oesophageal perforation (usually using CO2 
insufflation if at all needed) to diagnose site and extend of oesophageal 
damage and treatment.

6.3. Pulmonary vein stenosis after atrial 
fibrillation ablation
Pulmonary vein stenosis is a rare complication of PV isolation asso-
ciated with significant morbidity.155 The incidence of this condition 
has been shown to decrease with the evolution and increasing 
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Table 10 Advice table for the use of CT and MR in the diagnosis and management of esophageal perforation

Advice for the use of CT and MR in the diagnosis and 
management of oesophageal perforation

Strength of 
advice

Imaging 
modality

CT specifications MR 
specifications

(1) Early CT of the chest (including i.v. and po water-soluble contrast 
medium) is advised to diagnose or exclude oesophageal perforation 

in symptomatic patients within 6 weeks after AF ablation suspected 

to have oesophageal complications

Chest CT i.v. arterial phase contrast, po 
water-soluble contrast 

medium

(2) Early imaging of the brain is advised in patients with 

atrio-oesophageal fistula and concomitant neurological symptoms 
to assess severity of brain damage and determine prognosis

CMR or CCT

(3) No manipulation of the oesophagus including 
oesophagogastroscopy or TOE is advised to prevent embolization 

of air and ingested material in patients with clinical suspicion before 

oesophageal perforation is excluded

AF, atrial fibrillation; CCT, cardiac computed tomography; CMR, cardiac magnetic resonance imaging; CT, computed tomography; MR, magnetic resonance; PV, pulmonary vein; TOE, 
transoesophageal echocardiography.
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Table 11 Advice table for the use of CCT and CMR in the diagnosis and management of PV stenosis

Advice for the use of CCT and CMR in the diagnosis 
and management of PV stenosis

Strength of 
advice

Imaging 
modality

CT specifications MR 
specifications

(1) CCT or CMR angiography is advised to diagnose PV 

stenosis in symptomatic patients following PV isolation
CMR or CCT i.v. contrast injection and imaging in 

arterial and delayed phase

CEMRA

(2) Imaging is advised to plan and guide treatment of PV 
stenosis

CMR or CCT i.v. contrast injection and imaging in 
arterial and delayed phase

CEMRA

(3) Routine or serial imaging for asymptomatic PV stenosis is 
not advised

i.v. contrast injection and imaging in 
arterial and delayed phase

CEMRA

CCT, cardiac computed tomography; CEMRA, contrast enhancement magnetic resonance angiography; CMR, cardiac magnetic resonance imaging; CT, computed tomography; MR, 
magnetic resonance; PV, pulmonary vein.
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experience with different ablation approaches.156–159 Many patients 
with PV stenosis remain asymptomatic and clinical symptoms in severe 
cases including dyspnoea, cough, fatigue, exertional chest pain, de-
creased exercise tolerance, and haemoptysis.160 Occurrence of these 

symptoms in patients following remote PV isolation procedure should 
alert physicians about this condition which might be misdiagnosed in 
about one-third of the patients.155 Non-invasive imaging modalities 
most commonly used in the diagnosis of PV stenosis include CT and 

Figure 9 A patient with history of a prior PV isolation procedure and history of recurrent pneumonia in the right superior lobe following the pro-
cedure. A) CT showing high-degree stenosis of the right superior PV (circle), B) 3D reconstruction of the left atrium demonstrating a high-degree ostial 
stenosis of the right superior PV (circle), C ) angiography of the right superior PV after transseptal access through a coronary diagnostic catheter (x) 
showing high-degree stenosis (arrow) (A indicates diameter of PV after stenosis, B site of stenosis), D) contrast injection into right superior PV after 
wiring (w) of stenosis (red circle) with transseptal sheath close to PV ostium. CT, computed tomography; PV, pulmonary vein.

Figure 10 A and B) CT images of a patient with complete occlusion of the left inferior PV after prior PV isolation, C and D) post-stenting CT with 
stent open in left inferior PV, E) perfusion CT prior to stenting of the left inferior PV demonstrating a large perfusion defect in the left lung (blue colour). 
CT, computed tomography; PV, pulmonary vein
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MR angiography158,161,162 (Figure 9). Pulmonary vein stenosis severity is 
graded based on the degree of lumen diameter narrowing into mild 
(<50%), moderate (50–70%), and severe (>70%).148 Imaging to identify 
PV stenosis is usually performed post-ablation (several months follow-
ing ablation) and/or upon occurrence of symptoms. Some studies re-
port the use of routine screening for PV stenosis by repeated CT 
scans following ablation.155,159 Even with such an approach, the inci-
dence of severe PV stenosis is low when contemporary ablation tech-
niques are used. Therefore, this approach is no longer advised by the 
most recent consensus documents.148 According to published data, 
diagnostic accuracy of CT for the detection of PV stenosis is variable. 
Some of the studies report underestimation of severity of PV stenosis 
by CT.156 Lung perfusion cthe culprit PV in the case of multiple le-
sions155,160 (Table 11, Figure 10).

Functional spectral perfusion mapping may be performed using CT 
(iodine mapping) or MR technologies and may help to classify effect 
of PV stenosis on lung perfusion similar to scintigraphic analysis. The 
potential benefit of CT may be the availability and the potential to iden-
tify structural effects of PV stenosis on lung tissue (Figures 10 and 11).

Non-invasive imaging with CT and MR can also be used to plan or 
guide treatment of PV stenosis. An early study used serial CT scanning 
to assess lesion progression over time.161 This approach does not seem 
to be justified as lesion progression beyond 3 months post-ablation was 
rare in the reported series. Role of MR angiography has not been stud-
ied in this regard. When balloon dilation or stenting is planned, the role 
of CT for pre-procedural stenosis assessment is questionable as it has 
been shown to be relatively insensitive to detect near-complete occlu-
sions. In these cases, invasive angiography has been demonstrated to be 
superior in visualizing microchannels, the presence of which facilitates 
balloon dilatation or stenting.163

6.4. Important considerations for the use 
of computed tomography and magnetic 
resonance in the diagnosis and 
management of pulmonary vein stenosis
(1), (2) Non-invasive angiography using CT or MR is advised to diag-
nose or exclude PV stenosis in symptomatic patients after AF abla-
tion. Usually, patients with stenotic PVs present with dyspnoea or 
multiple pulmonary infections/pneumonia. Imaging can help to quan-
tify stenosis as well as locate completely occluded PVs. Comparison 
to pre-ablation imaging may be helpful. Imaging should include angio-
graphic analysis of LA and PV anatomy. Functional spectral perfusion 
mapping using CT or MR can identify functional effects of PV sten-
osis and may be appropriate as alternative to ventilation–perfusion 
scintigraphy.139,149,151,152

(3) Routine post-procedural imaging to screen asymptomatic pa-
tients for PV stenosis or serial scanning to assess progression of iden-
tified PV stenosis is not indicated. Intervention of asymptomatic PV 
stenosis is generally not advised.

6.5. Neurological complications (stroke, 
Transient Ischemic Attack, and silent 
cerebral event/silent cerebral lesion) after 
ablation procedures
Cerebrovascular complication associated with left-sided ablation is an 
infrequent but potentially disabling event with a reported incidence 
of 0.5–5%.164–167 It typically occurs during or within the first 24 h of 

A B

C D

LIPV occlusion

p.a. projectional view

a.p. projectional view

Figure 11 Pre-interventional CMR (cardiovascular magnetic resonance) pulmonary perfusion imaging and angiography for detection and character-
ization of pulmonary vein stenosis. A, B, C) CMR pulmonary perfusion imaging (anterior–posterior view) depicted a perfusion deficit of the left lower 
lung lobe (A still frame of original dynamic pulmonary perfusion; B still frame of dynamic pulmonary perfusion after background stationary tissue sub-
traction; C corresponding pseudo-coloured parametric map of quantitative CMR pulmonary perfusion analysis with SI maximum enhancement as the 
quantitative measure. D) Three-dimensional contrast-enhanced CMR angiography (posterior–anterior projectional view) revealed total ostial occlusion 
of the left lower pulmonary vein (arrow). CMR, cardiac magnetic resonance; SI, signal intensity.
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the procedure, with the majority of cases having been described in the 
first week after ablation.168 In the presence of new neurological symp-
toms compatible with cerebral ischaemia after the procedure, emer-
gency brain imaging before initiation of any specific therapy is 
warranted. In patients who may be candidates for intravenous fibrinoly-
sis, a non-contrast CT or MRI is sufficient to exclude the presence of 
intracerebral haemorrhage, allowing for immediate initiation of the 
treatment. Because the benefit of the therapy is time dependent, treat-
ment should not be delayed for additional imaging. For patients who 
meet criteria for mechanical thrombectomy, non-invasive imaging of 
the intracranial arteries with CT angiography or MR angiography is ad-
vised during the initial imaging evaluation. Cerebral air embolism may be 
a potential reason for transient neurological symptoms and normal 
cerebral imaging. In patients presenting with neurological symptoms la-
ter after AF ablation (within 6 weeks) with or without other symptoms 
suggestive of oesophageal complication, it is advised to perform an early 
non-contrast CT or MRI of the brain and, in the case of pathological 

findings, a chest CT scan to exclude the presence of an AEF 
immediately.149

After ablation, a silent cerebral event (SCE) has been defined as the 
presence of an acute, new, asymptomatic cerebral ischaemic lesion on 
brain MRI. Silent cerebral event has been identified in 1.7–71% of pa-
tients after AF ablation and in up to 58% after ablation of left-sided ven-
tricular arrhythmias.169–172 Cerebral ischaemia can be detected on MRI 
within minutes after its onset as a hyperintense diffusion-weighted im-
aging (DWI) lesion with a reduced apparent diffusion coefficient (ADC) 
map. On the contrary, fluid-attenuated inversion recovery (FLAIR) se-
quences become positive only later and depending on the lesion size. 
While some diffusion changes may be reversible, FLAIR-positive asymp-
tomatic lesions seem to correspond to areas of brain scar and should 
therefore be called silent cerebral lesions (SCLs)173,174 (Figure 12). 
Because the clinical relevance of SCE/SCL remains unclear, to date 
no indication for routine brain MRI after left-sided ablation can be es-
tablished175,176 (Table 12).

Figure 12 Silent cerebral events documented in a Patient 1 day after AF ablation on cerebral MR imaging: A) FLAIR sequence (no lesions), B) DWI 
with hyperintense lesions, and C ) ADC map with corresponding hypointensity [differentiation between SCEs (FLAIR negative) and SCLs (FLAIR posi-
tive)]. ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; MR, magnetic resonance; SCL, 
silent cerebral lesion; SCE, silent cerebral events.
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Table 12 Advice table for the use of CT and MR in the diagnosis and management of neurological complications

Advice for the use of CT and MR in the diagnosis and management 
of neurological complications

Strength of 
advice

Imaging 
modality

CT specifications MR 
specifications

(1) Emergent brain imaging is advised in all patients with new neurological 

symptoms compatible with cerebral ischaemia after left cardiac chamber 
ablation before initiation of any specific therapy

CT or MRI

(2) In patients who are potential candidates for treatment with intravenous 
fibrinolysis, a non-contrast CT or MRI is advised to exclude intracranial 

haemorrhage

CT Cerebral 
non-contrast CT

(3) In patients who are potential candidates for treatment with mechanical 

thrombectomy, non-invasive imaging of the intracranial arteries is advised 

during the initial imaging evaluation

CT or MR Angiography Angiography

(4) In patients presenting with new neurological symptoms within 6 weeks of 

the ablation, emergent brain imaging is advised, followed in the case of 
pathological findings by a chest CT to evaluate for atrio-oesophageal fistula

CT or MR

CT, computed tomography; MR, magnetic resonance.
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6.6. Important considerations for the use 
of computed tomography and magnetic 
resonance in the diagnosis and 
management of neurological 
complications
(1) Brain imaging to diagnose and exclude intracranial haemorrhage 

and ischaemia is key for managing patients with neurological 
symptoms related to left cardiac chamber ablation. Magnetic res-
onance may be superior when looking for ischaemic defects but 
time from onset to imaging may influence modality and 
sensitivity.160

(2) Intracranial haemorrhage must be ruled out before initiating intraven-
ous fibrinolysis for acute cerebral ischaemia. Non-contrast CT or MR 
is comparably sensitive and specific.160

(3) Non-invasive angiography of the intracranial arteries using CT or MR 
is advised in preparation of mechanical thrombectomy to diagnose 
anatomy and territory of arterial occlusion.

(4) Neurological symptoms may be a first sign of AEF with embolism, and 
therefore, emergent brain imaging is advised in addition to chest CT to 
determine severity and extent of brain damage.

6.7. Complications related to vascular 
access
The most common complications in arrhythmia ablation are vascular 
access-related complications (VASC). Incidence is highest in AF and 
VT ablation and higher with transaortic vs. transseptal access.177,178

Vascular access-related complications include major haemorrhage, for-
mation of a pseudo-aneurysm, arterio-venous fistula, and, rarely, aortic 
dissection. Patients with obesity, pre-existing vascular disease, female 
gender (smaller vessels), and advanced age are at higher risk.179 In gen-
eral, ultrasound-guided puncture may be appropriate to reduce VASC 
in EP procedures.180,181 Haemodynamic instability, swelling, pulsatile 
mass, bruits, neurological symptoms, unusual or protracted pain at 
the puncture site, pelvis or leg (femoral access), or a relevant haemoglo-
bin drop (≥2 mg/dL) following a procedure should trigger urgent im-
aging of the region. While ultrasound is easily accessible at bedside 
and the method of choice for diagnosis of pseudo-aneurysms, in pa-
tients with suspected haemorrhage, CT is advised for a precise 
diagnosis.179,182 Haematoma is identified by hypoattenuation, by swel-
ling of adjacent muscle, and, subacutely, by a heterogeneous pattern 
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Table 13 Advice table for the use of CT and MR in the diagnosis and management of vascular and epicardial access complications

Advice for the use of CT and MR in the diagnosis and 
management of vascular and epicardial access complications

Strength of 
advice

Imaging 
modality

CT specifications MR 
specifications

(1) CT imaging is advised to detect the active source and extent of 

haematoma in patients with suspected haemorrhage following vascular 
access

CT CT with bolus-triggered 

iodinated contrast

_

(2) CT imaging is advised in the case of haemodynamic instability (in the 
absence of relevant pericardial effusion) or other clinical evidence of 

haemorrhage following subxiphoid epicardial access

CT Contrast CT of chest and 
abdomen

_

CT, computed tomography; MR, magnetic resonance.

Figure 13 Left: CT scan with contrast showing active bleeding (arrow) and a large retroperitoneal haematoma (X) following vascular access for 
pulmonary vein isolation in an obese patient (BMI 32 kg/m²). Bleeding source was the right obturator artery which has a variant originated from the 
external iliac artery. Right: digital subtraction angiography post-embolization (coil). Courtesy of Dr. N. Thieme, Charité Universitätsmedizin, Berlin. 
BMI, body mass index; CT, computed tomography.
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(‘haematocrit sign’179) A bolus-triggered CT angiogram following appli-
cation of iodinated contrast media detects the source of active bleeding 
(Table 13, Figure 13).

6.8. Complications related to epicardial 
access
Epicardial access for ablation of ventricular and supraventricular ar-
rhythmias is routinely performed by subxiphoid percutaneous 
puncture.183 Epicardial is often combined with endocardial catheter ab-
lation to improve efficacy but is associated with an increased rate of 
acute complications (up to 13.7% for VT ablation).183,184 These include 
injury to the myocardium or epicardial vessels, RV puncture, 
intra-abdominal bleeding (hepatic puncture), phenic nerve injury, and 
RV pericardial fistulas.183 Pericardial bleeding and tamponade, the 
most common complications, should be established by echocardiog-
raphy in the EP lab, and epicardial vessel injury by immediate coronary 
angiogram. Contrast CT allows for identification of the active bleeding 
site in unclear cases. In the case of haemodynamic instability in the ab-
sence of pericardial effusion or haemoglobin drop, intra-abdominal 
bleeding should be suspected and trigger immediate CT imaging.185

Due to lack of evidence, no advice can be given for the use of MRI in 
vascular and pericardial access-related complications.

6.9. Important considerations for the use 
of computed tomography and magnetic 
resonance in the diagnosis and 
management of vascular and epicardial 
access complications
(1) In patients with suspected haemorrhagic complication related to vas-

cular access, contrast CT can detect the active source and extent of 

haematoma. Routine imaging to rule out vascular complications is 
not advised.

(2) In the case of haemodynamic instability and in the absence of relevant 
pericardial effusion after pericardial access, a contrast CT scan of the 
chest and abdominal region is advised to identify or rule out 
intra-abdominal or chest bleeding. In rare cases, damage to the epicar-
dial coronary arteries or thoracic vasculature may complicate anterior 
pericardial puncture. The posterior access route has a higher inci-
dence of complications as the abdominal space is punctured.186

Liver haemorrhage or damage may result from inadvertent puncture, 
especially in the case of right heart failure.

7. Future aspects, studies, and 
concepts
In order to avoid the inherent inaccuracy, when imaging information is 
exported into another modality (3D mapping system) and the CCT/ 
CMR maps have to be integrated (‘fused’) with landmarks in the 3D 
mapping, the next step has been to acquire image information in MRI 
and to perform the ablation within the MR scanner (Figure 14). This 
can be performed by interacting between a conventional EP lab and 
an MRI scanner (MRI suite) or entirely in an ‘interventional CMR lab’. 
Multiple hardware and software components of EP systems including 
diagnostic and ablation catheters were manufactured to fit the MR en-
vironment and have been tested in entirely CMR-guided procedures 
specifically for ablation to treat typical atrial flutter,187 but clinical bene-
fit has to be proven. In an experimental set-up also, imaging and ablation 
for VTs have been reported showing the impressive possibilities that 
MRI is offering to the electrophysiologist like online lesion monitoring 
or thermometry as a tool to titrate energy delivery in different areas 
of the heart.31

Registration of multiple imaging modalities into the same mapping 
system may add benefit in some entities. In addition, novel imaging 
strategies and higher-resolution images may allow imaging of so far 

Figure 14 Interventional CMR-guided ablation procedure. Two catheters (green and red tip) are actively tracked and displayed on MR images and 
3D reconstructed cardiac surfaces (green: right atrium, dark blue: left atrium, and light blue: superior and inferior vena cava). Courtesy of Leipzig Heart 
Center. CMR, cardiac magnetic resonance; MR, magnetic resonance.
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invisible structures that may gain importance as treatment targets (like 
myocardial fibre orientation or cardiac autonomic innervation). Also, 
the concept of imaging being used to follow-up and evaluate effect of 
atrial and ventricular ablations is interesting for future studies. We 
are facing a fascinating world of new insights and options including im-
plementation of artificial intelligence as tool for future innovations.
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