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A B S T R A C T

The emergence of the Web3 paradigm has led to more and more systems built on blockchain technology and
relying on cryptocurrency tokens – both fungible and non-fungible – to sustain themselves and generate profit.
The growth and success of these platforms are strongly dependent on the growth and evolution of the trade
relationships among users. In this context, it is of paramount importance to understand the mechanism behind
the evolution and growth dynamics of these economic ties: however, in these systems the trade relationships
are strictly intertwined with social dynamics, posing significant challenges in the analysis. One of the most
important mechanisms behind the evolution of social networks is the triadic closure principle: given the strict
link between social and economic spheres, the mechanism emerges as a potential candidate among mechanisms
in literature. Therefore in this work, we extend the existing methodology for triadic closure studies and adapt
it to directed networks. We performed an analysis centered around 3-node subgraphs known as ‘‘triads’’ and
statistically significant triads referred to as ‘‘triadic motifs’’, both from a static and temporal perspective.
The methodology was applied to various decentralized socio-economic networks with distinct levels of social
components. These networks include currency transfers from the blockchain-based online social media platform
Steemit, trade relationships among NFT sellers and buyers on the Ethereum blockchain, and a blockchain-
based currency designed for humanitarian aid called Sarafu. Our measurements show how triadic closure is
relevant during the evolution of these platforms and, for a few aspects, more impactful than centralized online
social networks, where triadic closure is also incentivized by recommendation systems. Moreover, we are
able to highlight both similarities and differences across networks with different levels of social components,
both from a static and temporal standpoint. Overall our work presents strong evidence that triadic closure
is an important evolutionary mechanism in decentralized socio-economic networks. Our findings provide a
stepping stone in the study of decentralized socio-economic networks. Understanding the evolution of other
decentralized networks, not following the same Web3 paradigm or with different social components will
provide valuable insight into the understanding of dynamics in decentralized systems and potentially improve
their design process.
. Introduction

In the last years, the actual structure of the Web has been questioned
y novel paradigms which are trying to reduce the over-centralization
round a few big platforms and tech companies. The need for decentral-
zation of online platforms has led to the development of decentralized
ounterparts of more established platforms [1]. In this scenario, one of
he paradigms gaining momentum is Web3, i.e. the design of platforms
nd software systems built on blockchain technologies to promote a
ecentralized Web [2]. Blockchain technology has many features that
re suitable for such a decentralization process, and one of the most
mportant features is the option to create tokens. The most notable
xamples are fungible tokens, i.e. expendable tokens identical to each
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other, such as the popular cryptocurrencies like Bitcoin [3] and ETH
ERC-20 tokens on Ethereum blockchain [4]. In the field of online
social media, tokens are used to reward user participation and as
payment for nodes that contribute to data validation [5]; they have also
gained traction in many other sectors, including initiatives for social
development and humanitarian aid [6]. Another type of token that has
gained popularity is the Non-fungible token (NFT), a token that acts
as a certificate of ownership of digital objects, such as photographs,
movies, and audio [7]. The exchange of these tokens – both fungible
and non-fungible – has a key role in blockchain-based systems. In
fact, the widespread circulation of tokens leads to the formation of
trade relationships among users, which can be seen as a complex
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network structure: in these networks, nodes are users/wallets and links
represent the beginning of an exchange relationship. The key aspect
is that in many Web3 systems relying on these tokens, exchanges are
often strongly intertwined with the more social side of the platforms,
making blockchain-based platforms very complex and interesting socio-
economic systems. However, there are only a few studies on them from
a socio-economic network perspective, and their structure and growth
dynamics have been partially studied only. In particular, there is no
study focused on triadic closure, one of the main mechanisms driving
social network evolution [8]. Such an evolution mechanism is present
in online and offline social networks, and indeed it could be a driving
factor in Web3 systems as well, where the social structure is strictly
tied to the economical structure.

In this work, we analyze triadic closure in decentralized socio-
economic networks supported by blockchain technology. We extend
the current methodology for triadic closure studies and adapt it to
the analysis of decentralized networks. Moreover, we conduct an in-
depth analysis of network structure centered on triads, i.e. 3-node sub-
graphs, and triadic motifs, i.e. statistically significant triads, both from
a static and temporal standpoint. We conduct our analysis on different
decentralized socio-economic networks characterized by different lev-
els of social components: the leading blockchain online social media
Steemit [9], NFT trades on Ethereum [7], and a blockchain-based
currency for humanitarian aid — Sarafu [10].

Our insights on triadic closure and triads from a static view-
point have highlighted evident differences among decentralized socio-
economic networks mainly due to their main scopes and functionalities.
Differences are so remarkable that the distribution of the closed triads
may represent a footprint of the network since each socio-economic
network has its specific distribution. In defining the footprint an impor-
tant role is played by the ‘‘feed-forward’’ loop and by fully or almost
fully reciprocated triangles. In fact, socio-economic networks where
the social and economic traits are more intertwined are characterized
by more reciprocal relationships and triads, while feed-forward loops
are dominant where the interplay is weaker. The centrality of ‘‘feed-
forward’’ loops and reciprocity has been further confirmed by the
analysis of the patterns forming closed triads. In fact, all the closing
temporal triads forming a feed-forward loop are the most frequent in
all the networks. Despite the importance of patterns related to the
‘‘feed-forward’’ loop, the distribution of the closing temporal triads is
a further footprint of a network: NFT network is mainly built around
patterns leading to ‘‘feed-forward’’ loops, while distributions of the
closing temporal triads in Steemit and Sarafu are more uniformly
spread over all the possible patterns, with temporal triads leading
to the creation of fully reciprocal triangles frequent and significant.
To sum up, both in a static and dynamic setting, each network has
its own specific profile which depends on the nature of the socio-
economic actions it supports. Finally, we found that triadic closure
has impacted the evolution and the growth of these platforms even
more than in traditional and centralized online social platforms. The
closure process is not stable, rather each network is characterized
by its own dynamics, sometimes influenced by external conditions.
However, there is a characteristic common to all these networks: the
closure process is very fast, faster than in the centralized counterparts.
So, even though in decentralized socio-economic networks social and
economic relationships and interests mix up, the triadic closure, one of
the main mechanisms behind the formation of social ties, emerges as
an important factor contributing to the growth in trade relationships;
even much faster than in centralized online social networks.

The paper is organized as follows. Section 2 provides a brief in-
troduction to decentralization and network evolution mechanisms. In
Section 3 we introduce the main research questions, we have on the
evolution of these networks. The approach for modeling and analyzing
the socio-economic networks is presented in Section 4. In Section 5 we
describe the selected datasets and their preprocessing and details on
the experimental setting. Section 6 reports the main findings regarding
the impact of triadic closure. Finally, Section 7 concludes the paper,
2

pointing out possible future works.
2. Background

2.1. Decentralized socio-economic networks

As the necessity of taking power and control away from the major
centralized web platforms has become more evident, we observed
the development of alternative platforms embracing decentralized and
open principles [11]. This is especially evident in the field of online
social media, where we have witnessed the development of decentral-
ized online social networks [12]. Some of them are currently composing
the Fediverse, led by Mastodon [13], and are based on public protocols
supporting decentralization through federation. On the other side, de-
centralization can be reached through the Web3 paradigm [2], which is
actually gaining momentum. This paradigm promotes decentralization
through blockchain technology since it offers many design options, such
as decentralized storage, consensus-based validation of stored data,
and even the option to implement economic systems. Since blockchain
technology provides systems to implement and manage multiple types
of tokens with different purposes, Web3 platforms have at their disposal
flexible financial instruments to support their growth and maintenance.

In fact, tokens have found important use in the field of online social
media, where we have witnessed the rise of blockchain online social
media (BOSM) [5], platforms which offer (i) a set of ‘‘social actions’’
– following, commenting, and voting – which facilitate online interac-
tions among accounts; and (ii) whose core functions are rooted in an
underlying blockchain that guarantees the persistence and validity of
operations. One of the most interesting consequences of this architec-
ture is the strong connection between economical aspects and online
social behaviors. In fact, most of the current blockchain social media
implement: (i) a token ecosystem based on blockchain technology for
promoting high-quality content and users and validating social and
economic operations; and (ii) a rewarding system for distributing the
wealth of the platform. Within the landscape of Web3 social platforms,
there are and have been many proposals, but most of the research
studies have been focused on Steemit, Hive, and Mind. In this type of
social media platform, since users rely on the very same blockchain
for social interactions and financial operations, exchanges are often
strongly influenced by social dynamics and vice-versa.

Another interesting example of token systems supporting social
systems can be found in the field of blockchain for good, where many
initiatives have started relying on blockchain-based currency systems
to promote social development and local economies [6]. For example,
tokens can be used to provide humanitarian aid, such as in Sarafu
blockchain-based digital currency [10]. In these systems, financial
and economic operations are the main instruments to promote social
cooperation and support social groups or individuals in need; there is
a clearly intertwined nature of social and economic relationships.

We also observe socio-economic relationships mediated by Non-
fungible tokens (NFTs) i.e. tokens that provide a certificate of owner-
ship of a digital object [7]. An NFT is linked to a given digital asset
to attest to its uniqueness and non-transferability: in practice, an NFT
can represent a variety of digital items, including photographs, movies,
and audio. As a consequence, several fields, such as art, gaming, and
sports collectibles, utilize NFTs to regulate and control digital objects.
Most NFTs follow the same standard ERC-721 [14], for the Ethereum
blockchain [4]. However, users do not need to interact directly with
the blockchain, as several web platforms, known as NFT marketplaces,
act as intermediaries between users and blockchains facilitating the
exploration of existing NFTs, their sales, and ownership transfers. Even
in NFT trade relationships, where there is not an explicit social me-
dia platform, studies show that hype and community talk on other
platforms influence prices and exchanges among other users [15].

In short, in all these decentralized systems, albeit at different levels,
there is also an important social component, besides the economic
aspects. In this context, network-based modeling has emerged as an

effective methodology to analyze the growth and dynamics of trade
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Fig. 1. The 13 possible triads in a directed network (if isomorphous subgraphs are
counted only once). They can be divided into 2 categories: open triads (a) and closed
triads (b).

relationships in these complex economic systems. Indeed, the exchange
of tokens in Web3 systems is often modeled through networks where
users/wallets are treated as nodes and links represent money transfers
between them.

2.2. Network evolution through triadic closure

Many models, mechanisms, and measures describing network
growth from a link formation perspective have been proposed. Among
them, triadic closure has emerged as one of the most important mech-
anisms [16]. The main assumption of triadic closure is that individuals
with a common friend have a higher chance to become friends them-
selves at some point in the future [8]. Although the triadic closure has
been recognized as one of the fundamental mechanisms driving the
formation of dense groups and communities [17] in social networks,
their properties and laws are still scarcely studied at a large scale, due
to the limited availability of temporal-annotated datasets capturing the
growth of large social networks.

From a static standpoint, triadic closure influences graph structure
on the level of triads, i.e. 3-node directed subgraph. Specifically, in a
directed network, we have 13 possible triads (if isomorphous subgraphs
are counted only once) that can be divided into the 2 categories of
closed and open triads: there are 6 possible open triads (see Fig. 1(a))
and 7 closed triads (see Fig. 1(b)). Indeed, the structure of a network
can be characterized by the distribution of these triads: for example
Milo et al. [18] rely on triads and other subgraphs to characterize
networks in different domains, showing that similar networks have
similar characteristic subgraphs. For example, focusing on triads in
the field of online social networks, Huang et al. [19] confirmed some
similarities among centralized online social networks such as Twitter
and Weibo.

While frequency is an important indicator of the importance of a
triad, it could be frequent simply because of the size of the network.
Therefore many studies focus on the analysis of motif s i.e. classes of iso-
morphic induced subgraphs whose frequency is higher in the data than
in a reference null model [18]. There are many ways to test whether a
subgraph is a motif [20], however the most common in literature are
the significance tests based on the 𝑧− 𝑠𝑐𝑜𝑟𝑒 and the 𝑝− 𝑣𝑎𝑙𝑢𝑒 [18]. The
3

idea is that the count of each subgraph in the original network should
be compared with the same counting in a randomized version of the
original network (the reference model or null model): a subgraph could
be (i) over-represented i.e. its frequency is higher in the original dataset
than in the reference model, (ii) under-represented i.e. its frequency
is significantly lower in the original network than in the null model,
or (iii) similarly represented, which corresponds to a not significative
subgraph. In the literature, the most common approach is to consider a
subgraph 𝑔 as significant when |𝑧(𝑔)| > 2.0, i.e. the absolute value of its
𝑧−𝑠𝑐𝑜𝑟𝑒 is greater than 2 [20]. So, the combination of triad frequencies
and motifs could be used to characterize decentralized socio-economic
networks highlighting common traits and differences in their network
structure and in their evolution.

In fact, while static structure already provides some insights into the
effects of the triadic closure process, leveraging temporal information
is essential to obtain a more complete analysis and characterization
of the network evolution. Zignani et al. [21] proposed some temporal
metrics to quantify triadic closure in undirected networks. The first one
is the triangles/link ratio, i.e. the fraction of triangles produced over the
links. Monitoring the ratio at regular intervals, like daily observations,
provides an overview of how much the links tend to form closed triads.
A further important measure is the triadic closure delay, a measure
quantifying the ‘‘eagerness’’ of users in building social structures. The
value of delay provides insight into the speed at which users act in
building and extending their social neighborhoods by closing triangles.
Both measures are able to capture and quantify the presence and
dynamics of the triadic closure mechanism in a network, and they can
also be used to compare different networks.

Furthermore, temporal information favors the study of the evolution
of network structure from a temporal standpoint. In this case, networks
are modeled as temporal networks, a representation that combines both
topology and time. From the triadic closure viewpoint, we can therefore
focus on temporal triads i.e. 3-node temporal subgraphs. A subset of
temporal triads that represent triadic closure are displayed in Fig. 2. The
identification of such temporal subgraphs is less straightforward than
in the static case since the introduction of the temporal dimension has
led to different definitions of temporal subgraphs and motifs. One of
the most important works on the subject is by Kovanen et al. [22]. In
their work, they consider a subset of temporal subgraphs in which (i)
the time difference of consecutive events is less than an input interval
𝛥𝑐, and (ii) the events in the subgraphs are all consecutive. A further
definition is in Paranjape et al. [23], where they use as a starting
point the previous definition [22] but they remove the constraint on
consecutive events, as it allows to study more subgraphs that tend to
occur in short bursts. They also use a time window 𝛥𝑤 to bound the
time difference between the last and the first events in a subgraph.
There are a few other models in the literature [24], but the key
aspect is that the distribution of temporal subgraphs can be used for
comparison and characterization of networks [25], similarly to the
static scenario. And similarly to the static setting, we can also detect
temporal motif s [22], i.e. temporal subgraphs that result as statistically
significant compared to a null model. However, among the works
studying temporal subgraphs and temporal motifs, the term motif may
be found even for not statically significant subgraphs. Indeed, not
all the works actually perform a statistical significance test, both for
computational reasons (exact temporal subgraph counting is expensive,
and performing it multiple times may not be computationally feasible)
or because of the difficulty of selecting a meaningful null model. In fact,
as noted in different works [22,24], the selection of a null model for
temporal networks is not trivial. In general, there are many possible
reference models for temporal networks, and each model randomizes
certain parts of the network, with the goal of preserving some features
of the original one. Among the many classes of models presented in
the survey by Gauvin et al. [26], the most frequently used model in
many fields are the ‘‘topology-constrained link shuffling’’ methods, also
known as edge randomization or link shuffling. Indeed, it preserves
most of the characteristics of the original temporal network: it preserves
the original graph structure while eliminating all causal correlations
between events taking place on adjacent links.
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Fig. 2. Closing temporal triads capturing the triadic closure. Blue links are established
before time 𝑡, green links are established at timestamps 𝑡′ > 𝑡 to form the closed triad.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3. Research questions

There are few studies that deal with decentralized socio-economic
systems from a network and evolutionary dynamics perspective. And
currently, there are no works exploring the mechanism of triadic clo-
sure and the presence of triadic network motifs in decentralized net-
works. Specifically, here our hypothesis is that the intertwined na-
ture of social and economical relationships in blockchain-based social
networks should lead to an evolution of the economic relationship
networks with traits similar to social networks. On the other side,
we also investigate the specificity of each economic network asking
whether different socio-economic networks are characterized by dif-
ferent network characteristics or patterns, from a microscopically and
triadic closure-related perspective. In particular, in this work, we would
answer the following research questions:

Research question RQ1: When dealing with the triadic closure pro-
cess, triads and their census are the fundamental building blocks for
describing the actual state of a network (closed triads) and for identify-
ing where closures may occur (open triads). From this perspective, and
in a static setting, we ask whether decentralized socio-economic net-
works are similar in terms of triadic-based structures, or whether each
network is characterized by specific triadic-based patterns depending
on its nature.

Research question RQ2: From a temporal standpoint, are different
socio-economic networks characterized by specific evolution patterns
of the triads or do they follow a common growth mechanism?

Research question RQ3: From a dynamic viewpoint, do the different
types of triads resulting from a triadic closure process form at the same
speed? Is the dynamic of triad formation stable along the evolution of
these networks?
4

4. Methods

4.1. Modeling

In general, transactions can be modeled as a set of tuples 𝐼 =
{(𝑢, 𝑣, 𝑎, 𝑡)} where 𝑢 and 𝑣 are users that ‘‘moved’’ tokens: user 𝑢 trans-
ferred to user 𝑣 an amount 𝑎 of tokens at time 𝑡. Our focus is on the
relationships between users determined by token transfers, by modeling
them as a network: transactions over a time interval [𝑡0, 𝑡1] can be
modeled as a temporal network [27]. More precisely, the transaction
data over time can be represented as a temporal network [𝑡0 ,𝑡1] =
(𝑉 ,𝐸), where:

• 𝑉 is the set of users,1
• 𝐸 is a set of timestamped directed links (𝑢, 𝑣, 𝑡) ∈ 𝐸 where 𝑢, 𝑣 ∈
𝑉 , 𝑡 ∈ [𝑡0, 𝑡1]; in other words, links represent a transfer/trade
relationship: two users are linked if they performed at least a
transfer/trade in the time interval [𝑡0, 𝑡1], and 𝑡 ∈ [𝑡0, 𝑡1] is the
timestamp of the first transaction between 𝑢 to 𝑣.

It is worth noting that the direction of links captures the flow of money
from a source to a destination – in the case of transfer – or from a
buyer to a seller in the case of NFT trading. As for NFT trade, it is
a complementary modeling approach w.r.t. the seminal work on NFT
trade networks by Nadini et al., where links are directed from the seller
to the buyer. In this work, we do not consider the amounts 𝑎 of each
transfer/trade but the model could be extended to include them as edge
attributes. The evaluation of network statistics can give us an insight
into the similarity of the datasets.

4.2. Frequent triads and triadic motifs

For RQ1 we need to analyze the structure of decentralized socio-
economic networks. As detailed in Section 2, we can compare the
structure of different socio-economic networks from a static standpoint,
by studying the frequency of triads i.e. 3- node directed subgraphs.
Therefore, we consider [𝑡0 ,𝑡1] as a static network, in this case, discard-
ing the temporal information from the structure. For each triad, we
obtain 𝑔𝑖 the frequency 𝑁(𝑔𝑖). Then, we can compare the distributions
of triads to assess the similarity between the two networks. We separate
open and closed triads for an easier comparison so that each network
is assigned to two distributions: the distribution of open triads and the
distribution of closed triads.

Then, we study whether frequent triads are also statistically sig-
nificant and if there are differences across the selected networks. We
consider a triadic motif to be a triad that is also statistically significant.
As introduced in Section 2, to assess the significance of triads, we have
to define a proper null model. Here we adopted the null model defined
in [28] and since we do not have a closed formula for the null model,
we rely on bootstrap by performing 𝑁 times the randomization of the
original network, obtaining for each triad 𝑔𝑖, 𝑁 outcomes 𝑁𝑟𝑎𝑛𝑑 (𝑔𝑖),
corresponding to the counting of 𝑔𝑖 in the 𝑁 realizations of the random
model. These counts are confronted with the count of each triad in
the original network. We evaluate the statistical significance of the
countings both through the 𝑧 − 𝑠𝑐𝑜𝑟𝑒 and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 [18]. For the
former, denoted 𝑁̄𝑟𝑎𝑛𝑑 (𝑔𝑖) as the average count with standard deviation
𝜎𝑟𝑎𝑛𝑑 , we can compute the 𝑧 − 𝑠𝑐𝑜𝑟𝑒 of a triad 𝑔𝑖 w.r.t. the null model
as:

𝑧(𝑔𝑖) =
𝑁(𝑔𝑖) − 𝑁̄𝑟𝑎𝑛𝑑 (𝑔𝑖)

√

𝜎2𝑟𝑎𝑛𝑑

. (1)

Finally, a triad can be regarded as statistically significant in a network
if its associated 𝑝− 𝑣𝑎𝑙𝑢𝑒 is less than 0.01 and the absolute value of its
𝑧 − 𝑠𝑐𝑜𝑟𝑒 is greater than 2, |𝑧(𝑔𝑖)| > 2.

1 In economy, they are referred to as economic agents.
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4.3. Temporal subgraphs and temporal motifs

Answering RQ2 asks for studying how network structure evolves,
more precisely how an open triad becomes a closed one, i.e. what is
the sequence of link insertion operation transforming an open triad
into a closed one? Here, we focus on a special case of temporal triads –
temporal subgraph of 3 nodes – denoted as closing temporal triads 𝑔𝑖→𝑗 ,
i.e. temporal triads that represent the transition from an open triad 𝑔𝑖
to a closed one 𝑔𝑗 , as shown in Fig. 3 on the right. We count the closing
temporal triads in the different socio-economic networks, obtaining for
each of the possible closing temporal triads the value 𝑁(𝑔𝑖→𝑗 ). We can
compare the distribution of closing temporal triads, for each network.
This way, we are able to assess the similarity of the networks in terms
of how the triadic closure process has closed open triads.

We also assess how significant each temporal triad is by identifying
closing temporal triadic motifs, i.e. temporal triads that are statistically
significant w.r.t. a null model for temporal networks [22]. We obtain
the frequency of each temporal triad (𝑔𝑖→𝑗 ), denoted as 𝑁𝑟𝑎𝑛𝑑 (𝑔𝑖→𝑗 ), one
for each of the 𝑁 randomized versions of the network. Their average
𝑁̄𝑟𝑎𝑛𝑑 (𝑔𝑖→𝑗 ) and standard deviation 𝜎𝑟𝑎𝑛𝑑 are used for computing the
𝑧-score and 𝑝-value tests. Similarly to the static case, the 𝑧-score of a
closing temporal triad 𝑔𝑖→𝑗 is:

𝑧(𝑔𝑖→𝑗 ) =
𝑁(𝑔𝑖→𝑗 ) − 𝑁̄𝑟𝑎𝑛𝑑 (𝑔𝑖→𝑗 )

√

𝜎2𝑟𝑎𝑛𝑑

(2)

Finally, we evaluate which temporal triads can be considered clos-
ing temporal triadic motifs, i.e. as statistically significant in the se-
lected network. Similarly to the static case, we need to evaluate if the
associated 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than 0.01 and if |𝑧(𝑔𝑖→𝑗 )| > 2.

4.4. Measuring triadic closure

For RQ3, we analyze the triadic closure as a temporal process by
leveraging the temporal information of the edges. Specifically, to un-
derstand how impactful triadic closure is, we leverage a few temporal
metrics for triadic closure [21]. First, we study the impact of closure
focusing on the number of triads that become closed (𝑛_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑑𝑠),
compared to the formation of new links (𝑛_𝑙𝑖𝑛𝑘𝑠) and monitoring their
𝑟𝑎𝑡𝑖𝑜 over time as:

𝑟𝑎𝑡𝑖𝑜 = 𝑛_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑑𝑠
𝑛_𝑙𝑖𝑛𝑘𝑠 (3)

In short, the above measure indicates the overall contribution of new
links in the formation of new triangles, and it is strictly related to the
densification of the network as time goes on. However, it only returns a
general trend in the evolution of the network, since it is counting-based.

A more specific measure based on the temporal information of the
links forming a triangle is the triadic closure delay [21], a property
characterizing each temporal triangle in a network. Viewing the triadic
closure as a dynamic process, it measures the speed of the formation
of closed triads. Through triadic closure delay we can capture the
nature of the triadic closure process acting in online social networks:
for instance, if only fast closed triads are forming, or if latent triangles
are woken up by external mechanisms, such as seasonal events or
recommendation systems [21]. The measure has been defined only for
undirected graphs. In the undirected setting, we deal with triangles,
i.e. an undirected closed triad of vertices 𝑢,𝑤, 𝑧, where each edge
𝑢,𝑤 has a timestamp 𝜏(𝑢,𝑤). So, a triad 𝑔 will move from an open
triad with two links – for example, (𝑢,𝑤) and (𝑤, 𝑧) – to a closed
triad (triangle) when the last pair ((𝑢, 𝑧) in the example) connects.
Consequently, undirected close triads are characterized by opening and
closing times. The delay accounts for the time the triad 𝑔 needs to close,
namely:

𝑑𝑒𝑙𝑎𝑦(𝑔) = 𝜏(𝑢, 𝑧) − 𝑚𝑎𝑥(𝜏(𝑢,𝑤), 𝜏(𝑤, 𝑧)) (4)
5

Fig. 3. On the left, a static close directed triad among the vertices 𝑢, 𝑤 and 𝑧. Number
7 corresponds to the ID assigned to each kind of triad. On the right, the corresponding
closing temporal triad. From the open triad (blue link) by the insertion of the green
link (𝑢, 𝑧) we move to the close triad 7. 1 → 7 indicates that me move from the open
triad with ID 1 to the closed triad with ID 7. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example of open and close triads. On the left, an open triad where the blue link
forms before the red one, which reciprocates the relationship between 𝑢 and 𝑤: both
links may be considered for defining the opening time. On the right, a closed triad
where both links (blue and red) can be considered for the definition of the closing
time of the directed triad. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

where 𝜏(𝑢, 𝑧) is the closing time and 𝑚𝑎𝑥(𝜏(𝑢,𝑤), 𝜏(𝑤, 𝑧)) is the opening
time.

The above definition does not hold for the directed case, since the
time of opening and closing is not straightforward as in the undirected
case: they can be interpreted in different ways because of the presence
of bidirectional links. The presence of bidirectionality means that the
creation of two links does not imply the presence of an open triad, as we
could observe a bidirectional link and an unconnected node. Similarly,
the addition of a link, may not lead to a closure: as displayed in Fig. 4,
in the case of opening time, when a link to an open triad is added,
we may not have a closure, because the new link may reciprocate an
existing link, hence we have more opening times. Whereas for the case
of closed triads (see the example in Fig. 4 on the right) that form by
bidirectional links, we may be interested in either the earliest (𝑡3) or the
latest (𝑡4) closing time. This is an important limitation for the analysis
of decentralized networks: the importance of tokens in these systems
means that we need to distinguish the sender or seller of the token/s
from the receivers or buyers. Therefore it is of paramount importance to
extend the current approach for directed graphs. In general, to measure
the triadic closure delay in directed networks, we have to adapt the
formulation to include the direction of links. Here, to measure the
delay we consider the earliest opening time and the earliest closing
time. Formally, given a closed triad 𝑔, with vertices 𝑢,𝑤, 𝑧, and where
each edge 𝑢,𝑤 has a timestamp 𝜏(𝑢,𝑤) denoting its creation time and
𝜏(𝑢,𝑤) = ∞ for non existing links, we denote the earliest closing time
𝜏𝑐 (𝑔) as:

𝜏𝑐 (𝑔) = 𝑚𝑖𝑛(𝜏(𝑧, 𝑢), 𝜏(𝑢, 𝑧)) (5)

In this case, we assume that 𝑢, 𝑧 is the last pair to form a link. Given the
assumption that 𝜏(𝑢,𝑤) = ∞, by definition, in an open triad, the 𝑚𝑖𝑛()
always returns a real number. In the same setting, the earliest opening
time 𝜏𝑜(𝑔) is defined as:

𝜏 (𝑔) = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝜏(𝑢,𝑤), 𝜏(𝑤, 𝑢)), 𝑚𝑖𝑛(𝜏(𝑤, 𝑧), 𝜏(𝑧,𝑤))) (6)
𝑜
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where we assume an existing at least a link between 𝑢,𝑤 and at least
one between 𝑤, 𝑧, formally 𝑚𝑖𝑛(𝜏(𝑢,𝑤), 𝜏(𝑤, 𝑢)) ≠ ∞, 𝑚𝑖𝑛(𝜏(𝑢,𝑤), 𝜏(𝑤, 𝑢))
≠ ∞. Then, the directed triadic closure delay can be extracted as:

𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑_𝑑𝑒𝑙𝑎𝑦(𝑔) = 𝜏𝑐 (𝑔) − 𝜏𝑜(𝑔) (7)

Once the triadic closure delay is defined for each closed triad, we can
study its distribution and compare it to other online social networks
to assess similarities and differences in the dynamic aspects of the
closure process. With our proposed approach we can now analyze every
directed graph as it is the case with most of the decentralized networks.

5. Datasets

In this section, we present the datasets selected for our study.
We focused on three blockchain-based systems with different social
components.

5.1. Steemit blockchain online social network

Launched in 2016, Steemit [5] has been one of the most widespread
decentralized online social platforms and is considered a pioneer for the
Web3 ecosystem since it introduced the seminal concepts of rewarding
system and delegated proof-of-stake (DPoS) consensus algorithm for
block validation in social media apps. The platform is hosted on a
blockchain called Steem and implements three different tokens: STEEM,
Steem Dollar — (SBD), and Steem Power — SP; where the last one is on
the basis of the internal rewarding system and the first two tokens are
tradable on exchange markets [9]. Steemit has gathered the interest
of researchers for its characteristics and has been dissected in many
aspects. However, only some works have studied network structure and
evolution. For example, a few studies have focused on the features of
different types of social networks resulting from diverse interactions or
specific subsets of accounts. Guidi et al. have studied ‘‘follow’’ network
and other operations in Steemit [29] and have delved into a study
of the follower–following graph and the token transfer graph [30].
Other works focused on economic aspects and network structure: for
instance, Li et al. [31] have analyzed the rewarding system in Steemit
from a network perspective, while Ba et al. discussed the interplay
between cryptocurrency price and the link creation process [9], the
impact of user migration on the social networks [32], the role of
groups network structure in migration [33], and the bursty dynamics
of the link creation process [34]. Also Tang et al. [35] model voting
and currency transfer data to study user collusion behavior. Moreover,
Galdeman et al. [36] studied the network growth using transfer op-
erations, subgraphs of up to 4 nodes, in a span of 3 months. They
highlighted that in Steemit, network structure is characterized by rules
which increase network transitivity and reciprocity. In this work, we
rely on the transaction dataset used in [9]. We consider Steemit’s
transfer operations, the most common type of financial action, that
allows the exchange of the two main tokens, STEEM and SBD; covering
four years of user activity, for a total of 55 033 746 transactions. For
a transfer operation, we consider the users involved, and the action
timestamp.

5.2. NFT network

Following their gain of popularity, there has been an increasing
amount of studies on NFTs [15]. For instance, Nadini et al. [7] have
conducted a comprehensive quantitative overview of the NFTs market,
including a network-based analysis. Franceschet et al. [37] focused
on the creators–collectors network, while Galdeman et al. [36] high-
lighted the presence of frequent trading chain patterns. In this work,
we rely on the dataset of NFTs sales collected and analyzed in [7].
The dataset aggregates NFT trades from different marketplaces (APIs):
Cryptokitties, Atomic, Opensea, Gods-unchained, and Decentraland.
6

The data collection is composed of 6.1 million trades of 4.7 million
NFTs in 160 cryptocurrencies, primarily Ethereum and WAX, covering
the period from June 23, 2017, to April 27, 2021. We consider, for
each transaction, the id of sellers and buyers, as well as the time of
sale/transfer.

5.3. Sarafu community currency

Sarafu [38] (‘‘currency’’ in Kiswahili) is a digital community cur-
rency token created by the Grassroots Economics (GE) Foundation, a
humanitarian aid foundation. Complementary or community currencies
(CCs) are currency systems, often born out of cooperation among
members that face a period of crisis and introduced in a certain
community, with the objective of creating bonds of reciprocity and
integrating social networks among people [39]. In both cases, there is a
strong interplay between social and economical aspects. In the case of
Sarafu, users may perform payments using mobile phones to transfer
Sarafu digital tokens to other registered users [40]. Sarafu relies on
blockchain technology for enhancing transparency, as transaction data
allows contributors to fully disclose the impact of their donations.
Furthermore, data analysis can lead to more informed decision-making
processes regarding, for example, future investments and project func-
tioning. Further, it also helps the GE Foundation to improve user
welfare and minimize potential misuse. There are currently few studies
on Sarafu from a network standpoint. The GE organization realized a
dataset [38] which includes detailed and anonymized information on
token transactions. Ussher et al. [10] presented an accurate description
of complementary currencies, the Sarafu project history, and an anal-
ysis of the dataset. Mattsson et al. [41] proposed an analysis modeling
the entire dataset through a static network structure: their analysis
highlights that money circulation is highly modular, geographically
localized, and occurring among users with diverse jobs. While Ba
et al. [42] model the dataset as a sequence of temporal networks to
study currency flows and cooperation patterns.

In this work, we rely on the same dataset [38]. The data span
the period from January 2020 to June 2021, totaling 412 050 eco-
nomic transactions involving 53 277 users. Each economical transaction
specifies its source and its target as anonymized IDs of the sender
and receiver of the cryptocurrency token. Alongside that, we have
important additional information for this study: one being the times-
tamp, i.e. the date and time of when a transaction happened, with a
granularity of ms.

5.4. Preprocessing and experimental setting

Before delving into the identification of the triads of interest, we
proceeded with a data preparation step. For Steemit we limit the
analysis to the first 2 years (2016 and 2017), both due to computa-
tional constraints as well as to obtain a number of transactions similar
to the other datasets. We limit to 8 327 832 operations. For the NFT
trades dataset, we consider all the 6 071 027 transactions in the original
dataset. Finally, for Sarafu we utilize the same preprocessing steps as
in [42], overall getting 412 050 operations.

For the computation of the frequencies of triads, we implemented a
parallelized version of the triad census algorithm presented by Batagelj
et al. [43]. It is a sub-quadratic algorithm for large and sparse networks
able to not enumerate every possible 3-node sub-graph in the network,
and whose complexity is 𝑂(𝑚), where 𝑚 is the number of links. As for
the evaluation of the significance of the triad frequencies through a null
model, we proceeded with a network structure randomization of the
static network done using the greedy algorithm of Havel and Hakimi,
which was extended to directed graphs by Erdos et al. [28]. Instead,
when we deal with temporal triads, we implemented a strategy based
on the topology-constrained link shuffling method, a randomization
method for temporal networks presented by Gauvin et al. [26].
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Table 1
Overview on socio-economic network properties. For each network we report number
of nodes (|𝑉 |), number of links (|𝐸|), density (𝑥105) (de), diameter (di), average local
clustering coefficient (cc), and reciprocity (r).

|𝑉 | |𝐸| de di cc r

Sarafu 40 343 143 239 8.80 22 0.16 0.52
NFT 532 944 2 991 601 1.05 53 0.05 0.02
Steemit 200 913 1 356 011 3.36 14 0.17 0.25

6. Results

In the following sections, we report and discuss the main out-
comes resulting from applying the methodology discussed above to
the selected datasets. Transaction networks are modeled as temporal
networks, where a trade/transfer relationship is established when the
first exchange happens: we have a link between users if they exchanged
a token or non-fungible token, with the source being who is sending or
selling the token/s and the target of the link will be the receiver. The
main network characteristics are displayed in Table 1.

First, we observe that in Steemit we have more repeated trans-
actions between the same users. Indeed Steemit network has a size
less than NFT one even though there are more transactions in the
former. Further, Steemit and Sarafu differ from NFT trades in terms
of density: they are much denser and likely their structure may be
characterized by more cohesive structures than in the NFT networks.
Sarafu and Steemit also differ from NFT trade networks for other
properties: they are characterized by a higher level of reciprocity than
NFT trades. These last two features are coherent with the nature of
the platforms: Steemit and Sarafu are more social by nature since they
revolve around social media or cooperation groups, so more connected
structures and reciprocal exchanges are to be expected; while in NFT
trade networks there is a distinction between buyers and sellers, and it
is unlikely that an account has both roles since there is only a single
type of asset to trade. A further consequence of the different nature
of NFT trade networks is reflected in the diameter of the networks.
They all have larger diameters compared to established OSNs, but the
more social Steemit has the lowest value, followed by Sarafu, while
the NFT is by far the largest. A similar trait is also observable when
considering connected components: both weakly and strongly largest
connected components in the NFT trade network span only a subset of
the network, while in Sarafu and Steemit the network has a huge largest
connected component (>95%). Finally, the separation between social-
ike networks, such as Steemit and Sarafu, and NFT trade networks has
een also captured by the average clustering coefficient, computed on
n undirected version of the graph. Indeed, we observe higher values
or Steemit and Sarafu, while in the NFT trade network, it is less likely
o observe clustered neighborhoods.

In short, from a network-level standpoint, socio-economic networks
uch as Sarafu and Steemit express characteristics more resembling
nline social networks than the NFT trade network; the latter being less
lustered, less connected, and probably characterized by more chain-
ike structures. As for the triadic closure process, the results on the
verage clustering coefficient offer of first hint at the diversity of how
he closure process acts, and its impact on the structure of the network.

.1. Triadic structure to characterize socio-economic networks

Addressing RQ1 – i.e. to what extent decentralized socio-economic
etworks are similar in terms of static triads – asks for an enumeration
f all the possible triads making the structure of the decentralized
ocio-economic networks; and an evaluation of their statistical signifi-
ance. Then, we can compare the structure of different socio-economic
etworks from a static standpoint, by focusing on the most frequent
nd significative triads, i.e. 3-node directed subgraphs, common to all
etworks, or specific for one network only. Our analysis of open and
losed triads and significative triads has highlighted the following main
7

indings: N
• Open and close triad distributions are very different among the
socio-economic networks. The main scopes and functionalities of
the platforms, these networks have been derived from, largely
determine the formation of characterizing patterns. For instance,
in the case of open triads, the high or low frequency of ‘‘collector’’
or ‘‘spreader’’ patterns (triads 0 and 3) depends on the nature
of the socio-economic network, e.g. buying from creators is very
common in the NFT trade network. Moreover, open and closed
triads are also influenced by the level of reciprocity, i.e. a trait
merely linked to more social behaviors of the accounts.

• The distribution of the closed triads represents a footprint of
the network since each socio-economic network has its specific
distribution. In particular, the main discriminative characteristics
are the frequencies of ‘‘feed-forward’’ loops and fully or almost
fully reciprocated triangles. Socio-economic networks where the
interplay between social and economic traits is stricter are charac-
terized by more reciprocal relationships and triads, while where
the interplay is weaker, such as NFT networks, feed-forward loops
are dominant.

• All patterns are significative, thus not explainable by a random
behavior of the accounts. In particular, the tendency of recipro-
cating impacts the formation of fully reciprocated open triads,
especially in socio-economic networks where the interplay be-
tween social and economic actions is stricter. The significance of
closed triads is a further discriminative element of the type of
network, indeed there is a pronounced difference for under- and
over-represented close triads between Steemit and the remaining
networks.

From now on, we separately consider open and closed triads (i) to
ighlight similarities and differences both in terms of these two types
f triads; and (ii) because of the skewness of the triad distribution (see
able 2) toward open triads, which would make the visual exploration
f closed triads harder.
Open triads. First, we report the distribution of the frequencies

(𝑔𝑖) of open triads (triads with index from 0 to 5 in Fig. 1(a)) in
ig. 5. As discussed above, the distribution is limited to the possible
pen triads only. At first glance, we can observe that each network
as its own profile, i.e. open triad distributions are different from one
nother. So, we can comment triad by triad, in order to highlight
pecific differences but even similarities.

Triad 0 is the most frequent triad in Steemit. This open triad can
e seen as an ‘‘out-flow’’ triad, where tokens are only transferred to
wo other users, or as a ‘‘buying’’ triad, representing a user buying
o two different users, in the case of NFT trades. This triad is very
requent in Steemit and the second most frequent in NFT, while it is
ery rare in Sarafu. In blockchain social media, this pattern is typical
f accounts that are sources of resources: in the case of Steemit those
ight be content creators with money to spend or ‘‘whales’’, i.e. the

ichest accounts, who used their money as an influence mean; while
n the case of NFTs it should be a triad where the resource spreaders
re likely NFT collectors. In contrast, in Sarafu, this kind of triad is
uch less frequent but it is expected due to the cooperative nature

f the platform. Indeed, most of the accounts in Sarafu are targets
f micro-credit transactions or donations, while there are only a few
onors or cooperative groups lending crypto-tokens. This observation
lso impacts the level of reciprocity of the Sarafu network.

A further evident difference involves triad 1. This triad represents
chain of currency transfers o sales. The frequency of this triad

ifferentiates between Sarafu/Steemit, and the NFT trade network. In
act, in the latter, it is more relevant — 3rd most frequent, than in
he former networks. Even for this triad, the difference in frequencies
s due to the nature of the NFT network. Triad 1 mirrors a typical
hain of sales, especially in the case of ‘‘wash trading’’ a.k.a. the
ractice of selling among coordinated users to inflate the price of an

FT. Such a trait is less frequent in networks more affine to social
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Table 2
Significance of the 13 possible directed triads, in all three socio-economic networks.
For each directed triad, we compute the 𝑧-score (𝑧) and report the scores with p-value
< 0.01, while the rest are not significant (NS). In each cell, the first line reports the
count of the pattern, the second one its frequency, and the third line reports the 𝑧-score,
between parenthesis.

networks, where other patterns characterized by a higher degree of
reciprocity are to be expected. Even the distribution of Triads 4 and 5
are very specific to each socio-economic network. In fact, these types of
triads are very frequent in Sarafu, less in Steemit, and rare in the NFT
network. Both triads are characterized by the presence of reciprocal
8

Fig. 5. The distribution of open triads in the three datasets. On the 𝑦-axis: percentage
of each open triad. Each open triad, along with its index, is reported below its color
bar. The distributions have been computed on the set of all the open triads. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

links, which can justify the low frequency in NFTs, where users tend to
be either sellers or buyers. In particular, triad 5 captures an interesting
situation where there is an open triad composed of two users strongly
connected by reciprocal links; and yet, the two unconnected nodes
end up not forming any link among them. According to the triadic
closure principle, this situation should resolve in a closed triad; or an
eventual breaking of the triangle whereas the two unconnected nodes
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Fig. 6. The distribution of closed triads in the three datasets. On the 𝑦-axis: percentage
of each closed triad. Each closed triad, along with its index, is reported below its color
bars. The distributions have been computed on the set of all the closed triads. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

are actually not on friendly terms. In Sarafu, this triad may be also
representative of good practice in cooperation and microcredit-based
systems: the lender is the central node and the two unconnected nodes
have been able to repay the loan to the lender.

The above triads and their frequencies represent distinctive ele-
ments among the various networks. However, we also observe open
triads which are among the most frequent in all networks. In fact, triad
3 is a very important triad across all networks. In this triad we have
9

well-defined roles: a node is a target or ‘‘collector’’ of token transfers
while the remaining two nodes are not connected to each other but
send tokens to the collector. This triad is very frequent in all networks:
indeed, for Steemit, it could be a content creator receiving money, a
service provider receiving a payment, or even a content promoter or a
whale being reached by other users in need of visibility for their posts.
In Sarafu this pattern is probably caused by the presence of ‘‘group
accounts’’, special accounts handled by more users, that are saving up
money. Finally, in the case of NFTs, the target node may represent an
NFT creator or an owner of interesting NFTs. A further common trait
among all networks revolves around triad 2: it is not very frequent in
all of them, with a small increase in Steemit and Sarafu. This triad can
be seen as a chain with some reciprocity, and since the difference across
the networks is not large, the difference could be simply a byproduct
of the higher levels of reciprocity of Steemit and Sarafu compared to
the NFTs.

Closed triads. In Fig. 6 we report the distribution of closed triads,
i.e. triads with index from 6 to 13 in Fig. 1(b). Similarly to open
triads, we can observe that each network is characterized by a different
profile, a plausible consequence of the diverse nature of the networks.
However, in the case of closed triads, it is more difficult to semantically
characterize the overall pattern as it strongly depends on how they
are formed — an aspect we shall focus on in the following sections.
Nevertheless, we can still highlight similarities and differences triad by
triad, as discussed above.

Starting from closed triad 6, we can observe it is the most frequent
in all scenarios, even if there are significant differences in its frequency:
in the NFT trade network, it is very frequent — about 70%, quite
important in Steemit (45%), and less frequent and comparable to other
closed triads in Sarafu (about 25%). It is worth noting that Triad 6
corresponds to the well-known ‘‘feed-forward loop’’ pattern, charac-
terizing diverse types of networks, such as biological and regulatory
networks [44] or land trade networks [45]. Closed triad 7, the loop,
is rare in all networks: it is the least present in Sarafu and Steemit
and among the least frequent in the NFT network. In the case of
financial networks, the 3-node cycle is strictly related to suspicious
money laundering activities [46]. Further, there is a strong similarity
across the networks with regard to triads 8, 9, and 10. These triads
tend to be in the middle of the pack in terms of frequency, with very
similar rankings across the three networks. While the ranking and the
frequency associated with the above triads are traits common to the
three networks, the frequencies of triads 11 and 12 are specific to each
network. For instance, triad 11 is very frequent in Steemit and Sarafu
– the second most frequent – while marginal in NFT. Even in this case,
the high frequency in Steemit and Sarafu is a consequence of the high
degree of reciprocity. This is also confirmed in the case of triad 12: very
rare in the NFT network and quite frequent in Sarafu, otherwise.

Triadic motifs. Finally, we deepen the study of triads by focusing
on their significance and identifying triadic motifs, i.e. statistically
significant triads. Here, we discuss each socio-economic network sep-
arately, then highlight similarities and differences. In Table 2, we
observe the 𝑧-scores (see Eq. (1)) for both open and closed triad motifs.
We first observe that all the triads can be considered statistically
significant with regard to the selected null model since most of the
𝑧-scores are greater than 10 (absolute values). However, there are
differences in the 𝑧-scores throughout the different networks. For open
triads (0 to 5) we can observe that shuffled graphs (random models) end
up containing more open triads. Indeed, open triad motifs 0, 1, 2 and 3
are under-represented, except triad 2 in the NFT network. Differences
are more evident for open triad motifs 4 and 5. For instance, in
Steemit, even open triad motif 4 is under-represented, while in NFT and
Sarafu networks we actually have more open triad motif 4 compared
to random networks. Finally, there are more open triad motifs 5 in all
three networks, where in Steemit the 𝑧-score is particularly higher. In
short, the tendency of reciprocating relationships in Steemit and Sarafu
is far from being the outcome of random behaviors: in socio-economic
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networks, such as Steemit and Sarafu, where the interplay between
social and economic actions is stricter, the reciprocity impacts the for-
mation of fully reciprocated open triads. The tendency of reciprocating
links even impacts the significance of reciprocated open triads (2 and
4) in the NFT scenario.

A structural difference in terms of the significance of closed open
triads separates Steemit from Sarafu and the NFT network. In fact, for
Steemit, all closed triad motifs are actually underrepresented w.r.t. the
randomized networks. Given the nature of the network it is quite an
unexpected outcome since one would have expected over-represented
triadic closure structures. A possible explanation of this outcome is two-
fold: (i) the period covered by the dataset captures the early stages
f the network where accounts mostly joined other accounts without
ny attempts to consolidate their neighborhoods through closing triads;
nd (ii) open triad motifs 5 are over-represented according to its 𝑧-

score, and when randomized, those triads tend to turn into closed triad
motifs 11 and 12, so increasing the average frequency of triangles in
the random model. On the contrary, the NFT trade and Sarafu networks
are characterized by over-represented closed triad motifs. Specifically,
all of the closed triads in the NFT network are more frequent than in the
null model, while Sarafu has only some actually more present (8, 10, 11
and 12), those characterized by the presence of bidirectional links. In
short, various kinds of triangles in NFT and Sarafu are not the outcome
of random actions of the accounts, rather users are more likely to form
a close triad. In particular, in Sarafu the tendency toward reciprocating
links and the formation of triangles act together.

In a nutshell, to answer the first research question RQ1, each
decentralized socio-economic network is different from the others. In
a static setting, each network has its own specific profile based on the
distribution of open and closed triads.

6.2. Closing temporal triads and triadic motifs

Although the analysis of triads on the static network representa-
tion highlighted how triad distributions differentiate a network from
another one, our comprehension of the mechanisms leading to the
formation of these specific patterns is only partial since we lose the
sequentiality of the formation process provided by the temporal dimen-
sion. For this reason, herein we cope with temporal triads in order
to answer RQ2, i.e. how triadic structures evolve and change over
time, and whether there are growth patterns common to all the socio-
economic networks. The main findings, detailed and discussed in the
following, highlight:

• the central role of triadic closure processes leading to the forma-
tion of ‘‘feed-forward’’ loops, fundamental directed closed triads
characterizing many directed networks in different domains. In
fact, all the closing temporal triads ending into a feed-forward
loop are the most frequent in all the networks; even if in Sarafu
and Steemit some of these patterns are not statistically significant;

• the distribution of the closing temporal triads is a footprint of
these socio-economic networks: distributions are different from
one another, especially excluding the three most frequent clos-
ing temporal triads. For instance, the NFT network is mainly
built around patterns leading to ‘‘feed-forward’’ loops while other
patterns are irrelevant. On the contrary, the distributions of the
closing temporal triads in Steemit and Sarafu are more uniformly
spread over all the possible patterns. In particular, the temporal
triads leading to the creation of fully reciprocal triangles are
frequent and significant. In short, even from the closing temporal
triad standpoint, each network has its own specific profile which
depends on the nature of the socio-economic actions it supports.

In the first instance, we look at the distribution 𝑁(𝑔𝑖) of closing
emporal triads as reported in Fig. 2 and in Fig. 7. Overall, the three
ost frequent closing temporal triads are common to all three socio-
10

conomic networks, with slightly different rankings or frequencies. F
Specifically, all three temporal patterns lead to the formation of the
‘‘feed-forward’’ loop (identifier 6). In this pattern there is a specific
hierarchy where a node is an ‘‘initiator’’ – it is only a source of token
transfers, a node is a ‘‘target’’ – it is only a destination of transfers –
and an ‘‘intermediate’’ node which is both source and destination. In
the most frequent temporal triad 3←←→6 the initiator and the intermediate
accounts transferred money to the same account – the target – and,
after that, the initiator transfers money to the intermediate one. So, in
this case, the target is immediately identified by both the remaining
nodes. On the contrary, in 1←←→6 transfers between the initiator and
the target are not immediate at the beginning, rather there is a two-
hop connection passing through the intermediate node. Finally, in 0←←→6
the initiator transfers tokens to the remaining nodes and later the
intermediate node interacts with the target. Observing the frequencies
of the three most frequent temporal patterns we note that in Steemit
and Sarafu patterns are almost equiprobable, while in NFT the gap
between 3←←→6 and the other two temporal subgraphs is more evident.
Indeed, in the NFT context, the pattern 3←←→6 may represent a collector
behavior of the initiator which first collects and buys NFTs from a target
creator and then collects other NFTs produced by the same creator but
bought by the intermediate node, i.e. a third account.

A comparison among the overall profiles of the closing temporal
triad distribution let emerge an important difference: the frequencies of
closing temporal triads excluding the top three in Steemit and Sarafu
are higher compared to the NFT network, where the gap between the
top three and the other temporal triads is much more evident. More
precisely, in NFT, besides the three most frequent subgraphs, only a
few closing temporal triads are notable in terms of frequency: 1←←→7 —

directed closing loop, 2←←→10 and 2←←→8; where the last two are strictly
elated to the feed-forward loop as triads 8 and 10 are ‘‘feed-forward’’
oops where either the link between the initiator and the intermediate
r the link between the intermediate and the target is reciprocated. On
he other side, Steemit is characterized by a more varied distribution,
here all the remaining temporal triads are more frequent, especially

hose involving open triads 4 and 5 as starting points (leftmost side
f the distribution in Fig. 7a), i.e. open triads containing reciprocal
inks. This characteristic is even more evident in the closing temporal
riad distribution for Sarafu (see Fig. 7c), where the temporal pattern
←←→12, made by reciprocal links only, is among the most frequent items.
ven in this case, the cooperative nature of the Sarafu socio-economic
etwork impacts how open triads close, especially when reciprocal links
re involved in the pattern.
Closing temporal triadic motifs. So far we individuated some

ifferences in the frequencies of temporal triads. However, as in the
tatic case, closing temporal triads with high frequency may not be
tatistically significant. Therefore, we move on to the study of closing
emporal triadic motifs, i.e. statistically significant closing temporal
riads w.r.t a null model. We compute the 𝑧-score (Eq. (2)) for all the
ossible closing temporal triads and report the values in Table 3. Over-
ll, we can observe important differences in the set of closing temporal
riadic motifs. An interesting result concerns the statistical significance
f the most frequent closing temporal triad 3←←→6. In fact, in Steemit and
arafu, it is not statistically significant, i.e. we would find it similarly
n a randomized network. Not being statistically significant does not
ean it is not an impacting pattern during the evolution of these socio-

conomic networks, rather it raises some doubts on the willingness of
uch trait since it may be a consequence of random behavior. On the
ontrary, the same closing temporal triad is largely over-represented in
he NFT network, a further signal that the purchasing strategy of the
nitiator in ‘‘feed-forward’’ loops has a certain level of intentionality.
s for the remaining two most frequent closing temporal triads, they
re under-represented in all networks, indicating that these patterns do
ot result from random behaviors. Furthermore, in Sarafu many closing
emporal triads have failed the significance test as motifs, i.e. they
ccur in a comparable manner in randomized versions of the network.

inally, the analysis of the statistical significance further supports the
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Fig. 7. Distribution of the closing temporal triads in the three socio-economic networks. On the 𝑦-axis the frequency of the temporal subgraphs. Each temporal subgraph, along
with its index, is reported below its color bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
findings about closing temporal triads involving reciprocal links; in
fact, we observe that also the closing temporal triads starting from open
triad 5 (5←←→11 and 5←←→12), tend to be significant and overrepresented in
Sarafu and Steemit. This result emphasizes the importance of reciprocal
links in the creation of fully or almost fully reciprocal closed triads
(identifiers 11 and 12).

In summary, to answer the second research question RQ2, a com-
mon growth pattern involves only the formation of ‘‘feed-forward’’
loops, while each network is characterized by specific creation patterns
for closed triads.

6.3. Measuring triadic closure

Finally, we address RQ3, i.e. we focus on the stability of the triadic
closure process as the network grows, and we assess how fast closing
temporal triads form. To these aims, we measure a few dynamic aspects
of triadic closure by leveraging the temporal information of the edges
and computing different temporal metrics for triadic closure. Here, we
11
find that each network has its own specific closure process trend, but
all trends are unstable and sometimes connected to external conditions.
Moreover, the triadic closure process is fast, i.e. half of the closed
triads have formed in ten days. In general, from a dynamic viewpoint,
these decentralized socio-economic networks are more unstable, more
dynamic, and faster than centralized online social networks.

First, we study the impact of closure focusing on the number of
triads that become closed (𝑛_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑑𝑠), compared to the formation
of new links (𝑛_𝑙𝑖𝑛𝑘𝑠) and their 𝑟𝑎𝑡𝑖𝑜 over time. This metric highlights
the average contribution of a new link in closing open triads. The
obtained measurements are reported in Fig. 8, and they can be also
confronted with those from previous studies on not-decentralized on-
line social networks [21]. In more detail, in the Steemit network (see
Fig. 8a), we have 730 days with at least a new link formed, with
an average of 1858 links per day and a peak of 23 009 new links
established on the same day. As for triadic closure, it is worth noting
that in a few days we did not observe any closing temporal triads. In
fact, in the very beginning of the decentralized platform – the bootstrap
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Table 3
Significance of the possible closing temporal triads for all three socio-economic
networks. For each motif, we compute the 𝑧-score (𝑧) and report the scores with p-value
< 0.01, while the rest are not significant (NS). In each cell, the first line reports the
count of the pattern, the second one its frequency, and the third line reports the 𝑧-score,
between parenthesis.

period – is very common that most of the new links have involved new
accounts reducing the chance of closing an open triad. However, after
the bootstrap period, we observe an increase in the number of new
12
Fig. 8. Measurements of links and triads. On the 𝑥-axis: days. On the left 𝑦-axis (log
scale): the daily number of new links (orange) and triads (blue) formed during the
growth of the three socio-economic networks. Trends have been smoothed by a moving
average on a week sliding window. On the right 𝑦-axis (linear scale): the daily triad/link
ratio between the triads and the links (red). The trend has been smoothed by a moving
average. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

daily triads resulting in an average number of daily closures equal to
6384, with a peak of 137 414 on the same day, for a total of 4 481 692
closing patterns. This leads to an average ratio of 1.88 triad/link and
a peak of 8.45 triad/link. Note that while the number of links and
triangles are both rising, the ratio is actually growing, indicative that
the links forming are actually making the structure more cohesive. In a
comparison with not-decentralized online social networks, the average
ratio resembles the measurements on the RenRen online social network,
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Fig. 9. Triadic closure delay in days. On the 𝑦-axis: CDF of triadic closure delays. On
the 𝑦-axis: number of days of closure before the triad closed.

but the peak clearly surpasses the mainstream social networks. In fact,
the values are similar to the peak values observed in Facebook after
the introduction of the friend recommendation system, namely the
‘‘People you may know’’ (PYMK) service [21]. So, in Steemit, especially
after the summer of 2017, the average contribution of links toward
closing triads is naturally more important than in platforms that had
introduced algorithms incentivizing the formation of triads.

As for daily new links and closing triads in the NFT network, shown
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in Fig. 8b, we have 1252 days with at least a new link, with an average
of 2389 new daily links and a maximum of 103 486 links formed in
one day. Every day has at least a triadic closure, with an average of
10 389 new daily closing temporal triads and a peak of 288 827 on
the same day, for a total of 13 007 578 closures. This leads to a high
average ratio of 5.94 triad/link and a peak of 19.30 triad/link. The
ratio is actually in a larger range than Steemit, and the average ratio
is actually quite large. Over the entire observation period, the trend
of the triad/link ratio is characterized by two phases of higher closing
activities (from November 2017 to July 2019 and from November 2020
to February 2021) and a central period of low closing activity — from
July 2019 to November 2020. This trend is generally different from the
Steemit trend, where the triad/link ratio has almost always grown. By
comparing these outcomes with other social platforms, the measured
values are indeed in line with traditional online social networks, with
peak values actually higher than the ones observed in the initial growth
of RenRen and Facebook.

Finally, the measurements on Sarafu offer another different trait of
the dynamic of the triadic closure process. In Sarafu we have 507 days
with at least a new link, a total of 143 239 links, an average of 283 new
daily links, and a peak of 1370 new daily links created. Only in one day,
we did not observe the formation of any triads. We record an average
of 540 and a peak of 7328 new daily closing triads, leading to a total
of 273 001 closures. In Sarafu we observe an average triad/link ratio
of 1.73 and a large peak of 15. The average ratio is indeed similar to
Steemit, but the peaks are larger and closer to the NFT network. Unlike
the previous networks, triadic closure seems to have an important
impact in only a portion of the observation period (see Fig. 8c): the
triad/link ratio started to grow only around July 2020, with the largest
spikes occurring during the central period, from September 2020 to
January 2021, while in the last period the triad/link ratio has reached
a closing activity similar to the initial period: a low and stable average
contribution of the new links to closed triads. In Sarafu, the overall
trend is strongly connected to conditions external to the decentralized
network, indeed, it had huge growth during the pandemic period, given
its important role in supporting economic activities during the COVID-
19 pandemic [10,42]. Moreover, when compared to traditional OSNs,
the values are still similar, and the peak is actually large, confirming
the importance of triadic closure even in Sarafu.

To assess how fast is the triadic closure process in the three de-
centralized socio-economic networks, we analyze the triadic closure
delay to understand if the triadic closure is a relevant factor. In fact,
triangle closing speed compared to social networks would be another
strong indicator of the importance of triadic closure. In Fig. 9, we
report the Cumulative Distribution Function – CDF – of triadic closure
delays, for the three networks. We can observe an interesting result: the
distributions of delay have similar shapes, with a significant amount of
triadic closures happening fast. More precisely, we focus on triads that
close in less than a day: in Steemit 18%, in the NFT network 21%, and
in Sarafu 23%. In a comparison with not-decentralized social networks,
the triadic closure process is much faster, in fact, in both Facebook and
RenRen those values are actually much lower, in the range of 5% [21].
In particular, in those OSNs, half of the triads close in 25 days, while we
find even higher values in these decentralized networks: in Steemit and
NFT network 64% of closing triads are closed in less than 25 days, and
a similarly high value characterizes Sarafu (61%). In all the networks,
we record very fast closures, as most of them are closed in less than 3
months (90 days): respectively, Steemit 91%, NFT 88%, Sarafu 89%. In
the centralized counterparts, the values are similar, around 80%.

To answer the third question RQ3; from a dynamic and longitudi-
nal perspective, in decentralized socio-economic networks, the triadic
closure has impacted the evolution and the growth of these platforms
even more than in traditional and centralized online social platforms.
The process is not stable at all, rather each network, as already dis-
cussed in the previous sections, is characterized by its own dynamics.
However, there is a characteristic common to all these networks: the
closure process is very fast, faster than in the centralized online social

networks.
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7. Conclusion

In this work, we analyzed how triadic closure, one of the primary
mechanisms underlying the formation of social ties, affects decentral-
ized socio-economic networks, where social and economic interactions
are strongly intertwined. We extended the existing methodology for
triadic closure studies to generalize with directed networks, making it
suitable to cope with the characteristics of decentralized networks, such
as directionality a key component in economic transactions. We con-
ducted an analysis of network structure centered on triads, i.e. 3-node
subgraphs, and triadic motifs, i.e. statistically significant triads while
considering both a static and dynamic viewpoint. The methodology
was applied to three distinct decentralized socio-economic networks
(Steemit, Sarafu, NFT trades) with varying degrees of influence from
social ties. The main takeaways are:

• From both a static and dynamic perspective, each network has a dis-
tinctive profile depending on the nature of the socio-economic activity
it facilitates.. From a static viewpoint, the analysis shows that
networks, where the interplay between social and economic traits
is stricter, are characterized by more reciprocal relationships and tri-
ads, whereas networks where the interplay is weaker, such as NFT
networks, are characterized by a predominance of feed-forward
loops. Moreover, although all triadic closure patterns bear signifi-
cance, rendering them inexplicable through random behavior, we
have observed variations among networks regarding the preva-
lence of both underrepresented and overrepresented close triads.
From a temporal perspective, the distribution of closing temporal tri-
ads serves as an indicative representation of these socio-economic
networks. The distributions exhibit variations among each other,
particularly excluding the three commonly occurring frequent
closing temporal triads. For instance, the NFT network is mainly
built around patterns leading to feed-forward loops while other
patterns are unimportant. In contrast, the distributions of the
closing temporal triads in Steemit and Sarafu are more evenly dis-
persed across all the possible patterns. In particular, the temporal
triads that result in the creation of fully reciprocal triangles are
frequent and significant.

• Triadic closure has impacted the evolution and the growth of these
platforms even more than in traditional and centralized online social
platforms. The analysis of the stability of the process over time
shows how the triadic closure process is not stable at all, rather each
network is characterized by its own dynamics. While the mea-
surement of how fast closing temporal triads form, through the
directed triadic closure delay, showed how there is a characteristic
common to all these networks: the closure process is very fast, faster
than in the centralized online social networks.

Overall our work presents strong evidence that triadic closure is an im-
portant evolutionary mechanism in the selected networks. Our analysis
through temporal motifs highlighted similarities and differences across
decentralized networks with different levels of social components. And
indeed those observations make sense when we consider that the
method highlighted both differences and similarities between systems
where native cryptocurrencies are used for social-economic purposes
and the maintenance of the platform (Steemit and Sarafu), from systems
where exchanges of cryptocurrency still have a social component but
are also tied to the trade of the NFT tokens, created for specific purposes
(NFT market). This highlights the expressivity of the footprints based on
temporal motifs. Indeed, our findings suggest that the social component
cannot be ignored for a better comprehension of network growth of
decentralized socio-economic networks.

Future works include the analysis of other Web3 systems with
more or less of a social component. Understanding the growth of
other decentralized online social networks not following the Web3
paradigm is also an important open issue. It would also be interesting to
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analyze trade relationships in other economic networks, to understand
the differences in their structure. Moreover, we could leverage user
features [47] to study the interplay with triadic closure. The evaluation
of other established growth mechanisms would also be an important
step toward the comprehension of the growth of these innovative
systems. The results could be leveraged to improve the design process
and functionalities of these systems — influencing various aspects such
as consensus protocols, security, privacy, and usability.
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