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Abstract
The emulation of synaptic functions such as potentiation and depression is of strategic
importance for the development of artificial neuromorphic architectures. Memristors can
qualitatively reproduce the short-term plasticity behaviour of biological synapses by exploiting
the gradual relaxation of resistance levels upon the removal of the switching signals. Various
types of memristors based on nanofabricated metal-oxide-semiconductor stacks have been
proposed for this purpose. Here we present a different fabrication approach based on
cluster-assembled nanostructured zirconia and gold films (ns-Au/ZrOx) deposited in a bilayer
planar configuration. This device shows memristive behaviour with short-term memory and
potentiation/depression. The observed relaxation can be described by a stretched-exponential
function. Furthermore, the characteristic time of the short-term phenomena dynamically
changes under repeated pulses application. Our nanostructured device is characterised by a
substantially larger conductive path length with respect to other nanoscale memristive devices;
the use of a zirconia nanostructured film makes the device compatible with neuronal cell culture.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

Memristors are effective building blocks for resistive random
access memory (RRAM) devices and neuromorphic comput-
ing systems: their resistive switching (RS) properties and non-
volatility after the removal of the applied switching voltage are
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suitable for data storage applications [1, 2]. On the other hand,
memristors can qualitatively implement some of the synaptic
functions due to the capacity to change their electrical conduc-
tion state by transitory information crossing [1, 3]. In partic-
ular, memristors, showing resistance levels gradually relaxing
toward a thermodynamically stable state upon the removal of
the switching signal, provide the possibility of emulating the
short-term plasticity of biological synapses [4, 5].

In view of the realisation of interfaces between artificial
and biological neural networks, there is a growing interest
in the direct coupling of memristive devices and networks
with in vitro experiments with biological cells or tissues [6–8].
Typically memristors have a two-terminal structure consisting
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of a switching layer sandwiched between two metallic elec-
trodes. The switching layer ranges from semiconducting to
insulating inorganic or organic materials [9], according to the
phenomena involved in RS activation. They can be fabric-
ated using standard lithographic methods, however the man-
aging of the interface with biological systems may require a
planar configuration with dimensions larger than those typical
of microelectronics [7, 10].

Among a large number of metal oxides showing RS, ZrO2

received considerable attention owing to its belonging to high-
k dielectrics with high permittivity, simple composition, easy
fabrication, and its compatibility with standard complement-
ary metal-oxide semiconductor (CMOS) fabrication processes
[11, 12]. ZrO2, ZrOx and Yttrium-stabilized zirconia with
thicknesses between 10–100 nm are used with different types
of electrodes [11, 13–19].

Memristors based on zirconia layers show unipolar and
bipolar RS between a high resistance state and a low resistance
state [13]. This electrical behaviour is ascribed to different
conduction mechanisms based on the drift of oxygen ions and
oxygen vacancies in the external electric field applied between
the electrodes [20]; this causes the formation of conducting
filaments at the nanoscale that undergo continuous formation
and rupture [21].

Several authors proposed to modify zirconia films with
metallic ions or nanoparticles to improve the low device
reproducibility, make their electric properties more stable,
and avoid the need for a forming process to induce the RS
behaviour [14–16, 18, 19]. Implantation of Zr, Ti and Au ions
into the zirconia film allowed the actual fabrication of devices
with more stable and reproducible RS behaviour, improved
Ron/Roff ratio, faster set/reset processes, eliminating the need
for a forming process [15–17]. Guan et al reported a device
with bipolar RS consisting of a zirconia layer with embedded
Au nanoparticles to improve the device yield [14]. The embed-
ding of Co nanoparticles was also reported leading to lower
V forming and Vset [18]. Filatov et al exploited Au islands in an
underlying layer to concentrate electric field and therefore fil-
ament formation [19].

In order to emulate the plasticity behaviour, including
spike-timing-dependent plasticity typical of biological syn-
apses, oxide-based second-order memristors can be used
by exploiting the different time scales of internal ionic
dynamics [4]. Planar devices based on tungsten oxides [3] and
Au/SiOxNy:Ag/Au demonstrated short- and long-term plas-
ticity typical of biological synapses [4]. In the latter case,
the switching mechanism was attributed to the diffusion and
reversible coalescence of metallic nanoparticles embedded in
the insulating matrix due to joule effects induced by current
pulses.

Here we propose an approach to the fabrication of planar
memristive systems showing short-term plasticity and with
structural characteristics compatible with the conditions of
in vitro cell culture and microscopy experiments, including
a good optical transparency of the entire device. The sys-
tem consists of the superposition of two layers: the bottom

one made of a cluster-assembled gold film and the top one
of a cluster-assembled zirconia film. We already reported
the non-ohmic electrical behaviour of gold cluster-assembled
films (CAFs) [22, 23]; by coupling gold and zirconia CAFs,
we characterised the time evolution of their non-linear beha-
viour in a large device (4 mm conductive path length) with
particular attention to depression and potentiation phenomena
and electric carrier dynamics. The nanostructured zirconia top-
most layer is biocompatible and suitable for the culture and
manipulation of neuronal cells [24, 25].

2. Methods

2.1. Device fabrication

In view of the coupling of the devices with cell cultures, we
used glass coverslips as substrates. Glass has a very low elec-
trical and thermal conductivities that prevent interference in
the characterisation of high resistivity nanostructured films.
Ns-Au/ZrOx bilayer films were deposited on a commercial
glass coverslip (Zeus 2 cm× 2 cm× 1mm), cleaned by 15min
sonication in ethanol where two gold electrodes separated by
a 4 mm long gap, with a thickness of 80 nm and dimensions of
3 mm × 7 mm, are deposited by thermal evaporation. A gold
nanostructured film (ns-Au) and, subsequently, a zirconia (ns-
ZrOx) nanostructured film, respectively of 30 nm and 90 nm
thickness, were deposited using a supersonic cluster beam
deposition (SCBD) apparatus equipped with a pulsed micro-
plasma cluster source (PMCS) that allows the production of
neutral clusters in the gas phase as described in details in [26].
Briefly, the PMCS principle of operation consists in the abla-
tion of a gold or zirconia target by a plasma ignited during the
injection of a high-pressure pulse of argon in the aggregation
chamber of the cluster source [27]. The species resulting from
the target ablation condense in the source chamber through
collision with the Argon gas forming clusters, and then the
cluster-gas mixture is expanded through a nozzle resulting in
a supersonic seeded beam [27]. The cluster beam is focused
by an aerodynamic lens system and directed in the deposition
chamber (figure 1(a)), where the substrates are mounted on
the sample holder. Glass substrates are masked by a metallic
stencil mask (200 µm thick) with a central rectangular hole
(1 mm × 7 mm). We used the same mask for both the ns-
Au and the ns-ZrOx depositions, obtaining a layered struc-
ture. The ns-Au/ZrOx films are represented schematically, in
the top view in figure 1(b) and in the cross-section view in
figure 1(c).

2.2. Structural characterisation

Transmission electron microscopy (TEM) images and the cor-
responding electron diffraction patterns (EDPs) were acquired
by using a ThermoFischer Talos 120 C microscope operating
at an acceleration voltage of 120 kV, equipped with a ther-
mionic LaB6 electron source and a bio-twin objective lens.
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Figure 1. (a) Schematic view of the SCBD apparatus. Clusters are formed in the PMCS. The cluster beam is extracted through the
aerodynamic focuser, and then it reaches the skimmer in the expansion chamber, leading the clusters into the deposition chamber. Here a
masked glass substrate is mounted. On the right, sketches of the produced two-terminal devices are shown. (b) Top view of a ns-Au/ZrOx

sample made by a 1 mm large nanostructured Au/ZrOx layered film connecting two PVD gold electrodes on a glass sample.
(c) Cross-section view of the same device shown in panel b (not to scale).

Both images and EDPs were collected by a Ceta CMOS cam-
era (4096 × 4096 pixels).

The morphological investigation of the nanostructured
films was performed by a Multimode 8 AFM (Bruker), in
peak-force tapping mode, equipped with silicon nitride can-
tilevers mounting single crystal silicon tips, with nominal
radius 12–20 nm, resonance frequency in the range 100–
200 kHz, and force constant k = 0.7 N m−1. All the topo-
graphic maps have been collected with a sampling resolution
of 1–5 nm pixel−1, using a scan rate of approximately 1 Hz.
From flattened AFM images, the root-mean-square surface
roughness Rq was calculated as the standard deviation of sur-
face heights.

2.3. Electrical characterisation

Ex-situ electrical characterisation was performed with a high
precision measurement system (Agilent E5270B electrometer
equipped with an E5287A high resolution Atto Level sensor)
via a standard two-probes method. Data were acquired using
a custom software developed in LabView. The characterisa-
tion of the film resistance and switching properties was per-
formed by means of repeated current measurements, with
the samples biased with voltages varying according to a
stepped triangular ramp (i.e. a piecewise input voltage) to
derive the characteristic I–V curve of the two terminal
devices.

In addition to constant voltage measurements, we used
pulse measurements to study the effect of limited duration
stimuli on sample behaviour. Pulsed measurements are often
exploited in literature to characterise RRAM devices, where
read and write pulses are used to monitor the resistive state of

the sample or to control it stimulating switching phenomena,
respectively. Two different types of pulses were used:

(i) write pulses at high positive or negative voltages (ranging
between 5 V and 20 V), meant to change the sample’s res-
istance

(ii) read pulses at a fixed voltage of 1 V, to detect the change of
the conductive properties of the samples induced by write
pulses

We used the Agilent E5270B configured to execute quasi-
continuous pulsed measurements (many measurements taken
during every pulse); this characterisation allowed to perform
an investigation closer to the actual operation modes of a
memory storage device, where information is accumulated or
detected with rapid voltage signals.

3. Results and discussion

3.1. Film morphology and structure

3.1.1. Atomic force microscopy characterisation. Figure 2
reports the typical nanoscale morphology of the films, before
and after electrical characterisation; for the sake of com-
parison, ns-Au film (figure 2(a)) is also shown. Ns-Au and
ns-Au/ZrOx are both characterised by a porous and granu-
lar structure at the nanoscale, whose roughness evolves with
thickness according to a simple scaling law [28], charac-
terised by almost the same growth exponent for both the
materials [29, 30]. The ns-Au (30 nm thick) film shows a
calculated roughness Rq = 10.5 ± 0.2 nm (figure 2(a)),
whereas the layered ns-Au/ZrOx (30 nm/90 nm) has an
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Figure 2. AFM morphological maps. From left to right: (a) ns-Au film as deposited, (b) layered ns-Au/ZrOx film and (c) same film after
electrical stress.

Figure 3. TEM/HRTEM imaging and electron diffraction pattern (EDP) of a ns-ZrOx sample (a)–(c) and a layered ns-Au/ZrOx sample
(d)–(f). Panels a and d display low-magnification TEM images of the two samples, while panels b and e show the corresponding HRTEM
imaging. EDPs are reported in panels c and f, respectively indexed with the corresponding lattice sets of the most likely ZrO2 phase and fcc
gold.

Rq = 20.1 ± 0.3 nm (figure 2(b)). A ns-Au/ZrOx layered film
after electrical forming and characterisation (see section 3.2.1)
is shown in figure 2(c). This film has Rq = 20.6 ± 0.4 nm,
substantially comparable to the Rq measured for an ‘as
deposited’ layered film (figure 2(b)); no electrically induced
changes in the morphological features are present at the
nanoscale.

We also performed environmental scanning electron micro-
scopy characterisation close to the electrodes/nanostructured
film interface to rule out high field-related reconstructions of
the layered nanostructured film. No significant modification

of the film morphology is present, as shown in supplemental
figure S1.

3.1.2. Nanoscale structure. Wedeposited low-coverage thin
films on TEM grids to characterise their structure. Two
samples, the first one constituted by sole ns-ZrOx (5 nm thick)
and the second one by ns-Au (10 nm thick) and ns-ZrOx (5 nm
thick), were deposited on 12 nm-thin amorphous carbon grids.
Together with the TEM/high-resolution trasmission electron
microscopy (HRTEM) images, the corresponding EDPs have
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also been acquired to determine the most likely crystal struc-
ture of the nanoparticles constituting the films. In figures 3(a)–
(c) the TEM/HRTEM images and the EDP from zirconia,
and (d)–(f) by the sample containing both zirconia and gold,
are shown. The TEM/HRTEM imaging clearly indicates that
both samples are characterised by nanosized objects (panels
(a) and (d) for low magnification TEM, panels (b) and (e)
for HRTEM), which preserve their granularity after depos-
ition on the substrate and form fractal-like structures. The
EDPs, obtained by selecting a large area of each sample,
show that the nanosized objects are constituted by crystal
domains. Here, as expected, only two relatively weak diffrac-
tion rings were observable for the sample containing sole zir-
conia phase (panel (c)) and correspond to an interplanar dis-
tance of 2.9 ± 0.1 Å and 1.8 ± 0.1 Å, respectively, being the
first one the most intense. It corresponds to the most intensely
diffracting lattice set for both the zirconia tetragonal (101)
and cubic (111) phases. The second and weaker ring, found at
1.8 ± 0.1 Å, is again shared between the two zirconia phases,
corresponding to the superposing (112) and (200) lattice sets
of the tetragonal phase, and the (220) lattice set of the cubic
phase. However, the concomitant absence of a diffraction ring
at a distance of 3.16 Å, allows ruling out the presence of zir-
conia in the monoclinic phase, as the latter should show its
most intense ring at that distance and should not display visible
rings at 2.96 Å, which is conversely clearly observed in both
samples. These results are in agreement with the XRD meas-
urements performed on nanostructured zirconia, provided in
[31], which particularly stress the presence of the cubic phase
in zirconia at room temperature.

The EDP of the layered sample constituted by both zirconia
and gold (panel (f)) shows clearly all the rings expected for the
fcc gold (indexed in that pattern), together with those found
already for the sole zirconia, and here not indexed for the sake
of simplicity.

3.2. Electrical characterisation

3.2.1. Current—voltage analysis. The as-deposited layered
ns-Au/ZrOx films show an ohmic electrical behaviour charac-
terised by a linear I–V curve (see supplementary figure S2(b)),
as also the sole as-deposited ns-Au films [22, 32]. However,
the addition of the zirconia layer decreases the resistance value
of the composite sample, as it is shown in supplementary
figure S2(a). By applying a high constant voltage (approxim-
ately 16 V) to the composite ns-Au/ZrOx sample an abrupt
forming process occurs. The layered ns-Au/ZrOx film shifts
to an irreversible high-resistance state, while the ns-Au film
passes through the device’s breakout as shown in supplement-
ary figure S2(c). This high-resistance state shows a memrist-
ive behaviour with hysteresis loops in I–V curves (figure 4).
Here, three I–V curves at 1 V s−1, 2.5 V s−1, and 5 V s−1

sweep velocities are reported. The greater the sweep velocity,
the greater the current passing through the device. This effect
can be attributed to charged migrating species [33, 34], ori-
ginating from defects into the zirconia overlayer, and modify-
ing the conductivity of the device. Furthermore, current spik-
ing activity, ascribable to the ns-Au film switching activity,

Figure 4. DC I–V curves of a layered ns-Au/ZrOx sample after
resistive switching activation, taken with different sweep velocities
(1 V s−1, 2.5 V s−1 and 5 V s−1). A memristive hysteresis loop is
registered, and current through the device (nonlinearity of the device
response) increases with increasing sweep speeds. Black arrows
specify the curve path direction.

appears at applied voltages over 10 V (figure 4). Reference
samples made by a 50 nm thick ns-ZrOx show an ohmic
conduction regime with resistance of the order of 5 1011 Ω
(see figure S3), suggesting that the memristive effect, together
with non-linearity registered for the layered samples, is
induced in ns-ZrOx by the presence of the nanostructured gold
film.

3.2.2. Pulsed voltage analysis. The possibility of con-
trolling the resistance of the layered devices has been studied
by means of a pulsed analysis, where alternated write pulses
are alternated with read pulses.We observed that the resistance
measured with read pulses with the same polarity of the write
pulses is about one order of magnitude larger than that meas-
ured with read pulses with an inverse polarity (Ron/off ∼ 10, see
figure 5). This could be explained by considering that oxygen
vacancies in the ns-ZrOx layer under write voltage application
can diffuse towards the cathode electrode interface and cre-
ate a negative charge gradient in the CAF. Read pulses with
opposite voltage polarity can then modify the gradient, facil-
itating electronic charge injection. We underline that the pres-
ence of the ns-Au layer is necessary to observe this behaviour,
whereas ns-ZrOx films do not show such an intense response
to the application of voltage pulses (see supplementary
figure S4).

The resistance measured during the read pulses shows a
transient increasing behaviour on the timescale of seconds,
suggesting the presence of diffusion-driven conduction [4] and
demonstrating the device’s volatile nature [1]. In figure 5,
write pulses of ±5 V (100 ms in width) and +1 V read
pulses (500 ms in width) are reported (bottom), with the res-
istance measured during each read pulse (top) (the sampling

5



J. Phys. D: Appl. Phys. 56 (2023) 355301 F Profumo et al

Figure 5. Resistance modulation by application of 5 V (100 ms in width) write pulses with alternated polarity, interspersed with 1 V
(500 ms in width) read pulses on a layered ns-Au/ZrOx sample. The resistance measured during read pulses (top) and the applied voltage
(bottom) are reported in the same figure. Resistance after negative write pulses is about one order lower with respect to that registered after
positive write. During every read pulse the resistance has a transient increasing trend.

frequency is 150 Hz, and the initial measurements are up
to 100 ms long due to the instrument’s initial settings).
The resistance switches between 1 GΩ and 10 GΩ with
an increasing transient behaviour (resistance is increased
by about a factor 2 in the first 500 ms). We tested the
switching behaviour of the devices between these two levels
for more than 100 cycles as reported in supplementary
figure S5.

To assess the layered device transient response to pulsed
stimuli, current evolution at 1 V applied voltage follow-
ing a single 100 ms write pulse with negative polarity was
recorded. A decreasing current trend on the timescale of
a few seconds was observed, in accordance with the trend
shown for alternated pulses in figure 5. In [35], a stretched-
exponential function (SEF) has been proposed as a model
for the spontaneous retention loss of memristors and specific-
ally to study oxygen-related relaxation processes. The SEF is
written as:

ϕ(t) = I0exp

[
−
( t
τ

)β
]

(1)

where, in our case, ϕ (t) is the relaxation function, τ is
the relaxation time, I0 a prefactor and β ∈ (0,1) a stretch
index. We found that the same function well describes the
layered ns-Au/ZrOx relaxation curves and that if successive
measurements are taken after write pulses, the characteristic
relaxation time τ is increased from roughly 10 ms to 1 s.
Similar results were obtained for TiO2 devices as a func-
tion of the number of subsequent pulses [36]. This suggests

(as also reported in [35]) that the relaxation characteristics
can similarly change under repeated pulses as in short-term
memory to long-term memory transition in biological systems
[37].

Figure 6-left shows three current measurements at 1 V
registered after three subsequent write pulses at−10 V applied
voltage on a layered ns-Au/ZrOx film. A decreasing trend
on the timescale of seconds is observed. The three curves
normalized by the pre-factor I0 are shown with their fit
according to equation (1) in figure 6-right, the second and
third curves show a slower decreasing trend corresponding
to greater τ fitted parameters (as reported in the table of
figure 6).

The ability to change quasi-continuously the conductance
of a memristive device with subsequent write pulses with the
same polarity is analogous to pulse pair facilitation (PPF) in
neurons [5]. The layered ns-Au/ZrOx device shows current
potentiation (depotentiation) when subsequent write pulses
and read pulses are alternated with different (same) polarity.
This effect can be described by oxygen vacancies diffusion-
related accumulation in the device facilitating or suppressing
current conduction during read pulses, as proposed in a WOx

memristor [3]. A typical potentiation (depotentiation) trend
registered by means of current measurements taken with 1 V
read pulses in between 20 subsequent +5 V (−5 V) write
pulses is reported in figure 7 (indicated as P: potentiation and
D: depression).

The PPF behaviour is typical of natural synapses for
signal compression, where information on spikes num-
ber and firing rate is stored into gradual changes of the
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Figure 6. Relaxation for ns-Au/ZrOx layered devices. Left: current vs time at 1 V constant voltage applied collected after a −10 V 100 ms
width write pulse for three subsequent measurements (blue–red–yellow). Inset: zoomed starting portion of the curves highlighting the
differences in the first 1.5 s. Right: comparison of the same three curves normalised by the pre-factor I0. Solid black lines are fitted data
according to equation (1). The inset reports the parameters fitted for the three curves (with 95% confidence bounds).

Figure 7. Depression and potentiation behaviours of layered
ns-Au/ZrOx samples. Current depression by application of 20
consecutive −5 V 100 ms width write pulses interspersed with
500 ms 1 V read pulses is depicted on the left. In the same graph, on
the right, the subsequent measurements taken with reverse +5 V
write voltage polarity are reported.

postsynaptic membrane conductance [38, 39]. The inherent
voltage thresholds of our device can be used for discrim-
inating recorded spiking events from background activity
and without resorting to computationally heavy off-line pro-
cessing. Information on spike amplitude and frequency can be
transduced and stored in single devices as resistive state trans-
itions, as reported for an array of TiOx memritors [6].

4. Conclusions

In summary, we reported the fabrication of a planar
device based on bi-layered ns-Au/ZrOx CAFs showing a

memristive behaviour. The system exhibits neuromorphic
properties such as short-time retention (order of seconds) with
stretched-exponential relaxation, and potentiation/depotenti-
ation for subsequent write pulses. The resistance of the film
can be controlled by means of voltage pulses of different
polarities.

The observed behaviour can be attributed to the presence
of two conduction mechanisms related to electron transport in
the ns-Au film and ion transport in the ns-ZrOx layer: ion diffu-
sion inside the ns-ZrOx insulating layer can produce electrical
relaxation phenomena as addressed for SEF relaxation.

The planar structure of the reported device and the pres-
ence of a nanostructured zirconia upper layer make this system
potentially interesting for the coupling with biological neural
networks: the use of nanostructured zirconia films as sub-
strates for the culture of primary neural cells has been recently
reported [26].
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