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Abstract. In the IEEE MILCOM 2018 conference proceedings was published a paper
presenting a “lightweight key exchange protocol with provable security”. In this
divertissement, we show that the aforementioned protocol presents a fatal flow that
makes the secret key a very simple combination of the public data. Therefore, our
main aim is to warn about the intrinsic risks in this protocol and discourage its
practical usage, which would cause a leak of information.
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1 Introduction
In 2018, the IEEE proceedings of the Military Communications Conference (MILCOM)
published the paper [4]. This paper presents a Diffie-Hellmann like key exchange protocol,
based on modular arithmetics, which is claimed to be lightweight and with provable
security. Diffie-Hellmann protocol [2] and its variants [3] are employed as tools for secure
key exchange. In particular, the classical protocol and the variant on elliptic curves are
used in the TLS/SSL protocol [1]. The variant in [4] is claimed to be particularly suitable
for devices with a small amount of resources. A potential user may decide to verify whether
the protocol really provides a shared secret, so that the two communicating parties actually
get the same result. After this verification, he would trust the paper, believing that
the protocol is really secure. Only a paranoid user would verify also the (non-proved)
security-providing formula. Well, we are such paranoid users, but also the attacker Eve
may be so.

In this brief divertissement we show that, verifying the security formula, it turns out
that the secret exchanged key is actually a combination of the disclosed data. Therefore,
the proposed protocol is not secure, since Eve can retrieve the secret key by eavesdropping
the data exchange.

2 The protocol
In this section, we present in details the Diffie-Hellmann-like protocol introduced in [4].

First of all, the paper defines the communicating parties: the encryptor E and the
decryptor D.
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After deciding on a public modulus n ∈ N, n > 1, over which all computations are
done, both E and D choose their secrets, namely the following integers mod n:

E : {[x1]n, [x2]n, [x3]n, [x4]n}

D : {[y1]n, [y2]n, [y3]n, [y4]n},

where for each a ∈ Z, [a]n means a mod n.
The protocol is sketched in what follows. The values computed by E are indicated as

ei, where the indices 1 ≤ i ≤ 12 identify the single variables. Similarly, those computed by
D are named dj , where the indices 1 ≤ j ≤ 12 identify the single variables.

Finally, the data which are disclosed between the participants E and D, are indicated
with the lower case letter p, followed by an identifying index, namely pk, k ∈ {1, 2, 3, 4, 5}.

All the operations are considered to be done over Zn.
First of all, E computes

[e1]n := 2 · ([x1]n + [x2]n);

and dislcloses it under the name of

[p1]n := [e1]n.

Once received the value [p1]n, D can compute the values [d1]n, [d2]n, [d3]n, [d4]n, [d6]n,
[d8]n, all depending on the secret data [y1]n, . . . , [y4]n and on [p1]n:

[d1]n := 2 · ([y1]n + [y2]n)

[d2]n := [y1]n + 2 · [y2]n
[d3]n := [p1]n · [y1]n = [e1]n · [y1]n
[d4]n := [p1]n · [d2]n = [e1]n · [d2]n
[d6]n := [d3]n − [y3]n
[d8]n := [y3]n · (2 · [d4]n − [d3]n)− [d3]n · [d6]n + [y4]n.

After these computations, D discloses [d1]n, [d8]n, so that E knows

[p2]n := [d1]n
[p3]n := [p1]n · [p2]n
[p4]n := [d8]n.

Basing on the values got from D and on his private data, E can compute:

[e2]n := [x1]n + 2 · [x2]n
[e3]n := [d1]n · [x1]n
[e4]n := [d1]n · [e2]n
[e6]n := [e3]n − [x3]n
[e8]n := [x3]n · (2 · [e4]n − [e3]n)− [e3]n · [e6]n + [x4]n

and disclose
[p5]n := [e8]n.
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Then, D computes the shared secret [K]n as follows:

[d7]n := (2 · [d1]n · [e1]n + [d3]n + [y3]n) · [d4]n + [d3]2n
[d9]n := [d4]n · ([d3]n + [y3]n)

[d10]n := [d7]n + [d9]n
[d11]n := [d10]n + [y4]n

[K]n := [d12]n := [d11]n + [e8]n (1)

and E can independently compute the same secret:

[e7]n := (2 · [d1]n · [e1]n + [e3]n + [x3]n) · [e4]n + [e3]2n;

[e9]n := [e4]n · ([e3]n + [x3]n)

[e10]n := [e7]n + [e9]n
[e11]n := [e10]n + [x4]n

[K]n := [e12]n := [e11]n + [d8]n. (2)

The key may be also be expressed by means of two values [q1]n, [q2]n, which depend on
the private values of both E and D and are claimed not to be computable, neither by E
nor by D:

[q1]n := 2 · ([y1]n + [y2]n) · [x2]n + 2 · ([x1]n + [x2]n) · [y2]n;

[q2]n := [q1]n · ([d3]n + [y3]n + [e3]n + [x3]n) + 3 · [d3]n · [e3]n + [x3]n · [y3]n;

[K]n := [e4]2n + [d4]2n + 2 · [q2]n − 2 · [e6]n · [d6]n + [x4]n + [y4]n.

3 Correctness and security
The correctness of the protocol (though not proved in [4]) can be easily verified per-
forming the steps of the protocol described in previous section, considering the secret
data x1, x2, x3, x4, y1, y2, y3, y4 as indeterminates. Indeed, it turns out that e12 and d12,
computed as in formulas (1) and (2) respectively, are equal even though the computations
are made over Z, so without considering the integer modulus n.

A verification of this kind, made by potential users, can show that the protocol is
correct in the sense that the two communicating parties share the same secret.

Then, the paper deals with security, distinguishing among Session-Key Security, Privacy
Protection and Known-Key Security. We concentrate on Session-Key Security only, since
its failure makes irrelevant this protocol.

The Session-Key Security is based on the following (non-proved) proposition:

Proposition 1. [4, Prop. 1]

[K]n − ([p4]n + [p5]n) = 2([p3]n)2 − [p3]n([e6]n + [d6]n)

It is likely that potential users would assume that the above proposition should be
correct and the protocol secure. Instead, it is exactly Proposition 1 that presents a fatal
flaw. Indeed, Eve performs the steps of the protocol to try it on some random numbers
and then defines

[K ′]n := ([p4]n + [p5]n) + 2([p3]n)2 − [p3]n([e6]n + [d6]n)
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so if Proposition 1 is correct, then [K]n = [K ′]n. On the other hands, when she substracts
the value of [K]n (i.e. [d12] because of the equation (1)) from [K ′]n, she actually finds

[K ′]n − [K]n = −[p3]n([e6]n + [d6]n).

This implies that the true value of the key is

[K]n = 2([p3]n)2 + [p4]n + [p5]n.

Therefore, she has verified that the statement of Proposition 1 is wrong.
Even better from her point of view, the public information is enough to get the shared

secret and so read all the communication, since [p3]n, [p4]n, [p5]n are public.
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