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ABSTRACT

Automatic pain assessment can be defined as the set of computer-
aided technologies allowing to recognise pain status. Reliable and
valid methods for pain assessment are of primary importance for
the objective and continuous monitoring of pain in people who are
unable to communicate verbally. In the present work, we propose
a novel approach for the recognition of pain from the analysis of
facial expression. More specifically, we evaluate the effectiveness of
Graph Neural Network (GNN) architectures exploiting the inherent
graph structure of a set of fiducial points automatically tracked on
subject faces. Experiments carried over on the publicly available
dataset BioVid, show how the proposed method reaches higher
levels of accuracy when compared with baseline models on acted
pain, while outmatching state of the art approaches on spontaneous
pain.
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1 INTRODUCTION

Significant effort has been made in the last two decades in order to
gain a better understanding of affect [36]. In particular, the affective
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computing field has reached relevant achievements in affect recog-
nition exploiting different information channels[10, 31]. Some are
easily accessible such as facial expression [9, 13, 18], body gesture
[33], prosody [1], while others are hidden to the observer, such
as EEG [49], ECG [42], and EDA [46]. Each of these modalities
provides insights into human affect analysis with different levels of
validity and reliability of the signal and intrusiveness for the user,
making them more or less convenient depending on the context.
Yet, despite the spread of systems and models for affect detection,
most of the research is focused specifically on emotion recognition,
while pain has been in general overlooked. Nevertheless, interdisci-
plinary studies identify valid and reliable indicators of pain, apart
from self-reports, starting from the underlying biological process
and exploring behavioural evidence.

Among behavioural pain responses, facial expressions are the
most investigated [10, 56]; this is due to the well-established promi-
nence of the face as a source of information compared to other
channels of nonverbal communication such as paralinguistic vocal-
ization or involuntary and purposeful bodily activity.

Of course, the analysis of facial expression for detecting pain has
a common ground with the analysis of affective states through fa-
cial mimicry [6]. Indeed, psychological and neurobiological studies
highlighted the tight relation between affect and facial movements
[15]. In this vein, it has also been claimed that facial pain expres-
sion is specific to pain experiencing and can be distinguished from
expressions of basic emotions [12, 48, 57].

For instance, the experiments conducted by Prkachin and Solomon,
based on a sample of 129 subjects suffering from shoulder pain, iden-
tify several facial actions discriminating painful from non-painful
movements with high validity and reliability [38]. In this vein,
Simon et al. [48] proved the human capacity of discerning proto-
typical pain expression from other emotional and neutral facial
reactions. These experiments argue for consistency of facial pain
expression patterns by focusing on the spontaneous arising of spe-
cific facial reactions in a painful condition and on the recognition
of a painful experience of others by the expression indicator.

Hence, when self-reports (most reliable and valuable methods
for pain assessment) are not an option, automatic pain recognition
systems based on facial reaction may provide a valuable alternative.
In clinical contexts, for example, patients may be unable to com-
municate verbally and, moreover, the medical staff cannot monitor
them continuously [7]. In such a scenario, typical in intensive care
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units (ICU), automatic pain recognition systems based on behaviour
and physiological responses could support the clinical routine of
pain management.

In this work, we present a novel pain classification system which
leverages the natural graph representation of face landmarks [45],
and relies on features describing local dynamics evolution. Hence,
we take into account the progression of pain expression over time,
thus overcoming the inherent limitations of frame-level approaches.

To this end, we employ a Graph Neural Network (GNN) archi-
tecture able to capture the expression semantics connecting local
motion information from face landmarks to the holistic view com-
ing from the relationships between fiducial points.

In the forthcoming Section (Sec. 2) we briefly investigate the
literature concerning automatic pain recognition and Graph Neural
Network. In Sec. 3 the proposed approach is presented; results are
reported in Sec. 4, while Sec. 5 summarizes the key contributions
of the paper and presents some concluding remarks.

2 RELATED WORKS

2.1 Automatic pain recognition

Automatic recognition of pain requires the specification of at least
one source of information (modality) as input to the pain recogni-
tion system. The pain assessment literature has considered many
diverse modalities as useful for the inference of painful states in
humans. These can be broadly categorised into two main groups,
namely behavioural and physiological modalities.

The former, considers the bulk of observable behavioural re-
sponses typically associated to pain, such as facial expression varia-
tions, body movements, vocalisations (such as crying or moaning),
and spoken words [34, 47, 60].

On the other hand, the latter has to do with the exploitation of
hidden physiological information, typically brain activity, cardio-
vascular activity, and electro-dermal activity [27].

Oftentimes, more than one source of information has been em-
ployed in order to build multi-modal approaches to automatic pain
assessment [2, 50, 54].

As a matter of fact [56], the vast majority of pain assessment ap-
proaches take advantage of the behavioural responses as recorded
from RGB cameras. More specifically, the analysis of facial expres-
sions has been the most adopted technique. This is mostly due
to the wide availability of datasets providing such modality (e.g.
[28, 52]). Typical approaches involve feature extraction as a critical
step that often includes salient points detection (e.g. facial land-
marks) for both local and global geometric or appearance analysis
[3, 19, 22, 29].

In general, most early works in automatic pain recognition fo-
cused on this modality. For instance, in [8] authors propose a
machine assessment system for recognising pain from images of
neonatal facial displays experiencing the acute pain of a heel lance.
They adopt common machine learning methods for classifying pain,
namely PCA, LDA, SVMs and NNSOA.

Littlewort et al. [26] proposed a pain assessment method based on
machine learning techniques for the detection and differentiation
of real vs. faked pain, by the analysis on facial Action Units.

In [32] Niese et al. presented a method for vision based recog-
nition of pain from facial expressions, using color and gradient
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information along with a head contour model. A person specific
face model is built, from which 3D geometric features are extracted.
A support vector machine is then trained on these features.

More recently, [53] proposed a feature set for describing facial
actions and their dynamics called facial activity descriptors in order
to detect pain and estimate its intensity.

In [11] authors combine hand-crafted features (Local Binary
Patterns (LBP) and Histogram of Oriented Gradients (HOG)) and
features coming from pre-trained Deep CNNss for the assessment
of neonatal facial pain.

Finally, in [61] authors propose a Convolutional Neural Network
(CNN) trained end-to-end to detect neonatal pain, thus learning
the relevant features during training.

2.2 Graph Neural Network

In the last decades Graph Neural Network (GNN) [23] has wit-
nessed a flourish of investigations [58]. In a nutshell, GNNs are
suitable to process data in non-Euclidean domains representable as
graphs. Node embeddings is learned by exploiting the data struc-
ture in order to pass, transform and aggregate node features among
neighbours. The high-level information characterising the nodes is
then exploited to classify either nodes [17], edges [43] or the whole
graphs [44].

While node and edge classification has already achieved resound-
ing success [5, 30], graph classification often results in lower perfor-
mance. This hurdle is ascribable to the strong compression produced
by the graph pooling step, that pools together the node features in
order to obtain a single embedding for the entire graph. The way
this stage is carried out considerably influences the whole perfor-
mances.

The simplest and fastest approach, though feasible for small
graphs only, consists in computing either the max, or min, or mean
of all the node embeddings [14]. An enhancement to this solution
has been obtained by introducing the attention mechanism to the
mean pooling [25].

In [51] the authors propose the Set2Set method, based on Long
Short-Term Memory (LSTM) and attention mechanism, aiming at
embedding order-dependence information into the graph embed-
ding.

Alternatively, this task can be accomplished taking into account
the graph topology by performing graph coarsening (or clustering),
that progressively reduces the graph, until obtaining the final graph
embedding. In this vein, in [59] a differentiable graph pooling mod-
ule, namely DiffPool, learns to hierarchically map nodes to a set of
clusters on the basis of both node embeddings and graph topology.

In [62] an end-to-end Deep Graph Convolutional Neural Net-
work (DGCNN) is proposed, grounding the graph coarsening on
the SortPooling layer: the continuous WL colors [24] are used to
sort the nodes, thus conditioning the node order on their structural
role within the graph. Sorting step has a twofold benefit: it allows
to produce a sorted graph having fixed size (by keeping the first k
ordered nodes only). This way, sorted and fixed size graph repre-
sentation is suitable to be fed into a traditional 1D dense layer for
the graph classification.

Similarly, in [63] a graph pooling operator, called HGP-SL, is
introduced to sort and select nodes. This is accomplished referring
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Figure 1: Face mesh based on [20].

to the node information score that evaluates the information that
each node contains given its neighbourhood.

3 PROPOSED MODEL

The video-based facial pain expression recognition we propose
consists of three main steps: graph architecture definition, node-
level feature representation and graph processing.

3.1 Graph architecture definition

Given videos of faces, we build graphs such that nodes correspond
to salient facial landmarks and edges connect nodes outside the
close neighbourhood, according to a thresholded Euclidean distance.
A graph configuration is conceived to characterise a short interval
of time, thus in case of long videos we split videos in short clips.
Each node is associated to a feature vector suitable to characterise
the dynamics of that node in that clip.

More specifically, given a video v, if it is longer than f frames, it
is split into short clips olie 1.k, |vi| = fl. On each frame in o?
the method extracts a set of fiducial points. In current implemen-
tation, we use the method presented in [20] (see Fig. 1), deriving
a dense map of fiducial point that we lighten applying a uniform
subsampling (see Fig. 2).

Each clip ¢ is modelled by a graph G with nodes corresponding
to the n selected landmarks, and edges created connecting nodes
outside the close neighbourhood according to the Euclidean dis-
tance between each pair of landmarks, using an experimentally
fixed threshold (see Fig. 3). This way, the local information can
be shared between distant areas, fostering the message passing all
over the graph. As detailed in Sec. 3.2, the node characterisation
is conceived to produce a feature vector capturing the trajectory
followed by the corresponding landmark in the clip at hand.

3.2 Node-level Feature Representation
Each fiducial point f is characterised considering its trajectory as a

2-dimensional stochastic process, which (xf, yf) coordinates are

In case of videos with length not multiple of f, the last shortest video clip will be
discarded

Figure 2: Face mesh following the subsampling.

Figure 3: Example of edges for a single node. The radius of the
red circle represents the minimum distance for connection.

assumed to be independent from one another. As a consequence,
we end up examining 2n time-series in total.

Each trajectory is characterised using a set of complexity-related
measures, delivering insights concerning the dynamics and pre-
dictability of the time series, and spectral attributes summarising
the properties of the signals in the frequency domain. In particular,
we consider the following features:

3.2.1 Approximate Entropy (ApEn). ApEn [37] is a statistical mea-
sure used to quantify the amount of regularity of fluctuations in
time-series data. Larger values indicate higher complexity or irreg-
ularity in the data. ApEn has been extensively used for the analysis
of physiological time-series [39, 41].

3.22  Sample Entropy (SampEn). As ApEn, SampEn is another mea-
sure of complexity of a signal. Large values indicate high complexity
whereas smaller values characterise more self-similar and regular
signals. The SampEn of a signal x is defined as:
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C (Cm +1,r) (1)
(m,r)
where m is the embedding dimension (in our experiments we
set m = 2) and r is the radius of the neighbourhood (in our case
r = 0.2xstd(x)). C(m+1,r) and C(m, r) are the number of embedded
vectors of length m + 1 and m respectively, having a Chebyshev
distance inferior to r.

SampEn(x,m,r) = —log

3.23 Permutation Entropy (PermEn). The PermEn is a complexity
measure for time-series first introduced by Bandt and Pompe [4].
Given a signal x, it is defined as:

PermEn = — Z p(m)log, () (2)

where 7 is the set of p! permutations of x of order p. In our

experiments we set p = 3. As with ApEn and SampEn, the smaller

PermEn is, the more regular and more deterministic the time series

is. Contrarily, higher values of PermEn, suggest more noisy and
random time series.

3.24 SVD Entropy (svdEn). SVD Entropy [40] indicates the number
of eigenvectors that are needed for explaining the data. In other
words, it measures the dimensionality of the data.

Define an embedding matrix Y of a signal x as:

y(i) = [xi’xi+delays -+ > Xj+ (order-1)*delay ]
Y = [y(1),y(2),...,y(N — (order — 1)) * delay )]T

where delay = 1 and order = 3 represent the considered time
delay and the length of the embedding dimension, respectively.
The SVD entropy is then obtained as:

M
sodEn = — Z &ilog, (6;) 3)
i=1
where M is the number of singular values of the embedding
matrix Y and o; are the normalised singular values of Y. As for the
previous measures of Entropy Rate, svdEn is lower for simpler time
series and higher for more complex ones.

3.2.5 Detrended Fluctuation Analysis (DFA). DFA [35] is a method
for determining the statistical self-affinity of a signal. Similarly
to the Hurst Exponent, it is useful for analysing the the signal
correlation behaviour and it allows the detection of the long-range
dependencies. However, differently from Hurst exponent, DFA may
also be applied to signals whose underlying statistics (such as mean

and variance) or dynamics are non-stationary (changing with time).

The computation of DFA, goes as follows. The original signal x on
length N is first integrated and its average is subtracted:

X = Z (xi = (x)) ()

The resulting cumulative sum X is divided in chunks of length
¢, within which the linear trend Y is computed. Let Y; indicate the
resulting piece-wise sequence of straight-line fits representing the
linear trends estimated via least square fitting in each window. Then,
the root-mean-square deviation from the trend (the fluctuation) is
calculated as:
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Detrending followed by fluctuation measurement is repeated
over a range of different window sizes ¢ and a log-log plot of F(c)
against c is constructed, upon which a straight line is fitted. The
slope of this line represents the scaling exponent & delivering in-
formation about the self-affinity of the process.

3.2.6 Higuchi Fractal Dimension (HFD). HFD is a method for ap-
proximating the fractal dimension of a time series. HFD measures
the rate of increase in the difference of signal amplitude while the
signal samples are picked in an increasingly sparse way. HFD is
computed as follows. Given a time series x, For each k € {1,...,K}
and m € {1,..., k} define the length L, (k) by:

[%22]
DT Xn(m+ik) = Xy (m+ (i = 1)k)|
i=1

N-1
O e

Total average length L(k) is computed as:

1 k
LK) = 2 D7 Lm(k)
m=1

The HFD is represented by the slope of the best fitting straight
line on the log-log plot of % against L(k). In our experiments we
set K = 10.

3.2.7 Petrosian Fractal Dimension (PFD). PFD represents another
method for estimating the fractal dimension of a signal. In particular,
the Petrosian fractal dimension of a time-series x is defined as:

log;,(N)
loglo(N) + 10510 (ﬁ‘%)

where, N is the length of the time series, and N; is the number
of sign changes in the signal derivative.

PFD = (6)

3.2.8 Katz Fractal Dimension (KFD). Katz [21] proposed yet an-
other method for estimating the fractal dimension of a time-series.
Specifically, KFD can be computed as:

KFD = loglo(L/a)’

logy(d/a)

where L is the sum of distances between successive points, a
is their average, and d is the maximum distance between the first
point and any other point of the considered signal.

3.2.9 Zero-Crossing Rate (ZCR). The zero-crossing rate (ZCR) is
the rate at which a time-series changes from positive to zero to
negative, or from negative to zero to positive. Formally, given a
signal x of length N, ZCR can be defined as follows:

L Nz
ZCR = N_1 IZ:‘ IR, (xixi-1)

where 1g_, is the indicator function.
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3.2.10 Mel Frequency Cepstral Coefficients (MFCCs). Besides con-
sidering complexity-related measures of the time domain signals
represented by (x, y) coordinates of the facial landmark points, we
augment the feature set associated to each node with some spec-
tral features. In particular, we compute the first 13 Mel Frequency
Cepstral Coeflicients (MFCCs) on each trajectory.

MFCCs are coefficients derived from a representation of the
short-term power spectrum of a signal, based on a linear cosine
transform of a log power spectrum on a nonlinear mel scale of
frequency. They have been extensively used in speech and sound
processing as delivering compact and informative summary of the
spectral content of a signal. Specifically, MFCC computation is
carried out as follows:

o each signal describing the trajectory of a landmark w.r.t. its x
or y coordinate, is first transformed to the frequency domain;

e a Mel filter-bank is applied to the spectrum and the energy
in each filter su summed

o the logarithm of all filter-bank energies is taken

e the DCT of the log filter-bank energies is computed

o the first 13 coefficients are eventually kept.

Once all the complexity measures and MFCC features are ex-
tracted, they are concatenated to form a 44-dimensional feature
vector for each node.

3.3 Graph processing

Given a dataset of videos D = {v;, j € 1..d}, each one labelled by
I, € {Pain, notPain}, we split D into train and test sets, and for
each video v, the corresponding clip graphs G (possibly 1) are
computed as described in Sec. 3.1 and Sec. 3.2.

To solve the binary classification over graphs, we resort to the
Deep Graph Convolutional Neural Network (DGCNN) [62]. This is
trained on the pairs {G}, I} in the training set, I, being the label
of the video the clip belongs to.

In testing phase, for each video v we create its graphs G, and
evaluate them by collecting the classifications C, = {l;’,} The video
classification I, is finally computed as the median over C,.

4 EXPERIMENTAL RESULTS

Here we evaluate the performance of our model for pain classifi-
cation task (neutral vs. pain) in two different scenarios: acted pain
and spontaneous pain, induced by a thermal stimulation. This as-
sessment is carried out referring to video materials from the BioVid
Heat Pain Database 2 [52].

4.1 BioVid Heat Pain Database

The BioVid (Biopotential and Video) Heat Pain Database collects
multimodal reactions from 90 subjects undergoing induced heat
pain in four intensities held for 4 seconds, repeated randomly 20
times each, and with a random pose between stimuli. Experiments
were conducted both with and without EMG sensors. Since we
are interested in analysing the facial expression, we focused our
experiments on data acquired without EMG sensors. This part
of the dataset (Part A) consists of 8700 samples 5.5 second long,
corresponding to 87 subjects covering the 5 intensity classes.

https://www.iikt.ovgu.de/BioVid. html
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In the same dataset, the 90 participants posed both basic emotions
and pain, bringing to the collection of 630 videos 1 minute long,
covering 7 emotions among which pain (Part D).

4.2 Acted pain classification

In the first experiment, we use the Part D of the database, selecting
pain and neutral videos for a total of 178 videos. Each video is
divided into 200-frame sequences, reaching a total of 1245 samples.
This implementation choice is motivated by the very nature of
pain expression dynamics, typically discontinuous. Hence, in order
to discriminate the presence of pain in a video, we analyse short
windows and thence make a global prediction at the video level.
Moreover, this approach eases the comparison between the two
experimental settings, characterised by videos with a significant
difference in duration.

Then, for each sequence we collect the trajectories (in x and y
dimensions) of 94 face landmarks, obtained by applying a uniform
subsampling to the 468 ones delivered by the MediaPipe Python
library [16], and finally we derive the set of 44 features per landmark
(see Sec. 3 for details). This information is then associated to each
node of the graph, afterwards completed by edges between pairs
of landmarks (i.e. nodes) whose distance exceeds an experimental
fixed threshold equal to double the distance between the eyes. The
number of edges obtained is 4032 on average, given that the amount
of edges hinges on the facial configuration in the specific sequence.

Following the feature extraction step, the DGCNN classifier is
trained using the Adam optimisation algorithm to minimise the
binary cross-entropy loss and evaluated via 5-fold cross-validation
where the train/test split is performed to avoid the simultaneous
presence of sequences taken from the same video in train and test
set. We modified the network structure, making some variations
to the model proposed in [62]. First, we add a graph convolutional
layers to the original network and double the number of kernels,
reaching a total of five graph convolution layers with 64, 64, 64,
64, 1 output channels, respectively. Also, the SortPooling layer is
revised to keep the first 40 sorted nodes. Moreover, the hyperbolic
tangent activation function is replaced with rectified linear units
(ReLU).

The obtained results are presented in Tab. 1 in comparison to
a baseline Support Vector Machine (SVM) model created in order
to have a benchmark, since, as far as we know, there are no works
in literature adopting the acted part of the database for pain clas-
sification. In order to have an appropriate data structure for the
SVM classifier training, the graph structure was discharged, flat-
tened to a 4324-dimensional feature vector, and then reduced to
a 200-dimensional vector using PCA. It is worth noting that the
information carried by edges is unavoidably lost in the baseline
model.

Further, we compare our DGCNN classifier with an SVM adopt-
ing Action Units (AUs) intensities as features. This more standard
approach obtains almost the same performance as the SVM baseline,
pointing out the importance of the graph structure for learning
effectiveness over the concatenation of the feature sets.
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In Tab. 1 we report the evaluations of the proposed method
(CM+DGCNN), and the baselines (AUs+ SVM and CM+SVM), prov-
ing the effectiveness of the adopted features (CM) in combination
with the graph structure and learning.

l Model “ Video-level accuracy ‘
AUs+SVM 0.669 + 0.146
CM+SVM 0.714 £ 0.102

CM+DGCNN 0.834 + 0.116

Table 1: Results on acted pain videos (Part D) using proposed
complexity measures (CM) in combination with DGCNN
model compared to standard AUs intensity features and SVM.

4.3 Spontaneous pain classification

The spontaneous pain discrimination task is, in general, more worth-
while but also challenging. For this experiment we refer to the short
video sequences (5.5 seconds) included in the Part A of the database,
taking into account only the sequences labelled as pain-free (0/4)
and with maximum pain intensity (4/4). In doing so, we obtain 40
videos per participant (87 subjects altogether), 20 for each label,
totalling 3480 videos.

There are no differences in the feature extraction step and the
network structure compared to the acted experiment. Although, in
this session there is a one-to-one correspondence between videos
and graphs motivated by the shortness of video sequences and
by the presence of a single painful stimulation per video. For this
reason, the video-level accuracy is equivalent to standard accuracy
of the DGCNN.

For this experiment we evaluate our approach, CM+DGCNN,
and compare it to both the baseline method AUs+SVM, and the
results reported in [53] and [55]. As shown in Tab. 2, our results
are slightly above the state of the art on this Database.

l Model “ Accuracy ‘
AUs+SVM 0.648 + 0.068
Werner at al. (2016) 0.700
Normalized Werner at al. (2016) 0.724
Werner et al. (2017) 0.718
CM+DGCNN 0.732 + 0.139

Table 2: Results on spontaneous pain videos (Part A) in com-
parison with the state of the art and a plain AUs-based clas-
sifier. Werner at al. (2016) reports two results. The second
adding a feature standardization per subject.

5 CONCLUSION

In this paper, we presented a novel approach to pain expression
recognition that harnesses the local dynamics of facial movements
along with geometric properties of the face to train a GNN for
video-based pain classification. The proposed method proves its
effectiveness in comparison to the state-of-the-art models on the
BioVid Heat Pain Database.
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The promising results and the flexibility of the GNN-based ap-
proach open up to many chances for future works. First of all an
insight into the DGCNN would highlight which nodes are selected
as more relavant for the classification by the DGCNN SortPooling
layer, and in which order. This way, a face map of relevance to pain
would be produced. Second, the adoption of a multimodal strat-
egy, by the inclusion of physiological signals, may lead to further
improvements, also regarding the reliability of the pain recogni-
tion system. To this end, the graph structure would enable many
embedding strategies for different sources of data. Moreover, pain
intensity levels could be taken into account to achieve finest pre-
dictions. Last, the specificity of the exploited complexity-related
measures and spectral attributes of facial points trajectories in rela-
tion to pain could be evaluated by testing the performance on pain
vs. emotions task.
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