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ABSTRACT 

Engineering chemical entities to modify how pharmaceutical targets function, as it is done in 

drug design, requires a good understanding of molecular recognition and binding. In this context, 

the limitations of statically describing bimolecular recognition, as done in docking/scoring, call 

for insightful and efficient dynamical investigations. On the experimental side, the 
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characterization of dynamical binding processes is still in its infancy. Thus, computer 

simulations, particularly molecular dynamics (MD), are compelled to play a prominent role, 

allowing a deeper comprehension of the binding process and its causes and thus a more informed 

compound selection, making more significant the computational contribution to drug discovery1. 

Unfortunately, MD-based approaches cannot yet describe complex events without incurring 

prohibitive time and computational costs. Here, we present a new method for fully and 

dynamically simulating drug-target-complex formations, tested against a real world and 

pharmaceutically relevant benchmark set. The method, based on an adaptive, electrostatics-

inspired bias, envisions a campaign of trivially parallel short MD simulations, and a strategy to 

identify a near native binding pose from the sampled configurations. At an affordable 

computational cost, this method provided predictions of good accuracy also when the starting 

protein conformation was different from that of the crystal complex, a known hurdle for 

traditional molecular docking2. Moreover, along the observed binding routes, it identified some 

key features also found by much more computationally expensive plain-MD simulations. 

Overall, this methodology represents a significant progress in the description of binding 

phenomena.  

1. INTRODUCTION 

Understanding the mechanisms underlying molecular recognition and binding is pivotal for 

several fields (e.g. chemistry, biophysics, drug discovery)3-5. The scientific community is 

historically used to judge the entire binding process by just looking at the “end of the movie”, 

namely the structure of the complex. This is mainly due to the availability of experimental 

crystallographic structures, which describe the complex with atomic detail. The computational 

counterpart of this is molecular docking, which was conceived many years ago and is now a well 
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established technology, the reference in the field.6 However, affordable computational 

requirements and practical applicability, rather than inherent predictive power and accuracy, 

have made molecular docking the choice of election7. Since its inception, this approach 

underwent several significant but still incremental improvements.8 We believe that the time is 

now ripe for a scientific and technological shift in mindset, where the dynamic character of 

binding is considered and analyzed in addition to the single crystallographic structure9. The 

knowledge of binding paths can point to key molecular events, such as gate openings, encounter 

complexes, and other intermediates, which can in turn suggest modifications to hit compounds10. 

Unfortunately, there are not yet established experimental techniques for dynamically and 

structurally describing such processes at the atomistic level. In contrast, this is a momentous time 

for computer-aided predictions of events at the molecular scale. Computational capabilities have 

grown tremendously in recent years, and there has been continuous development of dedicated 

techniques in this area11. In silico approaches, particularly molecular dynamics (MD), are thus 

the most promising resource for addressing this need12, 13. Indeed, long plain MD simulations 

have already described the spontaneous binding of small organic molecules to biological targets 

of pharmacological interest, demonstrating both the adequacy of the present force fields and also 

the feasibility, at least in some cases, of observing rare events10, 14, 15. However, the sampling 

provided by this approach rarely meets the requirements for statistical significance, which is 

desirable for quantitatively estimating thermodynamic observables. Moreover, it requires a huge 

amount of computational resources, far more than the average time allocated to a real-world drug 

discovery project.  

One solution is to combine MD with so-called enhanced sampling approaches, whereby 

shorter but biased simulations energetically and mechanistically characterize binding events16-20. 
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Indeed, in recent years, the impact of MD in drug design has increased enormously due to 

several enhanced sampling techniques exploited to investigate the ligand binding process12. In 

this field, the most broadly applied techniques are FEP 21, umbrella sampling 22, steered-MD 23, 

and, markedly, metadynamics, which has been used several times, in its original or funnel 

version 24, to study protein-ligand binding, including for a variety of targets of pharmacological 

interest25-28. More recently, Moro and coworkers addressed the issue of fast MD-based docking 

simulations for the human adenosine receptor29. Interestingly, several biased approaches perform 

free-energy estimations as a function of the progress coordinate along a guess binding path, 

when available30, 31. Overall, if enhanced sampling approaches are to be effective, they usually 

need a quite detailed a priori knowledge of the most relevant degrees of freedom, or collective 

variables (CVs), for the process at hand. CVs that prove successful for one system cannot easily 

be extended to different systems, limiting their applicability. Consequently, the success of these 

methods can be user- and system-dependent. 

Here, we propose a new method, dubbed MD-binding, which systematically exploits MD to 

predict binding complexes and identify plausible binding paths. The aim of the method is 

enabling the scientist studying binding to make, at a reasonable computational cost, 

interpretations and predictions in a more informed way, that includes the observation of the “full 

movie” of the process together with the intrinsic benefit of fully flexible docking. To do this, it 

takes inspiration from the well-established notion that electrostatic interactions play a 

fundamental role in molecular recognition and binding, being pivotal at both long and short 

ranges32. Indeed, in nature, the long-range electrostatic behavior allows the interacting partners 

to spend sufficient time in relative proximity, so that they assume the most suitable conformation 

for binding. When approaching the final bound conformation, the short-range components begin 
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providing high specificity to the forming complex. This power has been exploited by some 

computational approaches applied to systems where electrostatics is known to play an important 

role33, 34. With respect to those approaches, the dramatic difference of the presented one lies in 

the assumption that electrostatics-shaped field lines can effectively guide binding also in 

processes that are not naturally driven by electrostatics. In line with this assumption, we add a 

contrived attractive multi-centered external bias that acts between the heavy atoms of the binding 

partners. In protein-ligand binding cases, the bias acts between a subset of the residues of the 

binding site and the ligand.  

The other key aspect of the method is the adaptivity of the bias. In this respect, the intensity of 

the external force is always kept at a fraction of the intensity of the actual physical force felt by 

the ligand. Moreover, the biasing force gradually switches off as the process moves forward so 

that, after the conjectured passing of the transition state has occurred, it slowly recovers the 

behavior of classical unbiased MD. In summary, the added forces are everywhere tangent to the 

electrostatic field lines generated by the fictitious charges on ligand and binding site. Their 

intensity is regulated by the adaptivity rules. The method requires the prior identification of 

binding site residues. This information is usually available before any structure-based study. 

 The protocol envisions campaigns of several short (20 ns) simulation runs. Here, we 

demonstrate its performance on a diverse and challenging set of protein-ligand complexes of 

pharmacological interest, encompassing enzymes, kinases, and GPCRs. Some of the systems 

have been chosen due to the availability of long plain MD trajectories describing the binding, to 

be used as a reference. We also tested our approach against a protein-peptide system. In 

campaigns of about 20 runs each, the method attained at least once near-native binding poses. 

We also compared some mechanistic details of our paths with those obtained by plain MD. This 
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comparison pointed to some common features, indicating a new and powerful way to exploit 

molecular simulations in real-case drug design settings at a reasonable computational cost. 

2. METHODS 

The protocol consists of a number of steps: 

• Characterization of the binding pocket. This is done via the NanoShaper tool35, which 

identifies the atoms facing the lumen of the pocket, we call it the “entrance” of the pocket. 

Several entrances can be detected.  

• Initial ligand positioning. The ligand is positioned with a random orientation at a 

predetermined distance, measured in terms of the thickness of the solvation shell around the 

ligand, from the entrance of the binding pocket. 

• Identification of attracting atoms: the attractive (i.e. the atoms of a subset S of the site and 

those of the ligand L) and the switch-off (S’) residues are chosen, as detailed in subsection 2.3. 

• Run of the simulation campaign. A number of independent simulation runs are launched in 

parallel. In this work, campaigns of 20 runs per entrance gate, each of them during 20ns, 

resulted in at least one near native binding pose. 

• Post-processing of the resulting trajectories. The unbiased final parts of the trajectories are 

taken and clustered with the k-medoids approach presented in Decherchi et al.31, imposing 

k=20. If the bias never vanishes during a simulation run, then that run is discarded. 

• Ranking of the poses. A Scaled MD approach, as described in subsection 2.5, is used to 

identify the best candidate binding pose and, consequently, a physically sound binding path. 

2.1. Characterization of the binding pocket and initial ligand positioning. NanoShaper is 

used to characterize the binding site in terms of volume, surface area and constituting residues. 

Large and small probe radii of 3.0 and 1.4 Å, respectively, were used. At the same time, 
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NanoShaper samples the part of the pocket surface that is accessible from the solvent and defines 

a set of points that lie at the entrance of the pocket. These dots, and the corresponding outward 

normal vectors, are clustered in N “gate” sets. The centroid of each cluster (i.e. the representative 

of the corresponding gate) identifies a possible access of the ligand to the pocket. Consistently, 

the ligand is positioned away from each gate along the normal, with random orientation. Indeed, 

no information is provided about the “correct” orientation or the final contacts between the 

receptor and the ligand. 

If there is ligand-protein overlap, or if the hydration shell between the ligand and protein is 

thinner than 10.0 Å, the ligand is translated farther away from the protein. 

2.2. The electrostatic-shaped bias. The MD-binding method envisions an additive external 

force that is summed to the regular potential energy of the system in a molecular dynamics 

simulation. The bias consists in a moving umbrella (as per classical steered MD) where, 

however, the force constant �(�) is adaptively modified along time. The functional form of the 

bias hence is: 

�
�� ∗ �(�) ∗ (�	(�) − �	�(�))�  
The pair of attracting atom sets (S as site, L as ligand) must thus be defined. The collective 

variable �	(�), is the electrostatic energy of the biasing system, and can be expressed as the sum 

of terms having the following form: 

�	(�) = 
 ������,�(�)
�

�	∈	�	,�	∈	�
exp	(−��,�(�)/�) 

where, r are the interatomic distances, exp(-r/λ) is a decay function aimed at avoiding 

unnecessary long ranged forces, and λ is the parameter that rules the spatial range of the decay 

(heuristically set to 10 Å). 
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Fictitious charges are therefore positioned on every attracting atom. In the present 

implementation: Ql = -Qs ∀l∈L,s∈S. The absolute value of the charges is not relevant since the 

overall intensity is ruled by the C parameter.  

The total force field lines result from the vectorial composition of regular and biasing forces. 

“By design”, the total force field lines identify a path leading to the binding site, which the 

ligand is invited to follow. This path automatically and dynamically updates as the binding site 

changes shape along its natural conformational evolution. Importantly, spreading the attraction 

across all the atoms of the S and L sets increases the likelihood of synergistic motions and 

reduces the likelihood of conformations that are incompatible with the binding due to steric 

hindrance. 

2.3. Choice of the attracting and switch-off atoms. The set L contains all of the ligand’s 

heavy atoms. The set S is chosen as a subset of the overall list of atoms constituting the binding 

site, which is created with NanoShaper. The choice of the subset is based mostly on geometric 

factors. Namely, the heavy atoms of the innermost part of the site are made to be attracting (for 

the presently studied systems, see Table S1). The choice of the attracting residues is an important 

aspect of the method, and affects its performance. Results of three cases of MD-Binding 

approach where the residues at the bottom of the binding pocket have been removed from the S 

set are shown in Table S7. The choice of how many atoms should be included in S depends on 

several factors, including ligand size, and the size and shape of the binding site. The switch-off 

atoms, defined as set S’, should ideally provide an estimate of whether the transition state for the 

binding process has been overcome. When the S’ set is approached by the ligand, the intensity of 

the biasing force irreversibly and gradually decreases.  
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2.4. Dynamics and adaptivity of the bias. The application of the bias envisages a steering 

schedule on the collective variable target value �	�(�), enforcing the reduction of the energy of 

the contrived electrostatic system. The form of the steer is piecewise linear, and consists of a first 

part, where the decrease in the target value of the energy is of limited amount to allow 

reorientation and a minimal conformational rearrangement of the ligand (see Figure S3 in the 

Supplementary Information). In the following steps of the plan, the decrease becomes more 

pronounced, increasing the thrust applied to the ligand. The actual target value of the bias, 

especially in the final part of the steering, is however of limited importance due to the 

modulation induced by the adaptivity of the protocol, as hereby explained.  

The protocol is adaptive in four different respects.  

First, the biasing force is always kept below a user-defined threshold. More specifically, the 

modulus of the biasing force is rescaled at every 0.2 ps of simulation, so that it equals a 

predefined fraction (10%, of the “real” resulting force acting on the ligand), which originates 

from the rest of the system. This is done to avoid an overly strong biasing, which could distort 

the structure of the protein, increasing the probability of following high-energy binding paths.  

Second, the bias is further reduced based on the distance between the ligand L and a subset S’ 

of S. S’ is a switch-off set comprising atoms that are expected to interact with the ligand (either 

geometrically or chemically guessed, or a priori known). By monitoring the decrease of the 

above-mentioned distance, this option seeks to identify the final steps of the process, where the 

transition state for the binding is already overcome. This makes the bias in this phase particularly 

unobtrusive, so that the simulation becomes closer to unbiased MD.  

The switch-off is obtained via a scaling pre-factor �, which multiplies the biasing force (this is 

a component of K(t)). This factor is calculated via a switching function as follows: 
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� = 11 + exp	(−!! ∗ ("#!� − �ℎ)) 
where ss and th are two suitable parameters, regulating the extent and the steepness of the 

switching. The value of dist equals: 

"#!� = 	%#&'∈() 	%#&*∈�"(+, ,), 
where d(x,y) is the pairwise distance between the x and y atoms. 

A third flavor of adaptivity is introduced into the MD-binding method by adding a “memory 

effect”. Once the K(t) has begun to decrease due to the approach of the S’ set, it can no longer 

increase even if the ligand bounces back. This reduces the likelihood that the ligand reaches the 

bottom of the pocket, but increases the probability that, if it does, it does this by following 

physically sound trajectories, which is the highest priority. 

Lastly, the dynamical variation of the spring constant is time-averaged over a circular buffer 

window of 2 ps to ensure that its time variation is consistently smooth. 

2.5. Post-processing of the resulting trajectories and ranking of the putative binding 

conformations. Once the simulation campaign is finished, a pruning process is carried out. This 

process discards those replicas where either the unbiased MD is not recovered, i.e. the final value 

of K(t) is greater than 10-9 (the ligand did not approach the switch-off set S’), or the ligand 

bounces back from the binding site during the unbiased MD (final distance between ligand and 

the S’ set greater than 7 Å). Based on our present experience, roughly half of the simulations can 

be discarded in this way. Table S2 shows the number of remaining replicas for each case study. 

The frames present in the unbiased chunks are aligned on the set of attracting residues and then 

clustered based on the heavy atoms of the ligand using the previously published k-medoids 

clustering method31. Again, based on our experience, 20 clusters characterize the sampled 

conformations with sufficient detail. The ranking process is based on the evaluation of the 
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stability of each medoid. Therefore, each medoid conformation is iteratively minimized with the 

steepest descent and conjugate gradient methods. Its stability is then estimated along short 

unrestrained Scaled Molecular Dynamics (SMD)36, 37 runs in the NVT ensemble for 5 ns and 

with scaling factor “s” equal to 0.6. In SMD, the potential energy of the entire system is scaled 

by a factor s, consequently reducing energetic barriers, including that of ligand unbinding from a 

given pose. The rationale underlying this approach is that the best pose should be that exhibiting 

the largest stability despite the applied scaling. SMD, used in a more complex protocol, proved 

successful in ranking congeneric ligands based on residence time in reasonable amount of 

computational time38 and already proved a viable tool to assess pose stability31. Table S3 reports 

the average RMSD of the SMD simulations and the scoring values from Autodock, Vina, and 

Drugscore for each of the 20 medoids along with the RMSD with respect to the X-ray. For the 

RMSD calculation, we first aligned the heavy atoms of both backbone and side chains of the 

residues constituting the protein binding site, as defined by NanoShaper, between each putative 

binding pose and the X-Ray structure of the complex. The RMSD was then calculated on the 

heavy atoms of the ligand. In case of RAD51-BRCA2 we used a proper protein-peptide scoring 

function, namely HADDOCK score, to rank the 20 medoids39. The fitting has been carried out on 

the RAD51 backbone and the RMSD calculation on the BRCA2 backbone, residues from 1523 

to 1534, which define the peptide interface contact region (iRMSD). iRMSD, or “interface 

RMSD”, which is the RMSD calculated only on the backbone of the residues that are at the 

binding interface, is a commonly accepted criterion used for protein-protein docking 

evaluation40.  

The figures of merit used to assess the performance of SMD and other scoring functions in 

selecting the near-native binding poses are: i) the coincidence between the best ranked and the 
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nearest to native medoid (Min to Min); ii) the ability to position the nearest to native medoid 

within 1 Å (in the case of SMD) or within 2kcal/mol (in the case of scoring functions) of the best 

ranked pose; and iii) the ability to position the nearest to native medoid within 1 σ (standard 

deviation) of the best ranked pose. Standard deviation is calculated from the set of RMSDs with 

respect to initial configuration in the case of SMD and from the set of scores in the remaining 

cases. 

 

2.6. Computational molecular dynamics setup. The algorithm setup and the analyses, 

excluding the ligand geometric optimization, were performed using BiKi Life Sciences suite 1.3 

of BiKi Technologies s.r.l. Each compound geometry was optimized via a quantum mechanical 

approach: electron density calculations were performed at the HF/6-31G* level of theory using 

the NWChem program41. Partial charges were derived using the RESP method in 

Antechamber42, while a GAFF43 parameterization was used to achieve the complete topological 

description of each ligand. 

Once the ligand was positioned through the “Residue Placement” tool in BiKi, the system was 

solvated in an orthorhombic box using TIP3P water model44. Adding a suitable number of 

counter-ions neutralized the overall system. Amber99SB-ildn force field was used45. Then, the 

whole system underwent energy minimization. Four different consecutive equilibration steps 

were performed: 1) 100 ps in NVT ensemble at 100K with both the protein backbone and ligand 

restrained (1000 kJ/mol nm^2), 2) 100 ps in NVT ensemble at 200K with both the protein 

backbone and the ligand restrained, 3) 100 ps in NVT ensemble at 300K with the protein free 

and the ligand restrained, and 4) 1000 ps in NPT ensemble at 300K with the protein free and the 

ligand restrained. Electrostatics was treated with the cutoff method for short-range interactions 
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and with the Particle Mesh Ewald method for long-range interactions (rlist = 1.1 nm, cutoff 

distance = 1.1 nm, VdW distance = 1.1 nm, PME order = 4). The constant temperature 

conditions were provided using the velocity rescale thermostat46, which is a modification of the 

Berendsen’s coupling algorithm47. The coordinate output from the last simulation was then used 

as input to produce the biased molecular dynamics. Finally, 20 replica production runs, 20 ns 

long in NVT ensemble at 300K, were performed for each complex using C=0.1 (the fraction of 

the felt force, here 10%), th=0.4 (in nm, representing the switch-off residue distance at which the 

bias is turned off), a smoothing window size of 1000 samples, and a maximal K(t) of 0.001 

(maximal steering constant).  

 

3. RESULTS 

3.1. Sampling putative binding poses. Here, we analyze the method’s ability to sample the 

correct binding pose as a result of a fully flexible and explicitly solvated dynamics that starts 

from the apo conformation of the target protein, available for 5 out of 8 targets. Results are 

shown in Table 1. Our figure of merit is the RMSD with respect to the crystal structure of a 

chosen medoid obtained by clustering the final unbiased part of the binding simulations (see 

Methods for details). In only two of the analyzed systems the RMSDs of the nearest to native 

medoid are larger than 2Å, a commonly accepted threshold in docking benchmarks. Also in these 

cases, namely AChE- Galantamine and GPCR β2- Alprenolol with RMSDs of 2.1Å (crystal 

resolution 2.4Å ) and 2.5Å (3.16Å), respectively, however, the main molecular interactions are 

reproduced. Remarkably, the simulations sampled configurations very close to the crystal ones in 

all cases (see Table 1). The same approach was also attempted on a protein-peptide system, 

namely the RAD51-BRCA2 complex, observing similarly good results. Here, a restraint on the 
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local secondary structure of the peptide was applied, to reduce the conformational space to be 

explored, as detailed in the SI (Table S4). 

Table 1. Sampling of binding poses for a diverse set of targets and ligands 

# 

Target 

(initial struct.) 
Ligand 

Holo 

PDB 

Best 
Medoid 
RMSD 

(Å) 

Min Obs 

RMSD 
(Å) 

Crystal 

Resolution 
(Å) 

RMSD 
Target initial 

struct. vs. 
holo (Å) 

1 CDK2 (4EK3) Staurosporine 4ERW 1.5 1.3 2.0 3.5 

  Hymenialdisine 1DM2 1.0 0.5 2.1 4.7 

2 CK1D (3UYS) PF670462 3UZP 0.6 0.3 1.94 1.5 

3 AChE (4EY4) 
Donepezil 4EY7 2.0 1.4 2.35 1.3 

Galantamine 4EY6 2.1 1.4 2.4 0.9 

4 GPCR β2 
ICI 118,551 3NY8 1.0 0.9 2.84 0.9 

Alprenolol 3NYA 2.5 1.6 3.16 0.0 

5* GPCR A2A T4E 3UZC 1.6 1.2 3.34 0.0 

6 SRC (1Y57) PP1 1QCF 0.9 0.3 2.0 0.7 

7* PNP (1M73) DADMe Imm-H 1RSZ 1.9 1.0 2.2 3.1 

8 RAD51 BRCA2 1N0W 1.9 0.9 1.7 0.0 

* for these targets 3 entrances to the site were identified and 3 campaigns were performed 

Column 4: PDB code of the holo structure of the target. Column 5: the RMSD wrt. crystal of 
the nearest to crystal medoid obtained by clustering (see the Methods). Column 6: minimum 
RMSD observed throughout the simulation. Column 7: resolution of the crystal of the complex. 
Column 8: RMSD between the initial conformation of the binding site and that of the complex. 
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Although dynamic docking is different in many respects from classic molecular docking, 

conventional docking simulations were performed on targets #1 to #7 using Autodock Vina48 and 

rDock49. In Autodock Vina all the attracting residues and the dihedral angles of the ligand have 

been left flexible while in rDock only terminal OH and NH3 groups on the protein in vicinity of 

the binding site were allowed to be fully flexible. Further details can be found in Tables S5 and 

S6 and are briefly summarized here in Figure 1. With these settings, no pose with RMSD< 2Å 

was identified by Autodock Vina among the first 20 ones, while at least one pose with RMSD< 

2Å was observed with rDock for 6 out of 10 complexes (see Figure 1a). Then, we considered 

separately the performance of rDock on the systems where the RMSD between the input 

conformation of the target and that of the holo complex, reported in column 8 of Table 1, is 

larger or smaller than 1Å. The results reported in Figure 1b, rDock1 and rDock2 series, show a 

remarkable sensitivity to this aspect, in contrast to what occurs with MD-Binding. Finally, we 

also tested the sensitivity of the performance of rDock with respect to the input conformation of 

the ligand, by feeding the program with the same ligand structures obtained after the 

minimization and equilibration steps, which precede the execution of MD-Binding. Results, 

reported in Figure1b, (rDock3 series) show a marginal deterioration of the performance. To 

highlight the importance for molecular docking tools of the complementarity between the 

conformations of the target and the ligand and of the amplitude of the conformational space that 

needs to be explored, we performed a rigid self-docking with Autodock Vina on target #5, where 

we have only the holo conformation, obtaining very good results (see Table S8). Overall, these 

results are in agreement with what it is known about the performance of molecular docking when 

non-cognate structures are used7, 50. 
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 As a further test, we performed two Steered MD campaigns of 20 replicas each, using the 

distance between the centers of mass of the ligand and the same residues composing the S set in 

the MD-binding method. This was done for the CDK2-STU and the CDK2-HYM complexes. In 

no replica the final RMSD wrt. crystal goes below 4.5Å. Related details concerning the methods 

and results are in the Supplementary Information (see Table S9). 

a)  

b)  

Figure 1. Performance of Molecular Docking tools. a) Statistics of RMSD wrt. crystal of the 
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first 20 poses provided by Autodock Vina (in blue) and rDock (in red) when they are inputted 

with crystal ligand structures. b) Performance of rDock on the complexes presenting a RMSD 

in protein binding site between inputted and crystal structure larger than 1Å (rDock1 series), 

and lower than 1Å (rDock2 series). rDock3 series shows the performance of rDock when the 

inputted ligand structures are subjected to energy minimization and equilibration (the same 

preprocessing done in the MD Binding procedure). 

 

3.2. Identification of near-native binding poses. Here, we analyze the method’s ability to 

identify near-native binding poses from among the configurations explored during the simulation 

campaign. This ability is essential for the global viability of a dynamical docking approach. It is 

achieved by first exploiting the adaptivity of the bias. As detailed in the Methods, by 

construction, the bias gradually switches off as the algorithm judges that the ligand is 

approaching the bound state, so that the last part of the simulation becomes unbiased. In some 

runs, this condition is never met and they are therefore immediately discarded (see, for example, 

Figure S1). Then, the last unbiased pieces of the remaining trajectories are collected and 

clustered via a k-medoid approach, imposing 20 final clusters. Finally, the corresponding 

medoids are ranked based on their stability, assessed via RMSD deviation, during a short run of 

unrestrained scaled MD (SMD)37 (see the Methods). As shown in Figure 2, this approach 

provided equal or better performance relative to scoring functions traditionally adopted in 

molecular docking, namely Autodock451, Vina48 and DSX DrugScore52. In this respect, the most 

relevant result is the ability of SMD to map the best rank to the best pose, which makes the 

overall approach particularly efficient. Interestingly, the different ranking approaches were 

challenged to recognize a very bad conformation: a head-to-tail inversion in the case of the drug 
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donepezil binding to the enzyme acetylcholinesterase. Unlike the tested scoring functions, which 

could not reject it so clearly, SMD identified this unlikely binding pose and ranked it among the 

lowest positions. (see Supplementary Information for complete data). Another interesting 

outcome is that the main interactions between the binding partners were recapitulated. Moreover, 

the simulated pose correctly reports the water-mediated interaction that can be observed in the 

crystal structure of one of the examined cases, namely the in the CK1D case (see Figure S2).  

Interestingly, the discriminating ability of SMD seems to extend somehow also to peptide 

ligands.  

 

Figure 2. Ranking of putative bound poses. Performance of SMD and widely adopted docking 

scoring functions in selecting the near-native binding poses. Three figures of merit were used: 

the ability to map the best rank to the best configuration (Min to Min), the ability to position the 

best configuration within 1 Å or 2kcal/mol of the best ranked pose, and the ability to position the 

actual best configuration within 1 σ (standard deviation) of the best ranked pose. Target #8 was 

not included in this comparison, since the considered scoring functions have been tuned for small 

chemical compounds rather than for peptides. 
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To assess this aspect, we compared the results it provided on the RAD51-BRCA2 complex 

with those of a scoring function specifically designed for the protein-protein binding, namely that 

of HADDOCK53. As shown in Table S3, the difference of SMD-based score, that is the iRMSD 

averaged over 5 ns of SMD, between the nearest to native pose and the best scored one was of 

0.7 Å, corresponding to 0.16 σ (standard deviation of the SMD-scores of that campaign). The 

HADDOCK score difference between nearest native and best scoring pose was instead of 

slightly more than one standard deviation.  

 

3.3. Similarity to near-native binding paths. To the best of our knowledge, no experimental 

study to date has provided a full atomistic characterization of an entire binding process. 

However, in principle, long plain-MD approaches can model a realistic binding process, 

provided that sufficient computational resources are available. Ligand-binding to three of our 

targets (namely #4, #6 and #7) has already been studied via plain MD, and these simulated 

binding events are the best available comparison reference for our biased trajectories. We 

therefore focus on the formation of three complexes, namely β2 adrenergic receptor and 

alprenolol, SRC kinase and PP1 inhibitor, and purine nucleoside phosphorylase and DADMe-

Immucillin-H.  

 

3.4. β2-adrenergic binding alprenolol. The G-protein-coupled receptor β2-adrenergic (β2-AR) 

is an important target for hypertension and several heart diseases. DE Shaw and co-workers have 

used extensive plain MD to study how this receptor interacts and binds with the inverse agonist 

alprenolol10. We analyzed our best binding route with two binding trajectories obtained via plain 

MD and kindly provided by DE Shaw Research. The comparison showed interesting shared 
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features. The recognition is very similar to that described in Dror et al., involving the same 

contacts in the same temporal order. As shown in Figure 3, although the alprenolol molecule 

reached the entrance from different positions and with different orientations, the binding paths 

followed the same two-steps molecular mechanism. First, alprenolol reorients so that its 

hydrophobic group binds to the extracellular vestibule surface (Figure 3, upper row). Then, it 

penetrates into the binding pocket through the gate closing-opening mechanism between Tyr308 

and Phe193 to form the salt bridges between the ammonium moiety and the carboxylate of 

Asp113 (Figure 3, lower row). 

 

3.5. PP1 binding SRC kinase. Another complex that was previously studied by extensive 

plain MD is PP1 inhibiting SRC kinase, a relevant biological target for cancer therapy. The PP1 

binding mode is characterized by a well-defined hydrogen bond network between the receptor, 

the ligand, and the surrounding water molecules. These interactions are only reproduced in one 

out of 20 medoids, which the SMD-based approach correctly identified. Characterization of the 

SRC-PP1 binding path was done by means of two different campaigns (20 runs each) with the 

ligand starting in different positions. The two binding paths leading to near-native binding, one 

per campaign, were compared with each other and with one long plain-MD trajectory kindly 

provided by DE Shaw Research15. 
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Figure 3. Binding of alprenolol to the β2-adrenergic receptor. Time sequence of the 

alprenolol binding process studied by MD-Binding (ligand in red and relevant side chains in 

orange) and plain MD10 (ligand in blue and relevant side chains in ice blue). Simulated times are 

reported in red for MD-Binding and in blue for plain MD. In both simulations alprenolol 

approaches the extracellular vestibule with the hydrophobic ring first and then it rotates to form 

the salt bridges (upper row). Moreover, in both simulations, Tyr308 and Phe193 separate and let 

the ligand's hydrophobic group pass through them. After the binding occurs, the gate closes 

(lower row). 

 

Interestingly, despite the different starting positions and the much larger sterically available 

space, in all cases the PP1 ligand accessed the site passing near a relatively small hydrophobic 

patch, as summarized in Figure 4. In the accelerated simulation, after spending a few ns in this 

region, the ligand enters the binding site with the heteroaromatic moiety, i.e. pyrazole and 

pyrimidinylamine. Only later does the ligand rearrange, positioning the toluene ring at the 

bottom of the binding site, recapitulating the main interactions between the heteroaromatic ring 

and the Met341 and Glu339 residues. 

3.6. DADMe binding purine nucleoside phosphorylase. We compared the successful 

binding trajectory obtained with our dedicated bias to the set of binding trajectories obtained 
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with our previous work31. Due to the peculiar structure of the binding site, which presents 3 

sizeable entrances, we conducted one campaign for each entrance for a total of 60 runs. The best 

obtained medoid had an RMSD of 1.9 Å and the corresponding route followed the so-called 

“upper” path, recapitulating the main interactions observed in the crystal. Similarly to what was 

observed in the unbiased simulations, the ligand entered the binding site only when the α-helix 

facing the site left enough space and the site became exposed. The first observed interactions 

were between the ligand dihydroxypyrrolidine and the phosphate. Upon binding, DADMe Imm-

H recapitulated the bi-dentate interaction with Asn243, and the bond with the PO4
2- group, as 

observed in the plain simulation. 
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Figure 4. Binding of PP1 to SRC kinase. Binding paths observed in our biased runs (in orange 

and red) and in the plain MD described in Shan et al. (in blue)15. Despite initial starting positions 

and orientations are different, and that the sterically accessible region (in cyan) is quite large, all 

ligands go through the same narrower region (indicated by the convergence of the three 

differently colored clouds representing the three ligands’ paths). Subsequent analysis showed 

that the preferred paths pass near the only hydrophobic patch found in the site entrance. 

 

4. DISCUSSION and CONCLUSIONS 

The method presented here addresses the main hurdles faced by the computer simulation of 

protein-ligand binding processes. Protein-ligand binding poses can sometimes be reproduced 

with a high level of accuracy by plain-MD simulations in the microsecond-to-millisecond 

timescale, or by shorter, but more numerous, simulations. However, these approaches require a 

great deal of time and resources, which is rarely compatible with routine drug discovery projects, 

where, ideally, many compounds would be computationally investigated prior to medicinal 

chemistry experiments4. The results presented herein indicate that a partially guided approach 

can provide insightful information in an aggregate time which is, on average, 2-3 orders of 

magnitude shorter than that required by plain MD even in cases where a non-cognate site 

conformation is chosen to start the simulation, therefore requiring a substantial rearrangement of 

binding site residues. Moreover, this approach carries the additional advantage of being divisible 

into trivially parallel short simulations. 

To attain its aim, the method exploits electrostatic attraction to induce recognition and binding. 

Rather than localizing the attraction on centers of mass, as often reported in the literature, it 

spreads it over a large number of atoms, facilitating concerted movements. Moreover, it favors 

Page 23 of 31

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 24

the exploration of low-energy, physically sound paths via a suitably adaptive behavior. At the 

end of the simulations, near-native binding poses were identified by clustering and SMD-based 

conformation ranking procedures. Choosing the attracting residues on the protein side is a critical 

part of the method and examples of the deterioration of the performance induced by a wrong 

choice are reported in the SI. Our criterion here consists in a down-selection, chiefly based on 

geometric criteria, of the residues composing the binding site. Remarkably, the same choice of 

residues provided equally good results in type-1 inhibitors of three different kinases, namely 

CDK2, CK1D, and SRC kinase. A useful feature of the method is the possibility to include a 

priori knowledge about the binding with no difficulty, as it was done in the β2-adrenergic case, 

where the interaction of ligands with Asp113 is widely accepted. In the performed validation 

tests, we targeted the known orthosteric binding sites. However, the approach is expected to 

work also in case of targeting allosteric or cryptic sites. 

Interestingly, the availability of the holo conformation of the protein, which lacks in the most 

challenging, and also interesting, cases, does not seem to be an essential requisite to achieve a 

good performance of the MD-Binding method. This is one of the main differences with 

conventional molecular docking, where the differences between self- and cross-docking results 

may be striking. 

To challenge the extent of applicability of the method, we applied it to a relevant protein-

peptide case, obtaining very promising results, although further studies and some adaptation are 

required to assess whether the novel methodology is fully suitable for protein-peptide and, in the 

long term, protein-protein systems. 

 A promising feature of our approach might be the ability to identify prominent mechanistic 

features of the binding process. There is increasing interest in the scientific community in 
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understanding the path that characterizes the binding and thus identifying the relevant 

intermediates that could explain non-obvious kinetic behaviors, such as traps and allosteric sites, 

as a new dimension to be exploited in drug design. In this respect, the binding trajectories 

generated by our method were compared to the available reference paths (generated via plain 

MD) and showed interesting mechanistic commonalities.  

A further aspect to consider is that a reasonable initial guess binding path can be exploited to 

feed traditional path-based enhanced sampling techniques to obtain free-energy profile estimates 

along binding and, finally, chemical affinity54, 55. Interested readers can apply the techniques 

described in this paper by obtaining a trial version of the BiKi LifeSciences software suite by 

requesting it on the site http://www.bikitech.com. 

The present methodology seeks to fulfill two divergent requirements. These are a) accuracy, 

which can, in principle, be obtained by extensive MD simulations, and b) speed, which is 

particularly necessary when many compounds must be investigated to drive a lead discovery 

campaign. Here, using electrostatics as the bias to accelerate MD simulations, we obtained 

accurate binding poses and routes much faster than via plain MD. The obtained results 

corroborate our initial hypothesis that electrostatics is suitable for building a good attractive 

basin even for binding processes that naturally are not driven by electrostatics. The presented 

approach paves the way for a feasible and efficient dynamic docking simulation, which delivers 

the “full movie” rather than just the “final scene”. Dynamic docking is a quite different concept 

from conventional molecular docking,56 providing a wider wealth of information at a larger 

computational cost. It can also be used as a second line alternative, in cases where the dynamic 

phenomena accompanying binding prevent static docking from predicting the correct 

conformation of the complex. We believe this will remarkably broaden the scope and the impact 
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of MD in every discipline concerning protein-ligand interaction and opens up new avenues for 

developing innovative drug discovery methods.  
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