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Abstract: An untargeted Nuclear Magnetic Resonance (NMR) spectroscopy-based metabolomics
approach was applied as a first attempt to explore the metabolome of pigs treated with antibiotics. The
final goal was to investigate the possibility of discriminating between antibiotic-treated (TX group)
and untreated pigs (CTRL group), with the further perspective of identifying the authentication tools
for antibiotic-free pork supply chains. In particular, 41 samples of pig liver were subjected to a biphasic
extraction to recover both the polar and the non-polar metabolites, and the 1H NMR spectroscopy
analysis was performed on the two separate extracts. Unsupervised (principal component analysis)
and supervised (orthogonal partial least squares discriminant analysis) multivariate statistical analysis
of 1H NMR spectra data in the range 0–9 ppm provided metabolomic fingerprinting useful for
the discrimination of pig livers based on the antibiotic treatment to which they were exposed.
Moreover, within the signature patterns, significant discriminating metabolites were identified
among carbohydrates, choline and derivatives, amino acids and some lipid-class molecules. The
encouraging findings of this exploratory study showed the feasibility of the untargeted metabolomic
approach as a novel strategy in the authentication framework of pork supply chains and open a new
horizon for a more in-depth investigation.

Keywords: antibiotic-free claim; untargeted metabolomics; NMR; pork; polar metabolites; non-polar
metabolites

1. Introduction

Today, the meat sector faces many challenges in terms of sustainability, nutritional
aspects and authenticity, leading meat operators to rethink the management of food-
producing husbandry systems. Additionally, as consumers incline toward making choices,
which are seen as greener and more sustainable, greater attention is devoted to the position-
ing factors of meats in the market [1]. Currently, several certifications and labels guarantee
various meat attributes, including antibiotic-free, halal, kosher, organic and GMO-free [2].
Certification marks concerning the usage of antimicrobials (AMU) (i.e., Antibiotic Free or
Raised Without Antibiotics) fulfill consumer requests concerning value-added meat obtained
from farm animal chains embracing animal health and welfare values [3]. On the other
hand, responsible AMU in livestock farming responds to the global need to fight antimicro-
bial resistance (AMR)—a major threat to public health [4]. The definition of novel attributes
in meat may provide opportunities for food fraud, and for this reason, fit-for-purpose tools
are urgently needed for the protection of the integrity of the meat chain.

For public health protection, in the European Union (EU), the procedures establishing
the maximum concentration of a residue of pharmacologically active substances, which
may be permitted in food of animal origin, are laid down by Regulation (EC) n. 470/2009,
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and the maximum residue limits (MRLs) of those substances in foodstuffs of animal origin
are set out in Commission Regulation (EU) n. 37/2010 [5,6]. The regulatory framework
for the manufacturing, import, export, supply, distribution, pharmaco-surveillance, con-
trol and the use of veterinary medicinal products and medicated feed is represented by
Regulation (EU) 2019/6 and Regulation (EU) 2019/4 [7,8]. Among the objectives, these
provisions, together with further implementing and delegated regulations, aim at strength-
ening EU action against AMR through specific measures, such as prudent AMU and the
reservation of certain antibiotics only for the treatment of infections in human medicine.
For monitoring purposes, all member states must include official controls in the multi-
annual national control plans (MANCPs) with regard to antimicrobial agent residues in
animals and derived food; in particular, the specific requirements, criteria and uniform
practical arrangements for the performance of official controls of residues are provided
by Commission Delegated Regulation (EU) 2022/1644 and Commission Implementing
Regulation (EU) 2022/1646 [9,10].

Concerning the analytical aspects in relation to residues of pharmacologically active
substances in live food-producing animals and products of animal origin, the provisions
applicable to the methods used for sampling, laboratory analyses and interpretation of
analytical results are established by Commission Implementing Regulation (EU) 2021/808,
which applies to official controls aimed at verifying compliance with MRLs [11]. In this
framework, biological and biochemical methods are available mainly for screening pur-
poses [12], while chromatographic analysis based on full-scan diode array detection spec-
trophotometry, fluorescence detection spectrophotometry or mass spectrometry detection
is required as a confirmatory method, except for prohibited or unauthorized pharmaco-
logically active substances, for which only mass spectrometry detection is suitable. By
providing full or complementary information to unequivocally identify the substance,
confirmatory methods for antibiotic residue monitoring are based on targeted multiresidue
methods limited to a pre-defined number of known analytes [13,14]; the literature provides
several examples of validated multiresidue multiclass methods, which cover more than one
hundred targeted analytes in a single analysis [15,16]. However, the untargeted approach
has emerged as an alternative and promising tool enabling the development of sensitive
and wide-ranging screening of analytes, overcoming the limitations of targeted analysis.
The untargeted workflow allows for the recovery of an enormous number of non-pre-
selected compounds, even unknown ones, which may be simultaneously monitored and
identified through a bottom-up strategy [17]; the screening of thousands of molecules may
highlight new analytes as potential biomarkers of the physiological responses following
the administration of antibiotics. In a long-term perspective, novel biomarkers might be
a useful strategy for implementing more efficient control systems enabling the monitor-
ing of a more representative number of samples within the residue control plans. As a
matter of fact, the report of the European Food Safety Authority for 2021 on the results
from the monitoring of veterinary medicinal product residues in live animals and animal
products reveals a continuous decline in the percentage of non-compliant samples over
the last decade [18]. Despite the positive trend from a safety point of view, the very low
non-compliance percentage (0.14% for antibacterials for all tested animal species, 0.09% for
pigs in 2021) could be affected by the inadequacy of sampling and may highlight the need
for new approaches.

Apart from compliance purposes for MRLs, the untargeted approach could play a
role in assessing the specific quality certifications related to the use of antibiotics in animal
husbandry beyond the presence or absence of residues in the samples under investigation.
Changes in gut-microbiota-produced metabolites after antibiotic exposure in pigs are
documented in the literature [19,20]. Moreover, there is evidence that antibiotic treatment
elicits microbiota-independent changes in host metabolites [21], markedly affecting the
metabolomic profiles of the gut and biofluids in antibiotic-treated piglets [22]. In this
respect, it is conceivable that the metabolome—intended as a whole set of precursors,
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intermediates and products of biochemical processes—may contain useful information for
revealing the metabolites attributable to an antibiotic treatment.

Metabolomics is the comprehensive study of low-molecular-weight (typically <1500 Da)
metabolites in biological systems. In recent years, this high-throughput molecular tech-
nology has been widely exploited to study several traits of interest in animal sciences.
It has been explored as an efficient methodology for unraveling metabolic changes in
food-producing animals, thus helping identify the candidate molecules representative
of different physiological pathways and contributing to the development of diagnostic
tools for better animal management [23]. In this regard, the advances in metabolomic
profiling have led to an investigation of the effects of heat stress on the saliva and serum
metabolome of pigs and identification of metabolites, which could be used as biomarkers
of the stressful condition [24,25]. Metabolomics has been proposed as a promising tool for
investigating novel biomarkers useful for a comprehensive assessment of animal welfare
status; objective indicators of the overall status of the animal might be advantageous for
defining adequate management strategies to improve the welfare of livestock animals and
for the purpose of authenticity and traceability of meat supply chains, which adopt high
standards of production and label claims concerning animal husbandry conditions [26].
Two main analytical platforms—namely nuclear magnetic resonance (NMR) spectroscopy
and mass spectrometry (MS)—are considered the workhorses for metabolomics analysis,
leading to the generation of a massive amount of data due to the acquisition of thousands
of metabolite signals [27,28].

To the best of the authors’ knowledge, insights into the biochemical phenotype through
the study of the metabolome of pigs treated with antibiotics have not been reported
previously. Therefore, the aim of the present study was to explore the metabolome via
an untargeted NMR-based approach in order to capture and compare the metabolomic
fingerprinting of antibiotic-treated vs. untreated pigs. This study is intended as a first step
of a wider investigation aimed at identifying and validating adequate biomarkers to be
used as tools for assessing the pig chains’ authenticity. In this regard, the pigs in this study
were from commercial farms selected within the ClassyFarm system—the Italian national
monitoring system aimed at categorizing livestock farms based on risk.

2. Materials and Methods
2.1. Chemicals and Reagents

HPLC grade methanol, chloroform and water were purchased from Labscan (Dublin,
Ireland). Analytical grade sodium dihydrogen phosphate monohydrate and di-sodium
hydrogen phosphate dihydrate were supplied by Merck (Darmstadt, Germany). Deuterium
oxide (99.9% D), methanol-d4 (99.8% D) and chloroform-d4 (99.8% D) were obtained from
VWR International BVBA (Geldenaakseban, Leuven, Belgium), and 3-(trimethylsilyl)-
propionate-d4 (TSP) was obtained from Sigma-Aldrich (Milano, Italy).

2.2. Experimental Design

Forty-one heavy pigs (approximately 170 kg of live body weight) reared in 2020 on four
fattening farms in northern Italy were selected for this study. Pigs were randomly allotted
into two groups according to the object under investigation: the control (group ID CTRL,
n = 22) and treatment (group ID TX, n = 19) groups, respectively. Group classification was
designed considering the AMU, which was estimated by calculating treatment incidence
100 (TI100) using the Defined Daily Dose Animal for Italy (DDDAit) as a standard, as
described in a previous study on Italian fattening farms [29]. The TI100 can be interpreted
as the percentage of time a pig spent under treatment during its production cycle [30].
Data on AMU were extracted from the Italian Ministry of Health’s surveillance system,
ClassyFarm [31], which is available and mandatory for all Italian pig farms. In this study,
for greater representativeness of the samples, pigs in the TX group were randomly chosen
from two batches of about 100 pigs each from two farms, namely Farm 1, with a TI100 of
9.1, and Farm 2, with a TI100 of 20.8; similarly, pigs in the CTRL group were chosen from
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two batches from Farm 3 and 4, respectively, where no antibiotic treatments were recorded
(Figure 1).
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Figure 1. Graphical representation of the experimental design. The upper box sums up the math-
ematical formula for TI100 used as classification criterion for assigning group ID (CTRL and TX).
(Active ingredient used (mg): amount of the active ingredient of the antibiotic used for treatment;
DDDAit (mg/kg/day): Defined Daily Dose Animal for Italy expressed in mg of active substance
per day per kg of body weight; Animals (n): number of animals considered for batch of livestock;
Standard weight (kg): average animal weight during the treatment period, set up at 100 kg for heavy
pigs; Production cycle (days): days of pig production cycle).

Except for antibiotic administration, other variables, such as feed and gender, were
intentionally not considered to assure greater reliability of the study. However, all pigs
were of the same age and were slaughtered on the same day at a commercial abattoir under
the supervision of the veterinary team and were intended for human consumption. No
ethical approval was required. The whole liver of all pigs was removed from the carcasses
during slaughtering and immediately stored at −20 ◦C until analysis. The liver was chosen
as the matrix for the investigation, since its role in drug metabolism is well established.

2.3. Sample Preparation

The biphasic extraction procedure, known as the Bligh and Dyer method [32], with
slight modification was adopted for the recovery of polar and non-polar metabolites of the
liver. Briefly, 100 mg of frozen liver manually grinded was mixed with 3 mL mixture of
methanol/chloroform (2:1, v/v) in a 15 mL screw cap glass tube and vortexed for 30 s. Then,
a sonication step in an ice-water bath for 30 min was performed. Further, 1 mL of water
and 1 mL of chloroform were added and newly vortexed. The sample was then centrifuged
for 35 min at 4 ◦C, at a speed of 2220× g (Beckman Coulter Life Sciences, Milano, Italy).
Finally, phase separation was achieved, and the upper polar and lower non-polar fractions
were separately transferred to new glass tubes, and each fraction was dried under nitrogen
flow. Both fractions were stored at −20◦ C and reconstituted prior to 1H NMR analyses.
For the polar extracts, 700 µL of sodium phosphate buffer in D2O (0.25 M; pH = 7) and
100 µL of TSP as internal standard were added and transferred in 5 mm outer diameter
NMR tubes. For the non-polar extracts, 600 µL of chloroform-d4 and 200 µL of methanol-d4
were employed for the reconstitution.

2.4. 1H NMR Spectroscopy Analysis

Polar and non-polar extracts were separately recorded using NMR spectrometer
operating at a magnetic field of 600.17 MHz with a 5 mm ROYAL probe (JEOL ECZ 600,
JEOL Ltd., Tokyo, Japan). For both extracts, each acquisition was preceded by a shimming
phase along the x-, x/z-, y- and y/z- axes performed at 25 ◦C (temperature delay, 120 s).
Different setting conditions were applied with the Delta software package (ver. 5.3) to
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optimize the quality of spectra acquisition, as follows. For the polar extracts, proton
acquisition was performed at 298 K, with a field frequency lock on D2O, 32,768 data points
using a 30◦ pulse length and 5 s of relaxation delay. A total of 128 scans were collected over
a spectral width of 24 ppm. The polar aqueous spectrum was collected by employing the
basic shape pulse obs_DANTE_presaturation (JEOL ECZ600R database) for the suppression
of water signal in the spectral region between 4.5 and 4.8 ppm (δ = 4.661 ppm). For the
non-polar extracts, proton acquisition was conducted at 298 K, with a field frequency lock
on methanol-d4, 65,536 data points using 30◦ pulse length and 10 s of relaxation delay. A
total of 32 scans were collected over a spectral width of 24 ppm.

2.5. Data Processing and Multivariate and Univariate Data Analysis

Raw spectra were transferred to the MestReNova 14.2.1 software (Escondido, CA,
USA) to manually perform the correction for the phase and baseline. With regard to the
polar fraction, all spectra were referenced to TSP (δ = 0 ppm). For non-polar fraction, δ = 0
ppm allowed a perfect alignment of the spectra; therefore, it was also used as the referenc-
ing signal. The assignment of 1H NMR signals was supported by the literature [33–39] and
online public databases for NMR, such as the Biological Magnetic Resonance Data Bank
(BMRB) [40] and the Human Metabolome Data Base (HMDB) [41]. The integration step
was manually performed on all fully overlapped spectra to identify and consider only the
interesting region; thus, the integration pattern was built considering the region between 0
and 9 ppm for both polar and non-polar fractions. Spectral regions containing resonances
only from noise, water and TSP were excluded prior to data analysis. To compensate
for the concentration differences, each integral region was normalized to the TSP signal
area for the polar fraction or to the total area of each spectrum in the case of non-polar
fraction. Finally, the metabolomics dataset was built as a data matrix N × R [N = samples;
R = ppm buckets], leading to the acquisition of a 41 × 84 (3444) and a 41 × 76 (3116) data
matrix for polar and non-polar fractions, respectively. No missing data were detected
in the two matrices. The two datasets were exported to the SIMCA 17 software package
(v. 17.0.0, Sartorius Stedim Data Analytics AB, Umea, Sweden), and statistical analysis
was performed separately on the two different fractions. Unsupervised principal compo-
nent analysis (PCA) and supervised orthogonal partial least squares discriminant analysis
(OPLS-DA) were performed for the different objectives they pursue. PCA aims at exploring
the natural distribution of the samples within a reduced dimensional space and looking
for clustering trends among samples; the PCA score plots facilitate data projection from a
higher dimensional space to a lower dimensional one and enable reconstruction of them
without prior assumptions regarding their distribution. On the contrary, the OPLS-DA is a
discriminant and classification method; it usually provides superior classification results
to the PCA (which is not a classification method) because it focuses on the boundaries
separating the pre-defined groups in the multidimensional space. Moreover, taking ad-
vantage of variable selection methods, OPLS-DA supports the identification of possible
biomarkers, thus enhancing the interpretability of the datasets. In the present study, PCA
was preliminarily performed on the auto-scaled datasets to explore their characteristics
and detect clustering or trends among the samples. The presence of outliers was also
checked by evaluating Hotelling’s T2 range values (5% level of significance). The PCA
models were internally validated with a 7-fold cross-validation (CV), and their quality
was assessed by the performance indicators goodness-of-fit (R2X) and predictive ability
(Q2). To further explore the datasets, the OPLS-DA was performed on the two matrices
after Pareto scaling of the data; internal validation of the computed models was carried
out with a 7-fold CV, and the R2X, Q2 and R2Y (the fraction of Y variation modelled in that
component) values were considered as useful performance indicators for evaluating the
global quality of the models. Finally, the variable importance in projection (VIP) scores
for OPLS-DA components were designed to find the strongest influence exerted by NMR
signals over sample discrimination: as a rule, VIP values ≥ 1 were used to identify the
most relevant buckets (selected features), i.e., those with the largest discriminatory power,
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since scores smaller than one indicate a non-important variable for discrimination between
groups [42]. The OriginPro 2019 software (OriginLab Corporation, Northhampton, MA,
USA) was used for univariate data analysis. To check the normality of the selected features,
the Shapiro–Wilk test was conducted. The non-parametric Mann–Whitney U-test (p ≤ 0.05)
and the two-sample t-test (p ≤ 0.05) were applied to the selected features not fitting and
fitting the normal distribution, respectively, to investigate the differences between the two
groups—TX vs. CTRL. The fold change (FC) ratio was calculated by taking the median
value of selected features in the TX group over that of the CTRL group to highlight the
metabolites’ accumulation, where <1 = down-accumulated and <1 = up-accumulated [43].

3. Results

3.1. Assignment of 1H NMR Spectra Signals of Hepatic Polar and Non-Polar Extracts
1H NMR spectra of liver extracts were inspected to investigate the characteristic

resonances and gain an overview of the polar and non-polar compounds of pig liver.
The complete list of putatively annotated metabolites based on the chemical shifts, signal
multiplicity and chemical formula is highlighted in Tables 1 and 2 for polar and non-polar
fractions, respectively. A representative 600 MHz 1H NMR spectrum of the hepatic polar
extract is shown in Figure 2.
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Figure 2. Representative 600 MHz 1D 1H NMR spectrum of the polar extract of pig liver. For the
signal numbering (1 to 27) indicated in the spectrum, refer to Table 1.

Although the overlapping of some signals was observed, several metabolites belong-
ing to different biochemical categories were identified along the region of interest (0–9 ppm).
As can be seen, the spectrum of the polar extract was divided into three regions—aliphatic,
middle and aromatic—described as follows. In the aliphatic region, the assignment of
resonances at lower frequencies was easily conducted, since the signals and multiplicities
(doublet, triplet, singlet) were well distinguishable. In the region from δ 0.9 to 2.7 ppm,
the resonances were mainly attributable to amino acids (AA) and organic acids. Specif-
ically, essential AA (isoleucine, leucine, valine, methionine), non-essential AA (alanine,
proline, glutamate, tyrosine) and organic acids (lactate, acetate and succinate) were identi-
fied. The identification in the middle region of the 1H NMR polar spectrum from δ 3.0 to
5.2 ppm was very challenging due to the presence of many signals and the overlapping
of peaks belonging to protons of different molecules. This region was mainly dominated
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by peaks attributable to carbohydrates (α-glucose), but choline and its derivatives (glyc-
erophosphocholine and phosphorylcholine) were identified, too. The aromatic region from
δ 6.5 to 8.5 ppm was mainly characterized by aromatic AA phenylalanine and tyrosine.
Figure 3 presents a representative 1H NMR spectrum of the non-polar fraction of liver,
which appeared less complex than that of the polar fraction, at a glance (Figure 2).

Table 1. Summary of the 1H NMR spectra signal assignment of the polar extract of pig liver.

Biochemical Category N a Metabolite Name Assignment δ ppm and
Multiplicity b Formula

AA and
Derivatives

1 Isoleucine
γCH3 0.96 (t)

C6H13NO2δCH3 1.04 (d)
αCH 3.65 (d)

2 Leucine

δCH3 0.96 (t)

C6H13NO2
βCH2 0.99 (d)
αCH 3.72 (m)
γCH 1.72 (m)

3 Valine

γCH3 0.98 (d)

C5H11NO2
γCH3 1.04 (d)
βCH2 2.25 (m)
αCH 3.61(d)

4 Alanine βCH3 1.49 (d) C3H7NO2

5 Lysine δCH2 1.72 (m) C6H14N2O2

8 Taurine N-CH2 3.25 (t) C2H7NO3S

11 Ornithine
1/2 γCH2 1.72 (m)

C5H12N2O2δCH2 3.04 (t)
αCH 3.77 (t)

12 Proline γCH2 2.06 (m) C5H9NO2

13 Methionine
δCH3 2.13 (s) C5H11NO2S
αCH 3.78 (m)

14 Glutamate
βCH2

2.07 (m)
C5H8NO4

−2.13 (m)
γCH2 2.35 (m)

16 Creatine N-CH3 3.04 (s) C4H9N3O2

18 β-Alanine
CH2COOH 2.56 (t) C3H7NO2N-CH2 3.18 (t)

21 Tyrosine C3H&C5H 6.91 (d) C9H11NO3C2H&C6H 7.20 (d)

22 Phenylalanine
C3H &C5H 7.33 (m)

C9H11NO2C4H 7.38 (m)
C2H&C6H 7.42 (m)

24 Threonine
γCH3 1.33 (d) C4H9NO3αCH 3.57 (d)

17 Glutathione αCH 3.77 (m) C10H17N3O6S

23 Tryptophan
αCH 4.06 (m)

C11H12N2O2C1H 7.33 (s)
C3H 7.55 (d)

26 Glutamine
βCH2 2.13 (m) C5H10N2O3αCH 3.77 (t)
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Table 1. Cont.

Biochemical Category N a Metabolite Name Assignment δ ppm and
Multiplicity b Formula

Organic Acids

4 Lactate
βCH3 1.33 (d)

C3H5O3
−

αCH 4.12 (q)

7 Acetate CH3 1.92 (s) C2H3O2
−

15 Succinate CH2 2.41 (s) C4H4O4
−2

Carbohydrates 20

Alpha-glucose

C4H 3.41 (t)

C6H12O6

C2H 3.54 (m)
C3H 3.72 (t)
C1H 5.24 (d)

Beta-Glucose

C2H 3.24 (m)
C5H 3.83 (m)
C6H 3.90 (dd)
C1H 4.65 (d)

Choline and
Derivatives

9 Choline
N-(CH3)3 3.21 (s)

C5H14NO+βCH2 3.53 (dd)
αCH2 4.07 (m)

10 Glycerophosphocholine N-(CH3)3 3.23 (s) C8H21NO6P+

19 Phosphorylcholine N-(CH3)3 3.22 (s) C5H14NO4P

Alcohol 27 Glycerol
CH 3.77 (m)

C3H8O31/2 CH2 3.57 (m)
1/2 CH2 3.65 (m)

Nucleoside 25 Adenosine Ring protons 8.25 (s) C10H13N5O4

a N = numbering (1 to 27) of the signals indicated in Figure 2; b s = singlet; d = doublet; t = triplet; q = quartet;
m = multiplet; dd = double doublets. All chemical shifts were verified, comparing experimental values with
HMDB [41], BMRB [40] and the literature [33,34,37–39]. The IUPAC rules were employed for the molecule
numbering system.
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signal notation (α to ϕ) indicated in the spectrum, refer to Table 2.



Foods 2023, 12, 4259 9 of 18

Table 2. Summary of the 1H NMR spectra signal assignment of the non-polar extract of pig liver.

Biochemical Category N a Metabolite Name Assignment δ ppm and
Multiplicity b

Cholesterol

α

Total cholesterol

C18H3 0.61 (s)

β C26H3, C27H3 0.84 (d)

δ C21H3 0.82 (d)

ε Esterified cholesterol C19H3 0.93 (s)

Fatty Acids

γ

Fatty acid residues

ω-CH3 0.90 (t)

ζ (CH2)n 1.19 (m)

η COCH2–CH2
1.52 (m)
1.61 (m)

θ CH2–CH=(MUFA and PUFA)
1.97 (m)
2.04 (m)

κ –CO–CH2 2.23 (m)

λ
–CH=CH–CH2–CH=CH– of

linoleic acid 2.68 (t)

ν –CH=CH– 5.28 (m)

σ (–CH2 all FA except ARA and EPA) 1.61 (m)

µ FA, PUFA CH=CH–CH2–(CH=CH–CH2)n 2.75 (m)

MAG and TAG

ι Monoglycerides (MAG) FA, RH–CH2–CO–O–C2 2.20 (m)

ϕ Triglycerides (TAG)

C1H and C3H of glycerol
backbone 4.22 (dd)

C1H and C3H of glycerol
backbone 4.26 (dd)

Phospholipids

ξ Sphingomyelin (–CH2–N–(CH3)3) head group 3.27 (s)

o Phosphatidylcholine (PC) (–CH2–N–(CH3)3) head group 3.31 (s)

π
Phosphatidylethanolamine

(PE) –CH2–CH2–NH2 3.13 (s)

τ Total phospholipids Glycerol (C3H2) of phospholipids 3.92 (m)
4.02 (m)

a N = notation (α to ϕ) of the signals indicated in Figure 3; b s = singlet; d= doublet; t = triplet; q = quartet;
m = multiplet; dd = double doublets. All chemical shifts were verified, comparing experimental values with
HMDB [41], BMRB [40] and the literature [33,35,38,39]. The IUPAC rules were employed for the molecule
numbering system.

Three main regions were identified: low-, middle- and high-frequency region. Low
chemical shift (δ 0.6–2.2 ppm) was predominantly characterized by the intrachain proton
of fatty acids and total cholesterol containing the sum of low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol, and very low-density lipoprotein
(VLDL) cholesterol. In the middle and high frequencies (δ > 2.2 ppm), the spectrum was
characterized by peaks of protons mainly attributable to phospholipids.

3.2. Data Exploration

Unsupervised PCA was initially used as a preliminary tool to examine the structure
and characteristics of both polar and non-polar extracts under investigation. For the polar
fraction, 71.2% of the overall variance in the spectra was explained by a total of six extracted
PCs, and the prediction ability was found to be around 51.2%. The two-dimensional score
plot for PC1 and PC2 is reported in Figure 4a, where the samples are highlighted by group
ID (TX and CTRL), and in Figure 4b, where the samples are colored according to Farm ID.
Although the quality of the model was good, weak grouping behaviors emerged in samples
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based on group ID (Figure 4a) and Farm ID (Figure 4b), indicating a high within-groups
variability existing in them.
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Figure 4. PCA score plots of pig liver polar extracts (R2X = 0.712; Q2 = 0.512) colored according to
(a) group ID (CTRL, green circles; and TX, blue squares) and (b) Farm ID (Farm 1, blue squares; Farm
2, light blue squares; Farm 3, green circles; Farm 4, light green circles). The ellipse identifies the 95%
confidence interval for Hotelling’s T2.

For the non-polar fraction, a total of six PCs covering 72.5% of the total variance were
extracted. The goodness of fit and the prediction ability of this PCA model were similar to
those provided by the PCA model of the polar fraction. Figure 5 shows the score plot for
PC1 and PC2 of the non-polar extracts of liver samples colored based on group ID (CTRL
and TX; Figure 5a) and Farm ID (Figure 5b).
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Figure 5. PCA score plots of pig liver non-polar extracts (R2X = 0.725; Q2 = 0.419) colored according
to (a) group ID (CTRL, green circles; and TX, blue squares) and (b) Farm ID (Farm 1, blue squares;
Farm 2, light blue squares; Farm 3, green circles; Farm 4, light green circles). The ellipse identifies the
95% confidence interval for Hotelling’s T2.

In the non-polar extracts, a slightly higher grouping trend was observed compared to
the polar extracts. Indeed, PC2 seems to have an influence on discriminating CTRL samples
(PC2 negative values) from TX samples (PC2 positive values) (Figure 5a).

As illustrated in Figure 4 (PCA score plots of polar extracts) and Figure 5 (PCA score
plots of non-polar extracts), the first two PCs collectively accounted for 50% and 39% of the
overall extracted variability. The portion of the variability in the data matrices remaining
unexplained by PC1 and PC2 alone should not be interpreted negatively for several reasons.
Firstly, it is crucial to emphasize that the PCA was conducted using cross-validation to
prevent overfitting. Consequently, the optimal number of PCs best suited for capturing
the underlying data structure and the fraction of variance extracted by each of these
components were automatically determined. As a result of cross-validation, the final PCA
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models for both polar and non-polar extracts were not limited to only two PCs but included
six PCs, collectively explaining 71.2% and 72.5% of the total dataset variability. It is worth
mentioning that the first two PCs, when considered individually, explain approximately
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of the overall variability for the polar extract (accounting for 70% (50% of a total of 71.2% in
Figure 4)) and half of the overall variability (54% (39% of a total of 72.5% in Figure 5)) for
the organic extract. This scenario is frequently encountered when applying multivariate
statistical techniques in the analysis of high-dimensional omics data. The underlying factors
contributing to the suboptimal cumulative score (PC1 + PC2) of explained variance may
have included the natural complexity and high dimensionality of the data matrices. The
dataset under analysis was highly complex and given the considerable number of original
NMR variables subjected to PCA (i.e., 84 and 76 ppm buckets for polar and non-polar
extract data matrices, respectively), reducing them to only two PCs, which capture almost
all the variability, was highly unlikely. Another factor worthy of consideration is possible
data noise. As is typical with omics data, the analyzed dataset inevitably contained natural
variability unrelated to the primary factors of interest and linked to the high biological
variability of the samples. Thus, this noise may have reduced the proportion of variability
explained by the first two PCs.

Considering the known high biological variability of the samples under investigation,
this finding was deemed promising. Therefore, the ability of supervised multivariate
analysis to discriminate liver samples was investigated.

3.3. Discriminant Models and Feature Selection

Following the encouraging outputs from the PCA, the supervised OPLS-DA was
applied as a discriminant method able to distinguish the variation in the dataset with
the predictive component, which is related to the class membership, and the orthogonal
component describing the systematic variation within a class [44]. Two OPLS-DA models
were built separately for polar and non-polar fractions aimed at distinguishing samples
based on whether or not they were exposed to antibiotics and highlighting the driving forces
among the variables most effective in discriminating between treated vs. untreated pigs.
The unsupervised clustering trend became more pronounced, and the models’ diagnostic
tools revealed extremely good performances of the models of both fractions, particularly in
the case of the non-polar liver extract. The score scatter plots of the polar and non-polar
extracts are depicted in Figure 6a and Figure 6b, respectively.
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Figure 6. OPLS-DA score plots of pig liver (a) polar extracts and (b) non-polar extracts for the CTRL
(green circles) and TX (blue squares) groups. The ellipse identifies the 95% confidence interval for
Hotelling’s T2.

For the liver polar fraction, the two groups of samples were perfectly separated in
the bi-dimensional space, since samples from the CTRL group were distributed along
the positive t[1]P component, and samples from the TX group were distributed along the
negative component. Nevertheless, a mild degree of heterogeneity was observed within
samples in the same group, which were not closely grouped along the vertical axis. The
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intra-class non-predictive variability, of which 44.5% was collected by the t[1]O component,
was expected to be present but did not hinder the correct discrimination of untreated (CTRL
group) vs. treated (TX group) pigs, except for one sample in the CTRL group, which fell
into the left side of the plot, corresponding to the negative scores, where all the TX samples
were located, but within the 95% confidence ellipse (Figure 6a). Satisfying statistical metrics
were provided by internal cross-validation of the model: a fitting ability of about 89%
(R2X= 0.892), extracted predictive variation explaining around 77% of the information
related to the specific class membership of the samples (R2Y = 0.774) and a predictive
power of approximately 61% (Q2 = 0.613) proved the validity of the model. A classification
accuracy of approximately 98% was obtained in the misclassification test, corresponding to
only one sample being misclassified in the CTRL group.

Similar to the polar fraction, the OPLS-DA applied to the non-polar dataset returned
very good quality parameters of the model: R2X = 0.939, R2Y = 0.948 and Q2 = 0.869. A
correct classification rate of 100% was obtained, revealing that all samples were correctly
allocated in their group ID, as can be observed by the perfect separation between the two
groups in the score scatter plot reported in Figure 6b.

Subsequently, the VIP analysis was applied in order to identify the NMR spectral
signals, which mostly contributed to the successful separation of the liver samples achieved
by both OPLS-DA models. Overall, 17 and 11 NMR signals were found to be characterized
with VIP values ≥ 1 in the polar and non-polar extracts, respectively. According to the
results of the Mann–Whitney test and the two-sample t-test, 11 out of 17 selected features
of the polar fraction and 6 out of 11 features of the non-polar fraction were statistically
significantly different (p ≤ 0.05).

Following the assignment of the resonances, the list of the identified metabolites,
which were significantly different (p ≤ 0.05) among the CTRL and TX groups—provided
with their corresponding VIP score and FC value—was compiled and is reported in Table 3.
As can be observed, unlike the NMR spectra of the polar extracts, in which the assignments
of H resonances were unambiguously attributed to specific molecules, the NMR spectra of
non-polar extracts were in some cases ascribed to classes of molecules (i.e., unsaturated
fatty acids). According to the positive values of FC, all metabolites from the polar fraction
appeared to be up-accumulated in the TX group of antibiotic treated pigs, while for the
non-polar fraction, differences in metabolite accumulation were found.

Table 3. Discriminant metabolites among the antibiotic-treated (TX group) and untreated pigs (CTRL
group).

Metabolite VIP Score a FC b

Polar extract of pig liver

Glucose 3.30 1.80
Glutathione 2.55 1.10

Proline 2.49 1.13
Tryptophan 2.29 1.13

Choline 1.30 1.23
Lactate 1.20 1.20

Non-polar extract of pig liver

Fatty Acid 4.50 0.95
Phospholipids 2.92 1.52

Phosphatidylcholine 1.94 1.25
Total Cholesterol 2.88 0.89

Unsaturated Fatty Acid 1.08 0.88
a VIP = variable importance in projection; b FC = fold change.

4. Discussion

As far as the authors know, this is the first NMR-based untargeted metabolomics study
comparing the liver metabolome of antibiotic-treated vs. untreated heavy pigs. An NMR-
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based analysis was used by Merrifield et al. [34] to provide a system overview of porcine
metabolism via characterization of the liver and other organs and biofluid metabolomes to
establish a metabolic framework from which pathology-or nutrition-based variations could
be compared. In all living organisms, the liver is the organ in charge of the metabolism
of major constituents (i.e., carbohydrates, proteins and lipids), but it is also recognized
as the most important site for metabolic clearance of xenobiotics, synthesis of molecules
and vitamin storage, playing a crucial role in metabolic homeostasis [45]. Based on the
findings of the present pilot study, the application of an untargeted metabolomics approach
returned different metabolic fingerprinting of pigs’ livers exposed to antimicrobial agents
compared to untreated ones. Moreover, changes in the metabolism of the liver attributable
to the differences in metabolite accumulation between TX and CTRL groups were observed,
answering the starting biological question: “Are there any metabolic differences between treated
vs. untreated pigs?”.

In the 1H NMR spectra of highly complex biological tissues, peak overlapping in-
evitably occurs, in particular for intact tissue sample analysis. In this case, the spectral
assignment may be supported by 2D experiments [34]. In the present study, the polar and
non-polar extracts of the liver were investigated separately, and 2D NMR experiments were
not performed, as the resulting spectral signals were sufficiently resolved to enable the
discrimination of resonances from the various compounds in both liver fractions. The inves-
tigation of separated aqueous and organic extracts of the liver is the approach commonly
used in 1H NMR-based metabolomics studies aimed at investigating hepatic metabolic
changes; this strategy was used to study paracetamol-induced hepatotoxicity in pigs [36],
hyperlipidemic hamsters [38], chicken and avian metabolism [37,39] and the impact of
dietary sesamin on Atlantic salmon [33]. The metabolic atlas of porcine liver provided by
Merrifield et al. [34] was particularly useful for the spectra signal assignment of the polar
extract, whereas the assignment of the non-polar extract was mainly supported by studies
addressing the lipophilic extract of the liver [33,38,39], the review by Li et al. [33], as well
as online public databases [40,41].

Relevant 1H NMR signals reported in Table 3 were investigated based on their fold
change ratio to opportunely check the nature of metabolites characterizing the discrimi-
nation between the two groups. In particular, the up-accumulation of glucose (FC = 1.80),
glutathione (FC = 1.10), proline (FC = 1.13), tryptophan (FC = 1.13), choline (FC = 1.23)
and lactate (FC = 1.20) recorded in the polar liver extract from pigs in the TX group is
probably due to a wide array of factors, among which, the antimicrobial administration and
all related life conditions in which the pigs lived. It is worth mentioning that the antibiotic
treatment characterizing pigs in the TX group most likely underlies a pathology, which
has been cured, implying that the animal has experienced a physiological state different
from that of a healthy animal. As a general remark, antimicrobial administration should
occur in the presence of proven disease for responsible and prudent usage of antimicrobials,
leading veterinarians to only prescribe them under strict conditions (i.e., clinical signs and
symptoms, laboratory results, costs) [46]; considering this scenario, it cannot be excluded
that pigs from the TX group might have experienced a stress condition during their life
cycle, which, in other words, means that the sphere of animal welfare was threatened in
the Health Domain—one Domain within the Five Domains model of animal welfare—and
pigs were in a poor welfare condition for at least a well-defined time of their life (i.e., time
of disease) [47]. In the field of animal-based measures, it is widely accepted that glucose
represents the primary physiological indicator of stress [48]; during a stressful condition,
the catecholamine released from the adrenal medulla regulates glycogenolysis in the liver,
leading to maintenance of adequate glucose levels in blood circulation, entailing degrada-
tion of glycogen into glucose-6 phosphate, which is then hydrolyzed into glucose [49,50].
In addition to glycogenolysis, hepatic glucose production also relies on gluconeogenesis
using glucose precursor molecules, such as amino acids, lactate, pyruvate and glycerol,
for de novo synthesis of glucose [50]. The up-accumulation of lactate in the liver of pigs
in the TX group highly supports the link between carbohydrate metabolism and animals
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living in a poor welfare condition, which may have been represented by the state of disease.
In the present study, pigs in the TX group had 1.2 times as much lactate as those in the
CTRL group, suggesting that increased energy demand characterized the pigs exposed to
antibiotics administration. In fact, lactate is highly involved in the Krebs cycle of generating
energy from stored energy reserves [51], representing an alarm bell for metabolic disorders
in a living organism [35,52]. In this context, the authors refer to the higher energy state of
the TX group, in which the disease status may have solicited a higher energy request from
the diseased organism than in the healthy animals. In particular, in the pathological state,
the greater demand for energy for the immune and reparative processes takes place in the
face of a reduced ingestion of food and often a lower oxygen saturation, which characterizes
the frequent diseases affecting the respiratory system of the pig. Glutathione (GSH) is a
tripeptide, particularly concentrated in the liver, playing a key role in the defense against
oxidative stress. Liver is the organ most vulnerable to toxins and oxidative stress, and the
concentration of GSH is greatly sensitive to environmental factors, heavy metals, glucose
and xenobiotics [53]. In this study, the accumulation of GSH was slightly higher in the TX
group than in the CTRL group, and we may suppose that a role could be played by the dis-
ease state, together with the antibiotic treatment. However, the literature investigating the
relationship between GSH and antibiotic treatment in the liver of pigs is poorly explored;
therefore, only an assumption related to the biological role of metabolite in the investigated
organ may be reported. Choline plays a key role in membrane integrity, lipid metabolism
and methylation. Additionally, in this case, this metabolite was up-accumulated in the
livers of pigs in the TX group. Similar to GSH, the literature is lacking for comparative
purposes; however, the up-accumulation of choline seemed to follow the same direc-
tion as phosphatidylcholine—highly involved in regulating lipid, lipoprotein and energy
metabolism [54]—whose accumulation was observed by assessing the non-polar extract
of the liver. Proline, together with tryptophan, both up-accumulated in the TX group, are
included in Aminoacyl-tRNA biosynthesis according to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [55]. This finding may be supported by the fact that most antibi-
otics are designed to specifically target ribosomal protein synthesis and aminoacyl-tRNA
synthetases—a family of enzymes playing a central role in protein synthesis [56]. Intriguing
findings were obtained when considering the non-polar fraction of the liver. In fact, the fold
change in the TX pigs’ group showed the down-accumulation of fatty acid residues ((CH2)n
in fatty acyl chain, FC = 0.95), total cholesterol (C18H3 total cholesterol, FC = 0.89) and
unsaturated fatty acid (–CHCH2CH = in fatty acyl chain:20:4/22:6, FC = 0.88); however,
phospholipids (>C3H2 in the glycerol backbone of PL, FC = 1.52) and phosphatidylcholine
(–CH2N+(CH3)3 in the PC head group, FC = 1.43) were up-accumulated in the TX pigs’
group. In addition to liver metabolome, the transcriptomic analysis provided insights for
the understanding of enzyme regulation in the case of antimicrobial treatment. According
to Hu et al. (2020), the transcriptome and DNA methylome analysis of pigs’ liver fed
with low-dose of antibiotics displayed an increase in nicotinamide N-methyltransferase
(NNMT) expression, a positive regulator of gluconeogenesis in primary hepatocytes, which
could stabilize the Sirtuin 1 protein necessary for glucose and cholesterol metabolism
to reduce the abundance of cholesterol in serum and liver [57,58]. The higher levels of
glucose and the lower levels of cholesterol in the livers of pigs in the TX group could
be supported by the role of NNMT, considering that liver is the organ characterized by
the strongest expression of this enzyme [57,58]. Additionally, liver boasts of an excellent
production of metabolic substrates for energy metabolism (i.e., fatty acids), which are made
available during stressful situations to support the organism [49]. The proof of this might
be found in the lower level of fatty acids in the liver characterizing the TX pigs’ group.
Liver hepatocytes synthesize bile acids via cholesterol metabolism, and the decreasing level
of total cholesterol (C18H3) observed in the TX group may suggest that high conversion
activity in the liver is performed to promote the synthesis of bile acid. In addition, the
up-accumulation of phosphatidylcholine in the TX group was found to be in agreement
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with the higher level of choline in the treated group, considering that choline undergoes
phosphorylation in order to build the phospholipids.

5. Conclusions

The present study is the first step in broader research, which has the ultimate goal
of identifying and validating biomarkers as authentication tools for antibiotic-free pork
supply chains. As a first attempt to gain an insight into the metabolome of pigs, NMR
spectroscopy was chosen as the instrumental analytical platform. This exploratory in-
vestigation demonstrated the feasibility of the NMR-based metabolomics approach for
detecting metabolomic fingerprinting useful for the discrimination of livers of pigs on the
basis of antibiotic treatment exposure. The untargeted approach was powerful in screening
samples and detecting molecular signatures and changes in the liver metabolome, both
polar metabolites and lipidome of pigs in the two considered conditions. This preliminary
outcome encourages a more in-depth investigation via other analytical techniques widely
used in metabolomics studies. Indeed, MS-based methods offer higher performance than
NMR in terms of sensitivity—which is extremely useful for measuring species with low
abundance but potentially valuable information—and specificity, helping the elucidation
of the chemical structures of potential metabolites of interest.

This finding is very promising, taking into account the broad variability in the animals
from commercial farms included in the study. Because the main objective of this pilot study
was to ascertain the performances of an untargeted analytical strategy as a tool to answer
the question, “Has this pig ever been treated with antibiotics?”, no specific focus was given
to the classes of antibiotics the pigs were administered in the present study. The authors are
of the opinion that a fit-for-purpose experimental design and the application of MS-based
metabolomics platforms should enable the acquisition of more in-depth information and
identification of putative biomarkers enabling the confirmation or rejection of an antibiotic
treatment, bearing in mind that this issue serves the authenticity and health purposes in
the pig chain.
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