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a b s t r a c t 

Background and objective: Melanoma is a highly malignant skin tumor. Accurate segmentation of skin 

lesions from dermoscopy images is pivotal for computer-aided diagnosis of melanoma. However, blurred 

lesion boundaries, variable lesion shapes, and other interference factors pose a challenge in this regard. 

Methods: This work proposes a novel framework called CFF-Net (Cross Feature Fusion Network) for su- 

pervised skin lesion segmentation. The encoder of the network includes dual branches, where the CNNs 

branch aims to extract rich local features while MLPs branch is used to establish both the global-spatial- 

dependencies and global-channel-dependencies for precise delineation of skin lesions. Besides, a feature- 

interaction module between two branches is designed for strengthening the feature representation by 

allowing dynamic exchange of spatial and channel information, so as to retain more spatial details and 

inhibit irrelevant noise. Moreover, an auxiliary prediction task is introduced to learn the global geometric 

information, highlighting the boundary of the skin lesion. 

Results: Comprehensive experiments using four publicly available skin lesion datasets (i.e., ISIC 2018, 

ISIC 2017, ISIC 2016, and PH2) indicated that CFF-Net outperformed the state-of-the-art models. In par- 

ticular, CFF-Net greatly increased the average Jaccard Index score from 79.71% to 81.86% in ISIC 2018, 

from 78.03% to 80.21% in ISIC 2017, from 82.58% to 85.38% in ISIC 2016, and from 84.18% to 89.71% in 

PH2 compared with U-Net. Ablation studies demonstrated the effectiveness of each proposed compo- 

nent. Cross-validation experiments in ISIC 2018 and PH2 datasets verified the generalizability of CFF-Net 

under different skin lesion data distributions. Finally, comparison experiments using three public datasets 

demonstrated the superior performance of our model. 

Conclusion: The proposed CFF-Net performed well in four public skin lesion datasets, especially for chal- 

lenging cases with blurred edges of skin lesions and low contrast between skin lesions and background. 

CFF-Net can be employed for other segmentation tasks with better prediction and more accurate delin- 

eation of boundaries. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The incidence rates of skin cancer have shown a rapid increase 

cross the world [1] . Melanoma is a highly malignant skin tu- 

or associated with a high mortality rate [2] . Accurate skin le- 

ion segmentation by dermoscopy is an effective means to con- 

uct computer-assisted diagnosis and treatment for melanoma. 

ompared with the conventional manual skin lesion delineation 

ethod, automatic segmentation of skin lesion areas saves time 

nd effort. 
∗ Corresponding author. 
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With the recent development of deep learning in the field of 

omputer vision (CV), convolutional neural networks (CNNs) are 

eing widely employed for medical image segmentation tasks. The 

ajority of contemporary models, such as the fully convolutional 

etwork [3] , U-Net [4] , and U-Net ++ [5] , use an encoder-decoder

esign, wherein the encoder is applied to extract the features and 

he decoder is employed to restore the features to the original 

mage size. However, accurate and efficient segmentation of skin 

esions remains a challenge for these models. First, the size and 

hape of the skin lesions are distinct. Second, the boundaries of 

kin lesions are often blurred, and the lesions possess low con- 

rast from their surrounding tissues. Third, several interference fac- 

ors, such as hair, rule marks, and color calibration charts, can also 

ffect the segmentation accuracy. Fig. 1 shows some challenging 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2023.107601
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107601&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zengjunying@126.com
https://doi.org/10.1016/j.cmpb.2023.107601
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Qin, B. Zheng, J. Zeng et al. Computer Methods and Programs in Biomedicine 238 (2023) 107601 

Fig. 1. Some representative examples illustrating the challenges (e.g., blurred lesion boundary with low contrast, irregular shape, and some interference factors) in ISIC 2018. 

The green lines in the images indicate ground truths. 
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ases. In recent years, a series of methods have been proposed to 

mprove the segmentation performance for skin lesions. For exam- 

le, the CA-Net [6] was fused with the spatial attention, channel 

ttention, and scale attention to focus on the areas of interest. In 

ddition, CPF-Net [7] was equipped with two pyramidal modules 

o capture global and multi-scale information. Moreover, Dai et al. 

2021) [8] designed the Ms RED, which can extract rich hierarchi- 

al features and retain helpful information during down-sampling. 

owever, the segmentation results obtained with these models are 

till unsatisfactory owing to their inability to capture long-range 

ependencies that enable precise localization of skin lesions. 

More recently, the transformer, which was first proposed in 

he domain of natural language processing, employed the self- 

ttention mechanism to establish long-range dependencies [9] . Un- 

ike the CNNs used for the CV, vision transformer [10] can utilize 

ulti-head self-attention mechanism to extract global context in- 

ormation, resulting in favorable image recognition performance. 

esearchers have also integrated the transformers into the med- 

cal image segmentation models, including TransUNet [11] , Swin- 

net [12] , and MedT [13] . In particular, FAT-Net [14] integrates the 

NNs and transformers to complete skin lesion segmentation task. 

hile FAT-Net can establish both local and global dependencies, it 

annot dynamically integrate the global and local features, which 

s helpful in recovering more spatial details. In addition, the mod- 

ls incorporated with transformers failed to build global-channel 

ependencies and global-spatial dependencies synchronously [15] , 

hich limits the extraction capability of the discriminative fea- 

ure. Furthermore, transformer-based architecture is constrained by 

 large number of parameters and a heavy dependence on training 

ata [16] , which affects the clinical practicability. The UNeXt [17] , 

hich is the first model to employ CNNs and multi-layer percep- 

ions (MLPs) for medical image segmentation, showed great perfor- 

ance in segmentation and reduced the computational complexity. 

he combination of CNNs and MLPs in UNeXt was based on the 
2 
equential mode, which constrains the interaction of global and 

ocal features; therefore, it failed to capture enough spatial infor- 

ation and suppress irrelevant information for complex and fine 

kin lesions. To address the above issues of segmentation mod- 

ls, we developed a novel model for more accurate and reliable 

kin lesion segmentation with comparable parameters. In the net- 

ork, the encoder contains dual branches (i.e., CNNs branch and 

LPs branch) to capture local and global context information. In 

ddition, we propose a feature-interaction module based on cross- 

ttention mechanism which can enable dynamic exchange between 

patial and channel information of the two branches in order to 

ecover more spatial details and emphasize the discriminative fea- 

ures. In the decoding phase, the skip-connection from the im- 

roved CNNs branch is utilized to compensate the information loss 

aused by consecutive down-sampling in the encoding phase. 

Previous models applied boundary attention [18] or explored 

he edge loss function [19] to further highlight the boundary de- 

ails of skin lesions. While providing segmentation results, these 

odels lack global shape awareness which helps reduce the false- 

ositives and suppress irrelevant noise. In this work, we introduce 

he multi-task learning strategy (i.e., dual-task heads) to guide the 

etwork for more accurate delineation of the boundaries of skin 

esions. The output of our model consists of two parts, i.e., the bi- 

ary segmentation map (BSM) and the signed distance map (SDM) 

 20 , 21 ]. The closest distance between a pixel and boundary of the

kin lesion, given a pixel in image space, determines the abso- 

ute value of the SDM. In particular, the shape change can only 

ffect the local pixels in the binary segmentation map, while this 

hange can globally alter the values of multiple pixels of the SDM. 

ccurate prediction of SDM enhances the geometric awareness of 

he network, thus reducing errors in over-segmentation and under- 

egmentation of skin lesions. 

In summary, we term our model as Cross Feature Fusion Net- 

ork (CFF-Net). The performance of our proposed model is as- 



C. Qin, B. Zheng, J. Zeng et al. Computer Methods and Programs in Biomedicine 238 (2023) 107601 

s

[  

d

e

d

p

i

u

c

2

2

f

M

M

n

M

a

R

s

l

M

t

o

p

c

s

fi

m

m

b

n

2

d

s

S

m

f

a

t

c

a

t

t

t

s

s

t

s

a

l

o

i

2

f

t  

c

t

s

[

s

p

w

s

s

m

f

n

c

t

f

a

r

t

f

M

a

w

3

d

o

i

s

b

d

t

a

e

e

t

g

o

s

p

d

3

a

l

essed using four public skin lesion datasets, including ISIC 2018 

 22 , 23 ], ISIC 2017 [24] , ISIC 2016 [25] , and PH2 [26] . In addition, we

emonstrate the effectiveness of each component through ablation 

xperiments. To verify the generalizability of CFF-Net over different 

istributions of skin lesion data, we perform cross-validation ex- 

eriments in ISIC 2018 and PH2. Furthermore, we conduct compar- 

son experiments on other three public datasets to demonstrate the 

niversality and robustness of CFF-Net. In short, our work mainly 

ontributes in three aspects: 

(1) A novel encoder combines CNNs branch and MLPs branch 

in parallel, which is conducive to the extraction of rich 

local features while simultaneously building global-spatial- 

dependencies and global-channel-dependencies. Further- 

more, a new feature-interaction module is applied to refine 

the features of MLPs branch and CNNs branch by allowing 

dynamic exchange of spatial and channel information. 

(2) The introduction of auxiliary loss on SDM predictions is con- 

ducted to learn the position and shape information of the 

skin lesions, further highlighting the boundaries of segmen- 

tation predictions. 

(3) Comprehensive experiments show that CFF-Net achieves 

state-of-the-art segmentation performance in four public 

skin lesion datasets (namely ISIC 2016, ISIC 2017, ISIC 2018, 

PH2), while having comparable parameters. Additionally, we 

adopt comparison experiments on three public datasets to 

demonstrate the applicability of CFF-Net for other segmen- 

tation tasks. 

. Related works 

.1. MLPs module 

Recently, MLP-based networks [ 15 , 26–28 ] have been proposed 

or the processing of CV tasks. As a pure MLP-based network, 

LP-Mixer [27] applies token-mixing MLP and channel-mixing 

LP operation to set up communication between different chan- 

els and spatial locations. The experiments demonstrated that 

LP-Mixer has the same performance as the existing CNN-based 

nd transformer-based networks, but it requires less computations. 

es-MLP [15] , trained only on the ImageNet-1 K, showed good clas- 

ification performance with residual MLP. AS-MLP [28] introduced 

ocal information through the axially shifting feature map and S 2 - 

LP [29] utilized the spatial-shift operation to allow the interac- 

ion between different spatial locations, while CycleMLP [30] based 

n Cycle FC operator showed good performance in various dense 

rediction tasks. To summarize, these MLP-based networks fo- 

us on capturing channel-dependencies and spatial-dependencies 

ynchronously while maintaining low computation resources. The 

rst convolutional MLP model called UNeXt [17] was proposed for 

edical image segmentation, which showed leading-edge perfor- 

ance under less parameters. However, it only connected CNN- 

ased module and MLP-based module in sequential mode, thus ig- 

oring the interaction between the features of different modules. 

.2. Signed distance map for medical image segmentation 

In recent years, several studies have explored the application of 

istance map in medical image segmentation, which usually repre- 

ents the geometric information. Xue et al. (2020) [21] integrated 

DM learning mechanism into the 3DUNet [29] for 3D organ seg- 

entation. Wang et al. (2020) [31] proposed Deep Distance Trans- 

orm (DDT) for segmentation of tubular structures in medical im- 

ges; it improved the accuracy of segmentation of tubular struc- 

ure targets from complex background. Moreover, some researchers 

ombined the SDM with semi-supervised learning method; for ex- 

mple, Li et al. (2020) [32] developed additional SDM prediction 
3

ask to render the shape representation of unlabeled data consis- 

ent with that of labeled data. Similarly, Liu et al. (2022) [33] used 

he geometry-aware consistency regularization based on SDM for 

emi-supervised segmentation. Particularly, Phan et al. [34] de- 

igned an architecture based on U-Net introducing the auxiliary 

ask about SDM regression, to improve the localization of skin le- 

ions. Similarly, we adopt multi-task loss for predicting the SDM 

nd BSM, in order to better delineate the boundaries of the skin 

esion. Unlike this model, we use a single convolution layer instead 

f an independent decoder to output the predictions for each task, 

n order to reduce the parameters. 

.3. Skin lesion segmentation 

In recent years, deep learning methods have been widely used 

or analysis of skin lesions including classification [35] , segmen- 

ation [36] , detection [ 37 , 38 ], and recognition [39] , because these

an adaptively learn powerful features without manual interven- 

ion. Several models proposed for skin lesion segmentation have 

hown promising performance over the last few years. Kadry et al. 

40] employed the pre-trained VGG-SegNet to extract the fragment 

kin melanoma from dermoscopy images. Wang et al. [41] pro- 

osed a dual objective network for skin lesion segmentation, in 

hich the recurrent context encoding module is designed to con- 

truct the relation among multi-scale features. Wu et al. [42] pre- 

ented the dual attention module for automated skin lesion seg- 

entation, which can capture multi-scale complementary global 

eatures. Wang et al. [43] devised a cascaded context enhancement 

etwork for skin lesion segmentation, which enriches the global 

ontext and adaptively integrates local contextual information. Al- 

hough these methods have improved the segmentation accuracy 

or skin lesions, they cannot build the global-spatial dependencies 

nd global-channel dependencies simultaneously, which can help 

etain more spatial details and emphasize the discriminative fea- 

ures. In addition, they neglect the interaction of global and local 

eatures, which can refine semantic representation of the network. 

oreover, these models do not take the geometric constraint into 

ccount, which has an impact on the localization of skin lesions 

ith indistinct boundaries. 

. Methodology 

A schematic illustration of our CFF-Net based on encoder- 

ecoder architecture is presented in Fig. 2 . The encoder consists 

f two parallel branches that serve to model different context 

nformation: (1) CNNs branch focuses on constructing the local- 

patial-dependencies, namely extraction of local features; (2) MLPs 

ranch is mainly responsible for capturing the global-channel- 

ependencies and global-spatial-dependencies. Subsequently, fea- 

ures of the same scale extracted from two branches pass through 

 novel feature-interaction module (FIM), which enables dynamic 

xchange of contextual information between various features to 

nhance the representation ability. Concatenated high-level fea- 

ures of CNNs and MLPs are then fed into the decoder where pro- 

ressive deconvolution operations are employed to restore the size 

f features and enhanced skip-connections are utilized to compen- 

ate for the loss of local and global context information. Finally, the 

rediction-head of the network is formed using BSMs and signed 

istance maps SDMs. 

.1. CNNs and MLPs branch 

Before passing through the dual branch encoder, the images 

re fed into a single CNN-based module, including two ConvBnRe 

ayers. The CNNs branch has three CNN-based modules, and each 
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Fig. 2. Overview of the proposed CFF-Net. CNN-based module contains two ConvBnRe layers, each of which is formed by convolution layer with a kernel size of 3 × 3, 

batch normalization layer and Rectified Linear Units (ReLU) activation; MLP-based module contains two MLP-based operations in different directions and 1 × 1 convolution 

layer, as specified in Section 3.1 . 

m

m

e

M  

I

i  

T

M

d

F

o

3

t

S

w

t

S

a  

r

i

t

w

C

S

v

E

E

E

Y

w

t  

E

o

e

c

t

3

t

d

N

t

g

B

t

r

n

a

t

odule applies a max-pooling layer to down-sample the feature 

aps. 

The MLPs branch is composed of three MLP-based modules, 

ach of which comprises Axial-Shifted-H MLP, Axial-Shifted-W 

LP, and a 1 × 1 convolution layer, as shown in Fig. 3 A (left).

n order to model spatial relationships in different directions, ax- 

al shift strategy [ 44 , 45 ] is employed to construct the MLP module.

he difference between Axial-Shifted-H MLP and Axial-Shifted-W 

LP lies in the direction of shift operation: one for the height 

irection and the other for the width direction, as displayed in 

ig. 3 B. For convenience, we only expound the Axial-Shifted MLP 

f one direction, as displayed in Fig. 3 A (right). 

.1.1. Axial-shifted MLP 

Given the feature map M ∈ R C × H × W , it firstly passes through 

he linear embedding layer and Layer Norm (LN) [46] in Axial- 

hifted MLP, which changes the original feature map into token 

ith the size of R C e ×
H 
2 

× W 

2 . In the four MLP-based modules, we set 

he size of C e at 32, 64, 128, and 256, respectively. Then, Axial- 

hifted MLP performs the shift operation on the token (see Fig. 3 B), 

nd we slice the token into 2 n + 1 groups along the channel di-

ection, in which the shift stride for the i -th ground of token is 

 − n − 1. Subsequently, the token is reshaped and transposed to 

he size of R 
HW 

4 
×C e and then goes through the Shifted-MLP block, 

hich consists of Fully-Connected layer, depth convolution (DW- 

ONV) layer, GELU [47] activation, and LN. In addition, we use the 

kip-Connection from the ResNet [48] to prevent gradients from 

anishing. The Axial-Shifted MLP can be formulated as follows: 

 = LN ( E em 

( M ) ) (1) 
4 
 shi f t = Shi f t ( E ) (2) 

 out = f 
(
RT 

(
E shi f t 

))
(3) 

 out = LN ( σ ( E out ) ) + E (4) 

here H and W are the height and width of the feature map. Note 

hat, n is an integer greater than 1, and we set it to 2 in this paper.

 em 

denotes the 3 × 3Conv with the stride of 2, RT denotes the 

peration of reshaping and transposing, and Shift is the Shift Op- 

ration in height or width direction. Moreover, f(.) represents the 

ascade Fully-Connected and DW-CONV layer, and σ (.) represents 

he GELU activation. 

.1.2. Fully-connected and DW-CONV layer 

Fully-Connected layer is conducted for the shifted token with 

he size of R 
HW 

4 
×C e , which allows global communication between 

iverse channels in different spatial locations, as shown in Fig. 3 C. 

ext, the token is reshaped to the size of R C e ×
H 
2 

× W 

2 and passed 

hrough a DW-CONV layer, in which the tokens from different 

roups have exclusive dilation rate due to the Shift Operation. 

ased on this, both local and global spatial information is encoded 

o enhance the feature representation, while requiring fewer pa- 

ameters. Compared with the CNNs and transformers, MLPs can 

ot only simultaneously focus on the extraction of local features 

nd global features, but can also exploit the Shift Operation to es- 

ablish global channel interaction in different spatial locations. 
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Fig. 3. Overview of the MLP-based module. A) Sub-modules and process of the MLP-based module (left), as well as the assembly of Axial-Shifted MLP (right). B) Examples 

of the Shift Operation. C) Examples to show the function of Fully-Connected layer and DW-CONV layer. 
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In summary, the computation in the MLP module can be de- 

ned as: 

 H = f H ( X in ) ; Y W 

= f W 

( Y H ) (5) 

 out = Con v 1 × 1 ( Y W 

) (6) 

here X in ∈ R C in ×H×W and Y out ∈ R C out × H 
2 

× W 

2 represent input and 

utput feature maps respectively. f H (.) and f W 

(.) refer to the Axial- 

hifted-H MLP and Axial-Shifted-W MLP, respectively. Conv 1 × 1 

ims at creating the same channel for the output of MLP-based 

odule and CNN-based module. We assign C out as 32, 64, 128, and 

56 in the four stages of parallel branch individually. 

.2. Feature-interaction module 

In order to refine the features extracted from the MLPs branch 

nd CNNs branch, we designed a novel feature-interaction module 

FIM) to guide context affinity between the two branches. Inspired 

y the TransFuse [49] , which entails a BiFusion module to com- 

ine the features from CNN and transformer, we adopted a cross- 

patial-wise and cross-channel-wise attention to mold the FIM. A 

chematic illustration of our proposed FIM is presented in Fig. 4 . 
5

he following paragraphs elaborate the cross-spatial-wise attention 

nd cross-channel-wise attention. 

.2.1. Cross-spatial-wise attention 

Adding the spatial information of feature in MLPs branch into 

he feature in CNNs branch can instrumentally strengthen its long- 

ange semantic representation, with the construction of cross- 

patial-wise attention displayed in Fig. 4 a). We define feature map 

f the MLPs branch and CNNs branch as Xm ∈ R C × H × W and Xc ∈
 

C × H × W , respectively. Next, the Xc passes through the weight lay- 

rs W 

q ( x ) and W 

v ( x ) to obtain SQ ∈ R C × H × W and SV ∈ R C × H × W 

eparately, while SK ∈ R C × H × W is obtained after Xm input into 

he W 

k ( x ). The SQ ∈ R C × H × W , SK ∈ R C × H × W and SV ∈ R C × H × W 

re directly reshaped into SQ ∈ R C × N , SK ∈ R N × C and SV ∈ R C × N 

 N denotes H × W ). Subsequently, we use matrix multiplication be- 

ween SQ ∈ R C × N and SK ∈ R N × C , and then feed multiplication 

esult into the softmax layer to obtain the cross-spatial-wise at- 

ention map S ∈ R N × N , which is calculated as follows: 

 j,i = 

exp 
(
sk i · sq j 

)
∑ N 

i =1 exp 
(
sk i · sq j 

) (7) 

here s j,i reflects the effect of the j th spatial position in SQ on the 

 

th spatial position in SK . Further, we implement another matrix 
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Fig. 4. Overview of the proposed FIM. a) Cross-Spatial-wise Attention; b) Cross-Channel-wise Attention. W 

q , W 

k and W 

v stand for three 1 × 1 convolution layers with 

different weights. 
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ultiplication between SV ∈ R C × N and S ∈ R N × N , and reshape 

he multiplication output to R C × H × W . The final enhanced CNNs 

eature maps Yc ∈ R C × H × W can be calculated as below: 

 c j,i = ω C 

N ∑ 

i =1 

(
s j,i · s v i 

)
+ X c j (8) 

here ω C is a learnable weight and initialized to zero. The out- 

ut Yc has a global cross feature semantic representation compared 

ith Xc , which means that Xc selectively aggregates the spatial 

ontext information of Xm , improving the spatial interaction be- 

ween features. 

.2.2. Cross-channel-wise attention 

Dual attention network (DAN) exploits the interdependencies 

etween channel maps to enhance the feature representation of 

pecific semantics [50] . Based on this premise, the cross-channel- 

ise attention is deployed to build channel interaction between 

LPs features and CNNs features, introducing specific semantic re- 
6 
ponses to MLPs features from CNNs features. The details of cross- 

hannel-wise attention are illustrated in Fig. 4 b), in which CQ ∈ 

 

C × H × W and CV ∈ R C × H × W are acquired after Xm ∈ R C × H × W 

oes through weight layers W 

q ( x ) and W 

v ( x ), and Xc ∈ R C × H × W 

re fed into W 

k ( x ) to generate the CK ∈ R C × H × W . Subsequently,

e reshape CQ ∈ R C × H × W , CK ∈ R C × H × W , and CV ∈ R C × H × W 

o CQ ∈ R N × C , CK ∈ R C × N , and CV ∈ R N × C , and conduct the ma-

rix multiplication between CQ and CK . The multiplication output 

hen passes through softmax layer to generate the cross-channel- 

ise attention map C ∈ R C × C , where it performs matrix multipli- 

ation with CV ∈ R N × C with the result reshaped to obtain the final 

utput Ym ∈ R C × H × W . The above process can be described as: 

 j,i = 

exp 
(
ck i · cq j 

)
∑ N 

i =1 exp 
(
ck i · cq j 

) (9) 

 m j,i = ω M 

N ∑ 

i =1 

(
c j,i · cv i 

)
+ X m j (10) 
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Fig. 5. SDMs of the skin lesions in the ISIC 2018 dataset. The red and blue areas 

represent the closest distances from the inside pixels and the outside pixels to the 

boundaries, respectively. Deeper color corresponds to higher magnitude of distance. 

The boundary is contoured by green color. 
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here ω M 

is also a learnable weight, initializing to zero. The out- 

ut Ym acts as the weighted sum of all cross-channel features, 

hich is to establish the specific semantic association between Xm 

nd Xc . 

To summarize, our FIM can dynamically gather the spatial in- 

ormation of MLPs features into CNNs features, and can also merge 

he channel information of CNNs features into MLPs features, for 

he purpose of refining semantic representation of the network. 

.3. Multi-task loss function 

For enhancing the learning ability of the network, we design 

he multi-task strategy, in which the output of network is com- 

osed of binary segmentation map (BSM) and signed distance map 

SDM). The loss function is formed by two parts as elaborated be- 

ow. 

.3.1. BCE-dice loss 

After the BSM passes through the sigmoid activation , we con- 

uct a hybrid loss L BSM 

including binary cross-entropy (BCE) loss 

nd dice loss [51] to perform the BSM prediction task, which is 

ormulated as follows: 

 bce = − 1 

N 

N ∑ 

i =1 

[ y i l og ( p i ) + ( 1 − y i ) l og ( 1 − P i ) ] (11) 

 Dice = 1 − 2 

∑ N 
i p i y i + ε ∑ N 

i p i + 

∑ N 
i y i + ε 

(12) 

 BSM 

= L bce + L Dice (13) 

here N denotes the total number of output pixels and y i ∈ {0, 

} refers to the ground truth of the i th pixel. In addition, p i ∈ [0,

] is the predicted probability of the pixel, which belongs to the 

oreground class. We set ε as the 10 −5 to guarantee the stability of 

ata. 

.3.2. SDM loss 

Fig. 5 visualizes the SDMs of skin lesions. We can see that SDMs 

ndicate whether the pixels are inside or outside the boundaries of 

he skin lesions. Compared with BSMs, SDMs contain global geo- 

etric information, which helps the network to learn shape and 
7 
osition of skin lesions. Subsequently, we explain how to calcu- 

ate the SDM loss. Firstly, we define the image and corresponding 

round truth as X and Y , and we convert the Y to the SDM S ac-

ording to the function T ( x ) as follows: 

 ( x ) = 

⎧ ⎨ 

⎩ 

−in f 
y ∈ B ‖ x − y ‖ 2 , x ∈ Y in 
0 , x ∈ B 

+ 

in f 
y ∈ B ‖ x − y ‖ 2 , x ∈ Y out 

(14) 

here B, Y in , and Y out denote the skin lesion boundary, skin le- 

ion regions, and background regions, respectively. Particularly, the 
in f 
y ∈ B ‖ x − y ‖ 2 represents the closest distance from background 

ixel and skin lesion pixel to the boundary, while zero distance in- 

icates the boundary pixel. We further normalize the outside dis- 

ance value to be in the range (0, + 1] and the inside distance value

o be in the range [ − 1, 0), namely the range of value of the S is

 − 1, 1]. Besides, we employ the tanh activation to the SDM pre- 

iction and then obtain the Y SDM 

∈ [ − 1, 1]. Next, we calculate the 

DM loss according to the following formula: 

 SDM 

= 

1 

N 

N ∑ 

i =1 

|| Y i SDM 

− S i || 2 (15) 

here N represents the total pixel numbers. The SDM prediction 

ask promotes the network to learn the position and geometry 

nformation, so as to contract the over-segmentation and under- 

egmentation errors. When co-training SDM and BSM, the final 

oss L is defined as follows: 

 = L BSM 

+ ωL SDM 

(16) 

here the ω is a trade-off value between L BSM 

and L SDM 

, which is 

et at 0.35 in our experiments. 

. Experiments and results 

.1. Materials 

In this work, we used four public skin lesion datasets to assess 

he segmentation performance of CFF-Net, i.e., ISIC 2016 [25] , ISIC 

017 [24] , ISIC 2018 [ 22 , 23 ], and PH2 [26] datasets. We also evalu-

ted CFF-Net on three public datasets (i.e., CVC 

–ColonDB [52] , BUSI 

53] , and Nasopharyngeal Carcinoma) to demonstrate its applica- 

ility to other segmentation tasks. 

.1.1. Skin lesion datasets 

ISIC 2016 comprises 1279 images, of which 720, 180, and 379 

mages were used to train, validate, and test, respectively. ISIC 2017 

ontains 2750 images, which were divided into 20 0 0, 150, and 600 

or training, validation, and testing, respectively. ISIC 2018 con- 

ains 2594 images, which were divided into 1816, 260, and 518 

or training, validation, and testing, respectively. PH2 is a small 

ataset with only 200 dermoscopic images. For more reliable as- 

essment of performance, we used 120, 30, and 50 images for 

raining, validation, and testing, respectively. For a more credible 

valuation, we adopted 5-fold cross-validation in comparison ex- 

eriments for ISIC 2016, ISIC 2017, and ISIC 2018 datasets, and 

-fold cross-validation for the PH2 dataset. In addition, we per- 

ormed 5-fold cross-validation on the ablation experiments of ISIC 

016 and ISIC 2018, and 3-fold cross-validation on that of PH2. 

All the dermoscopic images were resized to the resolution of 

56 × 256 and normalized to the standard normal distribution. 

o further improve the generalizability of our proposed model, we 

mployed online random horizontal-vertical flipping and 90 ° rotat- 

ng augmentation for all the images. 
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.1.2. Other public datasets 

.1.2.1. CVC –ColonDB. Colorectal cancer (CRC) is the fourth most 

ommon cause of cancer-related mortality worldwide [54] . Polyps 

n the intestinal mucosa are believed to be the precursor lesions 

or CRC [55] . Thus, early detection and diagnosis of polyps are im- 

ortant. CVC 

–ColonDB comprises 380 colonoscopy images at the 

esolution 500 × 574 pixels gained from 15 short video sequences 

ith ground truths (GTs). We divided the dataset into training set 

200), validation set (50), and testing set (130) and used 5-fold 

ross-validation for comparison experiments. 

.1.2.2. BUSI. Breast cancer is one of the most fatal cancers in 

omen. Early diagnosis and treatment of breast cancer can help 

mprove the prognosis. An effective means for automatic segmen- 

ation of breast lesions from the ultrasound images can facilitate 

he diagnosis of breast cancer. BUSI is a repository of 780 images 

rom 600 women, which include 133 normal cases, 437 benign 

ases, and 210 malignant cases. Since clinicians usually focus on 

he breast lesion area, we removed the normal cases and adopted 

-fold comparison experiments to assess the segmentation perfor- 

ance of each model. 

.1.2.3. NPC. Nasopharyngeal carcinoma (NPC) has a high inci- 

ence rate in Southeast Asia, North Africa, and the Middle East 

56] . Chemotherapy and radiotherapy are the standard treatment 

ptions for NPC. During radiotherapy, the primary NPC tumor is in- 

luded in the irradiation field. Therefore, accurate contouring of the 

rimary NPC tumors from medical images is a key step for treat- 

ent planning. The public NPC dataset used in this study was from 

ICCAI 2019 StructSeg Challenge, which contains 50 CT scans. A 

otal of 642 slices with primary NPC tumors areas were extracted 

long the Z axis. The comparison experiments were based on 5- 

old cross-validation. 

.2. Evaluation metrics 

Metrics intend to evaluate the similarity between the ground 

ruth and the predicted results, thus reflecting the performance of 

he network. In this work, we selected four kinds of metrics to 

ppraise the performance including the Dice similarity coefficient 

DSC), Jaccard Index (JA), Recall ( Re ), and Precision (Pre). These 

etrics are described as follows: 

SC = 

2 × T P 

F N + 2 × T P + F P 
(17) 

A = 

T P 

T P + F N + F P 
(18) 

e = 

T P 

T P + F N 

(19) 

 re = 

T P 

T P + F P 
(20) 

here TP, FP , and FN stand for true-positive, false-positive, and 

alse-negative, respectively. The values of JA, DSC, Re , and Pre range 

etween 0 and 1. Specially, the value of the above metrics stays 

ositively with the network segmentation performance. 

.3. Implementation details 

The proposed CFF-Net was implemented in the Pytorch plat- 

orm and NVIDIA 2080Ti. Adam was selected as our optimizer, in 

hich β1 and β2 were set as 0.9 and 0.999, respectively. Addi- 

ionally, the initial learning rate was 0.0 0 01 with a weight decay 

f 0.0 0 03, and we employed cosine annealing learning rate sched- 

ler, where the minimum learning rate was 0.0 0 0 01. Moreover, we 
8 
hose 8 and 300 as the batch size and epochs for training. For fair 

omparison, all models were trained with the same hyperparam- 

ter. Of note, the BSM activated by sigmoid was binarized with a 

hreshold of 0.5 as the final prediction. 

.4. Comparison experiments 

To study the performance of the proposed CFF-Net, comparison 

xperiments were conducted on ISIC 2018, ISIC 2017, ISIC 2016, and 

H2 datasets using the following nine state-of-the-art models: U- 

et (2015) [4] , U-Net ++ (2018) [5] , Att-UNet (2018) [57] , CE-Net 

2019) [58] , CPF-Net (2020) [7] , MS RED (2022) [8] , FAT-Net (2022)

14] , Swin-UNet (2021) [12] , and UNeXt (2022) [17] . In particular, 

win-Unet is a model based on the pure Swin Transformer [43] for 

ulti-organ segmentation task, and FAT-Net is a model for skin le- 

ion segmentation, in which the encoder is constructed by CNNs 

nd transformers in parallel. UNeXt is the initial proposed convo- 

utional MLP-based network for medical image segmentation [17] . 

n other words, we not only compared CFF-Net with the traditional 

dvanced models based on CNNs, but also with those introducing 

ransformers and MLPs, whose experimental results are presented 

n Table 1 . Among these models, CFF-Net showed the best figures 

n nine of the twelve metrics among the four public skin lesion 

atasets. 

.4.1. Quantitative evaluation 

As observed in Table 1 , regarding the four public datasets, our 

roposed CFF-Net adopts the interactive dual branch encoder syn- 

hesized by MLPs and CNNs and leverages the geometry regular- 

zation, demonstrating better segmentation metrics on JA (81.86%), 

SC (89.78%), and Re (88.14%) in the ISIC 2018 dataset; JA (80.21%), 

SC (88.69%), and Pre (90.65%) in the ISIC 2017 dataset; JA 

85.38%), DSC (92.00%), and Pre (92.58%) in the ISIC 2016 dataset, 

nd JA (89.71%), DSC (94.52%), and Re (94.32%) in the PH2 dataset. 

hus, the segmentation performance of our method outperformed 

hat of the variant models based on CNNs [ 4 , 5 , 7 , 8 , 57 , 58 ] and the

odels with transformers and MLPs [ 12 , 14 , 17 ]. 

.4.2. Qualitative evaluation 

Fig. 6 visualizes the comparative results of ISIC 2018, ISIC 2017, 

SIC 2016, and PH2. The images in the first and second rows of 

ig. 6 show the segmentation results of different models in the 

resence of interference factors (e.g., hair and color calibration 

hart). The comparison methods can easily mis-classify the normal 

issue as lesion areas in the absence of an excellent feature extrac- 

ion ability. Because of the dual branch encoder with FIM, which 

imultaneously captures both local and global context information 

or enhancing the feature representations of network, CFF-Net can 

educe false-positives and more accurately identify the skin lesion 

reas, as shown in the last column of Fig. 6 . The images in the

fth and sixth rows of Fig. 6 present the segmentation results of 

ifferent methods for cases in which the edges of skin lesions are 

nclear and the contrast between the skin lesions and the back- 

round is low. It is apparent that CFF-Net provides better segmen- 

ation performance in this situation, as the auxiliary loss on SDM 

rediction improves the boundary awareness of the network. In 

eneral, the segmentation results (see the last column in Fig. 6 ) 

ndicate that CFF-Net can effectively recover finer details and miti- 

ate the issues of under-segmentation and over-segmentation com- 

ared with the other state-of-the-art models. This is because the 

ual branch encoder with FIM enables the network to pay more at- 

ention to the semantic information of skin lesions, and the multi- 

ask loss helps the network to more accurately locate the bound- 

ries of skin lesions. 
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Fig. 6. Visualization of comparison results in the ISIC 2018, ISIC 2017, ISIC 2016, and PH2 datasets. The regions enclosed by red and green denote the ground truth (GT) and 

the segmentation prediction, respectively. 
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Table 1 

Performance comparison of the skin lesion segmentation in ISIC 2018, ISIC 2017, ISIC 2016 and PH2 datasets (mean ±
SD). The most favorable results are emphasized in bold. 

Dataset Model JA (%) DSC (%) Re (%) Pre (%) 

U-Net [4] 79.71 ± 0.76 88.43 ± 0.33 85.89 ± 0.69 89.46 ± 0.52 

U-Net ++ [5] 81.24 ± 0.26 89.43 ± 0.26 87.94 ± 0.50 89.45 ± 0.41 

Att-UNet [57] 79.52 ± 0.75 88.32 ± 0.33 87.11 ± 0.63 87.73 ± 0.57 

CE-Net [58] 81.32 ± 0.68 89.45 ± 0.30 87.60 ± 0.59 89.18 ± 0.49 

ISIC 2018 CPF-Net [7] 80.45 ± 0.82 88.86 ± 0.36 87.57 ± 0.65 88.44 ± 0.61 

MS RED [8] 80.92 ± 0.81 89.15 ± 0.37 87.36 ± 0.60 89.14 ± 0.70 

FAT-Net [14] 80.92 ± 0.73 89.18 ± 0.32 87.88 ± 0.56 88.52 ± 0.54 

UNeXt [17] 79.73 ± 0.80 88.43 ± 0.35 86.78 ± 0.58 88.47 ± 0.68 

Swin-UNet [12] 79.86 ± 0.91 88.46 ± 0.41 87.43 ± 0.67 88.24 ± 0.73 

CFF-Net 81.86 ± 0.69 89.78 ± 0.30 88.14 ± 0.49 89.40 ± 0.53 

U-Net [4] 78.03 ± 0.81 87.34 ± 0.38 84.52 ± 0.90 89.07 ± 0.46 

U-Net ++ [5] 77.34 ± 0.84 86.90 ± 0.39 83.64 ± 0.97 88.56 ± 0.46 

Att-UNet [57] 77.54 ± 0.91 86.99 ± 0.44 84.99 ± 0.99 87.29 ± 0.62 

CE-Net [58] 79.34 ± 0.88 88.15 ± 0.41 84.99 ± 0.86 89.91 ± 0.49 

ISIC 2017 CPF-Net [7] 79.12 ± 0.94 87.99 ± 0.44 86.83 ± 0.80 87.67 ± 0.64 

MS RED [8] 79.38 ± 0.86 88.17 ± 0.86 86.89 ± 0.76 87.07 ± 0.64 

FAT-Net [14] 79.12 ± 0.77 88.05 ± 0.36 86.54 ± 0.80 87.77 ± 0.53 

UNeXt [17] 78.62 ± 0.88 87.69 ± 0.42 85.47 ± 0.89 88.51 ± 0.56 

Swin-UNet [12] 72.28 ± 1.00 83.50 ± 0.52 81.02 ± 1.25 84.27 ± 0.71 

CFF-Net 80.21 ± 0.86 88.69 ± 0.40 85.66 ± 0.90 90.65 ± 0.38 

U-Net [4] 82.58 ± 0.50 90.29 ± 0.20 87.72 ± 0.63 91.29 ± 0.13 

U-Net ++ [5] 83.25 ± 0.41 90.72 ± 0.16 88.48 ± 0.47 91.80 ± 0.17 

Att-UNet [57] 83.43 ± 0.41 90.83 ± 0.16 88.42 ± 0.51 92.12 ± 0.12 

CE-Net [58] 85.01 ± 0.30 91.80 ± 0.11 90.32 ± 0.39 91.84 ± 0.13 

ISIC 2016 CPF-Net [7] 84.24 ± 0.32 91.34 ± 0.12 89.78 ± 0.42 91.34 ± 0.15 

MS RED [8] 84.43 ± 0.36 91.43 ± 0.14 89.53 ± 0.38 91.60 ± 0.20 

FAT-Net [14] 84.49 ± 0.30 91.49 ± 0.11 90.41 ± 0.36 91.11 ± 0.19 

UNeXt [17] 82.59 ± 0.45 90.31 ± 0.18 84.18 ± 1.18 90.49 ± 0.22 

Swin-UNet [12] 84.14 ± 0.34 91.27 ± 0.13 89.45 ± 0.42 91.39 ± 0.15 

CFF-Net 85.38 ± 0.33 92.00 ± 0.12 90.36 ± 0.34 92.58 ± 0.17 

U-Net [4] 84.18 ± 0.36 91.30 ± 0.12 89.86 ± 0.56 90.30 ± 0.46 

U-Net ++ [5] 84.76 ± 0.56 91.57 ± 0.21 90.88 ± 0.56 90.45 ± 0.44 

Att-UNet [57] 82.70 ± 0.67 90.29 ± 0.28 88.45 ± 0.57 91.35 ± 0.78 

CE-Net [58] 89.29 ± 0.16 94.29 ± 0.53 94.31 ± 0.08 93.21 ± 0.29 

PH2 CPF-Net [7] 88.03 ± 0.30 93.54 ± 0.10 94.09 ± 0.08 91.81 ± 0.42 

MS RED [8] 88.18 ± 0.25 93.65 ± 0.08 93.52 ± 0.18 86.38 ± 0.85 

FAT-Net [14] 87.29 ± 0.20 93.15 ± 0.06 92.51 ± 0.24 92.85 ± 0.33 

UNeXt [17] 85.69 ± 0.78 92.01 ± 0.35 92.87 ± 0.16 90.12 ± 0.96 

Swin-UNet [12] 87.08 ± 1.05 92.69 ± 0.55 94.29 ± 0.06 91.42 ± 1.29 

CFF-Net 89.71 ± 0.18 94.52 ± 0.06 94.32 ± 0.08 91.55 ± 0.21 
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.4.3. Attention visualization 

The visualization results of different models, depicting the re- 

ions of interest, are shown in Fig. 7 . Compared with the other 

tate-of-the-art models, our model shows significantly improved 

bility to locate skin lesion areas and filter the background noise. 

or cases with low contrast or unclear boundary, our model can 

ighlight skin lesions successfully and retain more local details, 

ince the design of dual branch encoder enables the network to 

earn both local and global spatial information. In addition, the in- 

roduction of auxiliary prediction task for SDM promotes the cap- 

ure of global spatial relationship between foreground and back- 

round pixels, which further helps the model to pay more atten- 

ion to the boundaries of the lesion. Moreover, our model can mit- 

gate the interference of artifacts (e.g., hair and color calibration) 

ue to the representation enhancement by FIM. 

.5. Ablation experiments 

To investigate the effect of each component on our proposed 

ethod, we performed ablation experiments by sequentially re- 

oving SDM prediction-head, FIM, and MLPs branch from the CFF- 

et. 

.5.1. Quantitative evaluation 

Table 2 presents the segmentation metrics of CFF-Net and the 

odels after sequential detachment of each module on the three 

ublic datasets. Especially, JA is the more important metric than 
10 
he others in the skin lesion segmentation challenge; therefore, the 

rop value of JA is a critical index to measure the contribution 

f each part. Data presented in Table 2 shows that CFF-Net per- 

orms best in ten of the twelve metrics in the three public skin 

esion datasets. The removal of SDM prediction-head brings a JA 

rop of 0.48%, 0.52%, and 0.71% for the ISIC 2018, ISIC 2016, and 

H2 datasets, respectively. Additionally, the JA decrease is 0.73% for 

he ISIC 2018, 0.68% for the ISIC 2016, and 0.65% for the PH2 after 

urther separating the FIM. Finally, withdrawing the MLPs branch 

rom the network encoder resulted in a JA drop of 0.21% for ISIC 

018, 0.51% for ISIC 2016, and 2.13% for PH2. In general, the addi- 

ion of these three components gradually raised the segmentation 

ccuracy of the network. 

.5.2. Qualitative evaluation 

We carried out qualitative analysis to increase the interpretabil- 

ty of three proposed components. First, we visualized the results 

f the models before and after removing the SDM prediction-head 

nd those of the four advanced models [ 14 , 17 , 57 , 58 ], in order to

xplain the superiority of introducing geometric information into 

he network, as elaborated in Fig. 8 . Below, we provide the defi- 

ition of correct-segmentation area, under-segmentation area, and 

ver-segmentation area of Fig. 8 . Given the binarization prediction 

 ∈ {0, 1} H × W and GT G ∈ {0, 1} H × W , the correct-segmentation 

rea C ∈ {0, 1} H × W can be equated as P × G . Furthermore, the 

nder-segmentation area U ∈ {0, 1} H × W and over-segmentation 

rea O ∈ {0, 1} H × W can be equated as G − C and P − C , re-
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Fig. 7. The attention maps obtained by the last layer decoder from different models. Note that, warmer color indicates higher attention scores. 

Table 2 

Ablation studies of different com ponents in the ISIC 2018, ISIC 2016, and PH2 (mean ± SD). Note that the ↓ is the drop 

value of JA compared with the previous model. The best results are depicted in bold. 

Model JA drop (%) JA (%) DSC (%) Re (%) Pre (%) 

ISIC 2018 

CFF-Net – 81.86 ± 0.69 89.78 ± 0.30 88.14 ± 0.49 89.40 ± 0.53 

-SDM ↓ 0.48 81.38 ± 0.77 89.46 ± 0.33 87.15 ± 0.65 90.11 ± 0.54 

-FIM ↓ 0.73 80.65 ± 0.61 89.07 ± 0.26 87.52 ± 0.57 88.55 ± 0.46 

-MLPs ↓ 0.21 80.44 ± 0.67 88.92 ± 0.29 87.47 ± 0.57 88.99 ± 0.50 

ISIC 2016 

CFF-Net – 85.38 ± 0.33 92.00 ± 0.12 90.36 ± 0.34 92.58 ± 0.17 

-SDM ↓ 0.52 84.86 ± 0.39 91.68 ± 0.15 89.80 ± 0.48 92.24 ± 0.11 

-FIM ↓ 0.68 84.18 ± 0.38 91.23 ± 0.14 89.28 ± 0.42 91.92 ± 0.17 

-MLPs ↓ 0.51 83.67 ± 0.42 90.97 ± 0.16 89.38 ± 0.49 91.44 ± 0.18 

PH2 

CFF-Net – 89.71 ± 0.18 94.52 ± 0.06 94.32 ± 0.08 91.55 ± 0.21 

-SDM ↓ 0.71 89.00 ± 0.32 94.08 ± 0.11 95.02 ± 0.56 87.99 ± 0.48 

-FIM ↓ 0.65 88.35 ± 0.15 93.77 ± 0.48 93.64 ± 0.12 89.16 ± 0.25 

-MLPs ↓ 2.13 86.22 ± 0.91 92.27 ± 0.43 93.49 ± 0.17 89.91 ± 1.01 
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pectively. It is worth noting that the smaller regions of yellow 

nd green (larger regions of white) in Fig. 8 represent the bet- 

er segmentation performance of network. By contrasting with the 

odels with only the binary segmentation map (BSM) supervi- 

ion, auxiliary learning of SDM deploys position and shape aware- 

ess, producing clearer contours and decreasing the false-positives. 

verall, the combination training of SDM and BSM retains great 

kin lesion details and aligns well with the GT. 

Besides, we utilized attention maps to exhibit features extracted 

y the last layer of CNNs encoder, MLPs encoder as well as the 

NNs features after spatial information exchange, manifesting the 

easibility of feature-interaction. Several examples, which include 

hree skin lesion types, namely melanocytic nevus (nv), melanoma 

mel), and benign keratosis (bkl), are visualized by attention maps 

n Fig. 9 . As observed in Fig. 9 (a), CNNs encoder can only high-

ight the local skin lesion regions, and cannot filter out the back- 

round noise. Fig. 9 (b) shows that MLPs encoder can significantly 

mprove the accuracy in detecting the whole skin lesion regions 
11
rom a global receptive field, due to its powerful ability in estab- 

ishing spatial long-range dependencies. Although MLPs encoder 

as advantages in capturing the global context information, it still 

annot generate skin lesion targets with smooth boundaries and 

educe false-positives. Judged from Fig. 9 (c), our spatial interac- 

ion skill promotes CNNs features to incorporate into global se- 

antic information from MLPs features, enhancing the contrast 

etween the lesion and the surrounding background, and sup- 

ressing the irrelevant noise. Specially, our proposed encoder in- 

luded CNNs branch and MLPs branch can extract finer features 

rom the dermoscopy images attributed to the categories of nv, 

el, and bkl, which enhances the clinical practicality of CFF- 

et. 

.6. Cross validation experiments on ISIC 2018 and PH2 

In order to estimate the segmentation effectiveness of CFF- 

et with inconsistent distribution of training dataset and test 
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Fig. 8. Visualization of ablation results on ISIC 2018, ISIC 2016, and PH2 datasets. ‘CFF-Net ∗ ’ refers to the model after removing SDM prediction-head from the CFF-Net. 

White, yellow, and green represent the correct-segmentation areas, under-segmentation areas, and over-segmentation areas, respectively. Moreover, red represents the GTs, 

which are composed of correct-segmentation areas and under-segmentation areas. 
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ataset, we implemented cross validation between ISIC 2018 and 

H2 ( Table 3 ). For this experiment, all models to be tested were

rained on ISIC 2018 and PH2 using 5-fold cross-validation and 3- 

old cross-validation, respectively. Next, we selected 200 data from 

H2 to evaluate the models obtained from ISIC 2018, and 500 data 

rom the ISIC 2018 to evaluate the models obtained from PH2. As 

hown in Table 3 , CFF-Net exhibits promising performance with a 

A (54.31%) and a DSC (68.53%) in the mode of ‘ISIC 2018 → PH2’, 

s well as a JA (59.92%) and a DSC (69.29%) in the mode of 

PH2 → ISIC 2018 ′ . This indicates that our proposed method is 

ore robust than the others. Moreover, we generated boxplots to 

resent descriptive statistics of JA and DSC on the two different 

odes ( Fig. 10 ). The boxplots show that the divergence between 

ases of cross validation is reduced by our method, which helps 

ield highest mean value and median value in both JA and DSC 

etrics. 
i

12 
.7. Comparison experiments on other segmentation tasks 

In order to further demonstrate the universality and robustness 

f the proposed network, we conducted comparison experiments 

n three public datasets (i.e., CVC 

–ColonDB, BUSI, and NPC). 

.7.1. CVC –ColonDB 

As illustrated in Table 4 , the quantitative results show that the 

FF-Net possesses the highest metrics of JA (83.99%), DSC (91.07%), 

nd Pre (89.84%) compared with the six state-of-the-art models 

n CVC 

–ColonDB, implying that the segmentation predictions pro- 

uced by our method are closer to the ground truth. Qualitative 

esults are presented in Fig. 11 , and it is evident that most models 

ncountered some challenges in pointing out the vivid boundaries 

nd reconstructing the details of target areas when the lesions 

n the colonoscopy images exhibited irregular shapes and blurry 
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Fig. 9. Visualization of the feature maps generated by the last layer of CNNs encoder and MLPs encoder. (a) the CNNs feature maps; (b) the MLPs feature maps; (c) the 

enhanced CNNs feature maps (i.e., skip-connections). Note that warmer color refers to higher attention scores. The first two columns, the middle columns, and the last two 

columns of samples belong to the nv, mel, and bkl categories, respectively. 

Table 3 

Cross validation between ISIC 2018 and PH2 on different models (mean ± SD). ‘ISIC 2018 → PH2’ means that the models 

are trained on the ISIC 2018 and tested on the PH2, while ‘PH2 → ISIC 2018 ′ represents the opposite steps. The best 

results are indicated in bold. 

ISIC 2018 → PH2 PH2 → ISIC 2018 

Model JA (%) DSC (%) JA (%) DSC (%) 

U-Net [4] 24.47 ± 5.47 34.14 ± 7.74 50.15 ± 10.23 60.01 ± 10.48 

U-Net ++ [5] 18.40 ± 2.78 29.32 ± 2.78 54.49 ± 8.92 64.96 ± 8.57 

Att-UNet [57] 37.91 ± 2.98 52.67 ± 3.49 55.12 ± 8.78 65.61 ± 8.41 

CE-Net [58] 49.28 ± 2.70 64.45 ± 2.44 56.99 ± 9.80 66.49 ± 9.66 

CPF-Net [7] 49.52 ± 0.88 65.69 ± 0.79 58.39 ± 9.45 67.80 ± 9.06 

MS RED [8] 50.21 ± 3.43 64.76 ± 2.91 59.48 ± 9.52 68.81 ± 9.22 

FAT-Net [14] 38.51 ± 3.05 53.38 ± 3.18 53.70 ± 9.70 63.66 ± 9.69 

UNeXt [17] 28.58 ± 1.11 43.38 ± 1.76 58.78 ± 8.35 69.06 ± 7.71 

Swin-UNet [12] 47.92 ± 3.78 62.28 ± 3.72 55.71 ± 9.52 65.60 ± 9.30 

CFF-Net 54.31 ± 3.23 68.53 ± 2.60 59.92 ± 9.38 69.29 ± 8.96 

Table 4 

Comparison of our model with the field-leading methods using the CVC –ColonDB dataset (mean ± SD). The best results 

are indicated in bold. 

Model JA (%) DSC (%) Re (%) Pre (%) 

U-Net [4] 79.76 ± 0.83 88.43 ± 0.38 87.02 ± 0.58 88.78 ± 0.67 

U-Net ++ [5] 77.59 ± 1.64 86.66 ± 1.01 83.86 ± 1.46 83.79 ± 1.09 

Att-UNet [57] 79.39 ± 1.51 87.85 ± 0.97 84.85 ± 1.46 87.03 ± 0.79 

CE-Net [58] 76.70 ± 1.22 86.34 ± 0.58 86.32 ± 0.77 86.40 ± 1.11 

Swin-Unet [12] 51.15 ± 1.77 66.66 ± 1.35 68.65 ± 1.97 76.70 ± 1.22 

PraNet [59] 83.43 ± 0.64 90.74 ± 0.27 90.52 ± 0.30 89.70 ± 0.56 

CFF-Net 83.99 ± 0.65 91.07 ± 0.28 90.30 ± 0.30 89.84 ± 0.83 

13 



C. Qin, B. Zheng, J. Zeng et al. Computer Methods and Programs in Biomedicine 238 (2023) 107601 

Fig. 10. Boxplots of the cross validation experiments on ISIC 2018 and PH2. The green line ‘–’ and blue line ‘-’ denote the mean value and median value, respectively. 

Table 5 

Comparison of our model with the field-leading models using the BUSI dataset (mean ± SD). The best results are indi- 

cated in bold. 

Model JA DSC Re Pre 

U-Net [4] 62.20 ± 2.03 75.74 ± 1.20 72.13 ± 1.69 79.45 ± 1.78 

U-Net ++ [5] 61.26 ± 2.16 74.91 ± 1.38 71.27 ± 1.77 74.90 ± 2.16 

Att-UNet [57] 63.58 ± 1.97 76.80 ± 1.21 72.15 ± 1.82 83.24 ± 1.39 

CE-Net [58] 63.59 ± 2.40 76.57 ± 1.55 76.17 ± 1.50 76.42 ± 2.33 

UNeXt [17] 52.24 ± 2.74 67.01 ± 2.26 61.86 ± 3.00 75.45 ± 1.98 

MedT [13] 50.09 ± 2.34 65.26 ± 2.16 64.68 ± 2.29 64.93 ± 2.71 

CFF-Net 64.15 ± 2.37 77.06 ± 2.37 75.80 ± 1.40 77.53 ± 2.05 
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oundaries, as well as low contrast with the background. On the 

ontrary, our method can enable more accurate localization of tar- 

ets and generate more continuous segmentation maps, since the 

IM dynamically aggregates local and global contexts from the dual 

ranch encoder to generate richer feature representations. More- 

ver, the introduction of SDM supervision further calibrates the 

egmentation results. 

.7.2. BUSI 

Quantitative verification of the results in the BUSI are presented 

n Table 5 . the highest JA (64.15%) and DSC (77.06%) were obtained 

ith the CFF-Net. The experiments demonstrate that the breast 

esion predictions by our algorithm show a better match with 

he ground truth. Furthermore, the qualitative results illustrated in 

ig. 12 revealed that most models tended to mis-detect the edges 

f the breast lesions, along with neglecting the details of breast 
14 
esions. Yet, with the assistance of geometric constraint and long- 

ange dependencies comprised of global-spatial-dependencies and 

lobal-channel-dependencies, our proposed approach showed bet- 

er performance in handling the breast lesions with blurry edges 

nd irregular shape. 

.7.3. NPC 

The challenge in this segmentation task lies in the low con- 

rast between the primary NPC tumors and the surrounding nor- 

al tissues. We compared our model with six advanced models in 

his dataset, and the experimental results are reported in Table 6 . 

ur method shows the highest JA (64.93%), DSC (77.03%), and Pre 

79.76%), further demonstrating that CFF-Net is an effective and ro- 

ust method. Some visual examples of these comparison experi- 

ents are presented in Fig. 13 . It can be observed that our pro-

osed model reduces false-positive predictions and produces sharp 



C. Qin, B. Zheng, J. Zeng et al. Computer Methods and Programs in Biomedicine 238 (2023) 107601 

Fig. 11. Visualization of comparative results of different models in the CVC –ColonDB dataset. The red and green contours mark the boundaries of ground truth and segmen- 

tation predictions, respectively. 

Table 6 

Comparison of our model with the field-leading methods in the NPC dataset (mean ± SD). The best results are indicated 

in bold. 

Model JA DSC Re Pre 

U-Net [4] 62.99 ± 2.96 75.66 ± 2.47 79.49 ± 2.86 78.13 ± 4.09 

U-Net ++ [5] 60.57 ± 3.13 73.68 ± 2.66 77.93 ± 3.50 76.14 ± 4.51 

Att-UNet [57] 60.26 ± 3.23 73.34 ± 2.86 78.67 ± 3.51 75.33 ± 4.71 

CE-Net [58] 60.78 ± 3.08 73.85 ± 2.65 78.95 ± 3.46 75.68 ± 4.15 

UNeXt [17] 64.29 ± 2.89 76.70 ± 2.35 80.36 ± 3.00 78.94 ± 3.39 

FAT-Net [14] 60.06 ± 3.15 73.23 ± 2.78 79.42 ± 3.43 74.04 ± 4.47 

CFF-Net 64.93 ± 3.10 77.03 ± 2.65 79.92 ± 3.32 79.76 ± 3.32 

b

o

p

c

m

r

t

y

t

4

I  

p

t

s

m

p

(

o

a

o

U

t

l

p

f

oundaries of primary NPC tumors, i.e., the segmentation results 

f CFF-Net are more aligned with the ground truth than the com- 

ared models. This is because the CFF-Net employs a strong en- 

oder which fuses the local features and global contextual infor- 

ation extracted from the CNNs and MLPs, leading to strong rep- 

esentation capability. Moreover, the auxiliary prediction task is in- 

roduced to guide the learning of global geometric information, 

ielding more complete primary NPC tumor areas and suppressing 

he irrelevant noise. 

.8. Computational complexity 

The overall training time and inference time of all models in 

SIC 2018 are shown in Table 7 . In this experiment, it takes ap-
15 
roximately 2.9 h to train the CFF-Net (i.e., per epoch). In addi- 

ion, CFF-Net costs less than 1 s to generate one mask of skin le- 

ion (i.e., 6 s for 518 dermoscopy images). Compared with other 

odels, CFF-Net has moderate training and inference time. The 

arameters (Parms) and floating-pointing operations per second 

FLOPs) are presented in Table 7 . In contrast with the models based 

n pure CNNs (i.e., U-Net, U-Net ++ , Att-UNet, CE-Net, CPF-Net, 

nd MS RED), CFF-Net has comparable Parms and FLOPs. More- 

ver, our model is more lightweight than both FAT-Net and Swin- 

Net equipped with transformers. Although the UNeXt has advan- 

ages in terms of Parms and FLOPs, its segmentation accuracy is 

ower than that of the other models compared. Overall, our pro- 

osed method achieves a good balance between segmentation per- 

ormance and computational complexity. 
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Fig. 12. Visualization of the comparative results of different models in the BUSI dataset. The red and green contours indicate the boundaries of ground truth and segmenta- 

tion predictions. Particularly, the first three rows show benign predictions while the last three rows show malignant predictions. 
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Additionally, the Parms of CFF-Net after removing SDM 

rediction-head (S-p), MLPs branch (M-b), and FIM are illustrated 

n Table 8 . The parameters of CFF-Net before and after removing 

-p are almost the same, because we only used a simple convo- 

ution layer to output the prediction of SDM. Moreover, our FIM 

osts about 0.11 M parameters, which accounts for only 1.1% for 

he whole segmentation model. Although the S-p and FIM are 

ightweight, they both bring significant improvement in JA metrics 

f ISIC 2018, ISIC 2016, and PH2. Moreover, MLPs branch, which has 

cceptable Parms (1.75 M), also enhances the segmentation per- 

ormance of network. To summarize, our proposed modules have 

omparable parameters and all improve the segmentation accuracy 

f the network. 

. Discussion and limitations 

Developing an accurate and effective automatic segmentation 

ethod is important for computer-aided analysis and diagnosis of 

edical imaging [ 60 , 61 ]. In this work, we designed a novel model
16 
or automatic skin lesion segmentation in dermoscopy images 

hich may facilitate the primary detection and early treatment 

f melanoma. All in all, CFF-Net is equipped with three proposed 

omponents: the dual branch encoder composed of MLPs and 

NNs, extracting rich contextual information; the FIM to enhance 

he feature representations of MLPs branch and CNNs branch; SDM 

rediction-head to promote shape and position awareness, high- 

ighting the boundaries of segmentation. Regarding the experimen- 

al results, CFF-Net transcended the nine state-of-the-art models, 

nd had the best JA (81.86%), DSC (89.78%), and Re (88.14%) in ISIC 

018, the best JA (80.21%), DSC (88.69%), and Pre (90.65%) in ISIC 

017, the best JA (85.38%), DSC (92.00%), and Pre (92.58%) in ISIC 

016, as well as the best JA (89.71%), DSC (94.52%), and Re (94.32%) 

n PH2. The other metrics (i.e., Pre and Re ) are presented in Table 1 .

urthermore, some visual examples of comparison results are dis- 

layed in Fig. 6 , showing that CFF-Net performs precise boundary 

egmentation while restoring more details. 

The ablation results showed the contributions of dual branch 

ncoder, FIM, and SDM prediction-head to the segmentation 
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Fig. 13. Visualization of the comparative results of different models in the NPC dataset. The red and green contours indicate the boundaries of ground truth and segmentation 

predictions. 

Table 7 

Computational complexity and segmentation performance of different methods in 

ISIC 2018. 

Method FLOPs (G) Parms (M) 

Training 

Time (h) 

Inference 

Time (s) JA (%) 

U-Net [4] 20.18 9.85 2.0 7 79.71 ±
0.76 

U-Net ++ 

[5] 

35.02 9.34 4.6 9 81.24 ±
0.26 

Att-UNet 

[57] 

16.71 8.73 2.7 6 79.52 ±
0.75 

CE-Net [58] 8.89 29.00 1.6 4 81.32 ±
0.68 

CPF-Net [7] 8.03 30.65 2.3 5 80.45 ±
0.82 

MS RED [8] 10.55 4.71 4.8 11 80.92 ±
0.81 

FAT-Net 

[14] 

42.83 29.61 3.2 6 80.92 ±
0.73 

UneXt [17] 1.02 0.25 0.8 3 79.73 ±
0.80 

Swin-Unet 

[12] 

5.86 27.12 3.0 5 79.86 ±
0.91 

CFF-Net 14.70 9.71 2.9 6 81.86 ±
0.69 

p

i

g

Table 8 

Parameters and performance of different modules in ISIC 2018, ISIC 2016, and PH2. 

Method Parms (M) 

JA (%) 

/ISIC 2018 

JA (%) 

/ISIC 2016 

JA (%) 

/PH2 

CFF-Net 9.71 81.86 ±
0.69 

85.38 ±
0.33 

89.71 ±
0.18 

CFF-Net 

- S-p 

9.71 81.38 ±
0.77 

84.86 ±
0.39 

89.00 ±
0.32 

CFF-Net 

- S-p 

- FIM 

9.60 80.65 ±
0.61 

84.18 ±
0.38 

88.35 ±
0.15 

CFF-Net 

- S-p 

- FIM 

- M-b 

7.85 80.44 ±
0.67 

83.67 ±
0.42 

86.22 ±
0.91 

f

c  

t

o

a

b

s

m

r

s

t

erformance, and the results are reported in Table 2 . As observed 

n Fig. 8 , co-training of SDM and BSM enabled the depiction of the 

eometrical contour of the target. Recently, the MLPs consisting of 
17
ully connected layers and non-linear activation functions have re- 

eived extensive attention [ 62 , 63 ], owing to the simple and effec-

ive channel-mixing and spatial-mixing operations. To the best of 

ur knowledge, CFF-Net is the first model to aggregate the MLPs 

nd CNNs in parallel for medical image segmentation, expressing 

oth local and global receptive fields. Moreover, we integrated the 

patial information into MLPs from CNNs, and the channel infor- 

ation into CNNs from MLPs, enabling more significant semantic 

epresentations for further decoding. Furthermore, we adopted vi- 

ual attention maps to explain the MLPs features and CNNs fea- 

ures before and after improvement, as shown in Fig. 9 . 
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Fig. 14. Visual comparisons of failure cases with different methods. The regions enclosed by red and green denote GT and segmentation prediction, respectively. 

P

o  

N

r

C

r  

a

t

o  

p  

m

o

h

e

m

l

d

o

b  

a

s

t

s

t

w

t

t

6

e

t

t

i

p

i

c

p

s

t

y

Finally, we conducted cross-validation between ISIC 2018 and 

H2, and the results are presented in Table 3 . Besides, the boxplots 

f JA and DSC ( Fig. 10 ) illustrated that the median value of CFF-

et was highest while the deviation was smallest for both met- 

ics. Furthermore, we executed other three segmentation tasks (i.e., 

VC 

–ColonDB, BUSI, and NPC) using our model, and the results are 

eported in Tables 4 , 5 , and 6 , respectively. For CVC 

–ColonDB, JA

nd DSC increased by 4.23% and 2.64% using our model compared 

o U-Net, while for BUSI, the CFF-Net surpassed the U-Net by 1.95% 

n JA and 1.32% on DSC. In addition, For NPC, the JA and DSC im-

roved by 1.94% and 1.37%. Figs. 11 , 12 , and 13 show the contour

aps of predictions and ground truth, indicating the superiority 

f our model for recovering details, decreasing false-positives, and 

ighlighting the small targets with ambiguous boundaries. These 

xperiments demonstrated the effectiveness and robustness of our 

odel in providing precise and reliable automatic segmentation. 

Although CFF-Net showed advanced performance in four skin 

esion datasets, it achieved limited segmentation accuracy for in- 

ividual cases. Fig. 14 shows some cases of false segmentation by 

ur proposed CFF-Net and other four models. Similar to the models 

ased on CNNs [ 4 , 7 ], transformers [14] , and MLPs [17] , our model

lso showed poor segmentation performance in cases where the 
18 
kin lesions were oversized or carried extremely low contrast to 

he background. Although our model cannot fully identify skin le- 

ion areas, the segmentation results of our method were closest to 

he ground truth compared with other models. In the future, we 

ill explore a novel combination mode between MLPs and CNNs 

o enhance the feature extraction ability and improve the segmen- 

ation performance. 

. Conclusion 

In this study, we propose a novel architecture CFF-Net which is 

quipped with the encoder composed of MLPs and CNNs in parallel 

ogether with integrating feature-interaction module (FIM) to allow 

he features of different branches to dynamically exchange spatial 

nformation and channel information. This design enhanced the ca- 

ability of representation learning. Besides, we leverage an auxil- 

ary loss on supervising geometric shapes, which enables more ac- 

urate contouring of the boundaries of skin lesions. Extensive ex- 

eriments on four publicly available skin lesion datasets demon- 

trated that our proposed model possesses leading-edge segmen- 

ation performance with comparable computational complexity, 

ielding prediction maps with more details, clearer boundaries, 
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nd less false-positives. Furthermore, we conducted comprehensive 

blation experiments to assess the effect of the individual compo- 

ents of the proposed model. Application of CFF-Net for the other 

hree segmentation tasks showed its universality and robustness. 

n future, our method may possibly be applied for other medical 

mage segmentation tasks, such as segmentation of retinal edema 

esion and multiple organs from fetal MRI. 
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