
Citation: Santambrogio, R.;

Vertemati, M.; Barabino, M.; Zappa,

M.A. Laparoscopic Microwave

Ablation: Which Technologies

Improve the Results. Cancers 2023, 15,

1814. https://doi.org/10.3390/

cancers15061814

Academic Editors: Alessandro Vitale

and Umberto Cillo

Received: 24 January 2023

Revised: 13 March 2023

Accepted: 14 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Laparoscopic Microwave Ablation: Which Technologies
Improve the Results
Roberto Santambrogio 1,*, Maurizio Vertemati 2 , Matteo Barabino 3 and Marco Antonio Zappa 1

1 UOC di Chirurgia Generale, Ospedale Fatebenefratelli, ASST Fatebenefratelli Sacco, 20121 Milano, Italy
2 Department of Biomedical and Clinical Sciences “L. Sacco”, Università degli Studi di Milano,

20157 Milano, Italy
3 Hepatobiliary Surgery Unit, Department of Surgery, San Paolo Hospital, University of Milan,

20142 Milano, Italy
* Correspondence: roberto.santambrogio@asst-fbf-sacco.it; Tel.: +39-02-63632595

Simple Summary: Laparoscopic ablation of hepatic tumors is a demanding procedure. In this
article, Authors show the new technologies which permitted to perform this procedure safely and
obtaining good oncological results. In the preoperative period, 3D reconstruction of radiological
imaging permits to evaluate exactly the position of the lesions. Intraoperatively, it is possible to
guide the treatment using ICG-fluorescence imaging and the intraoperative ultrasound. All these
technologies are very useful tools to permit the surgeon to obtain the best results after laparoscopic
ablative treatments.

Abstract: Liver resection is the best treatment for hepatocellular carcinoma (HCC) when resectable.
Unfortunately, many patients with HCC cannot undergo liver resection. Percutaneous thermoablation
represents a valid alternative for inoperable neoplasms and for small HCCs, but it is not always
possible to accomplish it. In cases where the percutaneous approach is not feasible (not a visible
lesion or in hazardous locations), laparoscopic thermoablation may be indicated. HCC diagnosis
is commonly obtained from imaging modalities, such as CT and MRI, However, the interpretation
of radiological images, which have a two-dimensional appearance, during the surgical procedure
and in particular during laparoscopy, can be very difficult in many cases for the surgeon who has to
treat the tumor in a three-dimensional environment. In recent years, more technologies have helped
surgeons to improve the results after ablative treatments. The three-dimensional reconstruction
of the radiological images has allowed the surgeon to assess the exact position of the tumor both
before the surgery (virtual reality) and during the surgery with immersive techniques (augmented
reality). Furthermore, indocyanine green (ICG) fluorescence imaging seems to be a valid tool to
enhance the precision of laparoscopic thermoablation. Finally, the association with laparoscopic
ultrasound with contrast media could improve the localization and characteristics of tumor lesions.
This article describes the use of hepatic three-dimensional modeling, ICG fluorescence imaging and
laparoscopic ultrasound examination, convenient for improving the preoperative surgical preparation
for personalized laparoscopic approach.

Keywords: hepatic surgery; thermoablation; laparoscopy; liver tumor; 3D models; ICG fluorescence
imaging; laparoscopic ultrasound

1. Introduction

Hepatic resections and thermoablation procedures represent important options in the
therapeutic strategies for hepatocellular carcinoma (HCC). Very often, they are performed
by a laparoscopic approach [1,2] that can be a complicated procedure for the surgeon.

In recent years, several technologies have been developed to facilitate the surgical
maneuvers and to improve the results in terms of radicality and complications.
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These technologies have evolved simultaneously with the rapid development of la-
paroscopic surgery in which preoperative and intraoperative planning was more necessary
due to accuracy than open surgery [3,4].

This review shows the importance and the limits in the use of some technologies
employed in the planning and therapeutic strategies of laparoscopic thermoablation: the
hepatic 3D modeling and printing procedure, the indocyanine green (ICG) fluorescence
imaging and the laparoscopic ultrasound (LUS) with contrast media. A video describes
some applications of these technologies in selected cases (see Video S1).

2. Use of 3D Reconstruction

The complexity of liver vascular anatomy and the anatomic variations and the rela-
tionship with focal liver lesions emphasize the importance of surgical planning in liver
cancer surgery. In this context, 3D reconstruction has on the one hand increased our
level of knowledge regarding the anatomical variants (i.e., 3D reconstruction is tailored
on patient-specific anatomy), on the other hand, it allows the possibility of developing
new laparoscopic procedures and approaches [5]. Jiang et al. carried out a systematic
meta-analysis to compare the difference between 3D reconstruction and 2D CT scans before
surgery for primary hepatic carcinoma. They found that preoperative 3D reconstruction
has a positive impact on liver surgery reducing damage to liver blood vessels, avoiding
intraoperative bleeding during the operation, and achieving the accuracy of the tumor
resection [6]. Moreover, 3D reconstruction in conjunction with 2D imaging could be a useful
model for improving trainees’ understanding of liver anatomy and surgical resection [7].

During the laparoscopy, to help with surgical maneuvers, the ultrasound view of the
spatial relationship of intra-hepatic structures is settled on two-dimensional (2D) images
using a high-frequency transducer with a limited depth (about 6 cm) that does not provide
a panoramic visualization of the intra-hepatic anatomy [8]. The identification of the exact
location of a nodule within the hepatic parenchyma is established by the relationships with
the vascular-biliary structures that define the segmental anatomy of the liver and which
is very often different in many patients [9,10]. Based on the two-dimensional information
obtained from preoperative imaging (CT and MRI), expert surgeons can have a mental
picture of a 3D representation scan to perform the operation successfully, but it can be a
serious challenge for surgeons to identify the presence of anatomical variants using only
the LUS evaluation [11,12]. In this setting, 3D reconstruction from 2D images and virtual
reality technologies can clearly show the exact spatial anatomy of a nodule and can help
LUS in planning the thermoablation procedures [13–15]. Unlike traditional imaging, virtual
reality (as well as augmented reality) allows a three-dimensional view of the patient in the
form of a copy of the original. This 3D representation increases the visibility of the organs
to be examined making them more perceptible in their real form, thus allowing the surgeon
to immerse themselves in the image that was created, interact with it, and navigate within
its space.

This technology is based on three fundamental principles: immersion, navigation and
interaction. The immersion corresponds to the feeling of being “submerged” inside the 3D
image. Navigation corresponds to movement within the image. The interaction consists of
the manipulation of the structures of the image created in real-time (Figure 1).

The 3D reconstruction procedure is not yet an easy technique and requires different
steps before reaching the final product. Of course, a thin-layer, three-phase CT is required.
MRI is definitely a more precise imaging technique in the diagnostic definition of the
tumor, but 3D reconstruction is more efficient using CT images. In addition, CT should be
performed in the three different stages of hepatic perfusion: arterial, portal and late. These
phases, indispensable for the diagnostic definition of the nodule, represent the basis for the
correct reconstruction of the vascular architecture of the organ and its relationship with
the nodule. The result will be improved for the finer (1 mm) layers obtained from the CT
images resulting in a more precise and defined 3D reconstruction.
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Figure 1. The figure shows the different steps to obtain a 3D model from CT scans to be visualized in
the HDMI.

The procedure we use in our Centre is as follows. CT images are loaded and examined
with a free, open-source medical image viewer (Horos software Version 3.3.6 or Osirix
software version 4.1; Pixmeo, Geneva, Switzerland), designed for Digital Imaging and
Communications in Medicine (DICOM) images [16,17]. This software allows the surgeon
to perform multiplanar reconstructions of the liver in a very simple way (Figure 2). Such
reconstructions are useful for visualizing the lesion, and by analyzing its relationships with
contiguous vascular structures, it is possible to identify the exact location of the nodule.
In this way, the surgeon is able to program in advance how to place the patient on the
operating table in order to have the easiest access to the nodule to be treated.
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Figure 2. Multiplanar reconstruction of CT scan ((A) = sagittal, (B) = axial and (C) = coronal
planes) of a HCC nodule (arrow) in the seventh segment contiguous to inferior vena cava (IVC).
(D) = laparoscopic ultrasound image of the nodule.

At this point, the procedure becomes more complex and requires the help of experi-
enced staff. Starting from the DICOM CT datasets, a 3D reconstruction of liver structures
(parenchyma, arterial and venous vessels) is obtained using a segmentation procedure.
Different methodologies may be used [18,19], but for 3D liver reconstructions, manual
segmentation is definitely the preferable one, although it is tedious and requires much
more time. In the first step, 3D Slicer is used, a free open-source software for the advanced
analysis and processing of medical imaging [20]. With this program, it is possible to obtain
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a 3D reconstruction of the liver parenchyma and its vascular structures contained within it
as well as tumor nodules using semiautomatic algorithms based on in-built region-growing
and threshold algorithms in Hounsfield units, with manual adjustment of the boundary to
refine little branches of vessels. This human–machine interface allows for the realistic obser-
vation of reconstructed structures, which, depending on the needs, can become transparent,
ensuring a better visualization of the vascular relationships with the nodule, highlighting
only those of interest for the next surgical procedure. The organ can thus be manipulated
in real-time.

The 3D model thus obtained is then re-evaluated by a radiologist expert to confirm
the correct reproduction of the CT images. Then, it can be exported in STL file format and
then adjusted and converted by using Blender v.2.80 (Blender Foundation, Amsterdam,
Netherlands), a 3D computer graphics open-source software. Lastly, the converted file is
uploaded in a dedicated Virtual Reality Environment (VRE) developed by our team and
based on the game engine Unity (Unity Technologies, San Francisco, CA) [21]. The VRE is
visualized in a mobile head-mounted display (i.e., Oculus Quest 2) to provide the surgical
team with an immersive visualization of the 3D model. Once immersed in the virtual
reality environment, the operator can navigate and interact with the 3D reconstruction in an
immersive way, can isolate the structures that interest them making the others transparent,
and rotate the organ so as to display the nodule from different angles (Figure 3).
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Figure 3. A 3D reconstruction which permits the identification of the lesion’s position (green) in
relationship with glissonean pedicles.

In recent years, technological development has allowed access to the world of aug-
mented reality (i.e., Microsoft HoloLens), which can be used to project three-dimensional
holograms on the surrounding physical environment, also allowing interaction with holo-
graphic objects and spatial tracking.

This technology can be used in the operating room in association with the images of
the laparoscopy column monitor and the surgeon can then interact with the 3D model. All
of this can be transmitted on an additional monitor allowing other operators to view the
same images, thus also playing an educational role [22]. HoloLens is worn by the surgeon
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without determining any impediments in its action. They can perform the intraoperative
ultrasound by comparing the ultrasound images with the 3D model in front of them. The
surgeon can interact with HoloLens by moving or zooming in without running the risk of
contaminating the operating field. Surgical maneuvers can be stopped at any time to recheck
the information that the 3D model can provide. In case the ultrasound or intraoperative
images raises doubts about the vascular distribution, the surgeon can compare in real time
such images with those of the 3D model and better address the positioning of the antenna
or the direction of the dissection slice (Figure 4).
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Although 3D reconstructions in the virtual environment based on VR and AR tech-
nologies allow liver surgical approaches to be planned by evaluating intrahepatic liver
segmental branches and their spatial relationships with the lesion(s), some limitations
are still present. Development of VR and AR, for example, is still expensive and time-
consuming [23]. Moreover, the soft and deformable nature of the liver parenchyma and the
liver movement during operation because of respiratory cycles may determine a change in
relationships between the lesion and intrahepatic vascular and biliary structures and an in-
correct match between the 3D reconstruction image and the real intrahepatic structures [24].
In this respect, advancements in hardware and tracking technologies (i.e., sensor-based,
marker-based, hybrid tracking technologies) with AR systems can increase the matching
and mixing of virtual objects (the 3D liver) with the real environment.

Therefore, the use of 3D reconstructions and the development of models for virtual
and augmented reality are key aids to:

• Choosing the patient’s position on the operating table according to the correct location
of the nodule;

• Once the patient is positioned, the choice of the trocar entry point to be used for the
laparoscopic probe can be chosen based on the location of the nodule as visualized by
virtual reality [25];

• The technique of lesion centering using the laparoscopic ultrasound probe is totally
free-hand. Comparison of images obtained with intraoperative ultrasound and aug-
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mented reality allow the surgeon greater accuracy in locating the antenna insertion
point in the liver, so that the nodule can be reached with greater precision [14];

• Finally, in case the intra-hepatic vascular occlusion (IHVO) technique is to be used, 3D
reconstruction together with virtual and augmented reality techniques allow the exact
individualization of the vessel feeding the nodule, by obtaining a coagulative ablation
of the vessel [26].

As indicated at the beginning of this section, all virtual and augmented reality tech-
niques allow the manipulation of the model: in this way they are of valuable help in a
situation such as the laparoscopic approach, which does not allow for the easy manipula-
tion of the liver, in addition because of the use of rigid instrumentation. Certainly, the use of
robotic surgery with an immersive vision technique and the use of articulated instruments
will be of further help in surgical procedures on the liver. Even more so, laparoscopic
ultrasound, using linear, high-frequency transducers and therefore with a limited field,
may have difficulty in detecting nodules located in deep sites: the 3D reconstruction can
tell the surgeon which areas of the liver to examine most carefully for their location [14,25].

However, as already mentioned at the beginning, 3D reconstruction and the creation of
virtual models require time and dedicated personnel who are specialized in handling this
software. The process of making a 3D reconstruction from DICOM data and transforming
it into a virtual and augmented reality model can take more than 2 h, and in centers with a
high volume of patients, it can be a problem to accomplish this.

In most cases that come to the attention of centers of liver surgery, the use of CT
images with multiplanar reconstructions and possibly the use of 3D reconstruction only
on the computer are sufficient to identify the exact location of the lesion and its main
vascular relationships. Only in the presence of complex cases, with important vascular
abnormalities that make it difficult to understand their relationship with the nodule, might
3D reconstruction with virtual and augmented reality be necessary, as well as the use of
3D printing that in addition to its real use during surgical procedures has an important
educational and training role. In fact, the use of models in 3D printing allows a precise
liver segmentation to be obtained, thus improving the spatial understanding of the lesions
and their relationship with the vascular structures and favoring the professional growth of
all the staff [27]. However, the costs and time needed to build these models currently limit
their use.

3. ICG Fluorescence Imaging

In recent studies, indocyanine green (ICG) fluorescence seems to be a valid tool to
increase the safety of liver resection. Some authors [28,29] showed that LUS integrated with
ICG fluorescence imaging permitted the identification of HCC nodules: in fact, the use of an
LUS probe may be associated with difficulties in visualizing small subglissonean nodules
which could be easily identified by ICG imaging. A single dose of ICG (generally 0.5 mg/kg)
used for routine liver function tests (with the LiMON device) should be injected 24–36 h
before the surgical procedure and it is sufficient to identify nodules using intraoperative
fluorescence imaging. Detection of hepatic lesions by ICG fluorescence is determined by
the distinction between the tumoral fluorescent aspect and the nonfluorescent remaining
liver parenchyma.

Usually, ICG dye is selectively absorbed by hepatocytes through two specific trans-
membrane transport systems: organic anion-transporting polypeptides (OATP) and sodium-
taurocholateco-transporting polypeptides (NTCP). On the other hand, the ICG excretion
into the bile ducts is mediated by the activity of canalicular transporters, called multidrug
resistance-associated proteins (MRP), that are expressed in the apical part of the hepato-
cytes [30].

• In this setting, ICG fluorescence imaging can be also used to obtain information on
nodule characteristics and to help in targeting the lesion;

• LUS is a fundamental tool for laparoscopic ablation procedures, but it has some
drawbacks and difficulties in interpreting images. ICG fluorescence imaging is a
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promising method for navigation surgery, which allows the limitations of ultrasound
examination to be overcome, above all for the subglissonean nodules. In a minimally
invasive setting, ICG fluorescence can substitute the tactile feedback of the hand in
the presence of soft parenchyma and in some cases, permits the identification of small
superficial nodules not identified by the preoperative imaging modalities, completing
the LUS staging. In the presence of macronodular cirrhosis and irregular liver surface,
it can overcome the LUS difficulties due to the inadequate contact with the liver
parenchyma, in the detection of superficial nodules [31–33];

• ICG imaging is very fast and perfectly integrated into the surgical equipment because
fluorescent images of hepatic nodules are visualized by simply fixing on the liver
surface with the camera and switching the camera system to the near-infrared function;

• ICG fluorescence imaging could identify different patterns of fluorescence for HCC
nodules according to their grade of differentiation [34]: intense and homogenous
fluorescence is indicative of well-differentiated HCC, while moderate or poorly differ-
entiated tumor generates partial or rim-type fluorescence;

• In some procedures used during the laparoscopic thermoablation (IHVO) [26], it is
possible to evaluate the ischemic effect of the occlusion of the vessel feeding the lesion.
In this case, the ICG injection is performed immediately after the ablation of the
vascular pedicle, and it is possible to visualize the area of the liver surface without
IGC fluorescence (Figure 5).
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However, this technology presents two major drawbacks. The first is the lack of
penetration into the parenchyma (up to 8 mm from the liver surface), so, only superficial
tumors can be visualized by this technique. On the second, ICG fluorescence could present
a relatively high incidence of false-positive rate: benign nodules, biliary hamartomas and
nodular hyperplasia can show a well-defined fluorescence [31,35].

4. LUS Evaluation

Intraoperative ultrasound (IOUS) has been the gold standard in preoperative staging
of focal liver lesions for some years since it allows the recognition of new nodules mis-
conceived to preoperative imaging methods and represents the unique and indispensable
tool for the surgeon’s guidance in intraoperative resections and interstitial treatments.
The development of minimally invasive techniques and the use of probes dedicated to
laparoscopy have allowed the use of intraoperative ultrasound through a less aggressive
route, an extremely important factor, especially in such delicate patients as those suffering
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from cirrhosis of the liver. Laparoscopic ultrasound (LUS) overcomes the two major limita-
tions of the laparoscopic approach, namely limited inspection of the visible surface of the
organ and failure in the tactile inspection of structures, and combines the advantages of the
mini-invasive way to the remarkable diagnostic capacity of the contact ultrasound, offering
an accuracy comparable to that of the IOUS.

However, the LUS technique is not simple and requires considerable experience: the
learning curve has not yet been defined with precision [36]. The diagnostic capacity of
the LUS depends not only on the skill of the operator but is certainly influenced by the
size and depth of the nodule and the ultrasound pattern of the structure of the hepatic
parenchyma. In the case of cirrhosis, the irregular surface associated with the impossibility
of compressing increased parenchyma of consistency favors the interposition of air between
the liver and the transducer, thus altering the quality of the image [37]. In the presence
of multiple nodules, the choice of the position of the inlet trocar for the probe can lead to
greater difficulty in finding nodules placed in deep and rear positions [38].

In our Centre, we use ultrasound equipment (Arietta V70, Hitachi, Tokyo, Japan)
connected to an LUS probe with a flexible tip, 10 mm in diameter and 50 cm in length. A
5–7.5 MHz linear-array transducer was side-mounted near the tip of the shaft. The length
of the transducer surface was 38 mm, which produced an image footprint of approximately
4 cm in length and 6 cm in depth. In recent years a laparoscopic probe has become available
that allows the use of a contrast agent (Sonovue, Bracco, Italy) during the LUS examination
of the liver: the adjunct of contrast enhancement during the intra-operative ultrasound can
ameliorate image visibility, the precise diagnosis of new malignant nodules and ablation
efficacy after the ablation of HCC nodules.

Usually, it is sufficient to use two 10/12-mm trocar accesses. Preoperative imaging
techniques and their 3D reconstructions are essential in determining the position of the
patient on the operating bed depending on the location of the nodule. Usually, the position
of the patient on the operating bed is supine with the left arm extended: the surgeon is
located either on the right side or between the legs of the patient: this is the usual position
for localized lesions in the left lobe and in the fourth segment. The same position but with
legs closed and the surgeon positioned to the right of the patient is used for anterior sector
nodules. Finally, lesions in segments VI and VII require either an oblique position with
the right side elevated up to 45 degrees or a left decubitus position with the right arm
elevated and across the chest with the surgeon positioned on the right or on the left side of
the operating bed.

The access of the LUS probe into the peritoneal cavity is conditioned by the position
of the trocars: first, the umbilical port can be chosen for laparoscopic exploration by the
camera, and the second trocar for the LUS access could be decided on the information
obtained both the preoperative imaging evaluation and the intraoperative conditions as
established by laparoscopy visualization.

LUS examination of the liver can be usually accomplished with a direct contact tech-
nique in the presence of the natural humidity of the liver surface, which permits an excellent
acoustic touch with the transducer. However, for lesions at the hepatic dome or localized
in the posterior segments, contact between the transducer and liver surface may be limited:
in this case, the saline solution can be introduced between the liver and diaphragm thus
creating an acoustic window that allows you to view these areas without air interference
(water-immersion method). If, however, this is not sufficient, it is possible to decrease
the pneumoperitoneum to 6–8 mm thus reducing the angle of contact with the hepatic
surface, thus improving the ultrasound image. With these devices, it is also possible during
laparoscopy as with open surgery to completely examine the liver with the ultrasound
probe to identify nodules, their size, characteristics and their exact location according to
the Couinaud classification of liver anatomy [39].

After the lesions have been localized, the antenna for a microwave ablation (MWA)
(or electrode needle for radiofrequency ablation (RFA)) can be accurately inserted into the
nodule. When it is necessary to treat lesions localized in segment 1 or in the posterior
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segments, a longer laparoscopic antenna could be required (27–30 cm). The antenna
proceeds through the abdominal wall and the pneumoperitoneum space prior to reaching
the liver surface: this space could increase the difficulties in the movements of the tip of
the antenna. In fact, laparoscopic ablation is more technically difficult than percutaneous
procedure due to a different three-dimensional spatial plan, decreased liberty in antenna
angulation and introduction, and with the free-hand guide of intraoperative ultrasound
(IOUS) [40]. Other laparoscopic probes have been equipped with a pore for a guide to
insert the antenna: however, the rigid direction line due to the pore prevents the possibility
of guiding the antenna into lesions located in different sites of the liver [41].

A LUS-guided interventional procedure [42] can be successfully accomplished if the
following ideal conditions are satisfied: (1) a good visualization of the lesion is necessary:
the ultrasound probe must be positioned on the liver surface to show the largest diameter
of the whole nodule; (2) the antenna must be inserted as close as possible to the transducer
of the ultrasound probe trying to have an angle oblique to it so that you can follow the path
of the antenna tip as closely as possible with the ultrasound. Once the antenna has been
inserted, with delicate rotational movements of the probe on its axis, it must follow the
path of it up to the lesion. Being a totally free-hand technique, it is possible that the first
attempt will not be adequate: in this case, based on the position of the antenna with respect
to the nodule, it is extracted by repositioning it at a different point on the liver surface,
taking into account that small distances on the surface of the liver can result in much wider
distances within the liver, especially if the nodule is very deep. For lesions located in the
posterior segments, it is necessary to introduce the antenna on the liver surface distant
from the lesion: in this case, the transducer cannot contemporaneously display the nodule
and the antenna tip.

A technical variant is the IHVO. This approach has the goal of producing an ischemic
zone centered on the vessel feeding the lesion thus increasing the area of necrosis [26]: in
this way, it is desired to reduce the risk of partial necrosis or a local tumor progression that
would require additional ablative therapy. The first step of the procedure is to detect with
ultrasound the presence of the vessel feeding the lesion or otherwise of a contiguous vessel
that could determine a heat ink effect: very often the use of color-doppler allows for the
better identification of the vascular architecture. At this point, under ultrasound guidance,
the electrode/antenna is positioned as close as possible to the vessel and its ablation is
carried out by RFA (the ablation cycle lasts either 2–4 min) or MWA (60–90 s). At the end of
ablation, the coagulative ablation of the area previously refurnished by the vessel ablated is
evaluated using again the color doppler imaging or using intravenous ultrasound contrast
agent. Furthermore, a discolored area on the liver surface could be also visualized. The
use of ICG imaging after immediate injection can emphasize the absence of portal flow.
Then, the nodule can be treated with the insertion of the electrode or antenna in the usual
way. IHVO reduces the local recurrence after ablation with comparable results to surgical
resection [2,43].

Another application of IOUS is the ability to characterize locally advanced HCC nod-
ules, even with a diameter of less than 3 cm and this could justify the high recurrence rates
after radical treatments, mainly due to new HCC tumors in the remaining liver. Several
studies have established that the existence of microvascular infiltration and satellitosis
could be a determinant of HCC recurrence after healing treatments [44–46] and therefore
the relevance of recognizing the HCC nodule with these features before the histological
analysis [47,48]. In fact, if it was possible to identify the biological aggressiveness of the
HCC nodule, a micro-invasive HCC (MI-HCC) could be treated in another way. In a
previous study [49], we have shown that IOUS is able to identify some features which were
typical of MI-HCC and these findings effectively matched with similar histopathologic
criteria. These IOUS findings (Figure 6) are useful to identify the biological behavior of
HCC and to foresee the likelihood of local recurrences and overall survival rates. The ability
of IOUS to identify the micro-invasive pattern allows for the recognition of these high-risk
patients also during laparoscopic ablation, a treatment without a pathological specimen to
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analyze. In patients with MI-HCC, IOUS (during the laparoscopic ablation treatment) can
definitely demonstrate situations at higher risk of local recurrence, secondary to the mi-
crovascular infiltration, satellitosis and/or lesions adjacent to the major vessels as described
elsewhere [50]. These IOUS’ patterns could be a reason for overlapping needle insertions to
secure a larger necrosis area comprehending the territory with the microvascular infiltration
and/or satellitosis. In the future, wider use of laparoscopic contrast-enhanced IOUS could
improve the success of the laparoscopic ablation treatment thanks to the intraoperative
evaluation of the extension of the necrosis area and the presence or not of residual disease.
In fact, apart from the capacity of laparoscopic contrast-enhanced IOUS in characterizing
new nodules, it can be useful to evaluate necrosis extension after the ablative treatment dur-
ing the same procedure. Residual viable neoplastic foci can be recognized by the presence
of an enhancement portion on the outskirts of the ablated area, permitting a supplementary
treatment in the same session. It is necessary to wait for 10–15 min after the first ablation to
assess the residual enhancement portion through the contrast-enhanced IOUS because an
immediate appraisal of the ablated area is unsatisfactory for the presence of artifacts due to
gas formation or cavitation.
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5. Conclusions

The 3D reconstruction models for virtual and augmented reality and 3D printing of
liver anatomy (with the imaging of lesion and its vascular relationship) are interdisciplinary
and original processes, which guarantee better pre-surgical planning and guidance during
surgical procedures. ICG fluorescence imaging is a promising technology not only as a
navigational tool, but also to identify new superficial lesions and to evaluate the efficacy of
IHVO. Finally, laparoscopic contrast-enhanced IOUS is useful to characterize new nodules
and detect residual malignant vascular tissue. All these technologies are very useful tools
to permit the surgeon to obtain the best results after laparoscopic ablative treatments.
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