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Abstract. In this note we prove the Bieberbach conjecture for some
classes of quaternionic functions, including quaternionic slice regular
functions with specific geometric properties such as starlike and convex
functions. At the same time, we investigate some interesting properties
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1. Introduction

Let H denote the algebra of quaternions. In the quaternionic setting it is
possible (see [6, 7])) to introduce a notion of regularity for functions defined
in any open ball B(0, r) = {q ∈ H : |q| < r} (and, more in general, in
some axially symmetric slice domain1) of H which mostly resemble the one of
analiticity in the complex case. For this class of regular quaternionic functions,
called slice regular, many of the results valid for the holomorphic maps can
be extended, but many other new phenomena may occur. In particular slice
regular functions are characterized to be quaternionic analytic with coefficients
on (say) the right; namely f is slice regular in B(0, r) ⊂ H if and only if

there exists a quaternionic power series
∑
n

qnan with an ∈ H for any n ∈ N

1If we denote by SH the sphere of imaginary units of H, i.e. SH = {q ∈ H : q2 = −1},
then every non real element q can be written in a unique way as q = x + yIq , with Iq ∈ SH
and x, y ∈ R, y > 0. We will refer to x = ℜe(q) as the real part of q and y = Im(q) as the
imaginary part of q.

Definition 1.1. Let Ω ⊆ H be a domain in H; we say that Ω is an axially symmetric domain
if, for all x+ Iy ∈ Ω, the whole sphere x+ SHy = {x+ Jy : J ∈ SH} is contained in Ω.
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converging in B(0, r) and such that

f(q) =
∑
n

qnan.

The notions of derivative (and primitive) can be naturally introduced for slice
regular functions, therefore, this class perfectly fits for the purposes of this
paper. Indeed, we recall the following

Definition 1.2. Let Ω be an axially symmetric slice domain in H and let f :
Ω → H be a slice regular function. For any I ∈ SH and any point q = x + yI
in Ω (with x = ℜeq and y = ℑmq) we define the Cullen derivative of f at q as

∂Cf(x+ yI) = f ′(x+ yI) :=
1

2

(
∂

∂x
− I

∂

∂y

)
fI(x+ yI)

where fI is the restriction of f on Ω∩CI , where CI is the slice {x+ Iy, x, y ∈
R}.

Since in H one can choose different imaginary units, it is also worth consid-
ering the following

Definition 1.3. Let Ω be an axially symmetric slice domain in H and let f :
Ω → H be a slice regular function. We define the spherical derivative of f at
q /∈ R ∩ Ω as

∂Sf(q) := (q − q̄)−1[f(q)− f(q̄)].

If f is a slice regular function on an axially symmetric slice domain Ω, for
each q0 ∈ Ω one can define the function Rq0f : Ω → H which turns out to be
slice regular and such that

f(q) = f(q0) + (q − q0) ∗Rq0f(q); (1)

moreover Rq0f(q0) = ∂Cf(q0) and Rq0f(q̄0) = ∂Sf(q0)
One of the most famous theorems in Complex Analysis which provides

(sharp) estimates of the moduli of the coefficients of an analytic function is
given in the proof of the Bieberbach Conjecture due to De Branges (see [1]).
In the long history of attempts to prove the conjecture in the holomorphic
setting, some important improvements have been obtained when considering
some special subclasses of the class of univalent holomorphic or schlicht func-
tions. In this paper we refer to the usual definitions of the sets of (normalized)
holomorphic schlicht functions S, of starlike functions S∗, of convex C and
Carathéodory functions P as in [2, 10] for complex holomorphic maps.

In the quaternionic setting some results in the direction of solving this
conjecture for the corresponding slice regular subclasses has been done in [5],
for slice regular functions which map each slice into the same slice. We begin
by extending the previous result and proving the following proposition in which
it is required for f to preserve just one slice.
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Proposition 1.4. For a slice regular, univalent function defined on the quater-
nionic unit ball f : B(0, 1) → H (such that f(0) = 0 and f ′(0) = 1) that
preserves one slice and whose power series expansion is

f(q) = q + q2a2 + . . .+ qnan + . . . ,

the following inequalities hold

|an| ≤ n for any n.

These inequalities are sharp.

The proof will follow from the so called “One-Slice-Preserved-Principle”
which is stated and proved in Section 2; notice that the assumptions of Propo-
sition 1.4 can equivalently be formulated as f : B(0, 1) → H such that

f(q) = q + q2a2 + . . .+ qnan + . . . ,

with aj ∈ CI := R+ IR for any j and for a given I ∈ S.
One of the aims of the present note is to give estimates of the moduli of the

coefficients in the power series expansion for slice regular functions which have
suitable properties of starlikeness; this will be the content of the next section,
which contains several result in this direction.

Before continuing, we recall that several attempts to generalize the notion
of starlikeness from the holomorphic case to the class of quaternionic valued
functions have appeared (see [3, 4, 5]).

Since the class of quaternionic maps we investigated can be regarded as
(right) quaternionic analytic functions, the characterization of the geometric
aspects of starlikeness can be provided in terms of inequality conditions (see [9]).
In particular, after considering the regular product ∗ for slice regular functions
(see for instance [6]), we gave two different definitions of starlikeness for slice
regular functions, the geometrical starlikeness and the algebraic starlikeness [9],
these two definitions agree for special subclasses of functions.

Definition 1.5. Assume f is an injective slice regular function in the unit ball
of H such that f(0) = 0. Then we say that f is geometrically starlike with
respect to 0 if and only if, for any real r such that 0 ≤ r < 1, and for any real
t with 0 ≤ t ≤ 1

(1− t)f(B(0, r)) ⊆ f(B(0, r)).

The previous definition has a deep geometrical meaning, and it is proved
to have a nice interpretation in terms of the positivity of the real part of a
suitable (according to the Splitting) standard Hermitian product ⟨·|·⟩ in C2 of
an expression involving the Cullen (∂Cf) and the Spherical (∂Sf) derivatives
of f together with f as stated in [9].
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In complete analogy with the complex holomorphic case we can introduce
the subclass of slice regular functions

SH :=
{
f : B(0, 1) → H, f injective, slice regular

and such that f(0) = 0 and f ′(0) = 1
}
.

With this notation we have proved in [9]

Theorem 1.6. A function f : B(0, 1) → H in SH is geometrically starlike with
respect to 0 if and only if

ℜe
{
q−1 ⟨f(q)|∂Sf(q)⟩

⟨∂Cf(q)|∂Sf(q)⟩

}
≥ 0 (2)

for any q ∈ B(0, 1) \ {0}.

Definition 1.7. Assume f is a slice regular function in the unit ball of H such
that f(0) = 0 and ∂Cf(q) ̸= 0. Then we say that f is algebraically starlike if
and only if

ℜe (q−1f(q) ∗ [∂Cf(q)]−∗) ≥ 0.

Definition 1.8. A slice regular function f is algebraically convex in the unit
ball B(0, 1) of H, if and only if f ∈ SH and

ℜe
(
∂C(q∂Cf)(q) ∗ [∂Cf(q)]−∗) > 0.

We’ll use the following notations

GS∗
H := {f ∈ SH, geometrically starlike with respect to 0} ;

AS∗
H := {f ∈ SH, algebraically starlike} ;

C∗
H := {f ∈ SH, algebraically convex} .

Remark 1.9. One can equivalently formulate the conditions of geometric and
algebraic starlikeness/convexity in terms of real partial derivatives of f since,
as stated in [6, Paragraph 8.4], the following relations hold

∂f

∂x0
(q0) = ∂Cf(q0)

∂f

∂x1
(q0) = I∂Cf(q0)

∂f

∂x2
(q0) = J∂Sf(q0)

∂f

∂x3
(q0) = K∂Sf(q0)

where x0, x1, x2, x3 are the real coordinates corresponding to the frame

(1, I, J, IJ := K) ,
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with I, J ∈ SH such that I ⊥ J as unitary vectors in R3 and q0 ∈ CI .
Notice that, according to these notation, one can actually show that for a

slice regular function f it turns out that the real gradient of f at q0 can be
expressed in the following way

gradRf(q0) = (∂Cf(q0), I∂Cf(q0), J∂Sf(q0),K∂Sf(q0)).

Remark 1.10. It is not difficult to observe that for slice preserving functions
the condition of geometrically starlikeness is equivalent to the one of algebraic
starlikeness. Indeed, the Cullen and Spherical derivatives of a slice preserving
f are also slice preserving functions so that the complex Jacobian of f at q0 is
diagonal. It then turns out that (Dfq0)

−1[f(q0)] = f(q0)·∂Cf(q0)−1
, and there-

fore 0 < ℜe[qf(q) ∗ ∂Cf(q)−∗] = ℜe[qf(q) · ∂Cf(q)−1
], since for slice preserving

functions the ∗–product coincides with the usual one (see [6, Lemma 1.30]).

The previous fact is also valid for slice regular functions that preserve only
one slice and it will follow from the One-Slice Preserved Principle 3.3.

Closely related to the class SH is the class of Carathéodory functions

PH := {f : B(0, 1) → H, f slice regular and such that ℜef > 0; f(0) = 1} .

In this paper we prove several results for the classes of functions just in-
troduced; the results concerning the estimates of the moduli of the coefficients
of the power series expansions are obtained separately but summarized in the
following

Theorem 1.11. If f ∈ PH and f(q) = 1 +
∑
n≥1

qnan, then |an| ≤ 2 for any

n ∈ N.
If f ∈ AS∗

H and f(q) = q +
∑
n≥2

qnan, then |an| ≤ n for any n ∈ N.

If f ∈ C∗
H and f(z) = q +

∑
n≥2

qnan, then |an| ≤ 1 for any n ∈ N.

All the above-given inequalities are sharp.

The first statement of Theorem 1.11 can be found also in [11, Theorem 3].
Some other possibly related results, such as generalizations of One-Quarter
Theorem or Area Theorem from the complex holomorphic to the quaternionic
setting will be investigated in another paper.

First we want to investigate some relations between the different notions of
algebraic and geometric starlikeness.

2. Relation between algebraic starlikeness and geometric
starlikeness

In the particular case in which f preserves one slice we state the following
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Proposition 2.1. Let f ∈ GSH be such that it preserves the slice CI . Then f
is algebraically starlike on the preserved slice CI .

This is trivial since the fact that the slice is preserved implies that the
restriction of the function on the slice is holomorphic and geometrically starlike
and thus algebraically starlike, since these two concepts agree for holomorphic
functions.

We also give the following result again for functions which preserve a slice.
In what follows Ω denotes an axially symmetric domain which contains 0.

Proposition 2.2. Let f : Ω → H be slice regular and such that f(0) = 0. If

ℜe(q−1f(q) ∗ ∂Cf(q)−∗) ≥ 0

for any q in a prescribed slice, say CI , then it turns out

ℜe(q−1f(q) ∗ ∂Cf(q)−∗) ≥ 0

for any q in Ω.

Proof. Since f preserves the slice CI then both ∂Cf and q−1∂Cf(q) ∗ f−∗(q)
preserve the same slice CI . For q = x+ Iy we can write

q−1∂Cf(q) ∗ f−∗(q) =
∑
n

qnbn

where bn ∈ CI . We can write bn as γn + Iδn for all n, with γn and δn ∈ R.
Since q ∈ CI we get that

qn = αn + Iβn; αn, βn ∈ R.

Thus, ∑
n

qnbn =
∑
n

(αn + Iβn)(γn + Iδn).

The real part of q−1∂Cf(q)∗f−∗(q) is then
∑
n

(αnγn−βnδn) and it is positive

since f is algebraically starlike on CI .
We now take q̃ = x̃ + Jỹ, and consider the corresponding q̂ = x̃ + Iỹ in

Sq̃ ∩CI . Now q̃n = (α̃n+Jβ̃n) and
∑

q̃nbn =
∑

(α̃n+Jβ̃n)(γn+ Iδn). Its real
part is given by ∑

(α̃nγn − ⟨J, I⟩Rβ̃nδn),

since, if I and J are considered as unitary vectors in R3, it follows that

JI = −⟨J, I⟩R + J ∧ I.



QUATERNIONIC BIEBERBACH CONJECTURE 7

From |⟨J, I⟩R| ≤ 1, one concludes∑
(α̃nγn − ⟨J, I⟩Rβ̃nδn) ≥

∑
(α̃nγn − β̃nδn)

which is positive since it is equal to the real part of
∑

q̂nbn.

Combining Propositions 2.1 and 2.2 we then conclude that a geometrically
starlike function f on a preserved slice is algebraically starlike in the entire unit
ball.

Starting from the definition of algebraically starlikeness one observes that,
if f is slice regular, also the function q 7→ q−1f(q) ∗ ∂Cf(q)

−∗ is slice regular
and then the maximum principle on the real part of it ([6, Theorem 7.13]) holds
and implies that for f ∈ AS∗

H necessarily ℜe [q−1f(q) ∗ ∂Cf(q)−∗] > 0.
We can also assert that a function f is in AS∗

H if and only if

ℜe [(q∂Cf(q)) ∗ f(q)−∗] > 0. (3)

Furthermore, if q0 = x0 + I0y0 ∈ Ω, J ⊥ I0 and q ∈ CI0 , thanks to the
Splitting Lemma (see [6, Lemma 1.3]), one can write fI0(q) = F1(q) + F2(q)J ,
∂Cf|I0 (q) = F ′

1(q) + F ′
2(q)J and, similarly, Rq0f|I0 (q) = R1,q0(q) + R2,q0(q)J ,

∂CRq0f|I0 (q) = R′
1,q0(q) +R′

2,q0(q)J . Since

(q − q0) ∗Rq0f(q) = f(q)− f(q0), (4)

if q ∈ CI0 , then
(q − q0)R1,q0(q) = F1(q)− F1(q0) , (5)

(q − q0)R2,q0(q) = F2(q)− F2(q0) , (6)

for the identity principle of holomorphic functions. Once the Leibnitz rule is
applied to (4) (see [6]), it follows that

Rq0f(q) + (q − q0) ∗ ∂CRq0f(q) = ∂Cf(q);

on the other hand, from the above given considerations, it follows that

F ′
1(q) = R1,q0(q) + (q − q0) ·R′

1,q0(q) , (7)

F ′
2(q) = R2,q0(q) + (q − q0) ·R′

2,q0(q) . (8)

Furthermore, using (1.16) and the representation formulae (1.19) and (1.20)
as in [6, Section 1], we get

[(∂Cf(q))
−∗]|I0 = [F ′

1(q)F
′
1(q) + F ′

2(q)F
′
2(q)]

−1
· [F ′

1(q)− F ′
2(q)J ]

and so the real part of
{
[q−1f(q) ∗ ∂Cf(q)−∗]|I0

}
is

ℜe
{
q−1[F ′

1(q)F
′
1(q) + F ′

2(q)F
′
2(q)]

−1 · [F1(q)F ′
1(q) + F2(q)F ′

2(q)]
}
.
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Now, from (5), (6), (7) and (8), one obtains

ℜe
{
q−1[F ′

1(q)F
′
1(q) + F ′

2(q)F
′
2(q)]

−1 · [F1(q)F ′
1(q) + F2(q)F ′

2(q)]
}
=

= ℜe
{
q−1

{
[R1,q0(q) + (q−q0)R

′
1,q0(q)] · [R1,q0(q) + (q−q0)R′

1,q0
(q)]+

+ [R2,q0(q) + (q − q0)R
′
2,q0(q)] · [R2,q0(q) + (q − q0)R′

2,q0
(q)]
}−1

{
[(q − q0)R1,q0(q) + F1(q0)] · [R1,q0(q) + (q − q0)R′

1,q0
(q)]+

+[(q − q0)R2,q0(q) + F2(q0)] · [R2,q0(q) + (q − q0)R′
2,q0

(q)]
}}

.

(9)

When q = q0, the previous computations yield to

ℜe
{
q−1
0

{
R1,q0(q0) · [R1,q0(q0) + (q0 − q0)R′

1,q0
(q0)]+

+R2,q0(q0) · [R2,q0(q0) + (q0 − q0)R′
2,q0

(q0)]
}−1

{
F1(q0) · [R1,q0(q0) + (q0 − q0)R′

1,q0
(q0)]+

+F2(q0) · [R2,q0(q0) + (q0 − q0)R′
2,q0

(q0)]
}}

.

(10)

If, using the Splitting Lemma with respect to the choice of J orthogonal to
CI0 , we call R = (R1,R2) where R1(q0) = (q0 − q0)R

′
1,q0(q0) and R2(q0) =

(q0 − q0)R
′
2,q0(q0), then the previous expression becomes

ℜe(q−1∂Cf ∗ f(q)−∗|q=q0) = ℜe
{
q−1
0

⟨f(q0)|∂Sf(q0)⟩+ ⟨f(q0)|R(q0)⟩
⟨∂Cf(q0)|∂Sf(q0)⟩+ ⟨∂Cf(q0)|R(q0)⟩

}
.

Remark 2.3. Notice that if q0 is real then R1(q0) = R2(q0) = 0. Hence for a
continuity argument applied to the real part of a slice regular function we can
say that an algebraically starlike function is geometrically starlike in an axially
symmetric and slice neighborhood of the real axis.

From (7) and (8) we have that

R(q0) = ∂Cf(q0)− ∂Sf(q0) (11)

and
R(q0) = ∂Cf(q0)− ∂Sf(q0). (12)

We recall the following result proved in [8]



QUATERNIONIC BIEBERBACH CONJECTURE 9

Proposition 2.4. Given an axially symmetric domain Ω ⊂ H, let f : Ω → H
in SH, then the spherical derivative is constant on any sphere Sq = {x+Jy , J ∈
SH} with q = x+ Iqy.

Notice that, in general, the Cullen derivative is not constant over a sphere
Sq. and thus so is R.

Furthermore, thanks to Proposition 2.4 we have ∂Sf(q0) = ∂Sf(q0), there-
fore, whenever f is in GS∗

H and its Spherical and Cullen derivatives at each
point differ of a sufficiently small amount, then f is also algebraically starlike.

For instance, this is the case when max{||∂Cf(q)||, ||∂Sf(q)||} is controlled
by a sufficiently small but positive ε.

We would like to find a manageable expression for the value of R at q0 (or
q0). From (4) we recall that

f(q)− f(q0) = (q − q0) ∗ [Rq0f(q0) + (q − q0) ∗Rq0Rq0f(q)] =

= (q − q0) ∗Rq0f(q0) + (q − q0)
∗2 ∗Rq0Rq0f(q).

We compute the previous formula in q = q0.

f(q0)− f(q0) = (q0 − q0) ∗Rq0f(q0) + [(q − q0)
∗2 ∗Rq0Rq0f(q)]|q=q0

=

= −2Iℑm(q0)∂Cf(q0)) + [(q − q0)
∗2 ∗Rq0Rq0f(q)]|q=q0

.

Therefore

∂Sf(q0) = ∂Cf(q0)− [2Iℑm(q0)]
−1[(q − q0)

∗2 ∗Rq0Rq0f(q)]|q=q0

and from (11) and (12) we get

−[2Iℑm(q0)]
−1[(q − q0)

∗2 ∗Rq0Rq0f(q)]|q=q0
= R(q0).

Notice that

0 ≤ |(f ∗ g)(x0 + I0y0)| ≤ |f(x0 + I0y0)| ·max
I∈SH

|g(x0 + Iy0)|

and hence

max
I∈SH

|(f ∗ g)(x0 + Iy0)| ≤ max
I∈SH

|f(x0 + Iy0)| ·max
I∈SH

|g(x0 + Iy0)|.

We can find an estimate for |R| and |Rq0Rq0f(q)|, using the Cauchy esti-
mates on the slice CI0 containing q0 (see [6, p. 131]). In the sequel we will
denote any quaternion q = x + I0y ∈ CI0 as the complex number z = x + iy,
in particular q0 will be replaced by z0 and UI0 will be the open ball in CI0
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centered in z0 with a suitable radius r such that UI0 is in B(0, 1). Thus
∂UI0 = {z ∈ CI0 : |z − z0| = r}.

Rz0Rz0f(z) =
1

2πI0

∫
∂UI0

Rz0Rz0f(s)ds

s− z
=

=
1

2πI0

∫
∂UI0

1

s− z

[
f(s)− f(z0)

(s− z0)
2 − Rz0f(z0)

(s− z0)

]
ds =

=
1

2πI0

∫
∂UI0

1

s− z

[
Rz0f(s)−Rz0f(z0)

s− z0

]
ds =

=
1

2πI0

∫
∂UI0

1

s− z

[
Rz0f(s)− f ′(z0)

s− z0

]
ds =

=
1

2πI0

∫
∂UI0

[
f(s)− f(z0)− f ′(z0)(s− z0)

(s− z)(s− z0)2

]
ds.

So if we call f(s) − f(z0) − f ′(z0)(s − z0) = R2 and compute the previous
expression in z0 we get

|R| ≤
rmax∂UI0

|R2|
2|2y0 − r||y0|

,

where y0 = ℑm(z0).
We can find another estimate of |Rq0Rq0f(q)|, using the Cauchy estimates

on the slice CI0 containing q0. With the same notations as above thus we have
that

Rz0Rz0f(z) =
1

2πI0

∫
∂UI0

1

z − z0
·
[

1

(s− z)
− 1

(s− z0)

]
Rz0f(s)ds =

=
1

2πI0

∫
∂UI0

1

z − z0
·
[
ds(f(s)− f(z0))

(s− z)(s− z0)
− ds(f(s)− f(z0))

(s− z0)2

]
=

=
1

2πI0

∫
∂UI0

[
(f(s)− f(z0))ds

(s− z)(s− z0)2

]
.

So if we compute the previous expression in z0 we get

|Rz0Rz0f(z0)| ≤
max∂UI0

2|f |
r|2y0 − r|

,

where y0 = ℑm(z0).
Both these inequalities lead to conclude that in an axially symmetric neigh-

borhood Ω′ of the real axis in Ω one can control the modulus of R and therefore
assert that if f is geometrically starlike in Ω then f is also algebraically starlike
in Ω′.
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3. One-Slice Preserved Principle and related results

For typically real functions, i.e. (not necessarily) injective slice regular func-
tions with real coefficients it is easy to prove that the Bieberbach Conjecture
holds (we refer the interested reader to [2]). More precisely, a typically real
quaternionic function is a slice regular function (in B(0, 1)) such that f(q) ∈ R
if and only if q ∈ R with f(0) = 0 and f ′(0) = 1. We’ll denote this class
of functions with TH. We also observe that for a typically real quaternionic
function

f(q) =
∑
n

qnan

it turns out that f(q) = f(q). We then consider the sets

SR
H :=

{
f ∈ SH : f(q) = f(q)

}
and observe that

SR
H = SH ∩ TH.

Clearly, if f ∈ TH, then ∂Sf(q) is real. Viceversa we can prove

Proposition 3.1. Given an axially symmetric domain Ω ⊂ H, let f : Ω → H
be slice regular and have real spherical derivative. If f preserves one slice CI

and f(0) = 0, then f is typically real.

Proof. From the hypothesis of preserving the slice CI , it follows that the co-
efficients of the power series expansion of f are all in CI ; furthermore, if
q = x+ Iy ∈ CI , f(q)− f(q) ∈ CI and f(q)− f(q) ∈ CI , since ∂Sf(q) ∈ R. In
particular, it turns out that

f(q)− f(q) =
∑
n

(qn − qn)an = 2Iy∂Sf(q) = f(q)− f(q) =
∑
n

an(q
n − qn)

and then an = an for any n ≥ 1. Finally a0 = f(0) = 0, by assumption.

We also have

Proposition 3.2. Let f(q) = q+
∑
n≥2

qnan belong to TH, then |an| ≤ n for any n.

Indeed the proof of the inequalities |an| ≤ n in the case of a slice regular
quaternionic function f ∈ TH can be repeated verbatim as in the holomorphic
case (a first version of this fact for SR

H appeared in [5]). However for this class of
functions the Bieberbach conjecture can be proved true by a direct application
of the following very general One-Slice-Preserved Principle
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Proposition 3.3 (One-Slice-Preserved Principle). Let Ω be a slice domain.
Assume f : Ω → H is a slice regular function with the additional property
of preserving one slice CI , i.e. such that f(CI ∩ Ω) ⊆ CI , with I ∈ SH an
imaginary unit. Then all the properties and results concerning the coefficients
of the power expansion of f are precisely the same as if f is considered a
complex holomorphic function f : CI ∩ Ω → CI .

Proof. This is so since, for the Splitting Lemma (see e.g. [7]), the restriction
of any slice regular function f to CI ∩ Ω can be split as F + GJ with J ⊥ I,
J2 = −1 and F and F,G : CI ∩Ω → CI holomorphic in the variable z = x+Iy.
The assumption f(CI ∩Ω) ⊆ CI then implies that G ≡ 0 and so the restriction
of f along CI ∩Ω can be regarded as the holomorphic function F ; furthermore,
the identity principle and the uniqueness of power expansion of a holomorphic
function, guarantees that the coefficients of f are exactly the same of F .

Remark 3.4. We want to observe here that if a slice regular function f : Ω → H
takes a slice CI ∩ Ω into another slice CJ , then f is necessarily constant, and
thus there exists a K ∈ SH such that f|CK ⊂ CK . Moreover if f preserves two

slices Ω∩CI and Ω∩CJ with I ̸= ±J then f preserves each slice (see e.g. [7])
and therefore it is slice-preserving and all the coefficients of its power expansion
are real.

Similarly to the complex holomorphic case, we introduce the following class
of quaternionic functions

PR
H :=

{
f ∈ PH : f(q) = f(q)

}
and prove the remarkable relation between typically real quaternionic functions
and Carathéodory quaternionic functions, (in the complex holomorphic case
this result is known as Rogosinski’s Theorem)

Lemma 3.5 (Rogosinski). If f ∈ TH, then

φf (q) = (1− q2)q−1f(q)

belongs to PR
H ; conversely if φ ∈ PR

H then

fφ(q) = (1− q2)−∗qφ(q)

belongs to TH.

Proof. Both the functions φf and fφ are slice-preserving thus, along each slice
BI := B(0, 1) ∩ CI , their restrictions are holomorphic and, for the analogous
result in the complex holomorphic case, they are such that respectively φf ∈ TH
and fφ ∈ PR

H .
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We begin with a uniform estimate for the coefficients of the expansions of
any function in PH. This result can be regarded as the natural generalization
and extension of the analogous result in the complex holomorphic case and a
different proof is also given in [12].

Theorem 3.6 (Carathéodory). If φ ∈ PH and

φ(q) = 1 +

+∞∑
n=1

qncn,

then |cn| ≤ 2 for n ≥ 1. The inequality is sharp for each n.

Proof. As in [10], given 0 < r < 1, for φ ∈ PH, if I is in SH consider the integral

In(r) :=
1

2πI

∫
q=reIt

[2− qn − q−n] q−1φ(q)dq .

By the Residue Theorem (see [13] and [6, Proposition 6.10]), we have

In(r) = 2− cn .

On the other hand

lim
r→1−

In(r) = lim
r→1−

2

π

∫ 2π

0

(2− rnenIt − r−ne−nIt)φ(reIt)dt ;

now, combining the fact that

lim
r→1−

(2− rnenIt − r−ne−nIt) = sin2
t

2
and ℜeφ(reIt) > 0

we conclude that ℜe(2− cn) ≥ 0 or ℜe(cn) ≤ 2.

If ℜeφ(q) > 0 we also have that ℜeφ(qeIt) > 0 with 0 ≤ t ≤ 2π and any
I ∈ SH.

Assume that cn=ρne
Icnϑn and take qo∈B(0, 1) in the same slice of cn, hence

ℜeφ(qoeIcn t) > 0 and φ(qoe
Icn t) = 1+

∑
k

qo
keIcnktck so that ℜe(eIcnktck) ≤ 2;

in particular for k = n if t = −ϑn

n
we have that |cn| = ρn ≤ 2 for any n ≥ 1.

The Cayley transformation

φ(q) = (1 + q)(1− q)−1 = 1 + 2q + 2q2 + . . . 2qn + . . .

shows that the estimate is sharp.
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4. Some results for the Bieberbach conjecture in H

The Bieberbach conjecture for complex holomorphic schlicht functions has been
investigated in several ways by many authors until, after almost seventy years,
it has been finally proved by De Branges in 1985. In fact, in 1916 Bieberbach
proved that if f ∈ S with f(z) = 1 +

∑
n≥2

znan then |a2| ≤ 2, and stated the

conjecture that |an| ≤ n (known as the Bieberbach conjecture) with equality if
and only if f is a rotation of the function

κ(z) =
z

(1− z)2
= z + 2z2 + 3z3 + . . .+ nzn + . . .

called Koebe function.

In order to prove the conjecture, some important steps have been done
when considering some special subclasses of the class of schlicht (holomorphic)
functions, such as typically real functions or starlike functions.

We’ll follow similar steps and prove general results in the case of some
classes of quaternionic slice regular functions.

After Bieberbach conjecture was proved for the class of typically real func-
tions, Loewner (1917) and Nevanlinna (1921) independently proved the Bieber-
bach conjecture for starlike functions and our aim in the present section is to
extend the analogous result for starlike slice regular functions as introduced
and studied in [9].

We are now in the position to prove the Bieberbach conjecture for this
class of slice regular functions AS∗

H. A similar result has been obtained in [12,
Theorem 4.3], using different techniques.

Proposition 4.1. Given f ∈ AS∗
H, whose power series expansion is

f(q) = q + q2a2 + . . .+ qnan + . . .

the following inequalities hold

|an| ≤ n for any n.

These inequalities are sharp.

Proof. Assume f ∈ AS∗
H, so we can write f(q) = q + q2a2 + . . . + qnan + . . ..

Then

q∂Cf(q) ∗ f(q)−∗
= 1 + qc1 + q2c2 + . . .+ qncn + . . .
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and |cn| ≤ 2 for n ≥ 1. Hence

q∂Cf(q) =

+∞∑
n=1

nqnan = q∂Cf(q) ∗ f(q)−∗ ∗ f(q) =

=

(
1 +

+∞∑
n=1

qncn

)
∗

(
+∞∑
n=1

qnan

)
=

+∞∑
n=1

qnsn

with sn = an + c1an−1 + . . .+ cn−1. Therefore

(n− 1)|an| = |c1an−1 + . . .+ cn−1| ≤ 2(|an−1|+ . . .+ |a2|+ 1).

For n = 2, this yealds |a2| ≤ 2; so 2|a3| ≤ 2(|a2|+ 1) ≤ 6 or |a3| ≤ 3. Assume
that |ak| ≤ k for 1 ≤ k ≤ m. From

(n− 1)|an| = |c1an−1 + . . .+ cn−1| ≤ 2(|an−1|+ . . .+ |a2|+ 1)

we have

m|am+1| ≤ 2(m+ (m− 1) + . . .+ 2 + 1) = 2m(m+ 1)/2

or |am+1| ≤ m+ 1.

The Koebe function κ(q) = q+2q2+3q3+. . .+nqn+. . . and all its distorted
versions, namely q 7→

∑
n nq

neInθn with In ∈ SH, θn ∈ R for all n, guarantee
the sharpness of the inequalities.

Finally, for algebraically convex functions we have the following

Proposition 4.2. Let g be an algebraically convex function whose power series
expansion at 0 is

∑
n
qnan then

|an| ≤ 1 ∀n ∈ N .

These inequalities are sharp.

Proof. Since q∂Cg(q) =
∑
n
nqnan is algebraically starlike it follows that |nan| ≤

n and so |an| ≤ 1 for any n in N. The function g(q) = q + q2 + · · ·+ qn + · · ·
shows that these estimates are sharp.

For geometrically starlike slice regular functions, that preserve one slice
CI , the Bieberbach conjecture is a particular case of the One-Slice-Preserved
Principle.
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