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Abstract 

Critical-sized bone defects (CSBD) represent a significant clinical challenge, stimulating 

researchers to seek new methods for successful bone reconstruction. The aim of this 

systematic review is to assess whether bone marrow stem cells (BMSCs) combined with 

tissue-engineered scaffolds have demonstrated improved bone regeneration in the 

treatment of CSBD in large preclinical animal models. A search of electronic databases 

(PubMed, Embase, Web of Science, and Cochrane Library) focused on in vivo large animal 

studies identified ten articles according to the following inclusion criteria: 1. in vivo large 

animal models with segmental bone defects; 2. treatment with tissue-engineered scaffolds 

combined with BMSCs; 3. the presence of a control group; 4. a minimum of a histological 

analysis outcome. ARRIVE guidelines were used for quality assessment and SYRCLE's risk of 

bias tool was used to define internal validity. The results demonstrated that tissue-

engineered scaffolds, either from autografts or allografts, when combined with BMSCs 

provide improved bone mineralization and bone formation, including a critical role in the 

remodeling phase of bone healing. BMSCs-seeded scaffolds showed improved 

biomechanical properties and microarchitecture properties of the regenerated bone when 

compared to untreated and scaffold-alone groups. This review highlights the efficacy of 

tissue engineering strategies for the repair of extensive bone defects in pre-clinical large-

animal models. In particular, the use of mesenchymal stem cells, combined with bio-

scaffolds seems to be a successful method in comparison to cell-free scaffolds. 

Keywords: Critical-sized bone defects; Bioengineering; Large animal study; Bone 

regeneration; Grafts. 

 

  

D
ow

nl
oa

de
d 

by
 I

R
C

C
S 

Is
tit

ut
o 

O
rt

op
ed

ic
o 

G
al

ea
zz

i -
 M

ila
no

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

17
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 5 of 55 
 
 
 

5 

Ti
ss

u
e 

En
gi

n
ee

ri
n

g 

B
M

SC
s 

w
it

h
 t

is
su

e
-e

n
gi

n
ee

re
d

 s
ca

ff
o

ld
s 

fo
r 

la
rg

e 
b

o
n

e
 s

eg
m

en
ta

l d
ef

ec
ts

. A
 s

ys
te

m
at

ic
 r

ev
ie

w
 (

D
O

I:
 1

0
.1

0
8

9
/t

en
.T

EB
.2

0
2

2
.0

2
1

3
) 

Th
is

 p
ap

er
 h

as
 b

e
e

n
 p

ee
r-

re
vi

e
w

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g 
an

d
 p

ro
o

f 
co

rr
e

ct
io

n
. T

h
e 

fi
n

al
 p

u
b

lis
h

ed
 v

er
si

o
n

 m
ay

 d
if

fe
r 

fr
o

m
 t

h
is

 p
ro

o
f.

 

Impact statement 

The combination of BMSCs with tissue-engineered scaffolds is an innovation that can 

bridge the gaps that still exist in treating CSBD, creating a more favorable environment for 

tissue healing. This systematic review gives insight into the current evidence for this 

innovation in improving bone regeneration of critical-sized bone segmental defects in large 

animal models. Moreover, challenges and future directions for translational implication 

are discussed. 
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Introduction 

Critical-sized bone defects (CSBD) caused by congenital defects, oncological 

resections, necrosis, osteomyelitis, and high-energy trauma can cause consequential bone 

loss 1 and represent significant surgical and clinical challenges 2. Even though bone tissue 

has unique intrinsic healing ability, large bone defects have limited capacity for 

spontaneous repair. The poor healing potential in CSBDs can lead to prolonged 

hospitalization and often multiple revision surgeries that negatively impact patients' 

quality of life. It has been estimated that there are more than 150 million new fractures 

globally each year 3. In the United States alone, approximately 100.000 fractures result in 

non-union annually. The yearly cost of health care for the treatment of CSBD is 

approximately $ 2.5 billion every year in the US, creating a significant socioeconomic 

burden 4-6. 

Over recent decades, research has predominantly focused on enhancing surgical 

techniques and providing new biomaterials, with varying results. Bone autograft and 

allograft, either used alone or with biological augmentation, have been considered the 

gold standard for many years as an osteoinductive substrate leading to good outcomes 

regarding mechanical stability and osteointegration 7-10. Vascularized bone grafts 

introduced a half-century ago revolutionized the treatment of large segmental bone 

defects 11,12. This strategy bridged defects with viable living bone that increased the 

osteointegration of the reconstructed bone 11 and decreased complications and 

reintervention rates 13. Nevertheless, vascularized fibular grafts continue to be a 

challenging surgical approach reliant on highly technical graft harvest and microsurgical 

skills 14 The bone-transport technique with distraction osteogenesis has represented a 

keystone in treating significant segmental bone defects with higher rates of primary union 

15. This technique introduced by Ilizarov 16 also is not exempt from complications and 

downsides 17-19. 

Metals, polymers, ceramics, and natural materials are commonly used as bone-like 

biomimetic substrates 20. A recent review underlined the pivotal role of bone tissue 

engineering and bone repair scaffolds in bone defect repair as they can provide a suitable 
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adhesion and proliferation environment for osseous cells 21,22. However, the long-term in 

situ problems of osteolysis or the necessity of secondary surgeries to remove non-

absorbable implants have raised concerns 23-27. 

An ideal treatment for a critical-sized bone defect would be one that provides 

mechanical stability, osteointegration, good functional outcomes, no need for 

reintervention, and no complications. Currently, there is no such treatment for these types 

of defects. Large animal models provide a stepping-stone for the translation of bone tissue 

engineering materials to the clinical setting. Hence, this systematic review assesses 

whether BMSCs combined with tissue-engineered scaffolds can improve bone 

regeneration in the treatment of CSBD in large preclinical animal models. 

Materials and Methods 

Protocol and registration 

This systematic review is based on the Preferred Reporting Items for Systematic 

Review and Meta-Analyses (PRISMA) Figure 1 28 checklist structure and followed the 

recommendations of the Enhancing the Quality and Transparency Of health Research 

(EQUATOR Network). Moreover, this systematic review was registered in the international 

prospective register of systematic review (CRD42022338257). 

Focused question 

This systematic review was conducted to answer the following question: “Does the 

combination of BMSCs with tissue-engineered scaffolds improve bone regeneration in 

large bone segmental defects?” 

 

Search strategy 

A literature search was performed among 4 databases (PubMed, Embase, Web of 

Science, and Cochrane Library) with no date restriction, but limited to publications in the 

languages of the authors, English, Portuguese, Italian and Spanish. The search was carried 

out up to June 5, 2022, and was performed with MeSH terms/entry terms as follows: 

“(large segmental bone defect OR large bone defect OR critical-sized bone defect) AND 

(bioengineering OR bone tissue engineering OR biomaterials OR stem cells OR scaffolds OR 
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grafts OR growth factor) AND (clinical OR imaging OR microct OR ctscan OR xray OR 

histological OR histomorphometric OR biomechanical)”. In addition, an independent 

manual search was conducted by using terms adapted for each database, including the 

grey literature and relevant journals in the field. The manual search was also conducted on 

the reference lists of relevant review studies. Alerts were established for each database to 

maintain the search strategy up to date. 

 

Eligibility criteria 

The PICO framework 29 was used to target our focused question as follows: 

(P) population: large animals (all species, all sexes) with critical-sized segmental 

bone defects; 

(I) intervention: bone tissue engineering (scaffolds, cells, growth factors, 

bioreactors), biomaterials (ceramics, polymers, composites), 3D printing and/or 3D 

bioprinting for treatment of critical size segmental bone defects; 

(C) comparison: untreated bone defects; and 

(O) outcome: histological analysis, histomorphometry, biomechanical and imaging 

analysis (micro-CT or X-ray). 

 

Included in this systematic review were: (a) papers utilizing in vivo large animal 

models (swine, sheep, goat) to study segmental bone defects (determined as greater than 

2.5 cm), (b) treatment with tissue engineering, biomaterials, and/or 3D printing/3D 

bioprinting, (c) including control groups, and (d) with at least a histological analysis of the 

changes occurring after the intervention. 

Studies conducted in small animal models (rodents), rabbits, or with non-CSBD 

(<2.5 cm), non-segmental bone defects, or designated as purely in vitro, or observational 

and clinical (case reports, case series, controlled trials, human studies, and randomized 

controlled clinical trials), review papers, abstract-only papers, and unavailable full texts 

were excluded. 
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Study selection 

For this purpose, all the references retrieved from databases were imported to the 

Rayyan - Intelligent Systematic Review platform (https://www.rayyan.ai/). Initially, cross-

checking eliminated all duplicates, and two reviewers (N.R. and M.B.S.) independently 

assessed all titles and abstracts for inclusion using the inclusion criteria described above. In 

case of a disagreement, a third reviewer (F.P.S.G.) was consulted and the final decision was 

settled by consensus. The kappa coefficient value was calculated to determine inter-reader 

agreement. Finally, a full-screen process was performed of the remaining articles that met 

the inclusion and exclusion criteria. 

 

Data extraction 

The following information was recorded: author(s), year of publication, animal 

species, strain/breed, age (days, weeks, months, or years), gender, weight (grams or 

kilograms), type and size of the defect (description), experimental groups, types of cells 

used, periods of analysis (days or weeks), imaging analysis (micrometers or millimeters), 

histology, immunohistochemistry, molecular biology analysis, and main finding. In the case 

of missing data, one attempt to contact the corresponding author was performed. 

 

Quality and risk of bias assessments 

For the assessment of quality, each of the studies included was evaluated through 

compliance with the ARRIVE guidelines 30. A grading system was used to check the 20 

items included in the ARRIVE checklist based on the criteria adopted by Schwarz et al. 

(2012) 31 and Monteiro et al. (2020) 32. Also, the risk of bias in the included studies was 

analyzed according to the Systematic Review Centre for Laboratory animal 

Experimentation (SYRCLE) which provides a risk-of-bias tool for animal studies 33. 

 

Results 

The detailed screening process is shown in Figure 1. In total, 7668 records were 

identified through the electronic search, including 5,043 in PubMed, 2,445 in Web of 

Science, 176 in Embase, and 4 in Cochrane library. After 2,694 duplicates were removed, 

4,974 records were screened by title and abstract leading to inclusion of 70 articles. The 
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full texts of these articles were assessed, and 60 of these articles were excluded for at least 

one of the following reasons: bone defect < 2.5 cm (n=20), no segmental defect (n= 7), no 

control group (n= 17), not assessing BMSCs nor biomaterials as a therapeutic option 

(n=12), published in Chinese (n=1), published in German (n=1), retracted article (n=1), not 

a large animal model (n=1). In total, 10 studies were included in the final qualitative 

synthesis. 

The different animal model-related findings are reported in Table 1. All ten studies 

used animals from the Caprine: sheep (n = 5) 34-38; goats (n = 4) 39-42, and non-specified (n = 

1) 43. The age of the animals is reported in only six studies with variability between them: 

Berner et al 34,35 used older sheep in both studies (7-8 and 6-7 years old, respectively), 

whereas Dai et al. 39, Gardel et al. 40, Viateau et al. 38 and Xu et al. 42 used animals between 

1 and 2 years old. Conversely, Liu et al. did not report the age of the animals but specified 

that skeletally mature animals were used 41. Regarding Only five studies reported gender 

with a slight prevalence of male animals (male = 3 34,35,37 over female = 2 38,40). 

In most studies, the critical-sized bone defect was created in the tibia, except for 

Szivek et al. 37 and Viateau et al. 38, who chose the femur and metatarsal bone, 

respectively. The length of the bone defect was between 2.5 cm and 3.5 cm in 8 studies 

34,35, while two studies created a more extensive defect (4.2 cm) 37,40. Five studies used 

plate fixation 34,35,38,40,43, two used circular external fixators 39,41, two used intramedullary 

nail fixation 37,42, and 1 study used an axial external fixator 36. The follow-up period was 

varied between studies and ranged from a minimum of 4 weeks 43 to a maximum of 52 

weeks, post-surgery 34. 

Overall, the outcomes were evaluated using imaging, biomechanical testing, 

histology, immunohistochemistry, and molecular biology (Table 3). For imaging analysis, all 

studies performed radiographic imaging (X-ray) but only 6 studies 34-37,40,41 utilized microCT 

as an analysis tool, and scanning electron microscopy (SEM) analysis with or without 

energy-dispersive X-ray spectroscopy (EDS) was performed only by Berner et al 2015 34 and 

Gardel et al. (2014) 40. Biomechanical testing was not performed in all studies; however, 

torsional test and torsional stiffness 34,35,42, compressive strength and elastic modulus 39, 
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Young’s modulus and bending strength 41, bone stiffness 36,37, and shear modulus, and 

maximal angular deformation 36 were used in different studies. Qualitative histological 

analysis was done using different types of staining, such as hematoxylin and eosin (H&E) 

34,35,39-43, Von Kossa, Goldner’s trichrome, and Mc Neal’s tetrachrome 34,35, Masson’s 

trichrome 40,42, Alcian blue and Sirius red 36, Villanueva’s mineralized bone stain 37, 

Stevenel blue and Van Gieson picro-fuchsin 38, and Indian ink perfusion  42. Furthermore, 

only Dai et al. 39 and Viateau et al. 38 performed quantitative analysis, the former to 

determine the average of trabecular bone and absorptivity of the biomaterial, and the 

latter to determine the volume of newly formed bone. Immunohistochemistry was also 

performed by Berner et al 2015 34 for collagen type I (Col1A1), osteocalcin (OCN), and 

endothelium-related von Willebrand factor (vWf), and by Berner et al 2013 35 only for 

collagen type I (Col1A1) and osteocalcin (OCN). Molecular biology was used by Szivek et al. 

(2019) 37, to quantify C-terminal telopeptide crosslink (CTX-1) with an ELISA kit. 

The type of cells, biomaterials used and cell seeding are reported in Table 4. The 

data showed that all mesenchymal stem cells (MSCs) were harvested from caprine (sheep 

(n=5) 34-38, goats (n=4) 39-42, and non-specified sub-family in one study 43), specifically from 

the bone marrow from the iliac crest, except by Szivek et al. 37, who harvested MSCs from 

inguinal and tail fat of sheep. Most interestingly, eight studies 34-36,38,40-43 used  MSCs that 

underwent osteogenic induction before surgical implantation by supplementing the media 

with β-glycerol phosphate, ascorbic acid, and dexamethasone, whereas  Dai et al (2005) 39 

and Szivek et al. 37 who did not perform osteogenic differention before usage. In most 

studies the cells were seeded into scaffolds by pipette or by immersion as performed by Xu 

et al (2009) 42, and Smith et al (2015) 36. Three studies 37,38,40 utilized a bioreactor system to 

cultivate the cells instead of the static culture. Berner et al. (2015) 34 was the only study 

that implanted the cells 4 weeks after scaffold implantation, wheas the other studies 35-43 

included seeded the cells before the implantation.  A carrier, platelet-rich plasma (PRP), 

was used only by Berner et al. (2013) 35 to deliver cells to the scaffolds. Only one study 39 

used a genetic modification technique for transducing recombinant human bone 

morphogenetic protein-2 (rhBMP-2) into cells.  
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In reviewed publications, it is noted that scaffolds were typically ceramic, except for 

Xu et al. (2009) 42, who used an allogenic demineralized bone matrix. Scaffolds based on 

polycaprolactone associated with hydroxyapatite 34, with beta-tricalcium phosphate 35,43 

with starch 40, and with poly L-lactic acid 36 were used. Also, scaffolds based only on 

biphasic calcified bone 39, or only beta-tricalcium phosphate 37,41, and natural coral 

(Porites) 38 were found. 

Main findings 

The main findings are reported in Table 3. In general, X-ray analysis demonstrated 

that  BMSCs-seeded scaffolds leads to better callus formation and bone bridging compared 

to scaffold-alone or empty defect groups. 34-38,40-43 It is important to highlight that three 

studies 34,35,39 showed callus formation in the early stage of healing. Even though Gardel et 

al. 40 did not show any early or late complete bone healing or callus formation, they 

underline that the experimental groups had less bone resorption at the bone-screws-plate 

and bone interface compared to the negative control group. Dai et al. (2005) 39 reported 

improved bone healing rates when the rhBMP-2 transduced BMSCs-seeded scaffold group 

is compared to the transduced-alone BMSCs, untransduced BMSCs-seeded scaffold, and 

scaffold-alone groups. 

Viateau et al. (2007), Liu et al. (2008) and Huang et al.(2011) 38,41,43 found similar 

bone quality between the autologous bone group and the BMSCs-seeded scaffold group 

from micro-CT analysis. Szivek et al. (2019) 37 and Smith et al. (2017) 36 demonstrated 

incomplete bone union at 6 months and 4 months respectively, for the BMSCs-seeded 

scaffold group or scaffold-alone group. Nevertheless, both the studies showed a trend 

towards increasing bone formation compared to the empty defect group.   Liu et al. (2008) 

41 observed new bone formation, bone union and no marrow cavity in the BMSCs seeded 

group compared to both the control groups. 

Histological analysis showed that BMSCs enhance the mineralization process and 

bone formation in 9/10 studies 34-37,39-43 except for Viateau et al.(2007) 38 where 

histomorphometric data was not reported. It is worth emphasizing that an inflammatory 

response and pus formation was seen in only one study 43 for the scaffold-alone group. 
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Overall, there is a tendency for improved bone regeneration and remodeling for BMSCs-

seeded scaffold group. The results also demonstrated more positive staining for Collagen I 

and Osteocalcin for the BMSCs-seeded scaffold group 34,35. 

In studies reporting biomechanical analysis, Liu et al (2008) 41 and Smith et al (2017) 

36 could not make measurements from the untreated group and scaffold-alone group due 

to non-union. In general, biomechanical performance was higher for intact bone or 

autologous bone graft, except for Dai et al. (2005) 39 which did not have any intact bone or 

autologous bone graft for comparison. When the BMSCs-seeded scaffold group is 

compared to the scaffold-only group, higher torsional strength 42, mechanical strength 36, 

and maximal compressive strength 39 were observed. 

Compliance with the ARRIVE guidelines 

Compliance with the ARRIVE guidelines for all studies included in the qualitative 

synthesis is shown in Table 5. Only one study clearly reported the species, strain, sex, age, 

weight and source of animals 38. None of the studies provided clear details of housing, 

husbandry and welfare-related assessments and interventions that were carried out prior 

to, during, or after the experiment. Eight studies gave satisfactory information about the 

study design, the number of experimental and control groups and the steps taken to 

minimize bias 36-43. Only one study provided clear details of sample size, calculation used 

and information about characteristics and health status of animals prior to treatment 36. 

None of the studies clearly defined their primary and secondary outcomes in the methods 

section. 

 

SYRCLE risk-of-bias tool 

The results of the attribution of bias based on each domain of the SYRCLe tool are 

shown in Figure 2. All studies failed to clearly explain whether the animal allocation into 

group was concealed, if the animals were randomly housed during the experiments, if 

proper blinding of the caregivers/investigators with respect to which intervention each 

animal received during the experiment was performed, or if there was a random selection 

of the animals for outcome assessment. Only two studies adequately generated and 
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applied the allocation sequence and only one stated that the outcome assessor was 

blinded when performing outcome analysis. Importantly, all studies were free of selective 

outcome and presented no other clear problems that could result in high risk of bias. 

 

Discussion 

Bone is considered to be a tissue with excellent healing properties and many bone 

defects can heal spontaneously under appropriate conditions. Extreme bone loss can 

hinder the remodeling and regenerative processes 44. A bone defect is considered of 

critical size when surgical augmentation is needed. An agreement on the size which 

renders a defect ‘‘critical’’ has not been reached. Based on the existing literature, a critical 

defect has been defined as CSBD of a length that exceeds 2.5 times the diameter of the 

injured bone 45. Due to the poor functional, mechanical, and clinical outcomes of the 

current treatment options for CSBD, it is crucial to provide an environment that could 

mimic the bone's natural healing process and increase its regenerative potential. Over the 

last decades, the orthopedic field has moved towards the era of cell-based and tissue 

engineering therapies to improve biological and functional outcomes. The combination of 

MSCs and tissue engineering strategies, for example, have already shown therapeutic 

potential for cartilage and tendon regeneration 46,47. 

The combination of BMSCs, if delivered into the bone defect, and  a scaffold, has 

led to successful outcomes in small animals 48,49. However, it is essential to translate these 

theories into large weight-bearing animal models in order to better recapitulate the clinical 

scenario. The extensive preparation methods and limited supply represent a challenge for 

the use of autologous BMSCs in the clinical routine. BMSCs are considered immune-

privileged cells, and allogenic BMSCs have been used extensively in oncology 50,51. For this 

reason, translating the use of allogenic cell transplantation from oncology to orthopedics 

may represent an opportunity for regenerative musculoskeletal medicine. Berner et al. 

(2013) 35 analyzed the differences between autologous and allogenic BMSCs in a critical-

sized bone defect. They found no significant radiological, biomechanical and histological 

difference in bone formation. Besides the osteogenic potential, this was the first study that 
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focused on the immunological response of allogenic BMSCs in a large animal model for 

bone defect regeneration demonstrating the safety of this technique. 

To overcome some shortcomings of using BMSCs for the regeneration of large 

segmental bone defects, alternative sources of MSCs have been proposed mainly due to: 

(1) the significant amount of cells required to be delivered in bone defects to achieve 

proper healing; (2) the presence of other cell types other than MSCs; and (3) the invasive 

nature of harvesting BMSCs 52,53. Adipose-derived stem cells (ADSCs) have been of interest 

and can be easily used for osteogenic differentiation due to their straightforward isolation 

process and abundance in the human body 54. They have been demonstrated to have a 

high proliferative capacity and the ability to resist senescence, retaining their 

differentiation potential for a more extended period 55-57. Nevertheless, pre-clinical and 

clinical studies investigating the possibility of ADSCs in enhancing bone regeneration have 

shown different results 52,53. The high heterogeneity of manipulation methods of ADSCs 

and the confounding outcomes underline the need for more investigations to make these 

cells a reliable therapy for bone regeneration. 

Another potential source of cells used in regenerative medicine is dental pulp stem 

cells (DPSCs) 58. The isolation of DPSCs was first reported by Gronthos et al. 59, using 

impacted third molars. Recent findings demonstrate that these cells can contribute to the 

regeneration of different tissue types and specifically they present a strong osteogenic 

differentiation capacity 60,61. Thus, there is increasing interest in the use of DPSCs for in 

vivo bone regeneration 62. Results have shown that DPSCs can induce the generation of 

adult bone tissue with an integral blood supply and that there is a possibility to associate 

these cells with scaffolds, growth factors, platelet concentrates, hydrogels, and 

recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance tissue 

regeneration 63-65. Interestingly, a recent systematic review pointed effectiveness of DPSCs 

in the craniofacial area for 1) alveolar socket preservation and 2) cleft lip and palate 62. 

In the craniofacial area the most challenging scenarios for surgeons and scientists 

have been the treatment of large critical-sized bone defects in the mandible and the 

calvaria of large preclinical animal models (i.e., swine, sheep). Several studies have shown 
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promising results in the regeneration of swine and sheep mandibular critical-sized defects 

66-70 using bone scaffolds made of different biomaterials (i.e., ceramics, polymers), seeded 

with BMSCs or ADSCs, the use of bioreactors (i.e., ex vivo, in vivo) to generate a functional 

and vital bone graft, and 3D printing technology to produce customized bone scaffolds. A 

recent study has also shown the use of dental pulp neural crest MSCs or bone marrow 

aspirate combined with 3D-printed ceramic scaffolds supported the regeneration of high-

quality bone in critical-sized swine calvarial defect 71. 

In the early stages of bone healing, the microenvironment is associated with a low 

cell survival rate and a high presence of platelets and macrophages. On the other hand, 

the fibrocartilaginous callus formation phase is associated with a progressive increase in 

endothelial cells, MSCs, and chondrocytes. Hence, understanding the most favorable 

timing for delivery of BMSCs into a scaffold can be considered the first step toward an 

appropriate bone defect repair. It is evident from this review that BMSCs can improve the 

mineralization process and enhance bone formation (Table 5). Berner et al. (2015) 34 

showed that the injection of BMSCs four weeks after defect formation led to significantly 

improved bone regeneration compared to pre-seeded scaffolds. Biomechanical testing and 

CT scans showed comparable results to the clinical gold standard (autogenous bone 

grafts). 

Moreover, the bone healing process depends mainly on osteogenesis, 

osteoinduction, and osteoconduction 44. As demonstrated by Szivek et al. (2019) 37, 

treating large bone defects with the scaffold-alone results in a more disorganized tissue 

without lamellar organization compared to the MSCs-seeded tricalcium phosphate 

scaffold. This may indicate that the remodeling phase of bone healing can be targeted 

when regenerative medicine techniques are used. 

Mechanical stability is an essential element when a large segmental defect is 

associated with load-bearing bones. Among the different fixation methods, it is known that 

the intramedullary nail fixation can impair the regeneration potential of the endosteal area 

due to a blockage of the medullary cavity leading to detrimental effect on the mechanical 

proprieties of the new bone. Of the ten studies included in this systematic review, two 
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used intramedullary nail fixation methods 37,42. Szivek et al. (2019) 37, demonstrated that 

the experimental groups showed less stiffness compared to intact bone. Xu et al (2009) 42, 

showed that the BMSCs-seeded scaffold group treated had superior biomechanical 

proprieties (torsional stiffness) with respect to scaffold-alone and empty defect.  However, 

no comparison to the intact bone was performed. 

Biocompatibility, degradability, and a porous structure are the main characteristics 

for a promising bone repair scaffold to enhance the process of "bone remodeling" and 

reduce adverse events 22. The report by Huang et al. (2011) 43 was the only study to report 

an inflammatory response in the scaffold-alone group. They underline the importance of 

normal blood flow in the osteogenic scaffold to remove acidic monomers from the lesion 

site. In their control group of laminated scaffold-alone the scaffold collapsed before the 

8th week. The severe inflammatory response may have occurred due to the accumulation 

of acidic prepolymer or monomer of PLLA. 

It is well known that the extent of the defect also impacts new bone formation and 

the time course of healing and intergration 72. Among the ten studies included in this 

review, Gardel et al. (2014) 40 and Szivek et al. (2019) 37 created a defect of 4.2 cm. Both 

these studies did not achieve bone union after 12 and 24 weeks, respectively. The same 

problem was reported by Smith et al. (2017) 36 with a defect of 3.5 cm at 12 weeks of 

follow-up. 

Among the studies included in this systematic review, there is no homogeneity 

between treatment groups. It is important to emphasize that  Gardel et al 40 was the only 

study where a scaffold-alone group was not added. Moreover, only one study has a 

positive and negative control and a scaffold-alone group 38. Berner et al. 2015 34 and 2013 

35 included only a positive control group. The lack of homogeneity between treatment 

groups is a significant limitation since it does not allow direct comparisons to be drawn. 

The continuous development of different biomaterial scaffolds and the fabrication 

of new technologies highlight the importance of preclinical large animal models to 

investigate their capacity to provide a suitable environment for healing CSBD in a weight-

bearing structure. 
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Conclusion 

This review has highlighted the efficacy of tissue engineering strategies for the 

repair of extensive bone defects in pre-clinical large-animal models. In particular, the use 

of BMSCs, combined with bio-scaffolds appears to be a successful method in comparison 

with the use of cell-free scaffolds. While the evidence of efficacy from a scientific point of 

view is solid, concerns remain regarding translation to broad clinical application due to the 

high cost of procedures that use in vitro cultured cells. It will also be interesting to verify 

the impact of less expensive procedures that use concentrated bone marrow cells without 

in vitro manipulation and their effectiveness in comparison to those that use in vitro 

cultivation that directs the cells towards an osteogenic phenotype. Furthermore, after 

critically reviewing the articles, we observed the lack of standardization across all studies. 

Important methodological aspects such as animal species, strain, age, sex, weight, must be 

provided by authors. Establishment of better control groups and follow up time points 

must be considered as well. This will increase the validity and will improve the 

reproducibility of animal experiments by different groups interested in the same topic. 
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Tables 

Table 1. Animal models’ characteristics. Abbreviations: y, years; SM, skeletally mature; NR, not reported; kg, kilograms; wks, weeks. 

Animal model and defect characteristics   

Characteristics 

Studies 
Animal 

Strain/ 

Breed 

Age 

(years) 
Gender Weight Location 

Length 

of 

Defect 

Type of 

Fixation 

Period of 

Analysis 

Berner et al. 

2015 

Sheep Merino 7-8 y Male 40-50 kg Tibial                               

  

3 cm Plate fixation 52 wks 

Berner et al. 

2013 

Sheep Merino 6-7 y Male 45 ± 2 kg Tibial         3 cm Plate fixation 12 wks 

Dai et al. 2003 Goats NR 1 y NR 18.6-31.5 

kg 

Tibial      2.6 cm Circle external fixation 26 wks 

Gardel et al. 

2014 

Goats NR 2 y Female 23-27.5 kg Tibial      4.2 cm Plate fixation 6 and 12 wks 

Huang et al. 

2011 

Caprine Chinese NR NR NR Tibial        3 cm Plate fixation 4, 8, and 12 wks 

Liu et al. 2008 Goats NR SM NR 22.3 ± 4.1 

kg 

Tibial      2.6 cm Circle external fixation 16 and 32 wks 
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Smith et al. 

2015 

Sheep Northern 

mule 

NR NR 60-85 kg Tibial      3.5 cm Axial external fixation 12 wks 

Szivek et al. 

2018 

Sheep NR NR Male NR Femoral  4.2 cm Intramedullary nail 

fixation 

12 and 24 wks 

Viateau et al. 

2007 

Sheep Pré-

Alpes 

2 y Female 60 kg Metatarsal  2.5 cm Plate fixation 6 and 24 wks 

Xu et al. 2009 Goats NR 0.9-1.1 

y 

NR 19.6-25.2 

kg 

Femur        3 cm Intramedullary nail 

fixation 

12 and 24 wks 
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Table 2. Summary of excluded articles. 

Reason for exclusion Number 

Bone defect < 2.5 cm  20 

No segmental defect  7 

No control group  17 

Not assessing Bone Marrow 

Mesenchymal Stem Cells (BMSCs) 

nor biomaterials as a therapeutic 

option  

12 

Published in Chinese  1 

Published in German  1 

Retracted article  1 

Not large animal model  1 
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Table 3. Groups, outcome parameters, and main findings. 

Studies Groups Outcome parameters Main findings 

  
Imaging Histology Biomechanical testing Immunohistochemistry 

 

Berner et al. 2015 

1) Positive control (ABG)                                                                                                                                                                                                                                                                                                                                                              

2) PCL-HA scaffold + 

delayed injection of 100 

million allogeneic BMSCs 

4 weeks after scaffold 

implantation                           

3) PCL-HA scaffold        

1) X-ray 

2) 

Micro-

CT 

1) H&E.       

2) Goldner's 

trichrome                

3) Von 

Kossa/Mc 

Neal's 

tetrachrome 

1) Maximum torsional 

moment 

 2) torsional stiffness 

1) Collagen type I 

2) Osteocalcin 

3) Endothelium-Related 

Von Willebrand Factor 

Delayed 

injection of 

BMSc in tissue 

engineering 

approaches is 

a capable 

technique for 

large bone 

defect 

regeneration 

with 

biomechanical, 

radiological, 

and micro-CT 

results 

comparable to 
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the current 

gold standard 

(ABG). 

Berner et al. 2013 

1) Positive Control (ABG)   

2) Scaffold alone                           

3) Autologous MPCs + 

Scaffold 

4) Allogenic MPCs + 

Scaffold 

 

1) X-ray                                

2) 

Micro-

CT 

3) CT-

scan  

1) H&E                                     

2) Goldner's 

trichrome 

3) Von 

Kossa/McNeal’s 

Tetrachrome 

1) Maximum torsional 

moment                      

2) Torsional stiffness  

1) Collagen type I 

2) Osteocalcin 

 Allogenic 

bone marrow-

derived MPCs 

can be safely 

delivered for 

scaffold 

(mPCL-TCP) 

with no 

detectable 

foreign body 

reaction or 

immune 

response. 

No significant 

differences in 

bone 

D
ow

nl
oa

de
d 

by
 I

R
C

C
S 

Is
tit

ut
o 

O
rt

op
ed

ic
o 

G
al

ea
zz

i -
 M

ila
no

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

17
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 34 of 55 
 
 
 

34 

Ti
ss

u
e 

En
gi

n
ee

ri
n

g 

B
M

SC
s 

w
it

h
 t

is
su

e
-e

n
gi

n
ee

re
d

 s
ca

ff
o

ld
s 

fo
r 

la
rg

e 
b

o
n

e
 s

eg
m

en
ta

l d
ef

ec
ts

. A
 s

ys
te

m
at

ic
 r

ev
ie

w
 (

D
O

I:
 1

0
.1

0
8

9
/t

en
.T

EB
.2

0
2

2
.0

2
1

3
) 

Th
is

 p
ap

er
 h

as
 b

e
e

n
 p

ee
r-

re
vi

e
w

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g 
an

d
 p

ro
o

f 
co

rr
e

ct
io

n
. T

h
e 

fi
n

al
 p

u
b

lis
h

ed
 v

er
si

o
n

 m
ay

 d
if

fe
r 

fr
o

m
 t

h
is

 p
ro

o
f.

 

formation and 

mechanical 

proprieties 

between the 

autologous 

and allogenic 

groups. 

Dai et al. 2003 

1) Negative control 

(empty defect) 2) 

AdvhBMP-2/BMSCs/BCB 

group  

3) Adv-ßgal/BMSCs/BCB 

group  

4) Not transduced 

BMSCs/BCB group                                                                                                        

5) Single BCB group  

1) X-ray 1) H&E 

1) Compressive 

strength                                       

2) Elastic modulus 

N/A 

Genetically 

engineered 

implants had 

better area 

and 

biomechanical 

strength of the 

callous in the 

bone defect 

compared to 

non-

genetically 
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engineered 

implants. 

Gardel et al. 2014 

1) Negative control 

(empty defect)              2) 

Scaffold-seeded BMSCs 

cultured in a bioreactor                                                                                                                                                                                                                            

3) Scaffold seeded with 

BMSCs cultured statically                                                                                                                                                                                                                                    

1) X-ray                                    

2) 

Micro 

CT           

1) H&E                                    

2) Masson's 

Trichrome                                                                                                                                       

N/A N/A 

Bone 

development 

showed better 

micro-CT 

outcomes with 

the perfusion 

culture of the 

constructs, 

demonstrating 

the 

importance of 

the culturing 

conditions in 

the in vivo 

functionality 

of the 

constructs 
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composed of 

GBMSC and 

SPCL scaffolds. 

Huang et al. 2011 

1) Negative control 

(empty defect) 

2) PLLA/b-TCP + BMSCs 

3) PLLA/b-TCP without 

BMSCs        

1) X-ray  1) H&E N/A N/A 

Implantation 

of allogeneic 

BMSCs loaded 

in a PLLA/b-

TCP laminated 

scaffold 

facilitated 

bone repair of 

large defects. 

Liu et al. 2008 

1) Negative Control 

(empty defect)  2) Porous 

b-TCP + BMSCs                                                                                                                                                                                         

3) Porous b- TCP                                                                                                                                                                                                                                                                          

1) X-ray                               

2) 

micro-

CT  

1) H&E 
1) Young's module     

2) Bending strength 
N/A 

Critical-sized 

segmental 

defects of the 

goat tibia 

could be 

repaired by 

biodegradable 
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b-TCP 

scaffolds 

combined with 

osteogenically 

induced 

autologous 

BMSCs. 

Meanwhile, 

b-TCP 

scaffolds alone 

were not 

sufficient to 

repair the 

defect. 

Smith et al. 2015 

1) Negative control 

(empty defect) 2) 

Autologous SSC-seeded 

polymer scaffold  

3) Polymer scaffold   

1) X-ray                                  

2) 

micro-

CT  

1) Alcian blue                           

2) Sirius red  

1) Shear modulus         

2) Bone stiffness           

3) Maximum torque                

4) Maximum shear 

stress                           

N/A 

Both the 

scaffold and 

scaffold+SSC 

groups 

showed 
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5) Maximal angular 

deformation at failure  

enhanced 

quantitative 

bone 

regeneration 

with micro-CT 

analysis; 

however, this 

was found to 

be significant 

in the 

scaffold+SSCs 

group only. 

Szivek et al. 2018 

1) Negative control 

(empty defect)  2) 

Standard scaffold + TCP +  

and MSCs                                                                                                                                                                                                                                                                                    

3) Scaffold without TCP 

without  MSC                                                                                                                                                                                                                                                                                                                                

1) X-ray                                             

2) 

micro-

CT  

1) Villanueva’s 

mineralized 

bone stain  

1) Bone-scaffold 

stiffness 
N/A 

Based on x-ray 

and micro-CT 

results, The 

MSC-seeded, 

TCP-coated, 

inverse 

trabecular 
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scaffold 

successfully 

facilitated the 

bridging of the 

critical-sized 

defect.  

Moreover, the 

results of the 

experimental 

sheep 

demonstrated 

a strong, 

relatively 

positive 

impact on the 

quantity and 

quality of 

cortical bone 

formation. 
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Viateau et al. 2007 

1) Negative control 

(empty defect) 

2) Positive control 

(autogenic cortico-

cancellous graft) 

3) Coral scaffolds loaded 

with MSCs    

4) Defect filled with plain 

coral scaffolds 

1) X-ray 

1) Stevenel 

blue                       

2) Van Gieson 

picro-fuchsin 

N/A N/A 

Coral scaffold 

loaded with 

MSCs showed 

good 

degradation 

time along 

with formation 

of new bone. 

Xu et al. 2009 

1) Negative control 

(empty defect) 

2) DBM-BMSC 

3) DBM 

1) X-ray 

1) H&E                                      

2) Masson 

staining 

1) Torsional test to 

failure 
N/A 

The quantity 

and quality of 

newly formed 

bone was 

superior in the 

DBM/MSC 

group 

compared to 

the other 

groups. 
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Table 4. Type of cells, biomaterials, and cell seeding. 

 
Type of cells Biomaterial/scaffold Seeding 

Berner et al. 2015 

BMSC from Merino Sheep (Iliac crest) 

were harvested and cultivated until 10-

3 cells per cm2. 

Biodegradable Scaffold produced by 

fused deposition method 

manufactured in polycaprolactone 

(80%) and hydroxyapatite (20%) and 

coated with CaP layer (16mm 

diameter, 30mm height, 8mm inner 

diameter). 

Scaffold present 74% porosity and a 

0/90 lay/down pattern. Cells 

received osteogenic induction and 

were injected four weeks after scaffold 

implantation. 

Berner et al. 2013 

BMSC from Merino Sheep (Iliac crest) 

were harvested and cultivated until 10-

3 cells per cm2.   

 

Biodegradable Scaffold produced by 

fused deposition method and 

manufactured in polycaprolactone 

(80%) and b-tricalcium phosphate (20 

%), and with 20 mm of outer diameter, 

30mm height, and 8 mm inner 

diameter. 

Cells received osteogenic induction 

and were injected four weeks after 

scaffold implantation. For the 3D 

culture, 35x10-6 cells were mixed with 

PRP (1.2 ml) and then seeded in an 

mPCL+TCP scaffold. 
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Dai et al. 2003 

BMSCs were harvested from a goat 

(iliac crest) and cultivated until 

passage number 2. 

Scaffolds were manufactured using 

biphasic calcined bone (BCB) by a 

16mm trephine. The scaffold had a 

7mm central canal. Scaffolds were 

coated with Collagen (3mg/mL). 

Cells received osteogenic induction 

and were transduced with hBMP-2 

using adenovirus. Then 10-8 BMSC in 2 

mL of media were loaded in BCB 

scaffolds. 

Gardel et al. 2014 

BMSC from goats (Iliac crest) were 

harvested and cultivated until 10-3 cells 

per cm2 until passage 4. 

Scaffold manufactured with starch + 

polycaprolactone (SPCL). They were 

produced from melt-spun fibers by a 

fiber-bonding method into mesh 

structures with a fiber diameter 

ranging from 120 to 500 mm and with 

a porosity of 75%, with 97.5% pore 

interconnectivity consisting of a mean 

pore size of 275 mm. The final 

presentation of the scaffold: disks of 

16 mm in diameter and 3 mm in 

thickness with a 6-mm interior hole. 

Cells received osteogenic induction 

and were seeded in the scaffolds using 

two types of culture: static and 

dynamic. 

Huang et al. 2011 
BMSC from caprine (Iliac bone) were 

harvested and cultivated until 10-3 cells 

Sandwich-structured, PLLA/b-TCP/PLLA 

composite scaffold. 

Cells received osteogenic induction, 

and then 7x10-6 cells were pipetted 
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per cm2 until passage number 3. b-TCP powders were mixed with the 

milled polystyrene resin particles in a 

6:1 weight ratio, along with 5% 

polyvinyl alcohol aqueous solution as 

an adhesive agent; and PLLA 

(Mw=4x10-4) with NaCl. The porosity of 

PPLA was controlled by the weight 

ratio of NaCl and PPLA (from 4:1 to 

10:1). The final presentation: The 

cylinder-shaped scaffold has a length 

of 3 cm, an outer diameter of 1.2 cm, 

and an inner diameter of 0.4 cm. 

onto the outer surface of the cylinder, 

and 5 million cells onto the inner 

surface, then cultured in vitro for three 

days. 

Liu et al. 2008 

BMSC from goats (Iliac crest) were 

harvested and cultivated until 10-5 cells 

per cm2 until passage 4. 

Scaffold manufactured with b-TCP 

cylinders using polymeric sponge 

method (26 mm high,15 mm 

diameter). 

Cells received osteogenic induction, 

and then 2x10-7 cells/mL were injected 

into a B-TCP cylinder and incubated for 

four hours, followed by seven days of 

culture in vitro before in vivo 

implantation. 
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Smith et al. 2015 

BMSCs from ‘cull’ ewe sheep 

(Northern Mule) (iliac crest) were 

cultivated at a density of 1x10-7 

cells/T175 flasks. 

Scaffold manufactured with poly (L-

lactic acid)/ poly(ε-caprolactone) 

(PLLA/PCL), 20/80 by solution blending 

process (diameter 23 mm, length 35 

mm, and with an 8 mm longitudinal 

medullary canal). 

Cells received osteogenic induction, 

and then the scaffold was seeded by 

immersion in 20 ml of its respective 

autologous skeletal stem cells (SSC) 

solution for 2 hours with a total of 

1x10-7 cells/scaffold. 

Szivek et al. 2018 

MSC from sheep (inguinal and tail fat) 

was cultivated for 2 weeks until 

passage 2. 

Cylindrical scaffold was printed using a 

Stratasys 1650 Fused Deposition 

Modeler from 4um tricalcium 

phosphate (TCP) particles. Trabecular 

cores from the ovine femoral head 

were scanned and used to create a 

pattern for the Scaffold. Scaffolds were 

42 +/- 1 mm in length, 22+/- 2 mm in 

diameter, and had an 11+/- 1 mm 

channel through the center. 

Cells received osteogenic induction, 

and then 2x10-6 cells were seeded in 

the scaffolds for 3 hours and then 

cultivated in a bioreactor for two days 

before the surgery. 

Viateau et al. 2007 
BMSCs from ewes (iliac crest) were 

cultivated until passage 4. 

Scaffolds manufactured with (3 x 3 x 3 

mm) natural coral (Porites). This 

material presented 99% of calcium 

Cells received osteogenic induction 

and were seeded onto the scaffolds at 

a ratio of 2.5x104 cells for 4 hours. 
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carbonate in the form of aragonite 

with 1% organic material (amino 

acids), with pores of 250 um diameter 

and porosity of 49%+/- 2%. 

Afterward, the scaffolds were 

cultivated for ten days in a bioreactor 

until surgery. 

 

Xu et al. 2009 

BMSCs from goats (iliac crest) were 

cultivated at a density of 1x10-5 

cells/cm2 until passage 2. 

Scaffolds based on an Allogenic 

demineralized bone matrix (aDBM) 

were prepared (10 mm x 10 mm x2 

mm). 

Cells received osteogenic induction, 

and then Scaffolds were seeded by 

immersion on the media with 10-6 cells 

per mL for 4 hours and then cultivated 

in a flask for seven days before 

implantation. 
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Figure legends 

 

Figure 1: Prisma flow diagram. Search strategy and selection process of the included 

studies. 

*Consider, if feasible to do so, reporting the number of records identified from each 

database or register searched (rather than the total number across all databases/registers). 

**If automation tools were used, indicate how many records were excluded by a human 

and how many were excluded by automation tools. 
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Figure 2: The risk of bias in the individual animal studies is included. SYRCLE’s RoB tool was 

used to address the following domains: 1, Was the allocation sequence adequately 

generated and applied?; 2, Were the groups similar at baseline, or were they adjusted for 

confounders in the analysis?; 3, Was the allocation to the different groups adequately 

concealed?; 4, Were the animals randomly housed during the experiment?; 5, Were the 

caregivers and/or investigators blinded from knowledge of which intervention each animal 

received during the experiment?; 6, Were animals selected at random for outcome 

assessment?; 7, Was the outcome assessor-blinded?; 8, Were incomplete outcome data 

adequately addressed?; 9, Are reports of the study free of selective outcome reporting?; 

10, Was the study apparently free of other problems that could result in high risk of bias?. 

Abbreviations and symbols: green circle, low risk of bias; yellow circle, nuclear risk of bias; 

red circle, high risk of bias; X, outcome not evaluated; IMG, imaging analysis; HA/IHC, 

histologic and immunohistochemistry analysis; BT, biomechanical testing; MB, molecular 

biology analysis. 
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