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The microbiota is emerging as a key player in cancer due to its involvement in several host
physiological functions, including digestion, development of the immune system, and
modulation of endocrine function. Moreover, its participation in the efficacy of anticancer
treatments has been well described. For instance, the involvement of the breast
microbiota in breast cancer (BC) development and progression has gained ground in
the past several years. In this review, we report and discuss new findings on the impact of
the gut and breast microbiota on BC, focusing on the HER2+ BC subtype, and the
possibility of defining microbial signatures that are associated with disease
aggressiveness, treatment response, and therapy toxicity. We also discuss novel
insights into the mechanisms through which microorganism-host interactions occur and
the possibility of microbiota editing in the prevention and treatment optimization of BC.
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INTRODUCTION

The study of the human microbiota is emerging as notable field in breast cancer (BC) research,
because it is involved in many aspects of tumor biology (e.g., immune system regulation, oncogenic
signaling, hormone availability, and drug metabolism) that contribute to cancer development,
growth, and treatment response. Numerous studies that support the key role of commensal
microorganisms in cancer development and progression have led to inclusion of the microbiota
as a hallmark of various cancers (1).

The microbiota comprises all of the communities of commensal, symbiotic, and pathogenic
microorganisms, including bacteria, fungi, archaea, and viruses, that colonize the gastrointestinal
tract and other areas of the body (2).

To further complicate this scenario, thanks to the advance in DNA and RNA sequencing
technologies, there is emerging evidence that bacteria are present, not only in the gut, but also in
normal and tumor breast tissue [as reviewed extensively in (3)].

Here, we discuss new findings that link the gut and breast microbiota to BC, focusing on HER2+
BC and the consequences of this relationship on the clinical management of patients. Although
several HER2-targeted treatments are available for patients with early and advanced HER2+ BCs (4)
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and although their use in the clinical setting has significantly
improved patient outcomes, there remains considerable room for
optimizing treatment strategies (5) for example by considering
indiv idual other than tumor character i s t i cs (e .g . ,
microbiota composition).
ROLE OF COMMENSAL BACTERIA IN BC
GROWTH AND PROGRESSION

Intestinal Microbiota and BC
Among human symbiotic microbial populations, the bacteria
that reside in the gut have been studied and characterized most
extensively. Bacteroidetes, Firmicutes, Actinobacteria,
Proteobacteria, and Verrucomicrobia are the dominant phyla
that inhabit the gut, with their specific distributions varying
along the gastrointestinal tract, depending on competition for
similar environmental conditions and nutrients (6). The gut
microbiota has important physiological functions, including
digestion, training of host immunity, regulation of gut
endocrine function, modulation of neurological signaling, and
the metabolism of xenobiotics (7). Given the complex crosstalk
between intestinal microbes and their hosts, the gut microbiota is
also being examined in relation to tumor development
and progression.

The number of studies on the differences between the gut
microbiota of patients and healthy women has been increasing (8–
12), and despite the discrepancies in identified microbial taxa
between them, most studies have reported reduced a-diversity in
the gut microbiota of women with BC (8, 9, 12, 13). Notably,
Zitvogel and colleagues showed that the fecal microbiota
composition discriminates groups of patients by tumor size (<
or >pT1), grade (G1 and 2 vs G3), axillary node involvement (N-
vs N+), and TNM stage (stage I vs stage II/III) (14). Higher levels
of bacteria, as with Eubacterium genera (E. rectale, E. eligens),
Akkermansia muciniphila, Actinobacteria classes (Bifidobacterium
Longum, Collinsella aerofaciens), and Alistipes shahii, were
associated with stage I or N negative status in BC patients, and
their overrepresentation in mice is associated with slower tumor
growth compared with overrepresentation of bacteria species such
as Bacteroides uniformis, Bacteroides xylanivolvens and Bacteroides
intestinalis, that reportedly associated with worse patient outcome.

The authors of this study highlighted the relevance of
considering bacterial strain levels and bacterial function in
discriminating patients according to their prognosis. In this
cohort of patients, the expression of specific functional
pathways, such as L-arginine and adenosine ribonucleotides,
and the dominance of pathways like 2-oxoglutarate:ferredoxin
oxidoreduction and adenine‐adenosine salvage were associated
with a favorable BC prognosis, whereas biosynthesis of lipids,
thiamine diphosphate, pyridoxal-5 phosphate, L-threonine, and
degradation of L-histidine correlated with a poor outcome (14).

Similarly, differences in the metabolic pathways of the gut
microbiome between BC and control cases were found by Yang
et al. (13), strengthening the relevance of bacterial functions in
the relationship between the microbial ecosystem and BC.
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The use of antibiotics induces considerable changes in the
intestinal microbial ecosystem, and their impact on cancer is now
under investigation. An association between antibiotic use and
cancer development has been reported: countries with a high
consumption of antibiotics experience a higher incidence of
various types of cancer (e.g., colorectal, lung, melanoma,
breast, uterus, and bladder), as described by Ternàk et al. (15).
Moreover, in preclinical studies, antibiotics accelerate tumor
growth in various BC mouse models (16, 17), and they are also
associated with early inflammation in the mammary gland,
coupled with significant myeloid cell infiltration and enhanced
fibrosis in a model of hormone receptor-positive BC (18).

Antibiotics use has also been associated, in a case-control
study (19), to higher incidence of male BC cancer, a rare disease
in men but that represents almost 1% of all BC diagnoses (20).
Although there are no studies specifically aimed at investigating
the gut microbiota role in male BC, commensal bacteria
potentially affect BC regardless of gender, as life style, estrogen
levels, inflammation and epigenetic factors represent important
risks factors for BC even in male population. Indeed, intestinal
microorganisms can affect BC development and progression
through several mechanisms, including direct carcinogenesis
(i); estrogen-dependent mechanisms (ii), such as the regulation
of estrogen metabolism; estrogen-independent mechanisms
including the production of microbial metabolites (iii) and
regulation of the immune system (iv).

i. The only bacteria that has been currently identified as a
direct carcinogen in humans is Helicobacter pylori, which
causes stomach adenocarcinomas directly (21). Nonetheless,
experimental evidence highlights the cancer-initiating
potential of other bacteria. These “oncomicrobes” induce
cancer by genotoxic-mediated mutagenesis through toxins
and virulence factors (22–28). With regard to BC, Parida
et al. (29) recently showed that gut colonization with
enterotoxigenic Bacteroides fragilis (ETBF), which secretes
B. fragilis toxin (BFT), affects epithelial hyperplasia in the
mammary gland and that in vitro treatment of BC MCF7
cells with BFT before injection in mice significantly increases
tumor growth rate and the development of metastases
through the b-catenin and Notch1 axis (29).

ii. The gut microbiota influences estrogen metabolism, with
consequences on the well-known contribution of estrogens
to the development of hormone-dependent BC. The
expression of b-glucuronidase (BGUS) enzymes in
bacteria, such as Escherichia and Shigella, which belong to
the phylum Proteobacteria, allows sexual hormone
reabsorption via the enterohepatic pathway, consequently
increasing the levels of circulating estrogens and thus
impacting the growth of BC (30, 31).

iii. The link between BC and the gut microbiota extends beyond
estrogen-dependent pathways, in fact a diverse microbial
composition and lower bacterial diversity have been
observed in postmenopausal women with biopsy-proven
BC compared with normal mammography, regardless of
the levels of systemic estrogens (8). Among the estrogen-
independent pathways that affect BC, bacteria metabolites
July 2022 | Volume 12 | Article 947188
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that are derived from fiber fermentation, bile acid (BA)
metabolism, lipid metabolism, and cholesterol metabolism/
elimination interfere directly or indirectly with tumor cell
proliferation and differentiation (32, 33). A widely known
mechanism by which gut microbiota influences cancer
growth is the production of short-chain fatty acids
(SCFAs), such as acetate, butyrate, and propionate, which
are the principal metabolites that are derived from the gut
microbial fermentation of insoluble dietary fiber and are
important metabolites for the maintenance of intestinal
homeostasis, modulating various aspects of intestinal
epithelial cells and leukocytes. They are usually taken up
as a source of energy by colonocytes but also act as regulators
in cells through the direct activation of G-protein-coupled
receptors (GPRs) and the inhibition of histone deacetylases
(HDACs) [reviewed in (34)].

Although SCFAs inhibitory function in the development
of colorectal cancer (CRC) is established (35), their role in
BC is poorly understood. Overall, there is concordance in
their antitumor properties as inductors of apoptosis in BC
cells in vitro (36–39). For instance, propionate inhibits
tumor growth, the epithelial-to-mesenchymal transition
(EMT), and induces apoptosis in BC cells by binding to
GPR43 and GPR41 receptors (39), whereas sodium butyrate
induces dose-dependent inhibition of BC cell proliferation
and apoptosis (40, 41).

Similar to SCFAs, cadaverine, another bacterial
metabolite that is derived from the decarboxylation of
lysine and arginine, negatively affects proliferation, cellular
migration/invasion, and EMT of the 4T1 BC cell line by
binding trace amine-associated receptor-1 (TAAR1) (42).

BAs are synthesized from cholesterol in the liver and are
released into the small intestine to enhance the digestion and
absorption of lipids and fat-soluble vitamins. Their
reabsorption occurs in the ileum and colon, and only a
small proportion is secreted to feces. Bacteria in the
gastrointestinal tract express bile salt hydrolase enzymes
and initiate BA metabolism by deconjugating the glycine
or taurine from the sterol core of primary BAs (i.e., cholic
acid and chenodeoxycholic acid). This mechanism prevents
their reabsorption in the ileum and promotes their entrance
into the large intestine, where bacteria mediate their
conversion to secondary BAs [e.g., deoxycholic acid (DCA)
and lithocholic acid (LCA)] (43).

DCA results from the conversion of cholic acids to
DCA via 7a-dehydroxylation and promotes metastases of
BC tumors that have been grafted into the mouse fat pad
by elevating Flk-1, a receptor for vascular endothelial
growth factor, and decreasing ceramide-mediated
apoptosis of BC cells (44). In vitro studies have shown
that DCA salt has concentration-dependent effects on
MCF7 BC cells , promoting cel l proli feration at
physiological levels through the induction of AKT
phosphorylation and cyclin D1 expression and being
cytotoxic at supraphysiological concentrations by
inducing apoptosis (45).
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LCA is derived from the transformation of chenodeoxycholic
acid and ursodeoxycholic acid through the dehydroxylation by
anaerobic bacteria (primarily Clostridiales) and inhibits the EMT
and metastasis by promoting antitumor immunity and changes
in cell metabolism (33).

Secondary BAs, like DCA and LCA, might impact tumor
development and progression due to their immunosuppressive
properties. In fact, DCA suppresses immune activation in
models of chronic inflammation by binding to farnesoid X
receptor (FXR), a BA nuclear receptor, and TGR5 (Gpbar1), a
G protein-coupled BA receptor on macrophages and
monocytes. Thus, while DCA confers relief under
pathological conditions, such as colitis (46) and obesity-
induced diabetes (47), in tumors, it might favor the
establishment of a protumorigenic microenvironment.
Similarly, LCA controls adaptive immunity by impeding Th1
cell activation and inhibiting interferon gamma (IFNg) and
tumor necrosis factor alfa (TNFa) release through vitamin D
receptor, which is involved in BA signaling (48).

iv. The regulation of inflammation is another mechanism that
links the gut microbiota to tumor growth (49). In fact,
studies have highlighted the influence of the intestinal
ecosystem on tumor immune infiltration, with its
consequent impact on tumor growth (17, 18). The major
function of the microbiota in the tumor immune
microenvironment was elegantly studied by Lam and
colleagues (50) in various tumor models, including BC,
showing that the presence or absence of gut commensal
bacteria discriminates between an antitumorigenic or
protumorigenic immune microenvironment. Stimuli from
microbiota (e.g., the microbial metabolite c-di-AMP)
reprogrammed mononuclear phagocytes in the tumor into
immunostimulatory monocytes and dendritic cells (DCs),
which, by releasing type I IFN, promoted macrophage
polarization toward an antitumor phenotype and
stimulated crosstalk between natural killer (NK) cells and
DCs (50). This cascade was halted in germ-free mice, which
experienced differentiation of monocytes into protumor
macrophages.
Breast Microbiota and BC
Although the breast and its milk were initially thought to be
sterile, several studies have demonstrated that microorganisms
reside in the mammary gland, as reviewed in (51). Bacteria
colonize the breast through several routes. They can derive from
the skin and gain access to the mammary gland through the
nipple (52, 53), translocate from the intestine (54), or reach the
breast by being internalized in macrophages (55).

Normal breast tissue has a unique bacterial pattern compared
with other body sites, consisting of Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes (56–58), and similar to the gut,
indications suggest that its composition is influenced by lifestyle
(54) and ethnicity (59).

The diverse microbiota of breast tumors compared with their
normal counterparts are likely to be implicated in BC
July 2022 | Volume 12 | Article 947188
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development and progression. An analysis of the largest cohort
of tumor microbiomes (including 1526 tumors from 7 types:
lung, ovary, pancreas, melanoma, bone, brain, and breast)
confirmed that BC has a rich and diverse microbiome and
demonstrated that live bacteria exist in cancer cells and
immune cells in the tumor microenvironment (55). In
addition, a recent study demonstrated that tumor-resident
intracellular microbiota contributes to cancer aggressiveness
and to metastatic colonization by participating to the
reorganization of actin cytoskeleton of tumor cells enhancing
their resistance to fluid shear stress upon the entrance in the
systemic circulation (60).

Compared with normal adjacent tissue, BC tissue has a
significantly lower bacterial load and a more diverse bacterial
composition, harboring more Proteobacteria and Firmicutes and
less Actinobacteria (61, 62). These results are consistent with
RNA sequencing analysis from The Cancer Genome Atlas
(TCGA) (63) (using 668 BC tissues and 72 noncancerous
adjacent tissues) by Thompson et al. (56), who found an
increase in Proteobacteria in tumor tissues and Actinobacteria
in noncancerous adjacent tissues. Further, other studies have
reported that Escherichia coli and Bacillus cereus are more
abundant in BC tissues than normal breast tissues (64) and
genera, such as Fusobacterium, Atopobium, Gluconacetobacter,
Hydrogenophaga, and Lactobacillus, correlated with malignancy
(65). Notably, differences emerged even from an analysis of
bacterial 16S rRNA sequences between normal tumor-adjacent
tissue in BC women and the breast tissue of healthy volunteers,
with higher relative levels of Bacillus, Enterobacteriaceae, and
Staphylococcus seen in the normal tumor-adjacent tissues (66).

The content of breast microbiota might have value in
discriminating patients who are at higher risk of regional
recurrence, as shown by Kim et al . (67). Of note,
Porphyromonas, Lacibacter, Ezakiella, and Fusobacterium were
more abundant in higher-stage versus lower-stage tumors.
Lymphovascular invasion was positively associated with
Lactobacillus and correlated negatively with Alkanindiges,
whereas node-positive status was linked to Acinetobacter and
Bacteroides but negatively associated with Achromobacter (68).
BC tissue from patients with recurrence is characterized by
higher levels of Enterococcus, Cutibacterium, and bacteria that
express genes that are involved in the pentose-glucoronate
interconversion pathways. The possibility that the microbiota
function in BC tumorigenesis is underpinned by the association
of specific bacteria (e.g., Haemophilus influenzae and Listeria
fleischmannii) with genes that are expressed by tumor cells, such
as those that are involved in EMT, and mediate the G2-M DNA
damage checkpoint, E2F transcription, and mitotic spindle
assembly pathways (56). Moreover, the ability of E. coli (a
member of the Enterobacteriaceae family) and Staphylococcus
epidermidis to induce DNA double-strand breaks in HeLa cells
supports their direct involvement in tumor onset (66). In
particular, E. coli, when coupled with other molecular errors in
breast tissue, can promote BC through colibactin, a genotoxin
that causes double-strand DNA breaks, as has been seen in
colorectal cancer (64). Protumorigenic activity has also been
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described for Fusobacterium nucleatum, an oral bacterium that
has been implicated in periodontal disease that reaches the colon
through the bloodstream. F. nucleatum is generally associated
with a poor prognosis in colon cancer and was recently identified
in BC samples (69). In experimental models, when injected
intravenously in tumor-bearing mice, F. nucleatum specifically
colonizes mammary tumors, promoting growth and metastatic
progression and reducing tumor-infiltrating T cells (69).

Breast tissue bacteria, albeit at low abundance, may have also
the potential to influence the local immune microenvironment:
Tzeng and colleagues found, in patients, an association between
specific bacteria and local immune infiltrates, based on the
expression of immune genes. In healthy controls and tumor
tissue, Acinetobacter correlated positively with CD8+ T cell levels.
In tumor tissue, Methylibium, Pelomonas, and Propionibacterium
were significantly associated with immune genes, withMethylibium
correlating negatively with ICOS and TBX21 expression and T-cell
abundance and Propionibacterium negatively associating with IP-
10 and MIP-1B, two effector molecules that are produced
downstream of TLR activation (68).
COMMENSAL BACTERIA AND
HER2+ BC

Association Between Microbiota
Composition and HER2+ BC Subtype
Novel insights into the association between the microbial signature
and BC subtypes have been emerging. In this section we focus on
microbiota composition found to be associated with the expression
of HER2+ receptor (Table 1). With regard to the gut microbiota,
fecal samples from women with HER2+ BCs are characterized by
lower a-diversity and lower levels of certain genera of Firmicutes
(i.e., Clostridium, Blautia, Coprococcus, Ruminococcus, SMB53
genus), whereas they have more Bacteroidetes compared with
HER2- patients (70), suggesting that specific gut microbial
compositions may represent a risk factor for this tumor subtype.
Further evidence was presented by Yang and colleagues (13), who,
in contrast to Wu et al., found a higher proportion of bacterial taxa
that belonged to Firmicutes (Megasphaera, Lachnospiraceae,
Flavonifractor, and Eubacterium), Bacteroidetes (Barnesiellaceae,
and Alloprevotella), Proteobacteria (Moraxellaceae, Acinetobacter,
Pseudomonadales, and Burkholderiaceae), and Actinobacteria
(Enorma) in the gut of HER2+ BC patients.

Most studies that have reported differences in microbe
composition between BC subtypes have focused on the breast
tissue microbiota. For instance, Wang et al. identified significant
clustering in an unweighted UniFrac analysis by HER2
amplification status (71). Among the four major BC subtypes,
women with HER2+ tumors were enriched for the genera
Akkermansia (phylum Verrucomicrobia) and Thermi, whereas
triple negative breast cancer (TNBC) had the highest levels of
Euryarchaeota, Cyanobacteria, and Firmicutes. The phyla
Tenericutes, Proteobacteria, and Planctomycetes were greater
in luminal subtypes (59). A comparison of HER2+ (n=61) and
July 2022 | Volume 12 | Article 947188
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HER2- (n=247) BCs by the Straussman group revealed that BCs
that overexpressed HER2 were enriched for Granulicatella_US31
(Firmicutes) and Dyadobacter (Bacteroidetes) (55).

A similar analysis in a series of 221 BCs using 16S rRNA gene
sequencing noted significantly higher levels of 7 genera of
Firmicutes (Filibacter and Anaerostipes), Bacteroidetes
(Cloacibacterium and Alloprevotella), and Proteobacteria
(PRD01a011B, Stakelama, and Blastomonas) in HER2+ versus
HER2- tumors (68). Using transcriptomic RNA-Seq data,
Hadzega et al. observed the overrepresentation of Proteobacteria
(Burkholderiales and Helicobacter pylori) in HER2+ BCs
compared with tumors with other molecular subtypes (58).

Although these studies strongly suggest the existence of a BC
subtype-specific microbial composition, we are still far from
defining a consensus microbial signature for HER2+ BCs because
there is no agreement with regard to the bacterial taxa that are
associated with the HER2+ subtype or their levels in the gut/
BC tissue.

Microbiota and Response to HER2+
BC Treatment
Current HER2+ BC treatments comprise surgery, radiotherapy,
and chemotherapy (anthracylines, taxanes, CTX, methotrexate,
and 5-fluorouracil), coadministered with various anti-HER2
compounds (trastuzumab, pertuzumab, drug-conjugated
Frontiers in Oncology | www.frontiersin.org 5
trastuzumab (ADCs), and tyrosine kinase inhibitors). Bacteria
can condition the bioavailability, toxicity, and efficacy of
chemotherapeutic drugs with possible effects on patient
prognosis (Figure 1). It is also important to note that patients
outcome could be affected by the alteration of the microbiota
composition following chemotherapeutic treatment. In fact,
anthracyclines can be bacteriostatic to Acinetobacter species
(79), whereas gemcitabine has bactericidal properties (80, 81);.
CTX damages the gut mucosa, rendering the gut leaky and
allowing bacteria to enter the bloodstream (82). Methotrexate
induces changes in the diversity and abundance of bacteria that
are associated with chemotherapy-induced diarrhea (83). In BC
patients, neoadjuvant treatment with anthracyclines, CTX and
taxanes, shifts the breast tumor microbiome compared with
tumors from untreated patients toward a lower a-diversity and
an increase in Pseudomonas spp, the metabolites of which can
increase chemotherapeutic efficacy (84). Also, selective estrogen
receptor modulators used in combination with anti-HER2
treatment in patients with HER2+ and ER+ BC, such as
tamoxifen and raloxifene, can change the composition of the
gut microbiome (85–89).

On the other side, commensal bacteria regulate anticancer
drug efficacy in different ways. Methotrexate bioavailability is
reduced by its conversion into a downstream metabolite by
bacteria (75) whereas doxorubicin can be inactivated by
TABLE 1 | Bacterial signature in HER2+ BC subtype. BC, breast cancer; FFPE, formalin-fixed paraffin-embedded.

Study Sample type Cohort Methodology Microbiota in HER2+BC compared to HER2-BC

Wu et al. (2020) (70) Fecal samples HER2+ n=12
HER2-n=25

16S rRNA gene sequencing Lower a-diversity
Bacteroidetes (Alistipes)
Firmicutes (Enterococcus,
Acidaminococcus).
Bacteroidetes (Rikenellaceae),
Euryarchaeto (Methanobrevibacter),
Firmicutes (Christensenellaceae,
Turicibacter, Clostridium, SMB53,
Blautia, Coprococcus, Ruminococcus)
Proteobacteria (Desulfovibrio)

Yang et al. (2021) (13) Fecal samples HER2+ n=37
HER2-n=45

16S rRNA gene sequencing Firmicutes (i.e., Megasphaera,
Lachnospiraceae, Flavonifractor, and
Eubacterium),
Bacteroidetes (i.e., Barnesiellaceae and
Alloprevotella)
Proteobacteria (i.e., Moraxellaceae,
Acinetobacter, Pseudomonadales and
Burkholderiaceae)
Actinobacteria (i.e., Enorma)

Wang et al. (2017) (71) BC tissue frozen HER2+ n=8
HER2-n=36

16S rRNA gene sequencing No significant differences

Smith et al. (2019) (59) BC tissue frozen HER2+ n=6
HER2-n=51

16S rRNA gene sequencing Thermi
Verrucomicrobia (i.e., Akkermansia)

Nejman et al. (2020) (55) BC tissue
FFPE

HER2+ n=61
HER2-n=247

16S rRNA gene sequencing Firmicutes (Granulicatella:US31)
Bacteroidetes (Dyadobacter)

Tzeng. et al. (2021) (68) BC tissue frozen HER2+ n=15
HER2-n=206

16S rRNA gene sequencing Firmicutes (Filibacter and
Anaerostipes),
Bacteroidetes (Cloacibacterium and
Alloprevotella)
Proteobacteria (PRD01a011B,
Stakelama Blastomonas)

Hadzega et al. (2021) (58) BC tissue frozen HER2+ n=4
HER2-n=14

RNA-sequencing Proteobacteria (i.e. Burkholderiales and
Helicobacter pylori)
July 2022 | Volume 12 | Article 947188
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different bacteria through deglycosylation (Streptomyces
WAC04685 and Raoutella planticola) or degradation
(Klebsiella pneumoniae) (76).

The microbiota is also critical in mediating chemotherapeutic
toxicity. For instance, doxorubicin-induced intestinal injury and
cardiac dysfunction are associated with an imbalance in the
microbiome (90, 91), whereas treatment with taxanes and
Frontiers in Oncology | www.frontiersin.org 6
antimicrotubule agents decrease the abundance of A.
muciniphila and consequently disrupt gut barrier integrity,
resulting in enhanced neuropathy and altered brain function
(92). Also, the toxicity of methotrexate is influenced by the gut
microbiota’s immunomodulatory properties: gut microbes
alleviate chemotherapy-induced small intestinal injury through
the regulation of the multidrug transporter ABCB1/MDR1 p-gp
B

C

A

FIGURE 1 | Impact of the gut microbiota on the treatment of HER2+ BC patients. Current HER2+ BC treatments comprise radiotherapy (RT), chemotherapy
(anthracyclines, taxanes, cyclophosphamide (CTX), methotrexate, and 5-fluorouracil), and anti-HER2 agents (trastuzumab). The gut microbiota can affect treatment
efficacy by directly influencing drug metabolism or by shaping the host’s immune response to the treatment. In patients, the use of antibiotics near the neoadjuvant
therapy negatively affects the response to treatment and is associated with lower disease-free (DFS) and overall (OS) survival (72). (A). Moreover, an intestinal
microbiota that is low in bacteria that belong to the taxonomic families Lachnospiraceae, Prevotellaceae, Actinobacteria (Bifidobacteriaceae), and Turicibacteriaceae
but enriched in Bacteroides is associated with the response to trastuzumab-containing neoadjuvant chemotherapy (73). (B). Several mechanisms have been
proposed to explain the influence of gut microbes on anticancer treatment. (C). Radiotherapy induces DNA damage in cancerous cells and causes immunogenic
cell death, eliciting adaptive antitumor immunity, due to tumor antigen cross presentation by dendritic cells (DCs) to cytotoxic CD8+ T cells. The depletion of
vancomycin-sensitive gram+ bacteria enhances DC antigen presentation, improving RT efficacy (74). Methotrexate and doxorubicin can be converted into
downstream metabolites, reducing their bioavailability (75, 76). In particular, Streptomyces and Raoultella >planticola inactivate doxorubicin by deglycosylation,
whereas Klebsiella pneumoniae reduces its bioavailability by degradation (76). Moreover, gut colonization with Parabacteroides distasonis is associated with
compromised anticancer efficacy (77). CTX damages the gut mucosa, rendering the gut leaky and allowing bacteria to translocate to secondary lymphoid organs
(e.g., spleen). The translocation of Enterococcus hirae stimulates a Th17 immune response (77), whereas the accumulation of Barnesiella intestinihominis stimulates a
Th1 response through a NOD2-dependent pathway (78). In this context, these two microbes participate in CTX efficacy by favoring the accumulation of cytotoxic
cells in the tumor burden. Moreover, gut colonization with Eubacterium rectale, Eubacterium eligens, Akkermansia muciniphila, Bifidobacterium longum, Collinsella
aerofaciens, and Alistipes shahii favors CTX efficacy in mice (14). With regard to trastuzumab, the maintenance of a healthy intestinal ecosystem with higher levels of
Lachnospiraceae, Turicibacteriaceae, Coriobactriaceae, and Prevotellaceae compared with Bactoridales, Proteobacteria, and Verrucomicrobia maintains proper
immune tone in the steady state, which leads to antigen processing and presentation at the ileum level and the activation of an inflammatory response and the type I
IFN pathway, which induces commensal bacteria to instruct mononuclear phagocytes, such as DCs, and, on trastuzumab treatment, increases IL12p70 levels to
activate NK and T cells against tumors (73) (created by Biorender).
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by TLR2 signaling (93). Based on this evidence, several studies
have investigated the possibility of exploiting nutraceutical
interventions to ameliorate the adverse reaction of taxanes and,
in general, of chemotherapeutic drugs (94, 95).

In addition to the regulation of drug metabolism and toxicity,
the gut microbiota influences their efficacy directly or by
modulating the immune response. Doxorubicin activity likely
depends on the absence of specific microbes in the gut, in fact, it
retains the therapeutic potential in microbiota-depleted mice,
but gut recolonization with Parabacteroides distasonis
compromises its anticancer efficacy (77). The antitumor
activity of CTX is mediated by the translocation of gram-
positive bacteria into intestinal secondary lymphoid organs,
leading to a Th17 and Th1 immune response (77). In this
context, Enterococcus hirae and Barnesiella intestinihominis
have been demonstrated to participate in the efficacy of CTX
by favoring the accumulation of cytotoxic cells in the tumor
burden (78). Notably, a cross-reaction between commensal-
specific memory T cells and tumor-associated antigens appears
to form the basis of the gut microbiota’s influence on the efficacy
of CTX (96). Further, Zitvogel and colleagues reported the direct
involvement of specific bacteria (E. rectale, E. eligens, A.
muciniphila, B. longum, C. aerofaciens, and A. shahii) in CTX
antitumor efficacy in BC patients (14).

Antibiotics severely disrupt intestinal ecosystem, their impact
on neoadjuvant treatment in BC was examined in the study by
Zhang et al. (72), in which 120 BC patients were analyzed.
Patients who received antibiotic treatment within 30 days after
initiation of neoadjuvant therapy were compared with control
patients who avoided antibiotic medication. Overall, the
pathological complete response rate of the control group was
significantly higher than that of the antibiotic-treated group, and
there was a strong link between antibiotic consumption and
worse DFS and OS. Notably, among HER2+ BC patients (n=46)
who received docetaxel, anthracycline and CTX, the use of
antibiotics (n=19 vs n=23 patients in the control group) was
significantly associated with lower efficacy of the neoadjuvant
therapy and worse DFS and OS (72). Although limited by its
retrospective design and the inclusion of a small number of cases,
this study calls clinicians’ attention to antibiotic use during
chemotherapy and targeted therapy.

Radiotherapy (RT) is another widely used antitumor
treatment that is usually combined with chemotherapy. In
addition to damaging the DNA of cancerous cells, RT may
affect immunogenic cell death and elicit adaptive antitumor
immunity through the cross-presentation of tumor-associated
antigens to CD8+ cytotoxic T lymphocytes by APCs (97),
generating an immune response that impacts distant non-
irradiated tumor foci, known as the abscopal effect (98).
Although there are no data specifically related to BC patients,
the gut microbiota modulates the antitumor immune response
following RT distal to the gut. In particular, the depletion of
vancomycin-sensitive bacteria enhances DC antigen
presentation, improving the antitumor activity of RT (74).
Thus, to optimize the cure and prognosis of BC, further
examination of the gut and breast microbial components and
Frontiers in Oncology | www.frontiersin.org 7
their interaction with tumor cells and therapies can not
be ignored.

Microbiota and Efficacy of Anti-HER2
Targeted Therapy
The introduction in clinical setting of anti-HER2 targeted therapy
significantly improved the prognosis of this aggressive tumor
subtype. Several HER2-targeting agents are available for the
treatment of early, advanced and metastatic HER2+BC, and
include monoclonal antibodies (trastuzumab, pertuzumab),
tyrosine kinase inhibitors (lapatinib, neratinib), and ADCs
(trastuzumab-trastuzumab-TDM1 and trastuzumab deruxtecan).

Despite the improvement in the clinical outcome of HER2+
BC patients, high heterogeneity characterizes the response to
targeting agents [reviewed in (4, 99)] and patients can experience
disease recurrence after curative intent and disease progression
in the metastatic setting. The host immune response plays a key
role in the activity of anti-HER2 monoclonal antibodies. In
particular, while trastuzumab binds HER2, in addition to
preventing HER2 receptor dimerization and blocking
downstream signaling, the Fc fragment of the antibody
interacts with Fc receptor expressed on innate immune effector
cells, such as NK cells, macrophages, neutrophils, and gd T cells,
and activates antibody-dependent cellular cytotoxicity or
phagocytosis. This cytotoxic activity increases the availability
of tumor antigens in the tumor immune microenvironment,
favoring their processing and presentation by antigen-presenting
cells (APCs). Thus, the interaction between trastuzumab and the
innate immune system facilitates the development of tumor-
specific T cell immunity. NK cells prime DCs, increasing tumor
antigen presentation to cytotoxic CD8+ T cells and the
polarization of CD4+ T cells toward an antitumor Th1
phenotype. Yet, trastuzumab-dependent NK cell activation
leads to cytokine secretion, contributing to the recruitment and
functional polarization of myeloid cells and T cells (100). Thanks
to the interplay between microbes and hosts immune systems the
microbiota is emerging as a relevant area of focus in the
management of cancer patients (101).

Recently, our group studied the impact of the intestinal
microbiome on the immune-mediated antitumor efficacy of
trastuzumab (73). In preclinical models of HER2+ BC,
modulation of the intestinal microbiota by antibiotics
decreased the antigen processing and presentation pathways at
the ileum level and diminished the inflammatory response and
type I IFN pathway, preventing commensal bacteria from
instructing mononuclear phagocytes, such as DCs, to maintain
the proper immune tone in the steady state. This disruption
resulted in low circulating levels of IL12p70, a cytokine that is
produced mainly by DCs and is crucial for activating NK and T
cells, and in impaired NK and tumor-infiltrating T lymphocyte
activity on administration of trastuzumab.

Notably, in HER2+ BC patients who received neoadjuvant
treatment (ie, adriamycin plus CTX and taxanes plus
trastuzumab), those who were nonresponsive had lower bacteria a-
diversity and more Bacteroides than patients who achieved a
pathological complete response. In particular, similar to mice
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under antibiotic treatment, nonresponsive women had low levels of
members of the taxonomic families Lachnospiraceae, Prevotellaceae,
Actinobacteria (Bifidobacteriaceae), Turicibacteriaceae, and
Desulfovibrio in the gut. Moreover, fecal microbiota b-diversity,
which segregated patients according to response, correlated
positively with tumor immune features that were related to the
activationofDCsandwith theproductionof IL12p70.Thedirect link
between thepatient’s gutmicrobiotaand the response to trastuzumab
was confirmedby fecalmicrobiota transplantation frompatients into
recipient mice. This proof of the existence of a gut microbiota/
immune-mediated trastuzumab axis should encourage future studies
to focuson thesemicroorganismsand theirproducts in regulating the
efficacy of HER2+ BC treatment.
STRATEGIES TO MODULATE
MICROBIOTA IN BC

The above-described role of gut and mammary microbiota in the
progression and response to therapy of BCs provides a strong
foundation for pursuing approaches directed against key
constituents of the cancer microbiota or modulating gut
microbiota as complementary strategy to reduce anti-cancer
therapy-related toxicity, improve response to treatment and
ultimately prognosis in BC patients.

Currently, several options can be used to alter the
composition of the microbiota, including (i) fecal transplants,
which are under investigation for refractory immunotherapy
(102–104), (ii) the transfer of defined bacterial consortia (105)
or single bacteria isolates (78, 106), (iii) the administration of
prebiotics or dietary interventions to shift exiting commensal
communities (107), and (iv) the depletion of community
members, ranging from broad to selective depletion through
antibiotics (74, 108).

Compared to cancers treated with immunotherapy (e.g.
melanoma, renal cell carcinoma), few studies are ongoing in
BC patients and almost all of them are observational studies still
in the first step, mainly aiming to assess the association between
gut and breast microbiota, the immune system and response to
therapy. Only recently three intervention trials (NCT04139993,
NCT03358511, NCT03290651) are addressing the possible
benefit and side effects, the systemic immunomodulatory
effects of different probiotics and the associated change in
breast microbiota.

On the contrary, some options of microbiota modulation
have been explored in BC preclinical models (Figure 2).
Regarding supplementation of probiotics, different studies
explored the effect of lactic acid bacteria. Lakritz et al. (113)
demonstrated that oral administration of Lactobacillus reuteri
ATCC-PTA-6475 was sufficient to inhibit mammary
carcinogenesis in outbred Swiss mice at increased risk of
development of mammary tumors due to the feeding of a
Westernized diet (high fat, low fibers), and to delay or
completely prevent tumor onset in MMTV-neu mutant FVB
mice, genetically predisposed to develop mammary tumors,
through the induction of anti-inflammatory CD4+ CD25+
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Tregs. These data are consistent with a previous study showing
that administration of Lactobacillus acidophilus to mice with 4T1
mammary carcinomas induced a significant reduction in tumor
growth by altering the cytokine production toward a Th1 profile
(114). Moreover, administration of fermented milk containing
Lactobacillus helveticus R389 decreased the growth rate of 4T1
tumors (115) impacting on cancer cell apoptosis and reducing
the production of pro-inflammatory cytokines (122). Also the
use of Lactobacillus casei CRL 431, a recognized probiotic strain
in humans, to ferment milk, reduced 4T1 tumor growth
stimulating the immune response against the tumor, when
administered as preventive therapy or after tumor injection
(116, 123). In 4T1 mouse mammary tumors, this probiotic was
also demonstrated to have anti-metastastic effects and to
diminish capecitabine side effects without affecting the
treatment efficacy (117).

Consistent with preclinical data indicating that lactic acid
bacteria could act as a great immune adjuvant for combined BC
therapy, a randomized clinical trial including 76 overweight or
obese postmenopausal women with a history of hormone-
receptor-positive BC showed that the administration of
symbiotic supplements containing L. casei, L. acidophilus, L.
rhamnosus, L. bulgaricus, B. breve, B. longum, and Streptococcus
thermophilus and fructooligosaccharide (FOS) contributed to a
significant increase in adiponectin and decline of TNFa, and
high-sensitivity C-reactive protein (hs-CRP) compared with
placebo , sugges t ing benefic ia l e ffec ts of synbiot ic
supplementation on recurrence risk factors (112). Moreover, in
a population-based case-control study in Japanese women it was
demonstrated that regular consumption since adolescence of L.
casei Shirota, which modulates the composition and metabolic
activity of the intestinal microbiota (124), is significantly
inversely associated with the incidence of BC (109). These
findings explain at least partially previous evidence that the
high intake of fermented milk products may lower the risk of
BC in women (110).

Although in these studies the modification of the gut or the
tumor microbiota by lactic acid bacteria was not analyzed, it is
likely that the anti-tumor activity of these Lactobacilli that in
part depends on the modulation of the immune system, could
rely on their ability to alter the microbiota. Indeed, it is known
that certain strains of these bacteria not only can modulate the
local immune response in the intestine, but are also effective in
modulating the systemic immune responses. A direct anti-
tumor activity of these bacteria is also possible based on in
vitro data [reviewed in (125)] and on the possibility that they
can migrate to the tumor tissue. Indeed, labeled oral probiotics
were identified in the mouse breast milk, suggesting that gut
bacteria may be able to travel to the mammary gland (126).
Likewise, microbial composition of normal mammary gland
and tumor were found modulated in response to diet both in a
non-human primate model and in humans (54, 127),
demonstrating that oral interventions can influence microbial
populations outside of the intestinal tract in distal sites such as
the mammary gland. In particular, in a non-human primate
model (127), consumption of Mediterranean diet, which is
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associated with reduced BC risk (111), led to an increased
abundance of Lactobacillus in the mammary gland compared to
western diet, whose consumption reportedly elevates BC
risks (128).

Another emerging option for targeting the gut microbiome
and prevent BC progression is the use of compounds able to
modulate gut microbiota as polyphenols and plant-derived
phytochemicals, which are included in the list of prebiotics.
Oral delivery of grape polyphenols (resveratrol, catechins and
quercetin) was found to decrease primary tumor growth and
metastases in a mouse xenograft model created from green
fluorescent protein-tagged MDA-MB-435 bone metastatic
variant BC cells (118). Accordingly, quercetin dietary delivery
was shown to be effective in reducing tumor number and volume
also in a model of spontaneous BC (C3/SV40 Tag) (120). In
another study carried out in MMTV-neu wild type FVB mice,
the oral delivery of green tea polyphenols, particularly enriched
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in catechins, and the administration of a diet supplemented with
broccoli sprouts modified gut microbial composition. In
particular, it was observed an increase in Lactobacillus and
Lachnospiraceae paralleled by augmented levels of important
bacteria metabolites, such as SCFAs. These modifications
resulted in the delay of mammary tumor growth (119).
Further, a study demonstrated that glycyrrhizic acid, a plant-
derived phytochemical, can ameliorate HFD-induced metastases
in 4T1 mammary tumor model. This effect is mediated by
alteration of gut microbiota composition and concurrent
reduction of colonic lipopolysaccharide (LPS) and proportion
of M1-like macrophages producing CCL2 and TNFa in the
colons via LPS/HMGB1/NF-kB, thus leading to inhibition of
myeloid-derived suppressor cells deputed to formation of pre-
metastatic niches (121).

Therefore, even though the research in the field is still in its
infancy, diet, which is recognized as a major shaper of the
FIGURE 2 | Strategies to modulate the microbiota in BC murine models and patients. Many options to alter the composition of the gut and tumor-associated
microbiota are under investigation as a clinical strategy in cancer treatment and prevention. In BCs the anti-tumor activity of probiotics, prebiotics and diet was
explored mainly in preclinical models. Only few studies (in black) found an association between the use of probiotics, as soy milk fermented with Lactobacillus casei
Shirota (109) or fermented milk (110), and of a Mediterranean diet (111) with a reduced risk to develop BC in women. In another study the oral administration of
different Lactobacilli and Bifidobacteria in combination with fructooligosaccharide (FOS) modified circulating risk factors, potentially reducing BC risk (112). In
preclinical models, oral administration of Lactobacillus acidophilus or Lactobacillus reuteri live bacteria (113, 114) or fermented milk containing Lactobacillus
helveticus or Lactobacillus casei (115, 116) inhibited mammary carcinogenesis or 4T1 BC growth. Lactobacillus casei also had anti-metastastic effects and
diminished the capecitabine side effects (117). Also, the use of non-digestible food ingredient that promotes the growth of beneficial microorganisms in the intestines
(prebiotics) was tested in preclinical models of BC. In details, oral delivery of polyphenols derived from grapes (118) or from green tea in association with broccoli
sprouts (119), or the flavonoid quercetin (120), reduced primary BC growth and metastasis. Also, the glycyrrhizic acid, a phytochemical derived from licorice roots,
ameliorated high fat diet-induced metastases of 4T1 BC through the modulation of gut microbiota composition (121) (created by Biorender).
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complex gut microbiota ecosystem, probiotics and prebiotics
consumption may represent potential regimens to modulate BC
risk and increase clinical benefit of treatments.
DISCUSSION

Although the definition of the molecular intrinsic properties of
BC cells and their dynamic interplay with the surrounding
microenvironment has led to the identification of many
pathways that are involved in tumor development,
aggressiveness, and the response to treatment, this knowledge
has been insufficient in prognosticating the risk of disease,
follow-up, and, consequently, the most adequate treatment.
Thus, other factors in the cancer cell/breast tissue crosstalk
oversee intersubject heterogeneity in disease outcomes.
Considering the studies that have been discussed in this
review, the microbes that reside in the gut or breast tissue are
key planners and add relevant pieces to the BC puzzle.

However, there remain critical issues to examine in
determining the exact function of commensal microorganisms
in the development and treatment of BC. Whether they are alive
and have a direct role in BC tumorigenesis or the response to
therapy still needs to be studied in detail. Few studies have
demonstrated the translocation of enteric bacteria to the breast
and their active role in cancer development and progression (i.e.,
enterotoxigenic B. fragilis). Most research has been limited to 16S
rRNA gene-based microbial profiling or whole shotgun
metagenomics (WSM), which have yielded taxonomic
characterization and the prediction of functional pathways,
respectively. Further, the lack of consistency in microbial
profiles between patient cohorts necessitates standardized
protocols for sample collection and analyses that can be
applied worldwide.

Nonetheless, the definition of individual microbial species or
operational taxonomic units that are responsible for tumor
development and the sensitivity or resistance to treatment
should not be the ultimate goal of research. In fact, major
redundancies in pathways between species (i.e., that two
bacterial species can perform the same function but also vary
their activity according to the substrate that is available) might
explain the differences in microbial profiles that are relevant in
BC and warrant a move toward considering the overall function
of the microbial ecosystem as the major driver of the bacterial
impact on cancer. These factors must be considered in future
studies to advance existing preclinical models and metagenomic
technologies and develop new platforms. Further contributing to
the evolution of BC, microbiota taxa take part in the
responsiveness to treatment regimens, as supported by the
compelling results above, shedding light on the relevance of
considering the gut and, likely, the tumor microbiota in planning
drug combinations and therapy regimens.

Although it is complex and dynamic, the interplay between
the immune system and tumor is instrumental for the success
of HER2-targeting agents (mAbs, TKIs, and ADCs). Thus,
thanks to its immunomodulatory properties, the host-
Frontiers in Oncology | www.frontiersin.org 10
microbial ecosystem may contribute to the heterogeneity in
the response to anti-HER2 treatment. Thus, the identification
of a specific bacterial signature that is associated with treatment
efficacy and the mechanisms through which it occurs may
provide the missing clues in optimizing cures for HER2+
BC patients.

Several options can be used to alter the composition of the
microbiota, including (i) fecal transplants, which are being
investigated for refractory immunotherapy (102–104), (ii) the
transfer of defined bacterial consortia (105) or single bacteria
isolates (78, 106), (iii) the administration of prebiotics or
dietary interventions to shift exiting commensal communities
(107), and (iv) the depletion of community members, ranging
from broad to selective depletion through antibiotics (74, 108).
It is therefore important for more research to be carried to
investigate the best approaches which can ameliorate the
management of BC.
CONCLUSION

This review has discussed the relevance of considering the
gut microbiota in the treatment of BC patients—in particular,
HER2+ tumors, for which the immune system is being
increasingly implicated as a mediator of treatment efficacy and
as a predictive biomarker.

Emerging evidence indicates that bacteria are present in BCs
and associate with tumor hallmarks and that their relative
abundance depends on the intestinal microbial ecosystem.
Thus, the next challenge will be to determine the effects that
intratumor bacteria have on various phenotypes of cancer cells,
the immune microenvironment, and its interactions with tumor
cells and, consequently, on disease outcomes.

Knowing the favorable gut/BC microbiota status (i.e., its
composition and functions) for anti-HER2 drugs’ efficacy will
influence the decision over de-escalation strategies in terms of
chemotherapy-free, single agents versus dual blockade, and add-
on strategies, such as dual blockade plus chemotherapy and
immune checkpoint inhibitors, minimizing overtreatment in
patients who would benefit from single agents, such
as trastuzumab.
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126. de Andrés J, Jiménez E, Chico-Calero I, Fresno M, Fernandez L, Rodriguez
JM. Physiological Translocation of Lactic Acid Bacteria During Pregnancy
Contributes to the Composition of the Milk Microbiota in Mice. Nutrients
(2017) 10(1):14. doi: 10.3390/nu10010014

127. Shively CA, Register TC, Appt SE, Clarkson TB, Uberseder B, Clear KYJ,
et al. Consumption of Mediterranean versus Western Diet Leads to Distinct
Mammary Gland Microbiome Populations. Cell Rep (2018) 25(1):47–56.e3.
doi: 10.1016/j.celrep.2018.08.078
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