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ABSTRACT
ISS
BACKGROUND Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced

readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation.

Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations.

OBJECTIVES This study compared the performance for detection and grading of coronary stenoses using artificial

intelligence–enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab–interpreted

coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR).

METHODS Coronary CTA, FFR, and QCA data from 303 stable patients (64 � 10 years of age, 71% male) from the

CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retro-

spectively analyzed using an Food and Drug Administration–cleared cloud-based software that performs AI-enabled coronary

segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination.

RESULTS Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating$50% stenosis in 0, 1, 2,

and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 � 2.7 minutes. AI-QCT evaluation

demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of

94%, 68%, 81%, 90%, and 84%, respectively, for $50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respec-

tively, for detection of $70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs

QCA on a per-vessel and per-patient basis (intraclass correlation coefficient ¼ 0.73 and 0.73, respectively; P < 0.001 for

both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of $70% by AI-QCT and QCA

of <70%); however, 41 (66.1%) of these had an FFR of <0.8.

CONCLUSIONS A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and

exclusion of high-grade stenosis and with close agreement to blinded, core lab–interpreted quantitative

coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia

[CREDENCE]; NCT02173275) (J Am Coll Cardiol Img 2023;16:193–205) © 2023 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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AI = artificial intelligence

AI-QCT = artificial
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quantitative coronary

computed tomography

AUC = area under the receiver-

operating characteristic curve

CAD = coronary artery disease

CP = calcified plaque

CTA = computed tomography

angiography

FDA = Food and Drug

Administration

FFR = fractional flow reserve

GEE = generalized estimating

equation

IVUS = intravascular

ultrasound

QCA = quantitative coronary

angiography

RCA = right coronary artery
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C oronary computed tomography
angiography (CTA) has emerged as
a robust noninvasive tool for identi-

fication and exclusion of coronary artery dis-
ease (CAD). Prior multicenter trials
demonstrated high diagnostic performance
of coronary CTA against invasive quantita-
tive coronary angiography (QCA) reference
standards.1-3 The clinical use of coronary
CTA has been evaluated in an array of multi-
center clinical trials that have observed the
ability of coronary CTA to guide clinical deci-
sion making in a manner that improves
event-free survival,4 reduces unnecessary
invasive angiography,5 and expedites safe
discharge of symptomatic patients present-
ing to emergency departments.6 Coronary
CTA is now recognized as a first-line test for
evaluation of CAD in professional societal
guidelines and appropriate use criteria.4,7-9

Despite high diagnostic performance in
large-scale trials, the real-world performance
of coronary CTA when interpreted by
nonexpert readers is less sanguine. In a substudy of
the PROMISE (Prospective Multicenter Imaging Study
for Evaluation of Chest Pain) trial, among 4347 pa-
tients undergoing coronary CTA, there was 16%
discordance between site and expert core lab readers.
Further, this discordance was most prominent in se-
vere stenosis, with site readers overestimating severe
stenosis $50% in 41% of cases.10 As use of coronary
CTA continues to rise over time, these findings raise
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concerns that inaccurate evaluation of coronary CTA
may precipitate unnecessary downstream resource
utilization.

Machine learning has been proposed as a useful
tool to augment coronary CTA evaluation in clinical
settings.11-17,19 Machine learning has demonstrated
promising results in the automated identification and
exclusion of coronary artery stenoses on coronary
CTA.16,19 However, to date, there has been minimal
published evaluation of an artificial intelligence (AI)–
based solution in a multicenter clinical trial against
invasive fractional flow reserve (FFR) or quantitative
coronary angiography (QCA) using expert core lab
readers blinded to coronary CTA findings. We thus
performed a study leveraging a novel U.S. Food and
Drug Administration (FDA)–cleared semi-automated
cloud-based software service to perform quantita-
tive analysis of coronary CTA to determine its per-
formance against a reference standard of invasive
QCA and FFR.

METHODS

SUBJECTS. We retrospectively evaluated data from
303 patients including coronary CTA, FFR, and QCA
from the derivation arm of the CREDENCE (Computed
TomogRaphic Evaluation of Atherosclerotic DE-
termiNants of Myocardial IsChEmia; NCT02173275)
trial.18,19 The CREDENCE trial was a prospective,
multicenter diagnostic derivation-validation,
controlled clinical trial recruiting patients from 2014
to 2017.18,19 Sites and Investigators are listed in
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TABLE 1 Patient and Scan Characteristics

Patient parameters

Age, y 64 � 10

Male 71.0 (218)

BMI, kg/m2 26 � 4

Race

Black 2.0 (7)

Asian 71.0 (217)

White 27.0 (82)

Hypertension 64.0 (197)

Hyperlipidemia 44.0 (136)

Diabetes 31.0 (95)

Current smoker 17.0 (53)

Prior smoker 34.0 (103)

Diseased vessel territories
($50% coronary CTA stenosis)

0 32.0 (96)

1 35.0 (105)

2 21.0 (64)

3 13.0 (38)

Scan parameters

Scanner vendor

GE 18.0 (54)

Philips 2.0 (5)

Siemens 43.0 (132)

Toshiba 38.0 (116)

Tube voltage

70 kV 0.3 (1)

80 kV 6.0 (17)

100 kV 38.0 (116)

120 kV 52.0 (160)

Other 4.0 (11)

Gating technique

Prospective/sequential 31.0 (95)

Retrospective helical 61.0 (188)

Single beat acquisition 8.0 (23)

Values are mean � SD or n (%), unless otherwise indicated.

BMI ¼ body mass index; CTA ¼ computed tomography angiography.
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Supplemental Table 1. All enrolled CREDENCE sub-
jects underwent coronary CTA, FFR, and QCA. The
Institutional Review Board of each site approved the
study protocol, and patients provided written
informed consent. Inclusion and exclusion criteria
and clinical sites are listed in Supplemental Table 2.
This study is an investigator-initiated study, and
Cleerly, Inc had no role in study design or perfor-
mance. Cleerly, Inc performed the coronary CTA an-
alyses for the study in a blinded manner and provided
statistical services as determined and requested by
the study investigators.

CT IMAGING PROTOCOLS. Coronary CTA was per-
formed using a CT scanner with $64-detector rows.
Sites were instructed to perform coronary CTA in
accordance with guidelines from the Society of Car-
diovascular Computed Tomography (Supplemental
Methods).18-20

QUANTITATIVE CORONARY ANGIOGRAPHY.

Invasive coronary angiography was performed in
agreement with clinical indications and imaging
standards. A dedicated core lab performed blinded
QCA in 2 orthogonal views on a per-lesion basis of
every lesion visually for $30% diameter stenosis in
vessels with a reference vessel diameter $2.0 mm.
Lesions estimated to be <30% were recorded as no
stenosis (Supplemental Table 3).

FRACTIONAL FLOW RESERVE. All major coronary
arteries or branches ($2.0 mm) containing a lesion
between 40% and 90% were interrogated by FFR
during intracoronary (150 mg) or intravenous (140 mg/
kg-1/min-1) adenosine infusion to achieve maximal
hyperemia.18,19

AI-BASED SEGMENTATION AND STENOSIS

QUANTIFICATION. The AI-based approach to coro-
nary CTA interpretation in this study was performed
using an FDA-cleared software service (Cleerly Lab;
Cleerly, Inc) that performs automated analysis of
coronary CTA using a series of validated convolu-
tional neural network models (including VGG [Visual
Geometry Group]-19 network, 3D U-Net, and VGG
Network Variant) for image quality assessment, cor-
onary segmentation and labeling, lumen wall evalu-
ation and vessel contour determination, and plaque
characterization.21 Training and testing were per-
formed on a proprietary database. The centerline al-
gorithm was developed from 1,007,945 images, which
comprised 23,068 vessels from 3,671 patients. The
lumen and vessel wall algorithms were developed
from 1,414,877 images, which comprised 8,555 vessels
from 3,676 patients. First, the AI-aided approach
produces a centerline along each coronary artery, and
then for lumen and outer vessel wall contouring. This
is applied to each phase of the examination and the 2
optimal series are identified for further analysis.
These top 2 phases are evaluated interactively on a
per-vessel basis (eg, the right coronary artery [RCA]
will be reconstructed from the phase that yields the
highest RCA image quality, while the posterior
descending artery may come from the second phase if
the posterior descending artery has a higher image
quality on that phase). Once coronary artery seg-
mentation is performed, an automated labeling is
done to classify arteries by their location as well the
proximal, mid, and distal portions within a single
vessel. Utilizing a normal proximal reference vessel
cross-sectional slide, the start and the end of the
lesion, and the cross-sectional slice that demon-
strates the greatest absolute narrowing, % diameter
stenosis severity is automatically calculated. After
the AI algorithm has finished all operations, a cardiac

https://doi.org/10.1016/j.jcmg.2021.10.020
https://doi.org/10.1016/j.jcmg.2021.10.020
https://doi.org/10.1016/j.jcmg.2021.10.020
https://doi.org/10.1016/j.jcmg.2021.10.020
https://doi.org/10.1016/j.jcmg.2021.10.020


CENTRAL ILLUSTRATION AI-Based Evaluation of Coronary Artery Stenosis on Coronary CTA Demonstrated High
Accuracy to Core Lab–Interpreted QCA and Invasive FFR

AI-QCT Analysis Enables Rapid and Accurate Identification and Exclusion of High-Grade Stenosis
With Close Agreement to Blinded, Core-Lab Interpreted QCA

AI-QCT vs QCA for Detection of Stenosis, Per Patient
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84%
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90%
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Ground Truth

68%
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AUCAccuracy
Negative

Predictive Value
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Predictive ValueSpecificitySensitivityAI-QCT vs QCA

Artificial Intelligence Enabled
Quantitative Coronary Tomography
Angiography Analysis

≥50% Stenosis
≥70% Stenosis

Discordant Cases:
When AI-QCT ≥70% and QCA <70%
FFR is <0.8 in 67%

FFR

≥0.8 <0.8

Griffin WF, et al. J Am Coll Cardiol Img. 2023;16(2):193–205.
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CT–trained technician reviews the results of the AI
analysis in all cases with manual adjustment if
necessary.

For stenosis evaluation, the software selects the
mean coronary diameter at the closest normal prox-
imal reference cross section as the reference diameter
(Dref), and the mean diameter on the cross section
demonstrating the greatest absolute stenosis (Ds).
The % diameter stenosis is then automatically calcu-
lated using the following formula: % diameter
stenosis ¼ [1 � (Ds/Dref)] � 100.

STENOSIS COMPARISON QCA VS AI-ENABLED

QUANTITATIVE CORONARY CTA. QCA stenosis was
measured by core lab readers in each vessel territory,
and AI-based stenosis evaluation was measured for
each coronary segment, if present, using a Society of
Cardiovascular Computed Tomography 18-segment
coronary tree model. The maximum QCA and AI-
based diameter stenosis were calculated across seg-
ments for each vessel. Performance of artificial
intelligence–enabled quantitative coronary computed
tomography (AI-QCT) was also evaluated in vessels in
which the calcified plaque (CP) volume was $50% of
the total plaque volume and compared with perfor-
mance in vessels in which the non-CP was $50% of
the total plaque volume.

DETERMINATION OF STENOSIS SIGNIFICANCE WITH

FFR. We also evaluated the ability of QCA and the AI-
QCT stenosis evaluation to predict a vessel specific
FFR of 0.8 or less. This was performed on a per-
patient and a per-vessel basis. Performance was
evaluated using both 50% and 70% diameter
thresholds.

STATISTICAL ANALYSIS. Analysis was performed
using SAS software version 9.4 (SAS Institute). The
diagnostic performance of AI-based diameter stenosis
as well as the core lab diameter stenosis was evalu-
ated by calculating the sensitivity, specificity, and
diagnostic accuracy relative to the determination
of $50% and $70% stenosis, using QCA as the refer-
ence standard, on the per-segment, per-vessel, per-
territory, and per-patient bases. Areas under the
CENTRAL ILLUSTRATION Continued

Coronary computed tomography angiography (CTA), fractional flow res

(64 � 10 years of age, 71.0% male) from the CREDENCE (Computed To

retrospectively analyzed using an Food and Drug Administration–cleare

tion, lumen and vessel wall determination, plaque quantification and char

vessel and per-patient basis was excellent. The area under the receiver-o

stenosis was 0.92 on a per-territory basis. There were 62 vessels with A

they had a QCA of <70%; however, 41 (66.1%) of these had an FFR of

AI-QCT ¼ artificial intelligence–enabled coronary computed tomography
receiver-operating characteristic curve (AUCs) were
used to evaluate the diagnostic performance
for $50% and $70% stenosis per QCA as well as to
evaluate the prediction of FFR for both QCA and AI-
QCT. The comparability of the continuous measures
of diameter stenosis for AI and QCA were assessed via
correlation using Pearson’s correlation coefficients
and calculation of the mean difference (bias). Sensi-
tivity, specificity, and diagnostic performance
for $50% diameter stenosis per territory were
compared across patient subgroups using logistic
generalized estimating equation (GEE) regression
models, to account for the potential correlation of
multiple vessel territories per patient. Diagnostic
performance parameters of AI-QCT–measured steno-
sis were calculated on a per-patient and per-territory
basis, for predicting $50% stenosis and $70% steno-
sis using QCA as the reference standard. The results
are stratified by those with $50% of CP and those
with #50% CP. The 95% CIs were generated using the
Agresti-Coull method for per-patient measures and
using logistic GEE regression for per-territory and
per-vessel measures. Diagnostic performance was
compared across strata using chi-square or Fisher’s
exact tests for per-patient measures and logistic GEE
for per-territory and per-vessel measures.

RESULTS

Baseline characteristics of the study population can
be seen in Table 1. A total of 303 (98.0%) of the 307
subjects from 23 centers of the CREDENCE cohort18,19

were included; 4 patients were excluded caused by
corruption of CT imaging data. CT scan parameters
are listed in Table 1. AI computational analysis time
was 10.3 � 2.7 minutes. No cases were excluded
because of impaired image quality. If impaired image
quality was present caused by motion, poor opacifi-
cation, beam hardening, or other artifact, just the
portion of the coronary artery with poor quality was
marked as excluded from analysis. Any quantitative
data from the excluded segment were not included in
the final report. Among the 171,195 mm of vessel
erve (FFR), and quantitative coronary angiography (QCA) data from 303 stable patients

mogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were

d cloud-based software that performs artificial intelligence (AI)–enabled coronary segmenta-

acterization, and stenosis determination. Diagnostic performance against QCA on both a per-

perating characteristic curve (AUC) for detection of a$50% stenosis was 0.88 and for 70%

I-QCT findings of $70% stenosis that were considered discordant or false positive because

<0.8, and some of the QCA findings may have been false negative. 3D ¼ 3-dimensional;

angiography; VGG ¼ Visual Geometry Group.



FIGURE 1 Scatterplot Analysis
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(A) Correlation of artificial intelligence (AI)–based evaluation vs quantitative coronary angiography (QCA) for % stenosis on a per-territory and

per-patient basis was 0.728 and 0.717, respectively (P < 0.0001 for both). (B) A Bland-Altman plot of QCA vs AI-QCT for 50% stenosis per

vessel depicted a mean bias of �5.1% (95% CI: �6.1% to �4.0%) per territory and a mean bias of �6.8% (95% CI: �8.6% to �5.0%) per

patient. AI-QCT ¼ artificial intelligence–enabled quantitative coronary computed tomography.

Continued on the next page
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FIGURE 1 Continued
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FIGURE 2 Discordant Cases

Left Coronary 

A

B

C

Three discordant cases in which significant stenosis was depicted on AI-QCT but <30%

stenosis was reported on QCA. (A) Patient 1, left anterior descending artery. Curved

multiplanar reformatted image (MPR) (left), and straightened MPR (second from left)

with the lumen boundary (purple line) and outer vessel wall boundary (yellow line)

overlay, and with color plaque overlay (second from right) (red is low-density non-

calcified plaque [<30 HUs], yellow is noncalcified plaque [31-350 HU], and blue is

calcified plaque [>350 HU]). AI depicted a 60% stenosis (white arrow) in the proximal

vessel segment. (Right) The left coronary invasive angiogram, in which QCA analysis

depicted no stenosis (yellow arrow). (B) Patient 2, left circumflex artery. Curved MPR

(left) and straightened MPR (second from left) with the lumen boundary (purple line)

and outer vessel wall boundary (yellow line) overlay, and with color plaque overlay

(second from right). AI depicted a 60% stenosis in the proximal vessel (white arrow).

(Right) The left coronary invasive angiogram, in which QCA analysis depicted no ste-

nosis (yellow arrow). (C) Patient 3, ramus intermedius artery. Curved MPR (left) and

straightened MPR (second from left) with the lumen boundary (purple line) and outer

vessel wall boundary (yellow line) overlay, and with color plaque overlay (second from

right). AI depicted a 75% stenosis in the mid vessel (yellow arrow), but the vessel is

poorly opacified and likely false positive. (Right) QCA analysis depicted no stenosis in

that region (white arrow). Abbreviations as in Figure 1.
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length evaluated in the entire cohort, a total of
1,861 mm (1.1%) of the vessel length was excluded.
The length of an exclusion averaged 14.1 � 13.9 mm
and was longer in the RCA (15.2 � 6.7 mm) than in the
left anterior descending artery (7.62 � 4.12 mm) or the
left circumflex artery (7.58 � 8.13 mm). This included
132 focal exclusions in 81 (26.7%) of patients. A ma-
jority (85.0%) of the exclusions were in the RCA, and
the remaining were evenly distributed in the left
anterior descending artery (7.6%) and left circumflex
artery (7.4%). In 127 (96.2%) of the exclusions, less
than a full coronary segment was involved, and in the
remaining 5 (3.8%), more than an entire segment was
excluded.

DISEASE PREVALENCE. Prevalence of stenosis $50%
was observed in 67.0% (n ¼ 202 of 303) of patients
and 36.0% (n ¼ 308 of 848) of vessels, while presence
of stenosis $70% was observed in 39.0% (n ¼ 119 of
303) of patients and 19.0% (n ¼ 157 of 848) of vessels.
A $50% stenosis was observed in 1, 2, and 3 coronary
vessel territories in 32.0% (n ¼ 96 of 303), 21.0%
(n ¼ 105 of 303), and 13.0% (n ¼ 38 of 303) of subjects,
respectively.

DIAGNOSTIC PERFORMANCE. The per-patient
sensitivity, specificity, positive predictive value,
negative predictive value, and accuracy for $50%
stenosis were 94%, 68%, 81%, 90%, and 84%,
respectively, and for detection of $70% stenosis were
94%, 82%, 69%, 97%, and 86%, respectively (Central
Illustration). The AUCs on a per-territory and per-
patient basis were 0.90 and 0.88, respectively,
for $50% stenosis and 0.95 and 0.92, respectively,
for $70% stenosis (Table 2).

Correlations of AI-QCT vs QCA for % stenosis on a
per-territory and per-patient basis were 0.728 and
0.717, respectively (P < 0.0001 for both) (Figure 1A).
The intraclass correlation coefficient was 0.73 per
territory (P < 0.0001) and 0.73 per patient (P <

0.0001). The mean paired differences (AI – QCA) were
5.1% (95% CI: �6.1% to �4.0%) per territory and 6.8%
(95% CI: �8.6% to �5.0%) per patient, indicating a
small positive bias. Analysis of numeric agreement
using categorical variables of 0% to 49%, 50% to 69%,
and 70% to 100% on both a per-territory and per-
patient basis yielded a Cohen’s kappa of 0.674 per
territory and 0.670 per patient. A Bland-Altman
analysis is included (Figure 1B).

We evaluated the performance of AI-QCT in pre-
dominantly calcified ($50% CP) as compared with
predominantly noncalcified (<50% CP) vessels (Sup-
plemental Table 4). At the 50% stenosis threshold,
predominantly calcified specificity was significantly
lower (P < 0.05) per vessel (86.0% calcified vs 95.3%
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TABLE 2 Diagnostic Performance AI-QCT Versus QCA on a Per-Patient and Per-Territory Basis

Stenosis Basis Sensitivity Specificity PPV NPV Accuracy AUC

$50% Per territory (n ¼ 909) 91 (87.1-94.2) 84 (79.6-86.1) 69 (64.1-74.4) 96 (93.8-97.3) 86 (83.2-88.1) 0.90 (0.88-0.93)

Per patient (n ¼ 303) 94 (89.8-97.0) 68 (59.7-75.8) 81 (74.7-85.5) 90 (87.2-94.4) 84 (78.8-87.3) 0.88 (0.84-0.92)

$70% Per territory (n ¼ 909) 90 (83.3-94.4) 91 (88.0-92.8) 58 (51.0-66.3) 99 (97.3-99.2) 91 (88.5-92.8) 0.95 (0.94-0.97)

Per patient (n ¼ 303) 94 (87.3-97.9) 82 (76.4-86.8) 69 (60.5-76.6) 97 (93.5-99.0) 86 (81.4-89.3) 0.92 (0.89-0.95)

Values are % (95% CI). Subgroups based on detection of $50% stenosis.

AI-QCT ¼ artificial intelligence–enabled quantitative coronary computed tomography; AUC ¼ area under the receiver-operating characteristic curve; NPV ¼ negative predictive value; PPV ¼ positive
predictive value; QCA ¼ quantitative coronary angiography.
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noncalcified; P < 0.0001), per territory (69.7% calci-
fied vs 87.3% noncalcified; P < 0.0001), and per pa-
tient (47.8% calcified vs 72.8% noncalcified; P ¼
0.0199), and accuracy was lower per vessel (85.4%
calcified vs 92.9% noncalcified; P < 0.0001) and per
territory (78.3% calcified vs 88.3% noncalcified; P ¼
0.002) but not per patient. No differences were found
for sensitivity, positive predictive value, or negative
predictive value. For the 70% threshold, specificity
was significantly lower per vessel (92.7% calcified vs
92.9% noncalcified; P < 0.0001) and per territory
(84.6% calcified vs 93.0% noncalcified; P ¼ 0.0013),
the positive predictive value was lower per vessel
(42.9% calcified vs 66.3% noncalcified; P < 0.0001),
and accuracy was lower per vessel (90.8% calcified vs
96.8% noncalcified; P < 0.0001) and per territory
(85.0% calcified vs 92.8% noncalcified; P ¼ 0.0022).

There was discordance of >30% between the AI-
QCT–determined stenosis and that of QCA in 74
(8.1%) of 909 vessels in which 1 or both stenoses was
$50%. Of the 157 vessels that were $70% by AI-QCT,
95 (60.5%) had a concordant QCA of $70% and 62
were discordant. Examples of discordance are shown
in Figure 2.

FFR COMPARISON. FFR data were available in 848
vessels and 303 patients. Common reasons for not
obtaining FFR included distal stenosis, diffuse
atherosclerosis, tortuous vessel, artifact, or concern
over contrast exposure. Performance of QCA and AI-
based coronary CTA evaluation to predict FFR is
depicted in Tables 3 and 4. QCA and AI-QCT had
similar accuracy (85.0% and 86.2%; P ¼ 0.217),
respectively for predicting an FFR of <0.8. The AUCs
on a per-patient basis were 0.90 (95% CI: 0.88-0.94)
for QCA and 0.91 (95% CI: 0.87-0.94) for AI-QCT,
respectively (P ¼ 0.558); and on a per-vessel basis
were 0.953 (95% CI: 0.938-0.967) for QCA and 0.916
(95% CI: 0.894-0.938) for AI-QCT, respectively (P ¼
0.0006). There were 157 vessels that were $70% by
AI-QCT, of these 62 (39.4%) were considered false
positive or discordant because they had a QCA
of <70%; however, 41 (66.1%) of these had an FFR
of <0.8 (Tables 3 and 4).

SUBGROUP ANALYSIS. Diagnostic performance was
evaluated for several subgroups to examine perfor-
mance by patient demographics, medical history,
disease severity and distribution, and plaque types
and burden (Supplemental Table 5). While there was
no significant difference in sensitivity, AI-based
evaluation had improved specificity (91% vs 80%;
P ¼ 0.004) and accuracy (91% vs 84%; P ¼ 0.006) in
women. Similarly, age <65 years showed improved
specificity (89% vs 79%; P ¼ 0.003) and accuracy (89%
vs 83%; P ¼ 0.023). No differences were seen for body
mass index or presence of absence of risk factors,
including diabetes, hypertension, dyslipidemia, or
tobacco use. For an increasing number of diseased
vessel territories, there was a significant increase in
sensitivity (P < 0.001) but decreases in specificity and
accuracy (P < 0.001). Similarly, increases in total
atherosclerotic plaque burden and CP burden on
showed significant increases in sensitivity and de-
creases in both specificity and accuracy (P < 0.0077).

DISCUSSION

We observed high diagnostic performance of the AI-
based evaluation for severe stenoses at both
the $50% and $70% levels, along with high correla-
tion to QCA. Importantly, the diagnostic performance
of the AI-based evaluation was similar to that
observed in prior multicenter clinical trials that have
employed expert coronary CTA core lab imagers.1-3 To
our knowledge, this study represents the first vali-
dation of any FDA-cleared AI-based evaluation for
determining coronary CTA stenosis severity
compared with QCA in a multicenter clinical trial of
subjects being referred for American College of Car-
diology/American Heart Association guideline–
indicated invasive coronary angiography.

AI-BASED EVALUATION OF CORONARY CTA.

Use of AI applications in diagnostic imaging that
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TABLE 3 Diagnostic Performance of QCA and AI-QCT Stenosis to

Predict FFR on a Per-Vessel Basis (n ¼ 848)

Diagnostic
Performance,

70% Stenosis to
Predict

FFR, per Vessel QCA AI-QCT P Value

Sensitivity 45.6 (103/226)
(38.4-52.1)

58.9 (133/226)
(51.7-64.9)

<0.0001

Specificity 99.4 (618/622)
(97.7-99.8)

96.1 (598/622)
(93.1-97.6)

<0.0001

PPV 96.3 (103/107)
(89.6-97.8)

84.7 (133/157)
(78.6-89.5)

0.0010

NPV 83.4 (618/741)
(78.5-84.9)

86.5 (598/691)
(81.0-87.0)

0.0005

Accuracy 85.0 (721/848)
(81.8-87.1)

86.2 (731/848)
(83.2-88.2)

0.2173

AUC 0.953 0.916 0.001

Values are % (n/N) (95% CI), unless otherwise indicated.

FFR ¼ fractional flow reserve; other abbreviations as in Table 2.
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leverage deep machine learning approaches has been
cited as having high potential to improve accuracy of
traditional computer-assisted applications that
employ conventional image processing approaches in
a manner that may also have benefits on image
analysis time. Average analysis time for the AI-based
solution was 10.3 � 2.7 minutes; the quality assurance
evaluation time was not recorded in this study, but
the AI time plus quality assurance review for this
software service was previously reported as 23.7 � 6.4
minutes.16,17,19

Germane to the present study that evaluated abil-
ity of AI-based evaluation to identify coronary ste-
noses, Kang et al11 employed a structured learning
technique and support vector machine algorithms in
a small group (n ¼ 42) in comparison with expert
consensus readers; they reported high sensitivity
(93%), specificity (95%), and accuracy (94%), with an
AUC of 0.94 for detection of plaques $25%. Similarly,
Freiman et al22 used a deep sparse autoencoder–
mixed structure regularization approach in 90 sub-
jects and observed an AUC that ranged from 0.78 to
0.94 for discrimination of mild stenosis <30% to se-
vere stenosis $70%. This present study adds to the
previously reported findings by evaluating an
approach that employs deep convolutional neural
networks, is FDA cleared, and is clinically available.
Further, our present evaluation was in a large multi-
national cohort of subjects who were being referred to
clinically indicated invasive angiography and estab-
lished widespread generalizability of the reported
approach.

COMPARISON WITH PRIOR RESULTS. Results of the
present study are in direct accord with a reported
study that assessed the performance of the AI-based
evaluation16,17,19 as compared with the consensus of
level 3 expert readers. In the multicenter CLARIFY
(CT EvaLuation by ARtificial Intelligence For Athero-
sclerosis, Stenosis and Vascular MorphologY) trial,
diagnostic performance in 232 consecutively acquired
coronary CTA data sets revealed excellent perfor-
mance at both the $70% and $50% stenosis
threshold. The per-patient diagnostic sensitivity,
specificity, positive predictive value, negative pre-
dictive value, and accuracy of the AI-based evalua-
tion for $70% were 90.9%, 99.8%, 93.3%, 99.9%, and
99.7%, respectively; and for $50% stenosis were
94.8%, 80.0%, 97.0%, 80.0%, and 97.0% for $50%
stenosis, respectively. The AI-based evaluation and
consensus L3 reads agreed within 1 Coronary Artery
Disease Reporting and Data System category in 98.3%
of patients and 99.9% of vessels, with high correla-
tion and agreement.

Findings from this study amplify those from the
CLARIFY trial by extending the performance evalua-
tion to QCA, which is historically considered a “gold
standard” for stenosis as well as to FFR, the clinical
gold standard for determination of the physiologic
significance of a coronary stenosis. We observed
lower specificity, positive predictive value, and ac-
curacy when the AI-based evaluation was compared
with QCA vs the previously employed reference
standard of consensus of L3 expert readers, primarily
because of an increase in false positive diagnoses by
the AI-based evaluation. As described in the Supple-
mental Table 5, specificity and accuracy decreased in
patients with increasing numbers of diseased vessel
territories, higher plaque volume, and higher CP
volume. Our study findings are consistent with
prior studies that have employed expert core lab
readers.1-3,23-27

Notably, the discriminatory power of the AI-based
evaluation appears to be high, with a per-patient
AUC of 0.88 for $50% stenosis and of 0.92 for $70%
stenosis threshold, and a per-vessel AUC of 0.90
for $50% stenosis and of 0.95 for $70% stenosis.
These findings are numerically higher than those
observed by expert core lab readers (AUC: 0.69) and
site readers (AUC: 0.57) in the multicenter random-
ized PROMISE trial, albeit in a different study popu-
lation of lower disease prevalence.10 Yet together,
these data suggest a clinical use of an AI-based eval-
uation to serve as an important and useful adjunct to
clinical coronary CTA interpretation.

The AI-based evaluation also performed well using
invasive FFR as a gold standard. Using a 70% diam-
eter stenosis to predict an invasive FFR of <0.8, AI-
QCT had moderate sensitivity of 58.9%, but this was
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TABLE 4 Comparison of Discordant QCA and AI-QCT Cases at a

$70% Stenosis Threshold with FFR on a Per-Vessel Basis

Cases With FFR Available
(N ¼ 848)

Discordant
AI-QCT vs QCA FFR <0.8 FFR >0.8

AI-QCT $70% (n ¼ 157) 62 (39.5) 41 21

AI-QCT <70% (n ¼ 691) 9 (1.2) 8 1

Values are n or n (%).

Abbreviations as in Tables 2 and 3.
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significantly greater than that of QCA (45.6%; P <

0.001); both AI-QCT and QCA had excellent specificity
(96.1% and 99.4%, respectively; P < 0.001) and
similar accuracy (86.2% and 85.0%, respectively; P ¼
0.217). While the presence of an FFR of <0.8 is likely
multifactorial and not simply related to a single ste-
nosis of $70%, the presence of an AI-QCT–depicted
stenosis reliably predicted the low FFR demon-
strating an AUC of 0.916.

DISCORDANT CASES. We analyzed discordant cases
wherein the AI-based evaluation and the QCA dis-
agreed on the severity of stenosis. We observed 2
major findings in this analysis: first, there were
several cases in which the AI-based evaluation over-
estimated the severity of stenosis, and this was most
common in cases of high calcification that may have
contributed to coronary CTA partial volume artifacts.
Other causes included poor or heterogeneous lumen
opacification. Second, we observed several cases of
potential false negative QCA in which coronary CTA
demonstrated evident stenoses but in which QCA did
not (Figure 2). When the discordant cases were
compared with FFR, it appears that many of the false
positive AI-QCT findings were found to have an FFR
of <0.8. There were 157 vessels that were $70% by AI-
QCT and had FFR available, and of these 62 (39.4%)
were considered false positive or discordant because
they had a QCA of <70%; however, 41 (66.1%) of these
had an FFR of <0.8.

These apparent discordances can be explained by a
multitude of reasons. Coronary CTA is a 3-
dimensional volumetric technique, and QCA is a 2-
dimensional technique that relies on orthogonal
assessment of stenosis. In cases of eccentric stenoses
and image foreshortening, it may be that QCA some-
times underestimates the severity of the narrowing.
This has been observed in previous studies in which
QCA, compared with intravascular ultrasound (IVUS),
frequently underestimates disease. Fernandes et al28

reported that 68% of lesions (in 71% of the patients)
diagnosed as moderate stenosis by invasive coronary
angiography had severe stenosis using IVUS. Further,
while widely accepted as a gold standard, the
interobserver variability even with QCA is non-
negligible, with previous reports observing agree-
ment only 65% of the time for $50% stenosis in the
proximal or mid left anterior descending coronary
artery.29,30 As the field moves forward, it may well be
that a hybrid endpoint that combines 2- and 3-
dimensional imaging with both QCA and coronary
CTA serving as the most accurate reference standard.
In this regard, Kerl et al31 acknowledged the presence
of false negative invasive coronary angiography
studies and found that the use of a composite refer-
ence standard combining findings from both coronary
CTA and invasive coronary angiography tests can
control for the effect of false negative CCA results.

SUBGROUP ANALYSIS. We performed subgroup
analysis in order to assess the AI-QCT evaluation for
factors that related to age, sex, risk factors, and CAD
extent and severity. The excellent diagnostic perfor-
mance of AI-QCT was generally consistent across all
subgroups, although there trended toward higher
sensitivity and lower specificity and accuracy as the
disease extent increased. AI-based evaluation had
improved specificity and accuracy in women and
patients <65 years of age. No differences were seen
for body mass index or presence of absence of risk
factors, including diabetes, hypertension, dyslipide-
mia, or tobacco use. For increasing CAD extent and
severity—including number of vessel territories $50%
stenosis and increasing total or CP burden—there was
a significant increase in sensitivity and concomitant
decrease in specificity and accuracy. In addition, the
study population was not optimally heterogeneous,
and comprised 71.0% Asian, 27.0% Caucasian, and
2.0% African American individuals; further studies in
a more heterogeneous population should be per-
formed to exclude any bias introduced.

STUDY LIMITATIONS. This present study was a post
hoc analysis of the CREDENCE trial, and while it is
unexpected that significant bias would be introduced
in a retrospective evaluation leveraging blinded core
lab readers, it nevertheless emphasizes the absence of
a prospective clinical trial that should be performed
in the future. Further, this study evaluated the AI-
based evaluation for measures of stenosis severity,
rather than for plaque volume, composition, vascular
remodeling, and other important CAD metrics. This
is currently being evaluated in the multicenter
INVICTUS (A Retrospective and Prospective, Multi-
centre Registry of Coronary Computed Tomography
Angiography, Intravenous Ultrasound and Optical
Coherence Tomography to Compare Invasive and
Non-invasive Imaging Modalities for the Determina-
tion of Severity, Volume and Type of Coronary



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: An

AI-based evaluation of coronary CTA enables rapid

and accurate identification and exclusion of high-

grade coronary artery stenosis with close agreement

to blinded, core lab–interpreted QCA.

TRANSLATIONAL OUTLOOK: Because clinical reads

of coronary CTA, especially by less experienced

readers, may result in overestimation of CAD stenosis

severity compared with expert interpretation, this AI-

based solution applied to coronary CTA may overcome

these limitations.
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Atherosclerosis) trial (NCT04066062), which is
enrolling patients undergoing coronary CTA and
IVUS, optical coherence tomography, or near-field
infrared spectroscopy, and we plan to report these
findings upon study completion. Also, the ground
truth in this present study was core lab–interpreted
QCA for any stenosis >30%, in keeping with prior
multicenter studies employing QCA. Because of this,
we are not able report the diagnostic performance of
the AI-based evaluation for the presence of stenosis
in this range. Stenoses in this range have been his-
torically considered inconsequential by QCA,
although newer data suggest a prognostic significance
to these “mild” lesions that may nevertheless possess
high-risk atherosclerotic characteristics. The INVIC-
TUS trial will help to address this limitation of the
present study.

CONCLUSIONS

In this analysis of the multinational CREDENCE trial,
an AI-based evaluation demonstrated high diagnostic
performance for the identification, exclusion,
discrimination, and correlation to a QCA reference
standard. Given the rapid turnaround time of this AI-
QCT and its superior performance to previous coro-
nary CTA core lab and site readers, this approach may
augment clinical coronary CTA interpretation.
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