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6.1 Introduction 
Overwintering (the capacity for plants to survive during winter) ensures autumn-sown crops the possibility 

to grow and produce yield in the spring-summer season. Overwintering depends on the interaction of several 

factors, among which the most relevant are genotype frost tolerance (Fowler et al., 2014), sowing date, frost 

intensity, and freezing duration (Gusta and Fowler, 1977). The last two factors determine the temperature 

at which crop tissues are exposed. Furthermore, for cereals soil temperature in the crown region is influenced 

by snow depth (Aase and Siddoway, 1979) and management practices such as soil tillage (Larsen et al., 1988).  

Predicting crop frost tolerance enables to estimate crop winter survival and to identify the sowing date that, 

in a given site, ensures the greatest chance of overwintering. This is particularly important in cold regions, 

where the risk of winterkill is higher than in temperate climates. While crop establishment during autumn 

and the subsequent overwintering make autumn-sown cereal cultivation more profitable than spring 

planting, under very cold winter conditions wheat is planted in spring rather than in autumn to avoid the risk 

of winterkill (Fowler et al., 2014). 

Assessing the likelihood of crop overwintering or winterkilling in a given region is also important for cover 

crops. Cover crops are cultivated for their agro-ecological benefits (Justes, 2017; Tadiello et al., 2022), like 

reduction of soil erosion and nitrate leaching, competition with weeds, and increase of soil organic matter. 

In the case of winter-hardy cover crops (i.e. cover crops that successfully overwinter), the termination in the 

spring needs to be carried out by chemical or mechanical methods, which implies additional costs, while this 

is not necessary for winter-killed cover crops (Labreuche and Bodilis, 2010). Therefore, winterkill has 

substantial advantages for cover crops. 



The acquisition and maintenance of frost tolerance depends on a complex genetic regulation, whose main 

drivers are environmental temperature and crop development stage. The changes involved in crop 

adaptation to low temperatures are dependent on several complex interactions (occurring between 

genotype, environment, and management) that still present knowledge gaps (Byrns et al., 2020). Within this 

framework, a simulation model of crop frost tolerance provides insights to integrate current scientific 

knowledge and to define management decisions. Comparing model outputs with field measurements allows 

to verify if the knowledge embedded in the model provides reliable results and therefore can be used in 

scenario comparisons. After the model is validated, management scenarios, obtained through site-specific 

simulations for several combinations of crop genotype and sowing date, could be interactively investigated 

by running the model with different input combinations, each corresponding to a different scenario. This 

allows the evaluation of production risks related to frost, as well as of breeding and agronomic strategies to 

maximize production potential of cash crop cultivation. On the other hand, what-if scenarios could be 

investigated to optimize autumn-winter cover crop management to increase or avoid winterkill occurrence 

(depending on the cropping system). Furthermore, these evaluations could be applied to assess the possible 

effects of climate change on crop overwintering or winterkill occurrence. 

Several frost tolerance simulation models are available in literature. The most important ones were 

developed for winter wheat; these are the model by Byrns et al. (2020), FROSTOL (Bergjord et al., 2008) and 

the model by Lecomte et al. (2003). The latter estimates crop frost resistance on day d (Rd, °C), which is 

defined as the temperature below which the first leaf damage occurs, using air temperature as driving 

variable. FROSTOL and Byrns et al. (2020) simulate frost tolerance as the “lethal temperature 50” (LT50, °C), 

which is defined as the soil temperature in the crown region at which 50% of the plants are killed in an 

artificial freeze test (Bergjord et al., 2008). In all these models, frost tolerance is increased by low 

temperature hardening (that decreases the frost tolerance temperature) and is lowered by de-hardening 

(that increases frost tolerance temperature). Both FROSTOL and the model by Byrns et al. (2020) decrease 

frost tolerance due to two types of stress: respiration under a snow cover and exposure to sub-lethal 

temperature. The model by Byrns et al. (2020) is the most recent version of the modelling approach 

developed by Fowler et al. (1999), that was also adopted by Bergjord et al. (2008) in the FROSTOL model. 



All these models use several parameters that need to be calibrated by adjusting their value to obtain the best 

possible fit between simulated and measured values. Calibrating many parameters requires extremely large 

data sets and can lead to the identification of local instead of optimal combinations of parameter values. 

Therefore, even in complex agronomic models, only few relevant parameters should be calibrated. These can 

be identified using sensitivity analysis, a statistical technique that assigns model output variability to different 

model input parameters (Saltelli, 2004). Sensitivity analysis is therefore needed for a more informed use of 

a model. It can be performed using local methods such as the one-factor-at-a-time (OAT) screening 

techniques, or global methods such as the one designed by Morris (1991) or the one developed by Sobol 

(Saltelli et al., 2010). Since local sensitivity analysis methods are performed by varying one parameter at time, 

they do not describe parameter interactions that are instead investigated by global methods, performed by 

varying simultaneously all model parameters. Therefore, global methods allow a more profound 

understanding of model behavior.  To the best of our knowledge, there are no sensitivity analyses in the 

literature regarding the model by Byrns et al. (2020) yet. Model output sensitivity to parameters is strongly 

influenced by environmental conditions, like weather, soil and management. For this reason, since soil 

temperature is the main environmental driver of the model, different sites and sowing dates need to be 

considered in the sensitivity analysis.   

Therefore, the objective of this paper is to perform a global sensitivity analysis of the frost tolerance model 

by Byrns et al. (2020) applied to winter crops (cereals and cover crops), assessing parameter rankings for 

different sowing dates and sites. 

6.2 Materials and methods 

6.2.1 Model description 
The crop winter survival model (Byrns et al., 2020) expresses frost tolerance as the “lethal temperature 50” 

(LT50, °C). The LT50 is a state variable calculated daily using as a driving variable the average daily soil 

temperature in the crown region (Tc, °C). Its rate variable (∆LT50, °C d ─1, Eq. 1) describes four different 

processes involved in the gain or loss of frost tolerance: low temperature acclimation (hardening, ∆LT50H flow, 

Eq. 3, and ∆LT50H rate, Eq. 9), dehardening (∆LT50D flow, Eq. 4, and ∆LT50D rate, Eq. 11) and loss of frost tolerance 

due to snow cover (∆LT50R flow, Eq. 5) or to sub-lethal temperature stress (∆LT50S flow, Eq. 6). Even if model 



equations are clearly explained in Byrns et al. (2020), as well as their experimental derivation, they are 

reported also here to better understand the effect of model parameters on the simulated outputs. Model 

equations are listed below, while parameters and variables are explained in Table 1 and Table 2, respectively. 

Hardening and dehardening are influenced by the threshold induction temperature of the crop (Eq. 2) and 

by crop development stage, that is represented by the progress to the vegetative/reproductive transition 

(Eq. 12 and 13). The progress to the transition is simulated through the fulfilling of: a photoperiod 

requirement (Eq. 14, 15 and 16), a vernalization requirement (Eq. 17, 18 and 19) and a minimum leaf number 

requirement (Eq. 20 and 21). The loss of frost tolerance due to sub-lethal temperature exposure is influenced 

by the minimum value of LT50 reached during the simulation (Eq. 7) and by the accumulated dehardening 

amount (Eq. 8). Respiration under a snow cover stress is simulated according to the average (Tm, °C) soil 

temperature of the previous 10 days (ranging between RESP_Tmin and RESP_Tmax) and its standard 

deviation (Tsd, °C, being lower than RESP_Tsd). 

∆𝐿𝑇50

∆𝑡
= −∆𝐿𝑇50𝐻 𝑓𝑙𝑜𝑤 + ∆𝐿𝑇50𝐷 𝑓𝑙𝑜𝑤  +  ∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤  + ∆𝐿𝑇50𝑆 𝑓𝑙𝑜𝑤     [1] 

𝑇𝑖 =  3.72135 − 0.401124 × 𝐿𝑇50𝑐                                                                                                                         [2] 

∆𝐿𝑇50𝐻 𝑓𝑙𝑜𝑤 = {

 0                                                     𝑖𝑓 ∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤 >  0

∆𝐿𝑇50𝐻 𝑟𝑎𝑡𝑒  × 𝑉𝑅𝑇𝑓𝑎𝑐𝑡𝑜𝑟        𝑖𝑓 ∆𝐿𝑇50𝑆 𝑓𝑙𝑜𝑤 =  0

0                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      [3] 

∆𝐿𝑇50𝐷 𝑓𝑙𝑜𝑤  = {

∆𝐿𝑇50𝐷 𝑟𝑎𝑡𝑒                                                                     𝑖𝑓 𝑇𝑐 > 𝑇𝑖  𝑎𝑛𝑑 𝐿𝑇50 <  𝐿𝑇50𝑖 
∆𝐿𝑇50𝐷 𝑟𝑎𝑡𝑒  ×  (1 − 𝑉𝑅𝑇𝑓𝑎𝑐𝑡𝑜𝑟 )                     𝑖𝑓 𝑇𝑐 >  𝐿𝑇50𝑖 𝑎𝑛𝑑 𝐿𝑇50 <  𝐿𝑇50𝑖

0                                                                                            𝑖𝑓 ∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤 > 0 𝑜𝑟 𝑒𝑙𝑠𝑒 
   [4] 

∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤 =

{
𝑅𝐸𝑆𝑃1 ×(𝑒𝑅𝐸𝑆𝑃2+𝑅𝐸𝑆𝑃3×𝑇𝑐−𝑅𝐸𝑆𝑃4)

𝑅𝐸𝑆𝑃5
   𝐼𝐹 (𝑇𝑚 < 𝑅𝐸𝑆𝑃_𝑇𝑚𝑎𝑥 𝐴𝑁𝐷 𝑇𝑚 > 𝑅𝐸𝑆𝑃_𝑇𝑚𝑖𝑛 𝐴𝑁𝐷 𝑇𝑠𝑑 < 𝑅𝐸𝑆𝑃_𝑇𝑠𝑑)

0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [5]    

∆𝐿𝑇50𝑆 𝑓𝑙𝑜𝑤 = {
|

𝐿𝑇50𝑚𝑖𝑛−𝑇𝑐

𝑒𝐿𝑂𝑊𝑇1 × (𝐿𝑇50𝑚𝑖𝑛−𝑇𝑐)− 𝐿𝑂𝑊𝑇2
|                                                                   𝑖𝑓 𝐿𝑇50 < 𝑇𝑐 < 𝐿𝑇50𝑚𝑖𝑛

                                                    𝑎𝑛𝑑 𝐿𝑇50 − 𝑑𝑒ℎ𝑎𝑟𝑑𝐴𝑚𝑡𝑆𝑡𝑟𝑒𝑠𝑠 < 𝐿𝑇50𝑖 𝑎𝑛𝑑 𝑇𝑐 < 𝐿𝑇50𝑖  
0                                                                                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  [6]  

𝐿𝑇50𝑚𝑖𝑛 𝑓𝑙𝑜𝑤 = {
𝐿𝑇50 − 𝐿𝑇50𝑚𝑖𝑛                                           𝑖𝑓 𝐿𝑇50 < 𝐿𝑇50𝑚𝑖𝑛  
0                                                                                            𝑒𝑙𝑠𝑒

     [7] 



∆𝑑𝑒ℎ𝑎𝑟𝑑𝐴𝑚𝑡𝑆𝑡𝑟𝑒𝑠𝑠

∆𝑡
= − (∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤 +  ∆𝐿𝑇50𝑆 𝑓𝑙𝑜𝑤)       [8] 

∆𝐿𝑇50𝐻 𝑟𝑎𝑡𝑒  =  𝑚𝑎𝑥 (0;  𝐻𝐴𝑅𝐷𝑟𝑎𝑡𝑒 × (𝑇𝑖 − 𝑇𝑐) × (𝐿𝑇50 − 𝐿𝑇50𝑎𝑑𝑗))                                                                   [9] 

𝐿𝑇50𝑎𝑑𝑗 =  𝐿𝑇50𝑐 − 𝑑𝑒ℎ𝑎𝑟𝑑𝐴𝑚𝑡𝑆𝑡𝑟𝑒𝑠𝑠                    [10] 

∆𝐿𝑇50𝐷 𝑟𝑎𝑡𝑒 =  
𝐷𝐸𝐻𝐴𝑅𝐷1

1+ 𝑒𝐷𝐸𝐻𝐴𝑅𝐷2 −𝐷𝐸𝐻𝐴𝑅𝐷3 × 𝑚𝑖𝑛 (𝑇𝑐,   𝑇𝑖)                                                                                                                         [11] 

𝑉𝑅𝑇𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠  =  𝑚𝑖𝑛 (𝑚𝑖𝑛(𝑚𝑖𝑛 (1;   𝑚𝑓𝑙𝑛𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛); 𝑝ℎ𝑜𝑡𝑜𝑃𝑟𝑜𝑔); 𝑣𝑒𝑟𝑛𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛)                                   [12] 

𝑉𝑅𝑇𝑓𝑎𝑐𝑡𝑜𝑟 =  
1

1+𝑒𝑉𝑅𝑇𝑓𝑐𝑡1(𝑉𝑅𝑇𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠−𝑉𝑅𝑇𝑓𝑐𝑡2)                                                                                                                                                  [13] 

𝑝ℎ𝑜𝑡𝑜𝑃𝑟𝑜𝑔 = {
𝑚𝑖𝑛 (𝑝ℎ𝑜𝑡𝑜𝑅𝑒𝑞𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 1)     𝑖𝑓 𝑃𝐻𝑂𝑇𝑂𝑐𝑜𝑒𝑓𝑓 > 0 

0                                                                                            𝑒𝑙𝑠𝑒
                [14] 

𝑝ℎ𝑜𝑡𝑜𝐹𝑎𝑐𝑡𝑜𝑟 = {
|

𝑃𝐻𝑂𝑇𝑂1

[1+𝑒𝑃𝐻𝑂𝑇𝑂2×(𝐷𝐿−𝑃𝐻𝑂𝑇𝑂𝑐𝑟𝑖𝑡)−𝑃𝐻𝑂𝑇𝑂3×(𝑇𝑐−𝑃𝐻𝑂𝑇𝑂4)]−𝑃𝐻𝑂𝑇𝑂1
|

0                                                                                         𝑒𝑙𝑠𝑒
 𝑖𝑓 𝑇𝑐 > 0 𝑎𝑛𝑑 ∆𝐿𝑇50𝑅 𝑓𝑙𝑜𝑤 = 0  [15] 

𝑝ℎ𝑜𝑡𝑜𝑓𝑙𝑜𝑤 =
𝑝ℎ𝑜𝑡𝑜𝐹𝑎𝑐𝑡𝑜𝑟

𝑃𝐻𝑂𝑇𝑂5×𝑃𝐻𝑂𝑇𝑂𝑐𝑜𝑒𝑓𝑓
                      [16] 

𝑣𝑒𝑟𝑛𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = {
𝑚𝑖𝑛 (

𝑣𝑒𝑟𝑛𝐷𝑎𝑦𝑠

𝑉𝐸𝑅𝑁𝑟𝑒𝑞
, 1)                               𝑖𝑓 𝑉𝐸𝑅𝑁𝑟𝑒𝑞 > 0 

1                                                                                            𝑒𝑙𝑠𝑒
                 [17] 

𝑑𝑒𝑙𝑡𝑎 = 𝐿𝑜𝑔(2) 𝐿𝑜𝑔 ((𝑉𝐸𝑅𝑁_𝑇𝑚𝑎𝑥 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛) (𝑉𝐸𝑅𝑁_𝑇𝑜𝑝𝑡 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛)⁄ )⁄               [18] 

𝑣𝑒𝑟𝑛𝑅𝑎𝑡𝑒 =

{

1                                                                                                                                                                           𝑖𝑓 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛 ≤ 𝑇𝑐 ≤ 𝑉𝐸𝑅𝑁_𝑇𝑜𝑝𝑡

(2 × (𝑇𝑐 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛)𝑑𝑒𝑙𝑡𝑎 × (𝑉𝐸𝑅𝑁_𝑇𝑜𝑝𝑡 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛)𝑑𝑒𝑙𝑡𝑎 − (𝑇𝑐 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛)2𝑑𝑒𝑙𝑡𝑎) (𝑉𝐸𝑅𝑁_𝑇𝑜𝑝𝑡 − 𝑉𝐸𝑅𝑁_𝑇𝑚𝑖𝑛)2𝑑𝑒𝑙𝑡𝑎⁄

𝑖𝑓 𝑉𝐸𝑅𝑁_𝑇𝑜𝑝𝑡 < 𝑇𝑐 ≤ 𝑉𝐸𝑅𝑁_𝑇𝑚𝑎𝑥
0                                                                                                                                                                                                                                      𝑒𝑙𝑠𝑒

         [19] 

𝐷𝐷𝑅𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑚𝑝 =  𝑚𝑎𝑥 (𝐺𝐷𝐷𝑚𝑖𝑛, (𝐺𝐷𝐷1 × 𝐺𝐷𝐷𝑚𝑖𝑛 − 𝐺𝐷𝐷2) × (𝑇𝑐 − 𝐺𝐷𝐷3) + 𝐺𝐷𝐷𝑚𝑖𝑛)[20] 

𝑚𝑓𝑙𝑛𝑓𝑙𝑜𝑤 =
max(𝑇𝑐,   0)

𝐷𝐷𝑅𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑚𝑝
                         [21] 

𝑚𝑓𝑙𝑛𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡 = 𝑚𝑓𝑙𝑛𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡−1 +  𝑚𝑓𝑙𝑛𝑓𝑙𝑜𝑤                     [22] 

The rate equations are used to integrate the state variable with the Euler method with a daily time step. 

Compared to the original implementation, we have restricted the range of possible values of the two stress 



rate variables (Eq. 5 and 6), with the purpose of increasing model stability. The computer code was tested 

for correctness against the original implementation reported in Byrns et al. (2020). 

6.2.2 Parameter ranges and distributions 
The model by Byrns et al. (2020) employs 36 parameters that we divided in two categories, explicit and 

implicit parameters (Table 1). Explicit parameters are the ones with a clear biological meaning (identified by 

a name in the original publication), while implicit parameters are empirical coefficients indicated as numbers 

in original model equations. There are 13 explicit parameters: they mainly describe temperature values 

(LT50i, LT50c, vernalisation temperature range, stress occurrence temperature range), but also vernalisation 

and photoperiodic requirements (GDDmin, VERNreq, PHOTOcrit). 

The default values of all parameters, reported in Table 1, were derived from the original model 

implementation (Byrns et al., 2020) dedicated to several winter or spring cereals (wheat, rye, barley, and 

oat). Then, lacking detailed information on parameter values in the scientific literature, the range of variation 

for each parameter was obtained by adding and subtracting the 30% of the default value to the default value 

itself (Esprey et al. 2004; Song et al., 2012). Afterwards, some range limits were adapted to include in the 

analysis also winter cover crop species that experience frost damage at warmer temperatures compared to 

cereals, i.e. near 0 °C. The upper limit for LT50c was set at -3.89 °C (Clark, 2007). For the initial value of LT50 

(LT50i), the upper limit was fixed to -0.805 °C (according to Bergjord et al., 2008), and the lower limit to -3.9 

°C. To ensure a range of variation of PHOTOcrit able to encompass cereals and cover crops, we fixed the 

lower limit to the default value of a white mustard cover crop (10 h) decreased by 30%, while the upper limit 

was obtained using a default value for winter wheat cultivars (13.5 h) increased by 30%. The statistical 

distribution of all model parameters (both explicit and implicit) was considered uniform, since there is limited 

information in the literature regarding the distribution of these quantities.  

6.2.3 Modelling scenarios of the sensitivity analysis 
Sensitivity analyses were carried out for each combination of three sowing dates, three sites, and 20 years 

(autumn 1999 - spring 2020) that were chosen to sample the variability of European climates and sowing 

dates. The selected sowing dates (SD) were September 1st (SD1), October 1st (SD2) and October 30th (SD3). 

The selected sites were Sant’Angelo Lodigiano (Latitude 45.26°N, Longitude 9.38°E, Northern Italy), 



Merzenich (Latitude 50.82°N, Longitude 6.55°E, North Rhine-Westphalia, Germany) and Karklupėnai 

(Latitude 54.58°N, Longitude 22.77°E, Pajevonys Eldership, Lithuania). The Köppen climate classification of 

the sites are: Cfa (humid subtropical; Sant’Angelo Lodigiano), Cfb (oceanic; Merzenich) and Dfb (warm 

summer continental; Karklupėnai). The daily soil temperature at the crown level needed as input for the 

model was simulated with the ARMOSA cropping system model (Perego et al., 2013); these simulations were 

run three times in each site, for a 20-year monocropping, using SD1, SD2 and SD3 as sowing dates. Each 

simulation was ended on April 30th of the year after sowing. Soil inputs (texture and organic carbon 

concentration) used by ARMOSA were derived from a regional soil map (ERSAL, 2000) for Sant’Angelo 

Lodigiano, and from the European database LUCAS (Jones et al., 2020) for the other two sites. Soil 

descriptions of the three sites are reported in Table 3. Weather inputs were obtained from the regional 

agency for environment protection (ARPA) weather station network for the Italian site, while for the other 

two sites they were derived from the gridded meteorological database Agri4Cast (Biavetti et al., 2014). A 

summary of the soil temperature simulated by ARMOSA is reported in Table 4.  

The selected model outputs for sensitivity analysis were: the minimum LT50 reached during the simulation 

and the days required to reach it (exemplified in Fig. 1). These quantities were evaluated at the end of the 

period comprised between sowing and February 28, since from a preliminary study it emerged that, 

especially for the warmer site (Sant’Angelo Lodigiano, Italy), frost tolerance differences due to sowing date 

(SD1, SD2, and SD3) can be observed only after winter and not during autumn. 

Furthermore, the effect of the inter-annual weather variability on the main model output (weekly minimum 

LT50) variations, caused by parameter values modifications induced during the sensitivity analysis procedure, 

was evaluated for each site using two reference autumn-winter seasons. The two reference seasons, a cold 

and a warm season, were selected between the 20 years of meteorological inputs to represent weather 

variability in each site. These seasons were selected, for each site, on the basis of the monthly minimum and 

maximum average daily soil temperature, and of the number of days during which the soil temperature was 

negative. A season was selected, between the 20 available seasons, as cold when it minimized both soil 



temperatures and it maximized the number freezing days, while it was selected as warm when it maximized 

the soil temperatures, and it minimized the freezing days. 

 

Figure 1. Selected model outputs for sensitivity analysis: minimum LT50 value during the simulation and days 

to reach it. 

After having examined the results of the first sensitivity analysis, we realized that LT50c was by far the most 

important parameter, while the sensitivity of the other parameters was much smaller. Therefore, to better 

investigate the role of the other model parameters, additional sensitivity analyses (resulting from the same 

combinations of three sowing dates, three sites, and 20 years) were carried out by adopting three different 

fixed (instead of varying) values of the parameter LT50c. The three LT50c values were chosen to represent 

the maximum frost tolerance of three plant species that are commonly used as autumn-winter cover crops: 

Secale cereale L. (rye), Avena sativa L. (oat), and Sinapis alba L. (white mustard). The average reference values 

retrieved from various literature sources (Byrns et al., 2020; Clark, 2007) were rounded to the nearest integer 

value: -29, -8 and -4 °C for winter rye, oat, and white mustard, respectively.  

6.2.4 Sobol method for global sensitivity analysis 
The Sobol method for global sensitivity analysis is a variance-based method that performs a decomposition 

of the total model output variance (V) in partial variances that are caused by a single parameter i (Vi) and by 

the interaction between two (Vij) or more (Vijm, …) parameters (Saltelli et al., 2010). Considering w 

independent model parameters, the decomposition of the total variance is executed as it follows: 



𝑉 =  ∑ 𝑉𝑖

𝑖

+ ∑ 𝑉𝑖𝑗

𝑖<𝑗

+ ∑ 𝑉𝑖𝑗𝑚

𝑖<𝑗<𝑚

+ ⋯ + 𝑉12…𝑤 

The ratios between partial variances and total variance represent the sensitivity indices, whose values 

represent the portion of total variance that is caused by the variation of single parameters or by their 

interaction. The first-order sensitivity index (Si = Vi/V) measures the additive effect of the parameter i on the 

model output. The second-order sensitivity index (Sij = Vij/V) measures the effect of the interaction between 

the parameters i and j on the model output. The effect of the interaction between parameters can also be 

accounted for by using a total-order index (STi): the difference between STi and Si is the measure of the total 

model output variance due to the all the interactions between the parameter i and all the other model 

parameters. The sensitivity analysis was performed by estimating first, second and total-order sensitivity 

indices according to the implementation proposed in Saltelli et al. (2010). The number of quasi-Montecarlo 

simulation runs was 65.536. The Sobol sequence generator was initialized with the set of direction numbers 

provided by Joe and Kuo (2008).  

  



6.3 Results 

6.3.1 Sensitivity indices for northern Italy 
For the site in northern Italy, model outputs showed high variability due to seasonal differences of weather, 

as reported in Figure 2. During the warmer autumn-winter season (2006/2007), the lethal temperature 50% 

remained in a narrow range until the end of January (week 23), then its variability due to parameter variations 

increased but remained lower compared to the same period of the cold season (2011/2012). In 2021/2022, 

model output started to show substantial variability due to parameter combinations from the beginning of 

October (week 7).  

 

Figure 2. Variations of model output (weekly minimum LT50) due to parameter combinations during two 

seasons: 2006/2007 (warm season) and 2011/2012 (cold season) for the site Sant’Angelo Lodigiano (Italy). 

The simulations reported in this graph were run from the first sowing date (September 1st) to April 30. The 

boxplots show output variability due to the different parameter combinations used to run the sensitivity 

analysis. 

When considering the first model output, i.e. the minimum value of LT50 (for the period sowing date-February 

28), the most influent parameter (data not shown in figures or tables) was LT50c, that explained more than 

95% of model output variance for the three sowing dates. Indeed, the first-order sensitivity coefficient (S1) 

was equal to 95%, 96%, and 98% for the first (SD1), second (SD2), and third (SD3) sowing date, respectively, 



indicating that this parameter was always the most relevant. The sum of S1 coefficients for all parameters 

was 97%, 98%, and 99% for the first, second, and third sowing date, respectively. 

When considering the second model output, i.e. the days needed to reach the minimum LT50 value, the 

parameters PHOTOcrit, VRTfct2 and LT50c were the most important, as reported in Figure 3.  

 

Figure 3. First-order (S1) and total-order (ST) sensitivity coefficients for the days to reach the minimum value 

of LT50 for the three sowing dates (SD1, SD2, and SD3) in Sant’Angelo Lodigiano (Italy). Sensitivity coefficients 

were estimated for the period sowing date-February 28. 

PHOTOcrit and VRTfct2 effects were higher for SD1 and SD2 than for SD3, while LT50c effect was higher for 

SD3. Furthermore, LT50c effect showed high variability both within the same sowing date and between the 

different sowing dates. First-order sensitivity coefficient of VRTfct2 was equal to 26%, 23% and 17% for SD1, 

SD2, and SD3, respectively, while for PHOTOcrit these values were equal to 20%, 19% and 15%, and for LT50c 

were 6%, 8%, and 11%. The average sum of S1 sensitivity coefficients for all parameters was 61%, the same 

for all sowing dates. For this second output second-order coefficients were lower than 8% (Figure 4). 

 



 

Figure 4. Second-order (S2) sensitivity coefficients for the days to reach the minimum value of LT50 for the 

three sowing dates (SD1, SD2, and SD3) in Sant’Angelo Lodigiano (Italy). Sensitivity coefficients were 

estimated for the period sowing date-February 28. 

The sensitivities obtained after fixing the value of LT50c for three cover crop species (white mustard, oat, and 

rye) are reported in Figure 5. For the highest LT50c values considered (-4 and -8 °C, respectively for white 

mustard and oat), the most important parameter for the first model output (minimum LT50 value; Figure 5A) 

was the initial value of LT50 (LT50i): for mustard, its average S1 for the three sowing dates was 62%, while for 

oat it was 14%. For the early-planted oat (SD1) the parameter VRTfct2 (S1 equal to 18%) and PHOTOcrit (S1 

equal to 13%) were also relevant. For the lowest LT50c value instead (-29 °C, rye) the highest S1 values were 

obtained by Ti2 (S1 = 9%) for SD1, and by VRTfct2 for SD2 (S1 = 12%) and SD3 (S1 = 27%). Interactions between 

parameters (indicated by high differences between ST and S1) were mainly responsible for the variations of 

the second output considered (days to reach the minimum LT50 value; Figure 5B) for all species and sowing 

dates. For all sowing dates, the most relevant parameter for mustard and oat was VRTfct2 (S1 = 17% for 

mustard and 23% for oat), while for rye it was PHOTOcrit (S1 = 25%).  

 

 

  



 

 

Figure 5. First-order (S1) and total-order (ST) sensitivity coefficients for the minimum value of LT50 (A) and for 

the days to reach it (B) for the combination of three sowing dates (SD1, SD2, and SD3) and three cover crop 

species (white mustard, oat, and rye) in Sant’Angelo Lodigiano (Italy). Sensitivity coefficients were estimated 

for the period sowing date-February 28. 
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6.3.2 Sensitivity indices for North Rhine - Westphalia (Germany) 
For this site, model output variations among years (described by differences of the box length in Figure 6 

between the warmer and the colder season) were low and limited to the period between the beginning of 

October (week 6) and the beginning of November (week 10).  

 
Figure 6. Variations of model output (weekly minimum LT50) due to parameter combinations during two 

seasons: 2013/2014 (warm season) and 2010/2011 (cold season) for the site Merzenich (Germany).  The 

simulations reported in this graph were run from the first sowing date (September 1st) to April 30. The 

boxplots show output variability due to the different parameter combinations used to run the sensitivity 

analysis. 

For the first output (minimum LT50 of the simulation) the most influential parameters were the same found 

in northern Italy, even with slight differences of the variability of the effects (data not shown in figures or 

tables). The parameter LT50c showed a first-order sensitivity coefficient (S1) higher than 95% (95%, 96% and 

98% for SD1, SD2, and SD3, respectively). As already found in Italy, also in this site the sum of the first-order 

sensitivity coefficients of all parameters was higher than 97% (97%, 98% and 99% for SD1, SD2, and SD3, 

respectively). Regarding the second output (days to reach the minimum LT50 value), higher first-order 

sensitivity coefficients (as reported in Figure 7) were registered for the parameters involved in the fulfilment 

of photoperiodic requirements (PHOTOcrit and PHOTO4), for the parameter LT50c, and for the parameters 

used to estimate the factor describing the progress to the vegetative/reproductive transition (VRTfct2). The 



sum of S1 sensitivity coefficients was equal to 62%, on average for the three sowing dates. Second-order 

coefficients were lower than 7.5% (Figure 8), with PHOTOcrit being the most important. 

 

Figure 7. First-order (S1) and total-order (ST) sensitivity coefficient for the days to reach the minimum value 
of LT50 for the three sowing dates (SD1, SD2 and SD3) in Merzenich (Germany). Sensitivity coefficients were 
estimated for the period sowing date-February 28. 

 

Figure 8. Second-order (S2) sensitivity coefficient for the days to reach the minimum value of LT50 for the 

three sowing dates (SD1, SD2 and SD3) in Merzenich (Germany). Sensitivity coefficients were estimated for 

the period sowing date-February 28. 

 
 



The results of the analysis carried out by single cover crop species are reported in Figure 9. For the minimum 

LT50 value (Figure 9A), the initial value of LT50 (LT50i) was the most relevant parameter for mustard in all 

sowing dates, with an average S1 value equal to 67%. LT50i was the most relevant parameter also for SD2 

and SD3 in oat, with an average S1 value of 17%, while for SD1 highest S1 (17%) was for VRTfct2. In the case 

of rye, the minimum LT50 was influenced by several parameters. For SD1 and SD2 the highest S1 value (13%) 

was recorded for VRTfct2, while in SD3 it was obtained by PHOTO4 and PHOTO1 (24%).  

 

 

Figure 9. First-order (S1) and total-order (ST) sensitivity coefficient for the minimum value of LT50 (A) and for 

the days to reach it (B) for the combination of three sowing dates (SD1, SD2 and SD3) and three crops (white 

mustard, oat, and rye) in Merzenich (Germany). Sensitivity coefficients were estimated for the period sowing 

date-February 28. 
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When considering the days to reach the minimum LT50 value (Figure 9B), for rye the most relevant parameters 

in all sowing dates were PHOTOcrit and VRTfct2 (S1 = 30% and 22%, respectively), while for mustard and oat 

it was VRTfct2 (S1 on average equal to 20%). For all cover crop species, interactions among parameters were 

mainly responsible for the variations of this output for all sowing dates, as indicated by high differences 

between ST and S1 for most parameters.  

6.3.3 Sensitivity indices for South-West Lithuania  
For Lithuania, model output variability due to differences among years was low, as reported in Figure 10. 

Differences between model output variability during warmer and colder seasons smoothed out starting from 

mid-January (week 12).  

 
Figure 10. Variations of model output (weekly minimum LT50) due to parameter combinations during two 

seasons: 2013/2014 (warm season) and 2002/2003 (cold season) for the site Karklupėnai (Lithuania). The 

simulations reported in this graph were run from the first sowing date (September 1st) to April 30. The 

boxplots show output variability due to the different parameter combinations used to run the sensitivity 

analysis. 

Regarding the minimum LT50 reached during the simulation, the most relevant parameter (data not shown in 

figures or tables) was LT50c, whose S1 and ST were characterized by lower variability for SD3 compared to 

the first two sowing dates. First-order sensitivity coefficient for LT50c was 96%, 98%, and 100% for the three 

sowing dates. The sum of the first-order sensitivity coefficients was higher than 98% in all the sowing dates. 



The parameters having the highest effects on the days to reach the minimum LT50 value were LT50c, 

PHOTOcrit, VRTfct2, and RESP_Tmin (Figure 11). Their first-order sensitivity coefficients were, on average for 

the three sowing dates, 14% for LT50c, 13% for VRTfct2, 10% for PHOTOcrit, and 6% for RESP_Tmin. The sum 

of S1 coefficients was 58% on average for the three sowing dates. Second-order coefficients were always 

lower than 8% (Figure 12). 

 

Figure 11. First-order (S1) and total-order (ST) sensitivity coefficient for the days to reach the minimum value 

of LT50 for the three sowing dates (SD1, SD2 and SD3) in Karklupėnai (Lithuania).  Sensitivity coefficients were 

estimated for the period sowing date-February 28. 

  



 

Figure 12. Second-order (S2) sensitivity coefficient for the days to reach the minimum value of LT50 for the 

three sowing dates (SD1, SD2 and SD3) in Karklupėnai (Lithuania). Sensitivity coefficients were estimated for 

the period sowing date-February 28. 

Considering the sensitivity analysis carried out for separate cover crop species, the minimum LT50 (Figure 

13A) for mustard was mainly affected by LT50i in all sowing dates (average S1 = 62%). For oat LT50i was the 

most important parameter for SD2 and SD3 (S1 = 17%), while for SD1 the most relevant parameter was 

VRTfct2 (S1 = 17%), followed by LT50i (S1 = 16%). For rye the highest S1 was for VRTfct2 in SD1, or Ti1 in SD2, 

and for HARDrate in SD3, with S1 values respectively equal to 14%, 19%, and 18%. For late-planted rye (SD3) 

the standard deviations of S1 were higher compared to early-planted rye (SD1 and SD2) and to the other 

crops. The variations of the days to reach the minimum LT50 value (Figure 13B) were predominantly caused 

by interactions among parameters, especially for SD1. For SD1 and SD2 of mustard and oat the most 

influential parameter was VRTfct2 (average S1 = 20%). For SD3 the most relevant parameters were LT50i for 

mustard (S1 = 27%), and RESP_Tmin for oat (S1 = 7%) and rye (S1 = 25%). For rye, the most important 

parameters were VRTfct2 (S1 = 26%) and PHOTOcrit (S1 = 23%) in SD1, while in SD2 the same parameters 

both obtained a S1 value equal to 17%. 

 

 

 

  



 

 

Figure 13. First-order (S1) and total-order (ST) sensitivity coefficient for the minimum value of LT50 (A) and 

for the days to reach it (B) for the combination of three sowing dates (SD1, SD2 and SD3) and three crops 

(white mustard, oat, and rye) in Karklupėnai (Lithuania). Sensitivity coefficients were estimated for the period 

sowing date-February 28. 

6.4 Discussion 

6.4.1 Seasonal differences 
Differences in model output between colder and warmer seasons within a site were higher for the Italian site 

with a warmer climate (Sant’Angelo Lodigiano) than for the two sites with a colder climate (Merzenich and 

Karklupėnai). Therefore, we hypothesize that the degree of frost tolerance that can be expressed by a crop 

is expected to be more season-dependent in warmer climates. This is relevant for the evaluation of winterkill 

chance of winter cover crops, which likely will be more variable among years in warmer sites. Inter-annual 
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variability of frost damage occurrence and extent is also reported for winter wheat cultivation in sites with 

temperate climate (Lecomte et al., 2003), where winterkill events are less frequent than in continental 

climate sites. 

6.4.2 Sensitivity of minimum LT50 to model parameters and sowing dates 
For the first model output (minimum LT50) the sum of first-order sensitivity coefficients was higher than 95% 

for all the combinations of sowing dates and sites, mainly due to the very important contribution of LT50c 

(maximum frost tolerance of the cultivar). This implies that a strong dependence exists between this 

parameter and the minimum LT50 of the simulation, and that interactions among parameters are almost 

irrelevant for this output. This is justified by the fact that the interactions between LT50c and other 

parameters are always lower than the 4%. This result is consistent with the relevance showed by the lowest 

temperature tolerance (CTMX, °C) in the outcomes of a sensitivity analysis applied to an alfalfa (Medicago 

sativa L.) yield model (Kanneganti et al., 1998). 

Differences of first-order sensitivity (S1) to LT50c among sowing dates were higher in colder sites (Merzenich 

and Karklupėnai) than in the warmer site (Sant’Angelo Lodigiano). The sensitivity to LT50c was always higher 

for SD3 than for the earlier sowing dates (SD1 and SD2), since in this case the shorter time frame comprised 

between the sowing date and February 28 narrows the days during which hardening process takes place. 

This effect was intensified in the colder sites, where the incidence of this parameter was higher than in the 

warmer site, since soil temperature was more frequently lower than the threshold required for acclimation. 

6.4.3 Sensitivity of the number of days needed to reach the minimum LT50 to model parameters and 

sowing dates 
For the days to reach the minimum LT50 the sum of first-order sensitivity coefficients for all the combinations 

of sowing dates and sites, was on average equal to 60%; the parameters contributing most were VRTfct2, 

PHOTOcrit and LT50c (average S1, across all site*sowing date combinations, respectively equal to 19, 16 and 

12%). Second-order sensitivity coefficients for this output were always lower than 8%, indicating that the 

number of days to reach the minimum LT50 value strongly depended not only on a few very important 

parameters and on interactions among two of them, but also on interactions among three or more 

parameters (32%). This result was likely due to the method employed to simulate crop development, that 

requires the fulfillment of three requirements (vernalization, photoperiod and minimum leaf number), thus 



making the parameters involved in these algorithms interact with each other. The effect of crop development 

parameters on the days required to reach the minimum LT50 value is higher than their effect on the minimum 

LT50 value. These parameters strongly influence the date of the end of the hardening process (that 

corresponds to the vegetative/reproductive transition date), but their effect on the minimum LT50 value is 

almost negligible since when the transition occurs the LT50 value is frequently close to the minimum value 

that can be assumed by this variable (LT50c). Therefore, these parameters produce small variation of the LT50 

minimum value.  

In all sites, the parameters involved in the simulation of the transition to the reproductive phase (among 

which the most influential are PHOTOcrit and VRTfct2) had a lower first-order sensitivity coefficient for SD3 

compared to SD1 and SD2. Those two parameters were less influent in SD3 because the requirements for the 

vegetative/reproductive transition were fulfilled late, mainly after the minimum LT50 value was already 

reached. The transition to the reproductive phase slows down (and potentially almost stops) the decrease of 

LT50: in the case of late sowing dates the transition is delayed by environmental limiting factors (temperature 

and photoperiod). Therefore, in the SD3 scenarios, because the transition was delayed, the parameters 

involved in its simulation did not have the opportunity to substantially influence the number of days required 

to reach the minimum LT50 value. The parameter PHOTOcrit (Eq. 15) is used to estimate the factor describing 

the progress to photoperiod requirement saturation, while the parameter VRTfct2 (Eq. 13) is involved in the 

calculation of the factor simulating the vegetative/reproductive transition.  

Since the parameter PHOTOcrit was varying between 7.0 and 17.5 h, it had little effect on the model output 

for late sowing dates in the site located at the highest latitude (Karklupėnai) where daylength shortens 

quickly from the beginning of October, reaching values of 9 h at the end of the month. This situation, together 

with a slow accumulation of thermal units, reduced the sensitivity also of the parameter VRTfct2.  

6.4.4 Conclusions for model calibration 
We summarize here the parameters that should be modified when this frost model is adapted to a given 

species and variety. The parameter to which the main model output (minimum LT50 value) is most sensitive 

for all the combinations of site and sowing date is LT50c, that expresses the maximum frost tolerance of the 

cultivar (i.e. the minimum LT50 that can be reached during the simulation). Other parameters that should be 



calibrated, both in colder and warmer sites as well as for early and late sowing dates, are the ones involved 

in the simulation of crop development stage (VRTfct2 and PHOTOcrit) that influence the other main model 

output considered (days to reach the minimum LT50 value). The fact that these two parameters were less 

relevant in the late sowing date scenarios (SD2 and SD3) indicates that, to correctly consider the effect of 

sowing date and crop development on frost tolerance acquisition, these parameters need to be carefully 

calibrated. This should avoid simulating the reproductive transition beforehand, thus overestimating LT50 and 

therefore underestimating the frost tolerance of late-planted crops. At the same time, it should protect the 

model user from the opposite simulation error. On the contrary, the other photoperiodic parameters were 

not relevant (S1 < 5%). 

The parameters involved in the loss of frost tolerance due to the respiration under a snow cover (Eq. 5) 

showed variable importance depending primarily on the site, and then on the sowing date. In the Italian and 

German sites, this process had only limited relevance for the third sowing date (and no relevance for SD1 and 

SD2), therefore efforts to calibrate them can be avoided. On the contrary, for the Lithuanian site several of 

these parameters showed a high total-order effect combined with low first-order effect, meaning that the 

interactions of these parameters with others were relevant. Therefore, in colder climates, where the more 

frequent presence of persistent snow cover leads often to the loss of frost tolerance, the calibration of the 

following parameters is required: RESPdays, RESP_Tsd, RESP4, RESP2, and RESP_Tmin.  

The results obtained with fixed LT50c values, representing specific crop frost tolerance potential, indicate 

that for less frost-resistant crops (white mustard and oat) the site and sowing date effects on output 

sensitivity are less relevant compared to more frost-resistant crops. Parameter rankings for mustard and oat 

(SD1, SD2, and SD3) are more consistent among sites than the rankings obtained for rye. Therefore, the 

calibration of the most relevant parameters for less frost resistant crops could require less extended 

calibration datasets. 
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6.5 Conclusions 
We reported the first sensitivity analysis study of the model by Byrns et al. (2020), performed by applying the 

model in different scenarios involving three sowing dates and three climates (Cfa, Cfb and Dfb). Each 

combination of the above-mentioned factors was tested for 20 years. Differences in model output between 

colder and warmer seasons were higher in the site with warmer climate than in the sites with colder climate. 

In all the simulated scenarios (sowing date x site combinations) the minimum LT50 was primarily depending 

on the crop potential frost tolerance parameter (LT50c), while the number of days needed to reach the 

minimum LT50 value depended strongly on higher grade parameter interactions. These interactions involved 

the parameters governing crop development (PHOTOcrit, VRTfct2), and limited to the coldest site, the 

parameters for the simulation of crop respiration under a snow cover (RESPdays, RESP_Tsd, RESP4, RESP2, 

and RESP_Tmin).  

  



Tables 
Table 1. Parameters of the model by Byrns et al. (2020). Parameters are called ‘explicit’ when they are 

explicitly defined by the authors, and ‘implicit’ when they are empirical numerical coefficients in model 

equations (without a name given by model authors). 

Category Label Unit Definition Default Lower 
limit 

Upper 
limit 

explicit parameter LT50i °C LT50 initial value -3.00 -3.90 -0.81 

explicit parameter LT50c °C maximum frost 
tolerance of the 

cultivar (minimum 
LT50 value) 

-24.00 -31.20 -3.89 

explicit parameter GDDmin unitless growing degree days 
after planting to 

produce the minimum 
number of leaves on 

the main stem 

320 224 416 

explicit parameter PHOTOcoeff unitless strength of 
photoperiod response 

50 35 65 

explicit parameter PHOTOcrit h critical photoperiod 13.50 7.00 17.55 

explicit parameter VERNreq d days to vernalisation 
saturation 

49.00 34.30 63.70 

implicit parameter Ti1 unitless intercept of the linear 
function for threshold 

induction 
temperature estimate 

3.72 2.61 4.84 

implicit parameter Ti2 unitless slope of the linear 
function for threshold 

induction 
temperature estimate 

0.4011 0.2808 0.5214 

implicit parameter GDD1 unitless coefficient for the 
estimate of minimum 

degree days to VRT 
requirement 

saturation 

0.950 0.665 1.000 

implicit parameter GDD2 unitless coefficient for the 
estimate of minimum 

degree days to VRT 
requirement 

saturation 

340 238 442 

implicit parameter GDD3 °C-1 coefficient for the 
estimate of minimum 

degree days to VRT 
requirement 

saturation 

2.0 1.4 2.6 

explicit parameter VERN_Tmin °C minimum 
temperature for 

vernalisation 

-1.3 -3.3 0.7 

explicit parameter VERN_Topt °C optimum temperature 
for vernalisation 

10 8 11 



Category Label Unit Definition Default Lower 
limit 

Upper 
limit 

explicit parameter VERN_Tmax °C maximum 
temperature for 

vernalisation 

12 11 14 

implicit parameter VRTfct1 unitless VRT factor estimate 
coefficient 

80 56 104 

implicit parameter VRTfct2 unitless VRT factor estimate 
coefficient 

0.90 0.63 1.17 

explicit parameter RESPdays d minimum days of 
snow cover duration 
to cause respiration 

stress 

10 7 13 

explicit parameter RESP_Tmin °C minimum value of the 
last 5- or 10-day 

average temperature 
for respiration stress 

-1 -3 1 

explicit parameter RESP_Tmax °C maximum value of the 
last 5- or 10-day 

average temperature 
for respiration stress 

1.5 1.0 3.5 

explicit parameter RESP_Tsd °C standard deviation of 
the last 5- or-10 days 
average temperature 
for respiration stress 

0.750 0.525 0.975 

implicit parameter RESP1 unitless coefficient for the 
estimate of 

respiration stress 

0.540 0.378 0.702 

implicit parameter RESP2 unitless coefficient for the 
estimate of 

respiration stress 

0.840 0.588 1.092 

implicit parameter RESP3 unitless coefficient for the 
estimate of 

respiration stress 

0.0510 0.0357 0.0663 

implicit parameter RESP4 unitless coefficient for the 
estimate of 

respiration stress 

2.0 1.4 2.6 

implicit parameter RESP5 d-1 coefficient for the 
estimate of 

respiration stress 

1.850 1.295 2.405 

implicit parameter DEHARD1 °C2 d-1 dehardening 
coefficient 

5.050 3.535 6.565 

implicit parameter DEHARD2 °C dehardening 
coefficient 

4.350 3.045 5.655 

implicit parameter DEHARD3 unitless dehardening 
coefficient 

0.280 0.196 0.364 

implicit parameter LOWT1 °C-1 coefficient for the 
estimate of low 

temperature stress 

-0.6540 -
0.8502 

-0.4578 

implicit parameter LOWT2 d coefficient for the 
estimate of low 

temperature stress 

3.740 2.618 4.862 



Category Label Unit Definition Default Lower 
limit 

Upper 
limit 

implicit parameter PHOTO1 unitless photoperiod 
requirement estimate 

coefficient 

3.50 2.45 4.55 

implicit parameter PHOTO2 h-1 photoperiod 
requirement estimate 

coefficient 

0.5040 0.3528 0.6552 

implicit parameter PHOTO3 °C-1 photoperiod 
requirement estimate 

coefficient 

0.3210 0.2247 0.4173 

implicit parameter PHOTO4 °C photoperiod 
requirement estimate 

coefficient 

13.2420 9.2694 17.2146 

implicit parameter PHOTO5 unitless photoperiod 
requirement estimate 

coefficient 

3.250 2.275 4.225 

implicit parameter HARDrate °C-1 d-1 hardening rate 0.0140 0.0098 0.0182 

 

  



Table 2. Variables of the model by Byrns et al. (2020). 

Type Symbol Unit of measure Definition 

State variable LT50 °C lethal temperature 50% 

Rate variable ∆LT50 °C d ─1 LT50 rate 

Rate variable ∆LT50H flow °C d ─1 actual hardening rate 

Rate variable ∆LT50D flow °C d ─1 actual de-hardening rate 

Rate variable ∆LT50R flow °C d ─1 loss of frost tolerance due to 
respiration stress rate 

Rate variable ∆LT50S flow °C d ─1 loss of frost tolerance due to low 
temperature stress rate 

Auxiliary variable Ti °C threshold induction temperature 

Auxiliary variable ∆LT50H rate °C d ─1 hardening rate 

Auxiliary variable ∆LT50D rate °C d ─1 de-hardening rate 

Auxiliary variable LT50adj °C damage-adjusted LT50 

State variable acclAmt °C accumulated acclimation 

State variable dehardAmt °C accumulated amount of 
dehardening due to Tc >Ti 

State variable respProgress °C accumulated amount of 
dehardening due to respiration 

stress 

State variable dehardAmtStress °C accumulated amount of 
dehardening due to stresses 

Auxiliary variable VRTprogress unitless progress to 
vegetative/reproductive 

transition 

Auxiliary variable VRTfactor unitless vegetative/reproductive 
transition factor 

Auxiliary variable photoProg unitless progress to photoperiod 
requirement saturation 

State variable vernDays d vernalization days 

State variable vernProg d progress to vernalisation 
requirement saturation 

Auxiliary variable vernSaturation unitless progress to vernalisation 
requirement saturation 

Rate variable LT50 min flow °C d ─1 rate of the state variable LT50 min 

State variable LT50 min °C minimum value reached by LT50 

Auxiliary variable DDReqCurrentTemp unitless growing degree days 
requirement 

Rate variable mflnflow unitless rate of the state variable 
mflnFraction 

State variable mflnFraction unitless progress towards minimum final 
leaf number 

Rate variable vernRate unitless vernalisation rate 

Auxiliary variable photoFactor unitless progress to photoperiod 
requirement saturation factor 

Rate variable photoflow unitless rate of the state variable 
photoReqFraction 

State variable photoReqFraction unitless progress to photoperiod 
requirement saturation 

  



Table 3. Soil characteristics (0-20 cm) in the three sites. 

Site 
Coarse 

materials 
(%) 

Clay (%) Sand (%) Silt (%) 
Soil organic carbon 

concentration (g kg-1) 

Sant’Angelo Lodigiano 
(Italy) 

0 18 49 33 25 

Merzenich  
(Germany) 

6 24 13 63 10 

Karklupėnai 
(Lithuania) 

6 13 24 63 165 

 

Table 4. Statistics of the simulated soil temperature for the time frame between sowing date and the end 
April. The average soil temperature of the coldest or warmest month was obtained by averaging the daily 
soil temperatures of the considered month for the 20 years of simulation. 

Site 
Sowing 

date 

Average soil 
temperature of 

the coldest month 
(°C) 

Minimum soil 
temperature of the 

coldest month 
(°C) 

Average soil 
temperature of the 

warmest month 
(°C) 

Sant’Angelo 
Lodigiano (Italy) 

SD1 3.01 (January) -5.70 (February) 22.47 (September) 
SD2 3.37 (January) -5.64 (February) 15.67 (October) 
SD3 3.60 (January) -5.46 (February) 13.74 (April) 

Merzenich 
(Germany) 

SD1 3.19 (January) -11.61 (December) 17.94 (September) 
SD2 3.43 (January) -11.77 (December) 12.84 (October) 
SD3 3.64 (January) -11.86 (December) 10.85 (April) 

Karklupėnai 
(Lithuania) 

SD1 -0.99 (January) -15.73 (January) 15.88 (September) 
SD2 -0.78 (January) -15.81 (January) 9.97 (April) 
SD3 -0.41 (January) -10.99 (January) 10.77 (April) 
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