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Simple Summary: Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from
parafollicular calcitonin-secreting C cells of the thyroid. Most of the patients affected by MTC, espe-
cially the familial form, harbor a mutation of the RET proto-oncogene. In patients with advanced
disease, medical therapy is represented by two tyrosine-kinase inhibitors: cabozantinib and vande-
tanib. However, their usage is limited by several adverse events and drug-resistance onset. The aim
of this preclinical study was to evaluate the antitumor activity of novel molecules for the therapy
of MTC: SU5402, an inhibitor of the fibroblast growth factor receptor type 1 (FGFR-1) and vascular
endothelial growth factor receptor (VEGFR)-2; sulfatinib, a multi-target kinase inhibitor selective for
FGFR-1 and the VEGFR-1, -2, and -3; SPP86, a RET-specific inhibitor. Our results suggest a potential
role in targeting the FGFR and VEGFR signaling pathways as an alternative strategy for resistant
tumors and a significative antitumor activity of this new RET-specific inhibitor.

Abstract: Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from parafollicular
C cells of the thyroid gland. In this preclinical study, we tested three tyrosine-kinase inhibitors (TKIs):
SU5402, a selective inhibitor of fibroblast growth factor receptor (FGFR)-1 and vascular endothelial
growth factor receptor (VEGFR)-2; sulfatinib, an inhibitor of FGFR-1 and VEGFR-1, -2, -3; and SPP86,
a RET-specific inhibitor. The effects of these compounds were evaluated in vitro in two human
MTC cell lines (TT and MZ-CRC-1), and in vivo using xenografts of MTC cells in zebrafish embryos.
SU5402, sulfatinib and SPP86 decreased cell viability. Sulfatinib and SPP86 significantly induced
apoptosis in both cell lines. Sulfatinib and SPP86 inhibited the migration of TT and MZCRC-1
cells, while SU5402 was able to inhibit migration only in TT cells. In vivo we observed a significant
reduction in TT cell-induced angiogenesis in zebrafish embryos after incubation with sulfatinib and
SPP86. In conclusion, sulfatinib and SPP86 displayed a relevant antitumor activity both in vitro and
in vivo. Moreover, this work suggests the potential utility of targeting FGFR and VEGFR signaling
pathways as an alternative therapy for MTC.

Keywords: medullary thyroid cancer; tyrosine kinase inhibitors; apoptosis; migration; angiogenesis;
zebrafish; tumor xenograft
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1. Introduction

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from the
calcitonin-producing parafollicular C cells of the thyroid [1]. In 75% of cases, MTC occurs
sporadically, and in a familial form for the remaining 25%. Over 95% of patients with the
hereditary form carry a gain of function, germline mutation of the RET proto-oncogene.
These mutations lead to multiple endocrine neoplasia (MEN) type 2 syndromes (MEN2A
and MEN2B) and isolated familial MTC. Sporadic MTC shows somatic mutations of the
RET proto-oncogene in about 40–60% of patients [2–4]. The RET gene encodes a receptor
tyrosine kinase able to modulate cell proliferation, survival, migration and differentiation.
In MEN2A syndrome, the most common mutation of RET is a cysteine substitution at codon
634, while in MEN2B over 90% of all mutations occur in codon 918 (threonine replacing a
methionine). In both cases, these mutations lead to a constitutive activation of the receptor,
which is causative of the syndromes [5].

Surgery is the mainstay of treatment for MTC. However, this approach is not curative
in the presence of metastasis. In these cases, external radiotherapy and/or chemotherapy
play a marginal role [6,7], while somatostatin analogues are mainly able to control neu-
roendocrine symptoms [8,9]. Two tyrosine-kinase inhibitors (TKIs) are currently used as a
first-line treatment of symptomatic MTC with unresectable, locally advanced or metastatic
disease: cabozantinib, a potent inhibitor of RET, vascular endothelial growth factor receptor
(VEGFR)-2 and c-Met [10–12]; and vandetanib, targeting RET, VEGFR-2/3 and epidermal
growth factor receptor (EGFR) [13,14]. These drugs significantly increase progression-free
survival. Unfortunately, not all patients respond to this therapy or can develop resis-
tance due to the activation of alternative survival pathways [6,15]. In addition, long-term
treatment is limited by several adverse events [16,17]. Indeed, the discontinuity of drug ad-
ministration due to either disease progression or toxicity has been reported in about 40–55%
of patients [18]. Therefore, new therapeutic strategies are urgently required. Pharmaceu-
tical research is currently focusing on the development of new TKIs targeting alternative
pathways and RET-specific inhibitors with potential clinical implications in patients with
RET-negative MTC and RET mutation-positive MTC, respectively.

In light of these arguments, the aim of this preclinical study was to investigate the
efficacy of novel TKIs in MTC: SU5402, a selective inhibitor for fibroblast growth factor
receptor type 1 (FGFR-1) and VEGFR-2 [19–21]; sulfatinib, targeting FGFR-1 and VEGFR-
1/2/3; and SPP86, a RET-specific inhibitor. Our experiments were conducted both in vitro
through two human MTC cell lines (TT and MZ-CRC-1), and in vivo using an innovative
zebrafish (Danio rerio) model for thyroid cancer [22,23].

2. Materials and Methods
2.1. Cell Line Culture

The human MTC cell lines, TT and MZ-CRC-1 characterized by C634W and M918T
RET mutations, respectively, were kindly provided by Prof. Lips (University of Utrecht,
The Netherlands) [24,25]. F-12 with Kaighn’s modification medium containing 10% fetal
bovine serum, 2 mM glutamine, and 105 U/I penicillin-streptomycin was used to culture
cell lines in a humified atmosphere of 5% CO2. MTC cells were grown in 75 cm2 flasks and
passaged once every 7 days by splitting 1:3.

2.2. RNA Isolation

Total RNA was extracted from TT and MZ-CRC-1 with trizol (Invitrogen, Waltham,
CA, USA) according to the manufacturer’s instructions. RNA samples were store at −80 ◦C.
Complementary DNA (cDNA) was reverse-transcribed using 2 µg of total RNA using
GoScript™ Reverse Transcription System (cat. A5000, Promega Corporation, Madison, WI,
USA) following the manufacturer’s instructions.
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2.3. Polymerase Chain Reaction (PCR)

PCR was performed to evaluate the expression of FGFR-1, -2, -3 and -4 and fibroblast
growth factor (FGF)-2 and -8 in TT and MZ-CRC-1 cells. Each PCR reaction was carried out in
a final volume of 25 µL using GoTaq® G2 DNA Polymerase (M784B, Promega Corporation,
Madison, WI, USA) according to manufacturer’s indications (5 µL of 5X reaction buffer with
MgCl2, 1 µL of 10 mM dNTPs, 1 µL of 10 pmol/µL forward primer, 1 µL of 10 pmol/µL
reverse primer, 1 µL of cDNA sample and 0.25 µL of 5 U/µL GoTaq® G2 DNA Polymerase).
The PCR protocol consisted in an initial denaturation step (5 min, 94 ◦C), followed by
35 cycles of amplification and a final 7 min extension step. Annealing temperatures were
set to 60 ◦C for the FGFR-1 primer pair and 56◦C for the remaining primer pairs. Water was
used as negative control. PCR products were visualized using Midori Green Advanced
staining (MG04, Nippon Genetics Europe) upon 2% agarose gel electrophoresis.

The primer sequences and the expected length of each amplified fragment are resumed
in Table 1. All primers were synthesized by Eurofins Scientific (Milan, Italy).

Table 1. Primer sequence, annealing temperature (Ta) and expected length of PCR product in base
pair (bp).

Gene Primer Type Primer Sequence Ta Length

FGFR-1 Forward
Reverse

GGGCTGGAATACTGCTACAA
GCCAAAGTCTGCTATCTTCATC 60 ◦C 192 bp

FGFR-2 Forward
Reverse

GGATAACAACACGCCTCTCTT
GCCCAAAGCAACCTTCTC 56 ◦C 144 bp

FGFR-3 Forward
Reverse

TGGTGTCCTGTGCCTACC
CCGTTGGTCGTCTTCTTGT 56 ◦C 181 bp

FGFR-4 Forward
Reverse

AACCGCATTGGAGGCATT
TCTACCAGGCAGGTGTATGT 56 ◦C 98 bp

FGF-2 Forward
Reverse

TGTGTCTATCAAAGGAGTGTG
CCGTAACACATTTAGAAGCCA 56 ◦C 83 bp

FGF-8 Forward
Reverse

TCTCCCAACAGCATGTGAG
CTGTAGAGTTGGTAGGTCCG 56 ◦C 82 bp

2.4. Drug Preparation

SU5402 was obtained by Sigma-Aldrich (St. Louis, MO, USA), while both Sulfatinib
and SPP86 were purchased by MedChemExpress (Monmouth Junction, NJ 08852, USA).
All compounds were dissolved in DMSO.

2.5. Cell Viability Assay

Cells were plated in 96 well plates at a density of 3 × 104 cells per well. The day
after, cell culture medium was replaced with medium containing different concentrations
(ranging from 0.05 to 30 µM) of the drugs, or medium with equivalent DMSO concentration
(vehicle) used as control. After 3 days, the medium was replaced, and the treatment was
repeated. After 6 days, cell viability was analyzed using 3-(4,5-dymethylthiazol-2-yl)-2,5-
dyiphenyltetrazolium bromide (MTT) assay, as previously described [24]. All experiments
were performed in six replicates.

In vitro experiments (analysis of cell viability, cell cycle and apoptosis) were monitored
for up to 6 days of drug incubation. We performed long-term treatments due to the slow
doubling time (about 4 days) of the MTC cell lines, as previously reported [26]. Indeed, the
effects of tested TKIs on cell viability were moderate after 3 days of incubation, as shown
in Figure S1.
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2.6. Cell Cycle Analysis

TT and MZ-CRC-1 were seeded in duplicates in six-well plates at the density of
2 × 105 cells per well. The day after, cell culture medium was replaced with medium
containing the EC50 concentration of each inhibitor (Table 2) or drug vehicle as control.
After 3 days, the medium was replaced with a fresh one containing compounds at the EC50
concentrations for a further 3 days. At the end of the experiment, cells were harvested by
gentle trypsinization, washed three times with cold PBS (calcium and magnesium free),
and collected by centrifugation at 1200× g for 5 min. The pellets were resuspended and
directly stained with propidium iodide (PI) (Sigma-Aldrich, St. Louis, MO, USA). Flow
cytometric analysis was performed using a FACSCalibur instrument (BD Bioscience, San
Jose, CA, USA) and CellQuest software, as previously described [25].

Table 2. Growth inhibition of MTC cell lines after 6 days of incubation with TKIs.

Cell Line TKI EC50 Maximal Inhibition

SU5402 3.6 µM −96.5%

TT Sulfatinib 2 µM −100%

SPP86 1.3 µM −100%

SU5402 2.6 µM −80.6%

MZ-CRC-1 Sulfatinib 0.6 µM −89.5%

SPP86 0.6 µM −82.5%

2.7. Flow Cytometric Analysis of Apoptosis

Cells were plated in duplicates in six-well plates at the density of 2 × 105 cells per well.
Cells were treated for 6 days, as previously described in the section of cell cycle analysis.
On the sixth day, cells were harvested by gentle trypsinization, washed three times with
cold PBS (calcium and magnesium free), and collected by centrifugation at 1200× g for
5 min. Pellets were re-suspended in 1X binding buffer (0.1 M HEPES/NaOH, pH 7.4, 1.4 M
NaCl, 25 mM CaCl2) and stained with 5 µL of annexin V-FITC (BD Pharmingen, San Diego,
CA, USA) and 10 µL PI (50 µg/mL in PBS). After 20 min of incubation at room temperature
in the dark, 400 µM of 1X binding buffer was added to each tube. Flow cytometric analysis
was performed using a FACSCalibur instrument (BD Bioscience, San Jose, CA, USA) and
CellQuest software, as previously described.

2.8. Wound-Healing Assay

MTC cell lines were seeded in 6-well plates in duplicate (106 cells/well) and cultured
until they reached 100% confluence and growth media was renewed as needed. After
creating a monolayer, cells were scratched orthogonally from the bottom of each well using
a 10 µL sterile micropipette tip.

Cells were washed with PBS to remove cell debris then supplemented with growth
medium without (control condition) or with sulfatinib, SPP86 or SU5402 at their EC50
concentration. We took pictures of the scratches at T0 and after 72 h of incubation with a
TKI. Before performing these experiments, we tested the effect of the EC50 concentration
on cell viability after 3 days of incubation with each drug. At this time point, TKIs did
not show any relevant effect on cell survival. Images of defined wounds were acquired
through Leica DM IRE 2 (Inverted Fluorescence Motorized Phase Contrast Microscope)
using a 10X objective at different time point: right after the scratch (T0) and after 3 days
according to the cell type (TF).

The wound-healing area was measured with ImageJ software (National Institutes of
Health, Bethesda, MD, USA). Results were reported as wound healing percentage using
the equation:

% wound-healing = 100 × [1 − (wound area at TF/wound area at T0)]
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For each plate, at least 3 randomly selected images were acquired. All experiments
were independently carried out in triplicate.

2.9. In Vivo Assay for Tumor-Induced Angiogenesis

We used a zebrafish transplantable model based on the implantation of neuroendocrine
tumors in Tg(fli1a:EGFP)y1 transgenic embryos [22,26,27]. Embryo and adult zebrafish
were raised and maintained according to Italian (D.Lgs 26/2014) and European laws
(2010/63/EU and 86/609/EEC). At 48 h post fertilization (hpf), embryos were anesthetized
with 0.016% tricaine (Ethyl 3-aminobenzoatemethanesulfonate salt, Sigma-Aldrich® Merck
KGaA) and implanted with TT cells as previously described [27]. TT cells were labeled
with a red fluorescent viable dye (CellTrackerTM CM-DiI dye, Invitrogen), following
manufacturer’s instructions, resuspended with PBS and grafted into the subperidermal
space of Tg(fli1a: EGFP)y1 embryos, close to the sub-intestinal vein (SIV) plexus. After
implantation, correctly grafted embryos were selected and were treated for 24 h with
the drugs, directly dissolved into the fish water. The drug concentrations (0.25 µM and
2.5 µM) were identified on the basis of preliminary pharmacological experiments on
Tg(fli1a:EGFP)y1 embryos without tumor xenograft, aimed to detect the toxicity range
for each compound, limiting the presence of morphological abnormalities. As untreated
controls we considered injected embryos incubated in the fish medium and the vehicle
in which the experimental substance was dissolved (DMSO). All implanted embryos
were raised at 32 ◦C, a compromise temperature between 28 ◦C, optimal for zebrafish
maintenance, and 37 ◦C, optimal for mammalian cell growth and metabolism. Tumor-
induced angiogenesis was monitored in vivo by means of an epifluorescence microscope
(Leica M205FA equipped with a Leica DFC450C digital camera; Leica, Wetzlar, Germany)
and all images were taken after 24 h of treatment. As an arbitrary unit of tumor-induced
angiogenesis, we calculated the total cumulative length of vessels sprouting from the SIV
plexus and the common cardinal vein in each embryo by using Fiji software. Data were
normalized against the mean of the control (DMSO), arbitrarily set to 1.0. The values
reported in the graphs represent the mean ± standard error of the mean (S.E.M). In vivo
experiments were performed with only TT cells, since MZ-CRC-1 induced a less potent
stimulation of angiogenesis in zebrafish embryos.

2.10. Statistical Analysis

All experiments were carried out at least three times and gave comparable results.
GraphPadPrism 5.0 (GraphPad Software, San Diego, CA, USA) was used for statistical
analysis. The comparative statistical evaluation among groups was first performed by the
ANOVA test. When significant differences were found, a comparison between groups was
made using the Newman–Keuls test. In all analyses, values of p < 0.05 were considered
statistically significant. The values reported in figures are the mean ± S.E.M.

3. Results
3.1. Characterization of FGF System in MTC Cells

We assessed the expression of FGFR-1, FGFR-2, FGFR-3, FGFR-4, FGF-2 and FGF-8 in
TT and MZ-CRC-1 cells by PCR (Figure 1). In both cell lines, we observed a high signal for
FGFR-1 and expression of FGFR-3 and FGFR-4. No expression for FGFR-2 was observed.
FGF-2 and FGF-8 were expressed in both cell lines.
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Figure 1. Representative results of FGFR-1 (192 bp), FGFR-2 (144 bp), FGFR-3 (181 bp), FGFR-4
(94 bp), FGF-2 (83 bp) and FGF-8 (82 bp) mRNA expression in TT and MZ-CRC-1 cells (MZ). Water
was used as negative control (C).

3.2. Effects of TKIs on Cell Viability

After 6 days of incubation, while untreated cells showed no sign of suffering, SU5402,
sulfatinib and SPP86 significantly inhibited cell viability of both MTC cell lines in a dose-
dependent manner (Figure 2). Table 2 reports for each drug the EC50 concentration and the
maximal inhibitory effect. In TT cells (Figure 2a and Table 2), the EC50 of all three molecules
were significantly different (p < 0.001), with SPP86 presenting the lowest EC50, while no
statistically significant difference was observed between the values of maximal inhibition
of each TKI. In MZ-CRC-1 cells (Figure 2b and Table 2), the EC50 of SPP86 and sulfatinib
were significantly lower than SU5402 (p < 0.001). Maximal inhibition of proliferation after
sulfatinib was higher than SPP86 (p < 0.05) and SU5402 (p < 0.01), while no difference
between SSP86 and SU5402 was observed. For further in vitro experiments, we selected
the EC50 concentration for each drug.
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Figure 2. Dose-dependent effect of SU5402, sulfatinib and SPP86 on cell viability of TT (a) and
MZ-CRC-1 (b) cell lines, as measured by the MTT assay. Cells were incubated for 6 days with
vehicle (control) or with the drug at different concentrations, as described in Material and Methods.
Dose response curves were expressed as nonlinear regression (curve fit) of log (concentration drug)
versus the percentage of control. Values represent the mean and standard error of the mean of
at least three independent experiments in six replicates. **: p < 0.01, ***: p < 0.001, CTR: control,
MTT: 3-(4,5-dymethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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3.3. Effects of TKIs on Cell Cycle

Cell cycle phase distribution was evaluated by FACS analysis after incubating TT and
MZ-CRC-1 cells with several TKIs. In TT cells (Figure 3a), all compounds significantly
decreased the number of cells in S phase, with sulfatinib and SPP86 showing a higher effect
compared to SU5402 (−63.7%, −59.2% and −39.4%, respectively, p < 0.001 for all TKIs vs.
control). Sulfatinib and SPP86 also reduced the fraction of cells in G2/M phase (−28.7%,
p < 0.01; −18.9%, p < 0.05, respectively) in comparison with control. In MZ-CRC-1 cells
(Figure 3b), the S phase was significantly impaired after SU5402 and SPP86 (−56.3% and
−57.2%, respectively, both p < 0.001 vs. control), with the latter having a relevant effect also
in the G2/M phase (−38%, p < 0.001 vs. control). Representative experiments were reported
in Figures S2 and S3. These data are indicative of cell cycle perturbation, particularly after
treatment with sulfatinib and SPP86. These effects are probably secondary to the ability of
these compounds to stimulate apoptosis and/or necrosis, as suggested by the increase in
cells in the subG1 area after the treatment compared to control (Figures S2 and S3).
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Figure 3. Cell cycle analysis after 6 days of incubation with SU5402, sulfatinib (SULF) and SPP86 in TT
(a) and MZ-CRC-1 (b) cell lines. Cells were detected by FACS analysis after staining with propidium
iodide. CTR values have been set to 100%. Values represent the mean ± standard error of the mean
of at least 3 independent experiments. *: p < 0.05, ***: p < 0.001, CTR: control, SULF: sulfatinib.

3.4. Effects of TKIs on Apoptosis and Necrosis

In order to evaluate the effects of these selected TKIs on both apoptosis and necrosis
we performed flow cytometry with annexin V and PI after 6 days of treatment. In TT cells
(Figure 4a) both sulfatinib and SPP86 significantly increased the fractions of cells in early
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and late apoptosis and necrosis (sulfatinib vs. control: +388%, p < 0.05; +212.2%, p < 0.001;
+32.1%, p < 0.05, respectively; SPP86 vs. control: +440.2%; +370.8% and +170%, all p < 0.001,
respectively). In MZ-CRC-1 cells (Figure 4b), sulfatinib increased all fractions of cells
compared to control (early apoptosis +141.1%, p < 0.05; late apoptosis +208.3%, p < 0.001,
necrosis +95.2%, p < 0.05), while SPP86 had a relevant impact on late apoptosis (+207.4%,
p < 0.001) and necrosis (+85.9%, p < 0.05). Representative experiments were reported in
Figures S4 and S5. These data suggested that both sulfatinib and SPP86 showed relevant
pro-apoptotic and pro- necrotic activities in MTC cells.
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in TT (a) and MZ-CRC-1 (b) cell lines through flow cytometry with annexin V and propidium iodide.
The proportions of cells in early apoptosis, late apoptosis and necrosis are expressed as percentage
compared with CTR and represent the mean ± standard error of the mean of at least 3 independent
experiments. *: p < 0.05, ***: p < 0.001, CTR: control, SULF: sulfatinib.

3.5. Effects of TKIs on Cell Migration

We investigated the impact in vitro of TKIs on cell migration through a wound-healing
assay. In TT cells (Figure 5) SPP86 had the most relevant inhibitory effect on cell migration
(−41.6% vs. control, p < 0.001), followed by sulfatinib (−38.5% vs. control, p < 0.001) and
SU5402 (−30.3% vs. control, p < 0.001).

In MZ-CRC-1 cells (Figure 6), both sulfatinib and SPP86 inhibited cell migration
compared to control (−36.1% and −38.6%, respectively, both p < 0.01). While SU5402 was
not able to significantly affect the wound-healing process.
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Figure 5. Effect of SU5402, SULF and SPP86 on TT cell migration compared to vehicle treated CTR.
The area of wound was recorded at 0 and 3 days, and the percentage of wound healing with respect
to T0 was calculated using the equation reported in Material and Methods section. Data are reported
as mean ± standard error of the mean of at least 3 independent experiments. Scale bar 200 µm.
***: p < 0.001, CTR: control, SULF: sulfatinib.
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Figure 6. Effect of SU5402, SULF and SPP86 on MZ-CRC-1 cell migration compared to vehicle treated
CTR. The area of wound was recorded at 0 and 3 days, and the percentage of wound healing with
respect to T0 was calculated using the equation reported in the Material and Methods section. Data
were reported as mean ± standard error of the mean of at least 3 independent experiments. Scale bar
200 µm. **: p < 0.01, CTR: control, SULF: sulfatinib.



Cancers 2022, 14, 4442 10 of 17

3.6. Effects of TKIs on TT Cell Line-Induced Angiogenesis

To evaluate the antiangiogenic potential of these TKIs, we took advantage of an
in vivo platform that we have recently developed implanting neuroendocrine tumor cells
in Tg(fli1a:EGFP)y1 zebrafish embryos [22,27,28]. Forty-eight hpf Tg(fli1a:EGFP)y1 embryos
were grafted with TT cells (Figure 7).
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Figure 7. Effects of SU5402, sulfatinib and SPP86 on TT cell-induced angiogenesis in zebrafish. There
is a representative image of an injected and treated embryo for each inhibitor (2.5 µM) and control
(vehicle DMSO) in panels (A,C,E,G). The red fluorescence channel, corresponding to red stained
TT cells, was omitted in panels (B,D,F,H) to highlight the tumor-induced microvascular network
sprouting from the SIV (sub-intestinal vein) plexus (white arrow). Digital magnifications of the
graft region are shown in white-boxed regions (B’,D’,F’,H’). Graphs below report the results of
tumor-induced angiogenesis quantification at 24 h post-injection. All images are oriented so that
rostral is to the left and dorsal is at the top. Scale bar: 100 µm. **: p < 0.01, ***: p < 0.001.

Subsequently, injected embryos were incubated with two concentrations (0.25 and
2.5 µM) of each compound or DMSO (control) dissolved in fish water. After 24 h of treat-
ment, we evaluated the effects of TKIs on tumor-induced angiogenesis, following in vivo
the formation of endothelial structures around the tumor implant in each experimental
group. SU5402 lightly reduced the formation of novel vessels at high concentration (2.5 µM),
although this effect was not statistically significant. On the other hand, sulfatinib and SPP86
displayed a significant and similar inhibition of TT-induced angiogenesis compared to
controls at both 0.25 µM and 2.5 µM (Figure 7).

4. Discussion

MTC is a highly vascularized tumor. Indeed, angiogenesis plays a relevant role for
the progression of this neoplasm. Patients with advanced MTC are currently treated with
drugs targeting RET and other tyrosine kinases involved in angiogenesis [29]. To date
2 multikinase inhibitors (vandetanib and cabozantinib) and 2 RET selective inhibitors
(selpercatinib and pralsetinib) have been approved by the Food and Drug Administration
(FDA) for the treatment of advanced MTC [30].

In this preclinical study, we evaluated the potential antitumor activity of new TKIs
in MTC, focusing on molecules targeting FGFR-1/VEGFR (SU5402, inhibitor of FGFR-
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1 and VEGFR-2; sulfatinib, inhibitor of FGFR-1 and VEGFR-1/2/3) and RET (SPP86, a
RET-specific inhibitor).

SU5402, sulfatinib and SPP86 inhibited cell viability of both TT and MZ-CRC-1 cells
in a dose-dependent manner. Both sulfatinib and SPP86 showed the most potent antipro-
liferative activity. Consistently, these two molecules shared a similar effect on cell death,
and in stimulating apoptosis and necrosis in both cell lines. SPP86 appeared to be the most
effective compound in affecting the cell cycle. It was able to decrease the percentage of TT
and MZ-CRC-1 cells in S phase and in G2/M phase. Sulfatinib and SPP86 decreased the
migration of both MTC cells in a wound healing assay, while SU5402 showed a significant
inhibition only in TT cells. In vivo, sulfatinib and SPP86 were able to significantly decrease
the tumor-induced angiogenesis of implanted TT cells in zebrafish embryos. Therefore,
both SPP86 and sulfatinib showed the most relevant and promising antitumor activity in
our in vitro and in vivo models for MTC.

SPP86 is a RET-specific inhibitor [31]. Most patients with MTC are characterized
by activating mutations of the RET proto-oncogene [32,33], which makes this receptor
a suitable target for MTC [34]. Currently, cabozantinib and vandetanib are the first-line
therapy in patients with advanced MTC [35]. However, their long-term use is limited by
toxicity due to the multi-target profile. Targeting molecular receptors such as VEGFRs,
which are involved in many processes (angiogenesis, wound healing, mucosal integrity, and
renal function), is associated with several adverse effects, such as hypertension, leucopenia,
proteinuria, diarrhea, fatigue and anorexia [17,36–38]. The development of new molecules
specifically targeting the RET receptor could be of high importance to limit the onset
of adverse effects in MTC patients positive for somatic RET mutations. In the present
preclinical study, we observed a relevant antitumor activity of SPP86 with a prospective
clinical role in the therapy of patients with somatic RET mutations. SPP86, targeting RET
with high selectivity, could potentially prevent several side-effects observed after the use of
multi-target TKIs currently approved for MTC treatment (vandetanib and cabozantinib).

We have recently evaluated the effects of vandetanib and cabozantinib on TT and
MZ-CRC-1 cells’ survival and tumor-induced angiogenesis, through the same in vitro and
in vivo tools adopted in the present study [39]. Comparing these data with the results of
the present study, in TT cells the maximal inhibition of cell viability after SPP86 (−100%),
sulfatinib (−100%) and SU5402 (−97.3%) were higher than that of vandetanib (−92.7%,
p < 0.001, for all drugs) and cabozantinib (−91.2%, p < 0.001, for all drugs); while in MZ-
CRC-1 cells the maximal inhibition of SPP86 (−82.5%) and sulfatinib (−88.7%) were higher
than that of cabozantinib (−74.9%, p < 0.01 and p < 0.001 respectively). Additionally, the anti-
proliferative activities of vandetanib and sulfatinib were modulated by a relevant induction
of apoptosis/necrosis. Moreover, at the concentration of 2.5 µM the impact of sulfatinib
(−39%) and SPP86 (−49%) in inhibiting TT-induced angiogenesis was comparable with
that observed after vandetanib (−37%) in zebrafish embryos, while they were significantly
less potent than cabozantinib (−86.4%, p < 0.001 for sulfatinib and p < 0.05 for SPP86). In
this model, the antiangiogenic activity of SU5402 (−18.6%) was relevantly less potent than
vandetanib (−37%) and cabozantinib (−86.4%) (p < 0.05 and p < 0.01 respectively) [39].

Taking these considerations into account, SPP86 could potentially represent a valid
alternative to standard therapy, as its antitumor activity appears to be comparable or even
stronger than vandetanib in these preclinical studies, but probably with reduced side-effects
due to the high selectivity for RET. Two RET-specific molecules have been recently approved
by the FDA for the therapy of RET-mutant MTC: selpercatinib and pralsetinib [40–43].
Selpercatinib showed efficacy in an open-label, phase 1–2 trial that enrolled 55 patients with
MTC that were previously treated with vandetanib or cabozantinib and 88 patients that did
not received any previous treatment. In this study, 69% of the first group reached a response,
while 73% of the second group had an objective response [44]. Treatment with selpercatinib
was well tolerated with mainly low-grade toxic effects [44] also in children [45]. In another
phase 1–2 study, pralsetinib was tested in patients affected by RET-mutated thyroid cancer
(both with MTC or with RET fusion–positive thyroid cancer). Pralsetinib showed a good
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efficacy and was well-tolerated. An overall response has been reached in 33/55 (60%) of
MTC patients, that previously received cabozantinib or vandetanib, with a median time to
first response of 3.7 months. In 15 of 21 (71%) of treatment naïve MTC patients, an overall
response has been observed within 5.6 months [46]. However, also for these selective RET
inhibitors is possible the development of drug resistance, but the involved mechanisms are
still unclear. Solomon et al. [47], analyzed the circulating tumor DNA of patients whose
disease progressed after an initial response to selpercatinib. This study showed the onset of
a RET G810 mutation that conferred resistance against selpercatinib.

In the literature there are no clinical or preclinical studies on the antitumor activity
of SPP86 in MTC. There are only few in vitro studies on this compound showing a high
selectivity for RET (IC50 of 8 nM) and an ability to inhibit RET signaling in breast cancer
(MCF-7) and papillary thyroid carcinoma (TPC-1) cell lines at low concentrations [31,48].
Our study supports the clinical attractiveness of using SPP86 in the treatment of patients
with RET-positive MTC, considering the relevant anti-tumor activity of this molecule
modulated by stimulation of apoptosis/necrosis and inhibition of migration and tumor-
induced angiogenesis. However, it is not currently possible to determine whether SPP86
is more potent than selpercatinib and pralsetinib. It would be interesting to compare in
the future the antitumor activity of SPP86 with selpercatinib and pralsetinib, including a
detailed analysis on specific RET-mutations addressed by SPP86.

TKIs are cytostatic drugs able to slow or stop the growth of cancer cells, without
killing them. For this reason, the treatment should be continued as long as there is evidence
of clinical benefit. The onset of drug resistance is a main cause of therapeutic failure in
patients with tumors [49]. In MTC, the majority of patients develop resistance after an
initial response to vandetanib and cabozantinib, probably due to the activation of alter-
native survival pathways. Furthermore, another significant proportion of patients do not
respond at all to the standard therapies [6,15]. It is then crucial to evaluate different path-
ways involved in tumor development and survival that could potentially represent novel
pharmacological targets. The evaluation of the potential role of FGFR/VEGFR pathways
in MTC treatment, as an alternative target to conventional drugs targeting RET could
be interesting, particularly in patients with MTC negative for RET mutations. Our work
provides hints on the effect of targeting both FGFR and VEGFR in MTC. These pathways
are known to be relevant mitogenic signaling pathways activated during the onset of drug
resistance in tumors [6,50–52]. The potential role of FGF and VEGF signaling pathways
in carcinogenesis and tumor progression has been assessed in several neoplasms [53–63].
Although less studied in MTC, these pathways appear to be involved in thyroid cancer
progression. Komorowski et al., [64] evaluated the blood concentrations of angiogenic
growth factors (VEGF and FGF), matrix metalloproteinases and tissue inhibitors of matrix
in 22 patients with thyroid cancers (three of them with MTC). While the blood concen-
tration of VEGF was similar between control healthy subjects and patients with cancer,
blood concentrations of FGF-2 were significantly higher in patients with thyroid cancer
compared with controls (29.52 ± 4.99 vs. 6.05 ± 1.43 pg/mL; p < 0.001). Ezzat et al., showed
increased expression of FGFR4 in TT cells [65]. Moreover, they provided evidence that the
inhibition of FGFR4 phosphorylation arrested cell proliferation. Interestingly, Heilman
et al. [66] observed amplifications of FGF3 and FGF19 genes in 9% of advanced MTC. In
MTC, the overexpression of VEGFR-2 has been correlated to advanced tumor stage, as
this receptor was expressed at higher levels in metastasis that in primary tumors [67]. In
different clinical trials, multi-target TKIs targeting FGF and VEGF receptors have shown
promising efficacy in MTC patients. Lenvatinib (targeting FGFR-1 -4, VEGFR-1 -3, RET, c-
kit, PDGFRα and SCFR) showed a partial response rate in a phase II trial in 36% of patients,
while the progression-free survival was 9 months [68]. A multicenter, open-label, phase
II trial tested sulfatinib in 59 patients with advanced thyroid cancer, including 27 MTC.
In MTC patients sulfatinib showed an objective response rate of 22.2%, with the majority
(88%) achieving a disease control, and a progression-free survival of 11.1 months [69].
Anlotinib is a multi-targeting TKI with antitumor activity against FGFR-1 -3, VEGFR-1
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-3, c-kit and PDGFRα. In a multicenter, randomized, double-blind phase IIB clinical trial
in patients with locally advanced or metastatic MTC, anlotinib was able to lengthen the
average progression-free survival from 11.1 months (placebo group) to 20.7 months. At the
end of the study, 30 out of 62 patients reached partial response with an objective response
rate in 48.2% of patients [70]. Most of these TKIs are designed to inhibit several pathways,
including FGF/VEGF signaling. Therefore, it is difficult to extrapolate from these studies
the potential antitumor activity in specifically blocking FGFRs and VEGFRs in MTC.

The present study supports the effectiveness of targeting FGFR/VEGFR pathways
as an alternative strategy to impair MTC cell proliferation and progression. Indeed, both
SU5402 and sulfatinib (TKIs without any relevant effect on RET) showed a potent antitumor
activity modulated by the inhibition of these pathways. Although the use of immortalized
cell lines with RET mutations may represent a limitation, these data provide a strong ratio-
nale to define in the future the potential antitumor activity of drugs targeting FGFR/VEGFR
system particularly in patients with RET-negative MTC.

5. Conclusions

This study revealed a significant antitumor activity exerted by SPP86 in preclinical
models of MTC, suggesting a good efficacy of this new specific RET inhibitor. In addi-
tion, the relevance of targeting the FGFR/VEGFR system, through sulfatinib and SU5402,
suggests a potential role of these pathways in the therapy of MTC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14184442/s1, Figure S1: Dose–dependent effects of SU5402,
sulfatinib and SPP86 on cell viability of TT (a) and MZ-CRC-1 (b) cells after 3 days of incubation.
*: p < 0.05, **: p < 0.01, ***: p < 0.001, CTR: control; Figure S2: Representative experiments of cell
cycle analysis in TT cells after incubation with vehicle DMSO as control (CTR), SU5402, sulfatinib
and SPP86. Percentages of cells in each cell cycle phase are reported; Figure S3: Representative
experiments of cell cycle analysis in MZ-CRC-1 cells after incubation with vehicle DMSO as control
(CTR), SU5402, sulfatinib and SPP86. Percentages of cells in each cell cycle phase are reported;
Figure S4: Representative experiments of apoptosis, evaluated in TT cells through flow cytometry
with annexin V and propidium iodide, after incubation with vehicle DMSO as control (CTR), SU5402,
sulfatinib and SPP86. Percentages of cells in necrosis (N), apoptosis (A) and early apoptosis (EA) are
reported; Figure S5: Representative experiments of apoptosis, evaluated in MZ-CRC-1 cells through
flow cytometry with annexin V and propidium iodide, after incubation with vehicle DMSO as control
(CTR), SU5402, sulfatinib and SPP86. Percentages of cells in necrosis (N), apoptosis (A) and early
apoptosis (EA) are reported.
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