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Abstract
DNA methylation (DNAm) is a mechanism for rapid acclimation to environmental con-
ditions. In natural systems, small effect sizes relative to noise necessitates large sam-
pling efforts to detect differences. Large numbers of individually sequenced libraries 
are costly. Pooling DNA prior to library preparation may be an efficient way to reduce 
costs and increase sample size, yet there are to date no recommendations in ecological 
epigenetics research. We test whether pooled and individual libraries yield compara-
ble DNAm signals in a natural system exposed to different pollution levels by generat-
ing whole-epigenome data from two invasive molluscs (Corbicula fluminea, Dreissena 
polymorpha) collected from polluted and unpolluted localities (Italy). DNA of the same 
individuals were used for pooled and individual epigenomic libraries and sequenced 
with equivalent resources per individual. We found that pooling effectively captures 
similar genome-wide and global methylation signals as individual libraries, highlight-
ing that pooled libraries are representative of the global population signal. However, 
pooled libraries yielded orders of magnitude more data than individual libraries, which 
was a consequence of higher coverage. We would therefore recommend aiming for 
a high initial coverage of individual libraries (15×) in future studies. Consequently, 
we detected many more differentially methylated regions (DMRs) with the pooled 
libraries and a significantly lower statistical power for regions from individual libraries. 
Computationally pooled data from the individual libraries produced fewer DMRs and 
the overlap with wet-lab pooled DMRs was relatively low. We discuss possible causes 
for discrepancies, list benefits and drawbacks of pooling, and provide recommenda-
tions for future epigenomic studies.
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1  |  INTRODUC TION

Epigenetics includes the study of the stable but reversible molec-
ular modifications that do not alter the DNA sequence itself (Fallet 
et al., 2020; Gallego-Fabrega et al., 2015; Paro et al., 2021; Venney 
et al., 2023). These modifications can be established and removed 
in response to stimuli (Paro et  al.,  2021), making them far more 
variable and potentially noisy compared to genetic variation (Tsai & 
Bell, 2015). As epigenetic interactions can regulate gene expression 
(Fallet et al., 2020), this mechanism has received considerable atten-
tion (Brander et al., 2017; Marin et al., 2019; Mounger et al., 2021). 
DNA methylation (DNAm) is the most frequently studied epigenetic 
modification, particularly in ecological epigenetic research focusing 
on comparisons between populations, this is in part due to the sim-
ilarity of the wet-lab and bioinformatic procedures to routine popu-
lation genomics (Fallet et al., 2020; Lamka et al., 2022). For instance, 
of the available methods, whole epigenome sequencing (hereafter 
WepiGS) for example whole-genome bisulfite sequencing (WGBS) 
and whole-genome enzymatic-conversion sequencing (EMseq) offer 
the highest resolution available as changes can be tracked as base-
pairs across the entire genome (Fallet et al., 2020; Paro et al., 2021; 
Venney et al., 2023; Ziller et al., 2014).

Epigenetic biomarkers have emerged as promising tools for in-
vestigating the drivers of responses to environmental stressors 
such as temperature and pollution (see Fallet et al., 2020; Jeremias 
et al., 2020; Venney et al., 2023), in much the same way that genetics 
has been (e.g. Weber et al., 2013). Notwithstanding, so far the ef-
fects of xenobiotics on DNAm were assessed only on a limited num-
ber of species and mostly under controlled laboratory conditions 
(see Ardura et al., 2018; Harney et al., 2022). There is a clear need 
to increase representation in research to include more ecologically 
relevant species through the investigation of natural populations 
subjected to pollution (Šrut, 2021).

Recent reviews of ecological epigenetic research have high-
lighted the absence of established ‘best practices’ (Laine et al., 2022), 
and gaps in taxonomic and geographic sampling, and the lack of ad-
equate replication across a broad range of research topics but par-
ticularly in population-level studies (Lamka et al., 2022). Methylation 
effect sizes in ecological settings tend to be small, so large numbers 
of samples (e.g. >100 individuals per population or condition) are re-
quired to detect differences (Lea et al., 2017). Increasing sample size 
is not always possible in the case of rare or endangered species, and 
in most cases the maximum sample size is limited by budget. Indeed, 
the preparation of individual libraries and sequencing have a strong 
impact on research costs. In WepiGS studies, data are typically 
obtained at the individual level as this is the current best-practice, 
however researchers may be interested in population-wide signals in 
which case individual variation within a population is not a primary 
interest. Indeed, ecologists are often most interested the diversity 
of ecologically important phenotypes and their interaction with en-
vironmental conditions across broad regions (Laine et al., 2022; e.g. 
Han et al., 2020; Tolley et al., 2019). While the cost of sequencing 
has strongly decreased since its advent (Jobling et  al.,  2014) and 

is still decreasing, wet laboratory costs including individual library 
preparation remain a major obstacle for large sample sizes in many 
ecological epigenetic research projects. Hence, optimizing these 
steps is crucial to obtaining data with the highest statistical power in 
a cost-effective manner.

One means to decrease costs associated with library preparation 
would be to pool the DNA from individual samples from the same 
population or condition prior to library preparation. The pooled li-
braries would thus represent the average signal of the individuals 
contained therein, with the advantage to prepare a single library. 
Pooling of DNA samples is commonly used in population genom-
ics, where accurate population allele frequencies can be obtained 
from a large number of pooled samples (Konczal et al., 2013; Ozerov 
et al., 2013). Furthermore, pooling has also been used in transcrip-
tomic studies, as it has been shown that pooling RNA samples and 
reducing coverage are effective ways to optimize costs while main-
taining sufficient power in differential expression analyses (Assefa 
et al., 2020). However, so far, few studies compared the effects of 
sample pooling using DNAm data and discussion is hampered by the 
lack of comparative studies (Laine et al., 2022). One of the available 
studies showed consistent results between individually run samples 
and pooled samples, with correlation coefficients for CpG array data 
>.98 (Gallego-Fabrega et al., 2015). Two further studies focusing on 
mass-spectrometry data from individual and pooled DNA produced 
strong evidence that pooled DNA samples provide reliable estimates 
of group DNA methylation averages and showed that the agreement 
holds up with a range of individuals in a pool (Docherty et al., 2009, 
2010). To date, however, the comparison between individual and 
pooled samples has not been done with sequencing data (whether 
targeting a reduced fraction of the genome such as bsRADseq, or 
using whole-genome data (e.g. WGBS or EMseq)). While pooling 
samples has a strong potential to increase power and reduce costs, 
there are important considerations related to methylation data 
which have led to recommending against sample pooling (see Laine 
et al., 2022; Lea et al., 2017; Ziller et al., 2014). First, methylation 
data are more variable than genomic data by virtue of their inducibil-
ity and reversibility (Tsai & Bell, 2015), with several studies reporting 
changes in the timescale of days to weeks in response to stressors 
(see review by Venney et al., 2023). Second, methylation patterns 
may be tissue specific (Laine et al., 2022; Lee et al., 2017), thus indi-
vidual samples are not only temporal and spatial snapshots but also 
somatically heterogeneous. More distantly related cell-types man-
ifest notably divergent methylation patterns, underscoring a sig-
nificant limitation in methylation analyses (Blake et al., 2020; Ziller 
et al., 2014). Biases may be introduced if inter-individual (or inter-
tissue) variation cannot be accounted for (Teschendorff et al., 2017). 
Finally, a particular concern has been that pooling masks variation 
prevents inclusion of covariates (Tsai & Bell, 2015; Ziller et al., 2014) 
and ultimately requires more biological replicates to account for the 
hidden variation (Futschik & Schlötterer,  2010). Most importantly, 
when samples are pooled, there is no way to return to the individual 
data, so any covariates of interest in the data that were not expected 
or previously identified in the original pooling design will be masked.
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Up to now, the benefits and drawbacks of sample pooling in 
whole-genome DNAm studies have not been formally compared, 
and there are currently no clear recommendations on the pertinence 
of pooling DNA for epigenomics of natural populations. To address 
this gap, we investigated empirically the effects of sample pooling 
in DNAm by using whole-epigenome data (WepiGS) from two inva-
sive freshwater bivalves from polluted and unpolluted sites. We set 
out to use the same resource investment in sequencing for individ-
ual and pooled libraries. The aims were: (1) to test whether global 
DNAm signals from pooled and individual libraries are equivalent, (2) 
to compare the overlap between differentially methylated regions 
between polluted and unpolluted sites arising from individual and 
pooled datasets and (3) to incorporate our observations into a list 
of benefits and drawbacks of sample pooling, and describe a set of 
recommendations on the pertinence of sample pooling for future 
ecological epigenetic projects.

2  |  METHODS AND MATERIAL S

2.1  |  Sampling

Adult individuals of the Asian clam (Corbicula fluminea, O. F. Müller 
1774) and the zebra mussel (Dreissena polymorpha, Pallas 1771) were 
collected by SCUBA diving at either polluted or unpolluted sites in 
Lake Maggiore, Italy, and frozen at −20°C upon arrival in the labora-
tory (Table 1). Sampling permits were not necessary as both species 
are invasive. Sampling sites were chosen based on the multi-year 
monitoring of legacy persistent organic pollutants (POPs). The moni-
toring has been running in Lake Maggiore since 1996 (https://​www.​
cipais.​org/​web/​) (see Table S1 for further details). The Baveno site 
(polluted locality) is located within the Pallanza Basin, which receives 
water inputs from the Toce River which is affected by industrial con-
tamination of DDx and Hg. The site is often exceeding the probable 
effect concentration thresholds for sediments (Guzzella et al., 2018; 
Marziali et al., 2021) and the concentration of legacy POPs meas-
ured D. polymorpha, in the freshwater mussel Unio elongatulus and 
eggs of Podiceps cristatus (see Table  S1) was higher with respect 
to other sites of the lake (CIPAIS, 2021, 2022; Parolini et al., 2013; 
Riva et al., 2010). Conversely, Magadino and Cannobio sites (non-
polluted) are located in the North side of the lake and are less af-
fected by contamination of legacy pollutants both in sediments and 
in D. polymorpha (CIPAIS, 1999, 2022). No measurements are avail-
able for Corbicula fluminea at these localities.

2.2  |  DNA extraction

We performed DNA extractions for 40 individuals (summary of 
the experimental design in Figure  1), consisting of 10 samples 
for each species and for each site. Extractions were performed 
using foot tissue with the DNeasyBlood and Tissue DNA extrac-
tion kit (Qiagen Cat.no. 69504), following the manufacturer's TA
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recommendations (Elution in 110 μL elution buffer). DNA integrity 
was examined using agarose gel electrophoresis and DNA concen-
tration was measured using Qubit 2.0 (Invitrogen). Two Corbicula 
extractions failed (1 CP, 1 CNP), leaving 38 DNA extractions for 
individual library preparation.

2.3  |  Pooling design, enzymatic conversion, library 
preparation and sequencing

To ensure individual and pooled libraries were comparable, the 
pooled libraries were prepared using the same individually extracted 
DNA (Table S2; Figure 1). The concentration of each individual DNA 
extraction was determined using Qubit HS dsDNA assay. The same 
amount of DNA (300 ng) was then sheared in a total volume of 60 μL 
using a Qsonica sonicator (Q800R2 instrument) using different 
shearing times depending on the level of DNA integrity previously 
assessed using agarose gel electrophoresis: (1) samples with high-
molecular weight DNA were sheared 2′45″ min; (2) samples with 
semi-degraded DNA were sheared 9′00″–11′30″ min; (3) samples 
with highly degraded DNA were not sheared. For the samples with 
highly degraded DNA, control DNA was sheared individually (9 min) 
and then added to the sample DNA.

For the individual libraries, 25 μL of sheared DNA was used as 
input volume for library preparation. For the pooled libraries, 2.5 μL 
of sheared DNA of each individual was pooled to have a starting 

volume of 25 μL for library preparation (for the Corbicula libraries, 
2.5 μL of H20 was added to reach a total volume of 25 μL). The fol-
lowing four pooled libraries were generated; (1) Dreissena pool pol-
luted (DpoolP) representing the 10 D. polymorpha individuals from 
the polluted locality; (2) Dreissena pool non-polluted (DpoolNP) rep-
resenting the 10 D. polymorpha individuals from the non-polluted 
locality; (3) Corbicula pool polluted (CpoolP) representing the 9 C. 
fluminea individuals from the polluted locality; (4) Corbicula pool 
non-polluted (CpoolNP) representing the 9 C. fluminea individuals 
from the non-polluted locality. We prepared a total of 42 librar-
ies consisting of 38 individual libraries and 4 pooled libraries. We 
used an enzymatic technique (EMseq) to convert unmethylated 
cytosines in thymidine as it minimizes DNA damage. We used the 
NEB Next Enzymatic Methyl-seq Kit (New England Biolabs Cat.no. 
E7120S). Control DNA (CpG methylated pUC19 and unmethylated 
lambda) used to estimate conversion rates was added to each DNA 
extraction before shearing as per the manufacturer's instructions 
(New England Biolabs). Library preparation was done following the 
manufacturer's instructions except that we used half volumes of all 
reagents.

As we wanted to compare pooled and individual libraries on a 
resource cost basis, we aimed to obtain the same mean sequenc-
ing coverage per sample from both the individual libraries and the 
pooled libraries. Another way to optimize costs further would be to 
reduce the sequencing effort for pooled libraries, but we do not spe-
cifically test this in this study.

F I G U R E  1 Experimental design of 
the study. Individuals from two species 
(Corbicula fluminea and Dreissena 
polymorpha) were collected at polluted 
and non-polluted localities in Lake 
Maggiore, Italy. See Table 1. Individual 
DNA extractions were performed. The 
same DNA extractions were used to 
construct 38 individual and four pooled 
libraries. Individual and pooled libraries 
were sequenced at an equivalent per-
individual sequencing coverage (i.e. ~10× 
per individual).
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We thus combined individual libraries in equimolar concentra-
tions and the pooled libraries in a molar concentration x-fold higher 
than the individual libraries (i.e. 10× for D. polymorpha pools and 9× 
for C. fluminea pools) as the individual and pooled libraries of a par-
ticular species were sequenced on the same lane. Specifically, the 
concentration of each library was determined by Qubit, using the HS 
dsDNA assay and the average library size was determined by using 
a TapeStation 4150 Instrument (Agilent Technologies). Molarities 
were then calculated by the following formula:

For the Dreissena sequencing pool with 20 individual libraries 
and 2 pooled libraries, 100 fmol were used per individual library 
and 1000 fmol per pooled library, which resulted in a total amount 
of 4000 fmol. For the Corbicula sequencing pool with 18 individ-
ual libraries and 2 pooled libraries, 75 fmol were used per indi-
vidual library and 675 fmol per pooled library, which resulted in 
a total amount of 2700 fmol. These two sequencing pools were 
sequenced on two lanes of a S4 flowcell on an Illumina Novaseq 
6000 sequencer (150 bp paired-end) at the Functional Genomics 
Center, Zürich.

2.4  |  Quality control and mapping

In total, 18 C. fluminea and 20 D. polymorpha individuals were se-
quenced at an average of 74 (±9.3) million reads (Table S2). The 
four pooled libraries were sequenced at an average of 620 (±66) 
million reads. The reads were quality-assessed using FastQC 
v.0.11.9 (Andrews,  2019) and MultiQC v.1.9 (Ewels et  al.,  2016). 
Adapters were identified and removed using Trim Galore! v.0.6.6 
(Krueger, 2020) with default settings. To correct for bias of meth-
ylation percentage at the read ends, reads were trimmed off 10 
bases on both the 3′ and 5′ ends (as recommended; https://​felix​
krueg​er.​github.​io/​Bisma​rk/​bisma​rk/​libra​ry_​types/​​). Default set-
tings were retained for all other trimming steps, including the re-
moval of low-quality bases (–quality 20) and dropping reads 
shorter than 20 bases (–length 20). Enzyme conversion effi-
ciency was assessed using the two control DNA. The high quality 
reads having passed QC were then aligned to the respective pub-
licly available reference genomes; C. fluminea (Zhang et al., 2021) 
and D. polymorpha (McCartney et al., 2022).

Alignment, de-duplication and methylation extraction were 
performed with Bismark v.0.24.2 (Krueger & Andrews,  2011). 
Briefly, we first converted reference genomes computationally 
for alignment and then indexed using Bowtie2 v.2.4.4 (Langmead 
& Salzberg, 2012) with default settings (command bismark_ge-
nome_preparation). Alignment was run with directionality 
specified using the default alignment score (–score_min L,0,-
1.2). As part of the QC for the trimmed reads, we compared the 

number of read-pairs, the level of read duplication and the align-
ment efficiency between sites within species. The raw Fastq data 
from each library was split into six files of equal size for parallel 
alignment. The files were concatenated with Bismark (–multiple) 
for deduplication. Methylation extraction was performed with 
default settings, including the –exclude_overlap flag, which only 
considers data from one of the two strands available in case of 
overlap between forward and reverse reads. Tests were per-
formed using base R functions including the Shapiro–Wilk test 
(shapiro.test) for univariate normality (Shapiro & Wilk, 1965), 
the Bartlett test (bartlett.test) for homogeneity of variance 
(Bartlett, 1937) and the ANOVA performed using the lm and sum-
mary.aov functions.

2.5  |  Single nucleotide polymorphism detection

Any C to T single nucleotide polymorphisms (SNPs) in our dataset 
would be incorrectly interpreted as an unmethylated cytosine by 
Bismark (Krueger & Andrews, 2011). We therefore removed poten-
tial variants in CpG sites using the BS-SNPer tool (Gao et al., 2015). 
Variants were identified for each sequenced library independently 
using the default settings and a minimum coverage of 10× to cor-
respond to filters applied in MethylKit downstream.

2.6  |  Coverage filtering and computational pooling

We processed the aligned reads for CpG sites (dinucleotide sequence 
of 5′–CG–3′ within a DNA molecule) with the MethylKit R pack-
age, v.1.24.0 (Akalin et  al.,  2012) available through Bioconductor 
(Huber et al., 2015). For each species we excluded unplaced contigs. 
We decided to retain bases with at least 10 reads (i.e. minimum cov-
erage of 10×).

We note that the mean coverage per individual library was 
10× and filtering for 10 reads will cause notable data loss but we 
opted for this value as it provides a resolution of 10% for changes 
in methylation.

We further excluded over-represented sites, which may reflect 
sequencing bias, by removing the sites in the 99.9th percentile of 
coverage. Regions of 1000 bp size were formed as non-overlapping 
blocks using the tile function in MethylKit with default options 
(sliding windows of 1000 bp and regions of 1000 bp). In another mol-
lusc, Crassostrea virginica, CpG methylation islands have a median 
length of 1024 bp (minimum, 500 bp; Venkataraman et  al., 2020). 
Our tiles may thus capture many islands in part or in whole.

We further performed computational pooling of individual library 
data to compare with the wet-lab pooled library data. Computational 
pooling is a post-hoc process that sums up the coverage within each 
site using the individual library data and creates one library per site 
or population. We used the individual libraries after filtering (de-
scribed above) as input data and pooled using the pool function in 

Conc.
[

nM
]

=
Conc.

[

ng∕�L
]

× 106

660
[

g∕mol
]

× average library bp
.
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MethylKit. For the individual libraries, we only included sites that 
were present in at least 75% of the libraries.

2.7  |  Evaluation of concordance between 
pooled and individual libraries

2.7.1  |  Genome-wide global CpG methylation levels

To test for an agreement between the pooled and individual librar-
ies, we fit an overall correlation of the CpG methylation estimates 
for all samples in a pairwise fashion using Pearson's correlations with 
the getCorrelation function in MethylKit. We estimated the 
correlations per chromosome and discussed the coefficient aver-
aged across chromosomes.

To describe the relationship between the signal in the pooled and 
individual libraries and between the polluted and non-polluted sites, 
we performed clustering based on the % methylation estimates using 
a principal component analysis (PCA). To estimate an error on the PCA 
coordinates, we performed a jackknife over linkage groups, estimating 
the standard error (Busing et al., 1999; as in Montinaro et al., 2015). To 
confirm that jackknife iterations were reporting a similar clustering sig-
nal, we tested for a correlation between the PC loading matrix across 
jackknife iterations using the Tucker's coefficient (Lorenzo-Seva & ten 
Berge, 2006; Peres-Neto & Jackson, 2001).

To prevent any conflicts in the directional of components be-
tween jackknife iterations, we used a Procrustes transformation 
to align each iteration of the PCA with the PCA of the full dataset 
(Peres-Neto & Jackson, 2001). The transformation coefficients were 
examined to ensure that no matrix needed excessive transformation 
to align as this would indicate a big difference in the signal. Where 
PCs were strongly correlated across jackknife iterations, we pro-
ceeded to estimate the error.

2.7.2  |  Differential methylation in response to 
pollution

We tested whether there was overlap between regions show-
ing differential methylation (DMRs) between polluted and non-
polluted sites from the individual, pooled and computationally 
pooled libraries. Differential methylation for the individual libraries 
was estimated using a logistic regression (Cramer & Howitt, 2004). 
This regression cannot be conducted with one sample per site (i.e. 
pooled libraries), so differential methylation was estimated for the 
pooled and computationally pooled libraries using the Fisher's exact 
test (Fisher, 1934) (Table S3). p-values were corrected for multiple 
testing under a sliding linear model method (Wang et al., 2011) and 
we report the q-values. Regions were considered to have signifi-
cant differential methylation (i.e. DMR) with q < .01 and a mean 
methylation difference of at least 10%. To understand the direction 
of hyper/hypo-methylation, all tests were performed with the fol-
lowing orders for sites: ‘Pollution site’ versus ‘Non-Pollution site’. 

The number of regions in common between tests were visualized 
with ggupset (Ahlmann-Eltze, 2020) package in R.

2.7.3  | Methylation profiles by genetic context

To examine if the library preparation schemes recovered qualitatively 
different DMRs (i.e. with a different genetic context), we profiled the 
distribution of the DMRs detected according to available annotation 
features. As the annotation file for Corbicula fluminea was not avail-
able for this work, we present only the result of Dreissena polymorpha. 
We used the available gene annotations from the UCSC website (as 
of 2024-03-25, GCF_020536995.1_UMN_Dpol_1.0_genomic). We 
categorized DMRs as intergenic, exon or intron, with further sub-
categories where relevant.

2.8  |  Estimates of recovered power

To gauge the available power in our dataset, we estimated the recov-
ered power per region in the contrast of polluted and non-polluted 
sites. The power of a test is defined as the probability that it correctly 
rejects the null hypothesis when the alternative hypothesis is true. 
First, we define the mean difference in methylation (hereafter MDM) 
as the difference in the mean methylation estimates between the 
populations. We then identified regions which we considered to be 
non-responsive to pollution as regions with MDM of ~0. This meas-
ure takes into account both variance within and between sites and 
allows for some level of artificial variance due to errors. With the 
individual libraries power estimates were based on a t-test. Effect 
sizes were estimated as done by Mansell et al. (2019). We estimated 
Cohen's d, which is the expected difference in means divided by the 
standard deviation across all samples (Cohen, 1988). The MDM at 
each locus was based on that calculated in the estimation of DMRs, 
with α = .01 and the observed sample sizes per site per species. We 
consider only loci with 100% overlap across all samples. The power 
values were calculated using the pwr.t.test function in the R 
package pwr (Champely, 2018). For the pooled and computationally 
pooled libraries, adjustments were needed to replicate the Fisher's 
exact test. With binomial count data, the variance is a function of the 
mean (Everitt & Hothorn, 2010), and this allows us to estimate the 
standard deviation as the square root of the variance function using 
only the proportions.

The effect size was estimated using the ES.h function which 
uses an arcsine transformation. The power was estimated using the 
pwr.2p2n.test function in the R package pwr. The pwr.2p2n.
test test considers a two-proportion test with unequal sample sizes 
(i.e. coverage in this context) under the null hypothesis that there is no 
difference in the site means. The region-specific coverage value was 
used in the calculation.

Variance =
p1

(

1 − p1
)n1 +

p2
(

1 − p2
)n2.
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    |  7 of 18DANIELS et al.

2.9  |  Estimates of the necessary sampling effort for 
significant detection

We estimated the distribution of the necessary sampling effort to 
detect statistically significant differences between polluted and 
non-polluted sites at each region. Sampling effort estimates were 
made with the pwr.t.test function for the individual libraries and 
with the pwr.2p.test function for the pooled and computation-
ally pooled data. We set the power threshold to 80% (power = 0.8, 
n = NULL) in all cases and we assumed equal sampling effort. In this 
estimate the sampling effort for individual libraries is measured as 
the number of biological replicates (each providing a methylation 
estimate as a continuous number). Sampling effort for the pooled 
and computationally pooled data are measured as the interaction of 
the coverage and the number of biological replicates (count data as 
either methylated or unmethylated read).

2.10  |  Laboratory costs estimation

We summarized the costs per sample in a hypothetical scenario 
where 12 populations from two sites have been sampled (Table 3). 
We estimated the cost of creating a ‘bulk pooled’, ‘nested pooled’ 
and ‘individual libraries’ with 8, 4 and 1 individual(s) per library, 
respectively. The costs were based on quotes as of 2023 in Swiss 
Francs including local taxes. These costs exclude all procedures 
which are equivalent between the pooled and the individual libraries 
(such as sample collection, DNA extraction, DNA quality control and 
sequencing of libraries, assuming equivalent sequencing depth per 
individual). We aimed to obtain equivalent sequencing depth per in-
dividual in individual and pooled libraries to have the same resource 
investment in both sites. Reducing sequencing effort of the pooled 
libraries may be a way to further decrease costs, however we do not 
specifically test this in this study.

3  |  RESULTS

3.1  |  Quality control and mapping

All reads were of high quality with an average per base Phred score 
>32. Filtering by conversion rate efficiencies resulted in the re-
moval of four C. fluminea samples with less than 98.5% conversion 
efficiency and a further two D. polymorpha due to possible over-
conversion and poor recovery of the control sequences. All four 
pooled libraries had adequate conversion rates. For the remaining 
samples the conversion levels of the unmethylated lambda control 
in the CpG context were 99.34 ± 0.20%, while maintaining meth-
ylation levels of 96–98.3% on the pUC19 control (Table S4). For 
the individual libraries, the average number of reads after filter-
ing and end-trimming was 75 ± 9.3 million (μ ± SD) for C. fluminea 
and 70 ± 9.7 million (μ ± SD) for D. polymorpha (Table  S2). The 
pooled libraries had reads slightly under 10× the value of a sin-
gle individual library; 669 ± 10 million (μ ± SD) for C. fluminea and 
636 ± 30 (μ ± SD) million for D. polymorpha. The statistical com-
parison of the read QC measures between pollution sites within 
species showed that all groups had a normally distributed number 
of duplicated reads and proportion of aligned reads (p-value >.05, 
Shapiro–Wilk test).

3.2  |  Variant detection

Possible SNPs at C/G sites were removed to prevent misinterpreta-
tion as C to T enzymatic conversion. We detected a total of 15,781 
unique variants across all libraries for C. fluminea and 18,216 for D. 
polymorpha (Table S5). The vast majority (95%–96%) of these vari-
ants were unique to single individuals (15,108 and 19,190 for C. flu-
minea and D. polymorpha, respectively). All variants were removed 
from downstream analyses.

TA B L E  2 Summary of data loss throughout QC.

Species Treatment Pool Libraries

Before filter After filter Proportion loss

Mean SD Mean SD Mean SD

C. fluminea NP N 7 31,876,245 1,263,490 664,004 267,223 0.98 0.79

P N 7 30,608,103 2,281,176 532,142 290,244 0.98 0.87

NP Y 1 46,177,902 — 28,113,914 — 0.39 —

P Y 1 45,844,340 — 27,100,500 — 0.41 —

D. polymorpha NP N 8 51,086,375 1,789,694 568,528 285,859 0.99 0.84

P N 10 47,273,860 3,660,842 334,821 174,217 0.99 0.95

NP Y 1 76,126,510 — 48,759,866 — 0.36 —

P Y 1 75,759,688 — 47,910,153 — 0.37 —

Note: Presented are the mean (±SD) number of CpG sites before and after applying a filter for 10× minimum coverage, as well as the amount of data 
lost as a proportion.
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3.3 | Larger data loss in individual libraries compared 
with pooled libraries for equivalent sequencing effort

We applied a conservative minimum coverage filter of 10× for all 
work. While the per-individual sequencing effort was the same be-
tween individual and pooled libraries, the individual libraries yielded 
several orders of magnitude fewer sites than the pooled libraries for 
both species (Table 2). A steep data reduction for individual librar-
ies is expected as the average coverage was 10× per individual se-
quence and we applied a filter for 10× coverage.

Specifically, 97%–99% of the individual library data was fil-
tered out at this step, while 36%–41% of the pooled library 
data was filtered out. This resulted in approximately 75,000 to 
1,200,000 sites per individual library, while we obtained approx-
imately 27–48 million sites per pooled library (Table 2). Coverage 
values are variable among individual libraries, but there were no 
large deviations from the mean to warrant exclusion in all but one 
site (Table S2).

We recovered 14,461 and 2410 regions common to 75% of the 
individuals for C. fluminea and D. polymorpha, respectively, repre-
senting a decrease of over 80% relative to the average number of 
regions available after filtering and tiling. In contrast, the number 
of regions for the pooled library data declined by 52% (868,103 and 
1,180,209 for C. fluminea and D. polymorpha, respectively). The num-
ber of regions retrieved from the computationally pooled datasets 

were a marginal 7% loss (C. fluminea) and 10% gain (D. polymorpha) 
relative to the pre-united individual libraries.

The observed data loss is due to two major steps: (1) initial min-
imum coverage filtering per individual and (2) union step to find 
the regions common among individuals. This result is certainly a 
consequence of our sequencing strategy (i.e. equivalent sequenc-
ing effort per individual in pooled and individual libraries); how-
ever, this was done on purpose to compare the data of pooled and 
individual libraries obtained with the same resource investment in 
sequencing.

3.4  |  Evaluation of agreement between pooled and 
individual libraries

3.4.1  |  Global DNA methylation and correlations of 
genome-wide methylation levels

C. fluminea had slightly lower global methylation levels compared to 
D. polymorpha (~15.48% vs. 19.67%; Table S2). These values are at 
the upper end of those reported for other molluscs (5%–15%; see 
Fallet et  al., 2020). Differences in methylation were negligible be-
tween the polluted and non-polluted sites, and between the pooled 
and individual libraries for both species (C. fluminea, individual librar-
ies, polluted 15.40 ± 0.74% vs. non-polluted 15.44 ± 0.57%, pooled 
libraries 15.5% vs. 15.6%; D. polymorpha, individual libraries polluted 
19.79 ± 2.15% vs. non-polluted 19.58 ± 0.57%, pooled libraries 19.6% 
vs. 19.7%).

We examined the correlation of methylation percentage val-
ues between individual and pooled libraries to test for congruence 
between the two datasets that are expected to be equivalent. 
Correlations were slightly stronger for C. fluminea (.90–.99) compared 
to D. polymorpha (.88–.98; Figure 2), but overall similar trends were 
detected. The percent methylation values were positively correlated 
between individual and pooled libraries with the pairwise correlation 
coefficients not going below .92, irrespective of the pollution site or 
species. This is expected if pooled libraries demonstrate the same 
signal as the individual libraries and where data have not been cen-
tered (see Xu et al., 2015 for the importance of centring).

Unexpectedly, however, individual libraries correlated only 
slightly better with pooled libraries of the same site compared 
to correlations across sites (Figure  2). For both species, pooled 
libraries correlated best with each other (~.988). These results 
highlight that pollution has a weaker influence on correlation than 
the pooling method. For both species, the individual libraries from 
the pollution site had the lowest correlation coefficients for within 
site correlations (across both species: pollution .88–.93 vs. non-
pollution .90– .93). This suggests that there may be a pollution-
related response in methylation estimates influencing variation. 
Overall, we found that genome-wide methylation levels of in-
dividual and pooled libraries were well correlated following our 
expectations.

F I G U R E  2 Scatter plots of the correlation coefficients for 
percent methylation between pollution sites. Pearson correlation 
coefficients are based on the per-region % methylation for each 
pair of libraries when using all samples.
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    |  9 of 18DANIELS et al.

3.4.2  |  Agreement among PCA jackknife iterations

To understand the similarity among samples, we tested for clus-
tering using a principal component analysis on the percent meth-
ylation values. We measured heterogeneity of the signal across 
the genome with a standard error based on a delete-one jack-
knife. This measured changes to the PCA coordinates when re-
moving a linkage group with each iteration of the PCA. For both 
species and nearly all PCA iterations, the Tucker's coefficient was 
greater than .90 indicating an overall agreement in signal between 
the global PCA and each iteration (see Figures S1). For both spe-
cies, three of the jackknife iterations gave notably lower Tucker's 
coefficients and greater Procrustes D values than the remaining 
iterations, indicating a disproportionate influence from the re-
spective linkage group (C. fluminea LG05, LG08, LG12; D. polymor-
pha NC_068364.1, NC_068365.1, NC_068370.1). The result does 
argue that some linkage groups may have notable divergences 
from the majority of the genome.

3.4.3  |  PCA of genome-wide methylation levels

In the C. fluminea PCA (all libraries, 94,912 regions; Figure 3a), the 
primary eigenvector captured ~10% of the variance and the first 11 
vectors accounted for the top 90% of the variance. There was no 
clear difference between pollution level and no clear differences in 
the variation within groups, with two outlying samples in the non-
polluted group.

In the D. polymorpha PCA (all libraries, 190,879 regions; 
Figure  3c), the first eigenvector captured a significant part of the 
variance (27%), largely describing variation within the polluted popu-
lation. The remaining vectors captured similar, but small, proportions 
of the variance (~8%–5%). Again we see no clear support for a direc-
tional or consistent difference in central tendency of either pollution 
groups (Figure 3d).

For both species the pooled libraries plotted central to all the 
individual libraries. This was confirmed by estimating the mean posi-
tion of individual libraries on PC1 and PC2. With one exception, the 
mean positions were nearly equivalent to their pooled counterparts 
(For D. polymorpha NP: individual libraries −2.33, −0.56 vs. pooled 
libraries −1.62, 0.86; P: individual libraries 2.42, 0.55 vs. pooled li-
braries 5.50, 0.37. For C. fluminea NP: For individual libraries −3.99, 
−8.34 vs. pooled libraries −0.18, 7.68). Only the polluted site for C. 
fluminea had the mean position notably away from the observed 
pooled libraries (individual libraries 4.35, 9.99 vs. pooled libraries 
−2.36, −3.85).

3.4.4  |  Comparison of differential methylation in 
individual versus pooled libraries

We used the pollution condition to assess if differential methyla-
tion estimates were similar between individual and pooled librar-
ies. For both species, there were orders of magnitude more DMR 
in either wet-lab or computationally pooled libraries compared 
with individual libraries (Figure 4). This is not surprising given the 

F I G U R E  3 Principal component 
analysis of the genome-wide percent 
methylation. Panels (a) and (c) show the 
variance explained by each component 
for C. fluminea and D. polymorpha, 
respectively. Highlighted bars show the 
components that make up the top 90% 
of the variance. Panels (b) and (d) show 
the first two components with standard 
error bars based on the delete-one 
jackknife in C. fluminea and D. polymorpha, 
respectively. The percent variation 
explained by each axis is indicated on the 
axis label.
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10 of 18  |     DANIELS et al.

large difference in input data. Both the pooled and computation-
ally pooled library of C. fluminea produced more hypermethylated 
regions than hypomethylated regions (12,517 vs. 9201 for pooled 
and 1191 vs. 879 for computationally pooled). In contrast indi-
vidual libraries produced less than 130 DMRs in total with more 
hypermethylated regions.

Hypomethylated regions outnumbered hypermethylated regions 
for D. polymorpha with the wet-lab pooled data (46,450 vs. 18,581, 
hypo-  and hypermethylated, respectively). This was not the case 
with computationally pooled libraries (4066 vs. 2244, hyper-  and 
hypo-methylated, respectively). Individual libraries similarly pro-
duced more hypermethylated regions (80 vs. 25) but again less than 
130 regions in total (Figure 4).

Despite the large number of regions detected by the tests with 
the pooled and computationally pooled data, there was a relatively 
low overlap in the identified regions. The incongruency was most 
pronounced for C. fluminea where the overlapping DMRs amounted 
to <5% of the identified DMRs from the computationally pooled 
data. For D. polymorpha, there was a substantially greater proportion 
of shared DMRs between the computationally pooled and wet-lab 
pooled data, with 29% of the hypermethylated and 17% of the hy-
pomethylated DMRs shared.

When put in the context of regions overlapping across datasets, 
we see that for both species the number of DMRs detected is di-
rectly proportional to the number of input regions (see Figure  4; 
Figure S2). Most regions in common between library datasets were 
also identified as DMRs for those datasets. For both species, only a 
single region shared between individual libraries and either wet-lab 
or computationally pooled data was not also identified as a DMRs in 
the respective datasets (C. fluminea one of 128 regions). For over-
lapping regions between wet-lab and computationally pooled data, 

more than half of the regions were identified as DMRs in both pools 
(~50% for C. fluminea and 71%–77% for D. polymorpha) and these 
proportions were consistent for hypomethylation and hypermethyl-
ation (see Figure 4; Figure S2).

There were no distinct shifts in the proportion of hyper-
methylated regions relative to hypomethylated regions between 
datasets for C. fluminea (ratio of hyper:hypo-methylated; wet-lab 
pooled 1.36, computationally pooled 1.35, individual libraries 
1.41). In sharp contrast, the ratios changed notably for D. polymor-
pha (wet-lab pooled 0.40, computationally pooled 1.81, individ-
ual libraries 3.2). This likely reflects the general high methylation 
across the genome of invertebrates being better represented in 
the wet-lab pool of D. polymorhpa by virtue of the greater number 
of regions recovered. Overall this indicates that when regions are 
recovered across different datasets, the majority do have consis-
tent outcomes.

3.5  |  Methylation profiles by genetic context

We see that DMRs are over-represented in genic regions (exon + in-
tron) while intergenic regions made up 18%–35% of the detected 
DMRs (Figure 5). Introns were the largest constituent of the genic 
regions (44%–52%) with exons making up 22%–27% of DMRs. The 
DMRs detected in the two library pooling schemes show overall 
consistency in the distribution among contexts for both hyper-
methylation and hypomethylation. The similarity in profile was 
also seen when considering sub-divisions in genic context where 
approximately equal proportions of regions overlapped with start 
codons and stop codons. The individually sequenced libraries pro-
duced too few DMRs to reliably profile their distribution across 

F I G U R E  4 Intersection of the identified differentially methylated regions (DMRs) from contrast of the polluted and non-polluted 
localities for the individual, pooled and computationally pooled libraries for (a) C. fluminea and (b) D. polymorpha. The indivdiual, pooled and 
computationally pooled libraries are each a ‘set’ of DMRs as show by the rows at the bottom. The ‘intersections’ (columns) are the DMRs 
shared between sets. The dot-plot in the bottom shows how DMRs from each set are distributed among intersections. The central barplot 
shows the number of DMRs within a particular intersection. Numbers in the plot indicate the DMR counts which are either hyper- or hypo-
methylated for each bar (proportion of total DMRs in brackets when >0.01). Font colours correspond to the legend.
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    |  11 of 18DANIELS et al.

regions but do suggest an overall agreement with the computa-
tionally pooled data.

3.6  |  Estimates of the required sampling 
effort and the recovered power

To assess the available power in our data, we estimated the propor-
tion of regions responsive to pollution (Table S6) the level of power 
recovered with our current sampling effort (Table S7) and the sam-
pling effort needed to achieve power at a level of 80% at each re-
gion (Table S8). We used region-specific estimates of effect size and 
mean difference in methylation (MDM) between sites (i.e. polluted 
vs. non-polluted).

A low proportion of regions (<25%) were deemed to be non-
responsive to pollution (i.e. with MDM = 0) across all contrasts. The 
wet-lab pooled and computationally pooled libraries for both species 
produced more regions non-responsive to pollution than the indi-
vidual libraries (Table  S6). Proportionally, wet-lab pooled libraries 
produced >10× more than individual libraries and computationally 
pooled produced 4–5× more than wet-lab pooled.

For the regions responsive to pollution (i.e. with |MDM| >0), 
the sampling effort estimates were very large. For the individual 
libraries, estimates were predominantly more than 100 individuals 
per site (Figure 6a,d). Sample effort below 100 was only achieved 
for ~26% (669 regions)–35% (4803 regions) of the total regions 

considered, and no regions had sufficient power with our sampling 
effort.

Similarly, in the wet-lab and computationally pooled data, es-
timates of required sampling effort were >1000× and almost ex-
clusively >100× coverage for both species (Figure 6b,c,e,f). For a 
set of 10 individuals this would be the equivalent of ~100× cov-
erage each to achieve adequate coverage for less than 50% of the 
variance distribution. We recovered adequate power at only ~4%–
15% of regions in the pooled and computationally pooled libraries, 
highlighting that the majority of our regions were under-powered. 
Computationally pooled libraries produced greater proportions of 
regions with coverage estimates below 100× compared to pooled 
libraries (Table S8).

The bias towards under-powered regions can be understood by the 
distribution of MDM values. Across all comparisons, regions with the 
lowest MDM had the lowest power and largest sampling effort, which 
is to be expected as larger differences require fewer samples. Nearly 
the entire MDM distribution was predominantly under-powered and 
had very small estimates of MDM. For example, with wet-lab and com-
putationally pooled data, the lowest 50% of the MDM distribution 
(~1% difference in methylation) had no regions with sampling effort 
below 100× coverage. Such low MDM would be below the detectable 
resolution with 10× coverage used in our study (Figure 6a,d; Table S8). 
For the wet-lab and computationally pooled data, it was only regions 
in the top 10% of MDM distribution which would be detectable with 
a 10× coverage as used in this study (>10% difference in methylation) 

F I G U R E  5 Distribution of regions 
used in the analyses, split by the three 
library preparation schemes and grouped 
according genic context. Results are 
shown for Dreissena polymorpha for the 
number of differentially methylated 
regions detected with hypermethylation 
(top panel) and hypomethylation (bottom 
panel) split by association with different 
genic contexts. Library preparation 
schemes are individual libraries (left), 
wet-lab pooled libraries (centre) and 
computationally pooled libraries (right). 
The number of regions and proportion of 
total regions for each sub-category are 
indicated on the plot. Colours correspond 
to the barplot and figure legend.
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and only 10% of these regions had sampling effort estimates below 
100× coverage (1%–3% of the total regions) (Table S8). The compu-
tationally pooled data of D. polymorpha was a notable exception here 
as the upper 25% of the regions reached the detection limit of 10× 
coverage making up as much as 8% of the total regions. Individual 
libraries could produce a greater proportion of regions with achiev-
able sampling effort for lower MDM bins (Table S8). For example, the 
bottom 95% of the MDM distribution (MDM <9%) had ~28% of re-
gions with achievable sampling effort estimates. However, we note 
that these differences would still be below the detection limit for each 
individual sample.

With regards to differences between the species, we see that D. 
polymorpha had a greater proportion of regions with achievable cov-
erage, this being double the proportions for C. fluminea in the pooled 
data and computationally pooled data. For the individual libraries 
this proportion was only slightly lower than that of C. fluminea (28% 
vs. 33%). Similarly, a greater proportion of regions achieved suffi-
cient power with our sampling for D. polymorpha.

Finally we also note the greater MDM for D. polymorpha, as much 
as 49% for individual libraries (vs. 30% C. fluminea). For the pooled 
and computationally pooled data, the two species had equal ranges 
for MDM, ~88%–100%. These differences may be attributed to sam-
ple sizes between the species, the library pooling and the possible 
differences in natural variation.

4  |  DISCUSSION

4.1  |  Individual and pooled libraries provide similar 
genome-wide methylation estimates

Here we examined if cost-effective pooled whole-epigenome librar-
ies provide equivalent biological results to individually sequenced 
libraries. We found that pooled libraries produced a congruent epi-
genetic signature with individual libraries at the genome-wide level 
as seen with pairwise correlations, the PCA and the predominant 

F I G U R E  6 Estimates of the required per-region sampling effort and the achieved power. Panels (a)–(c) show the estimates for C. fluminea, 
and panels (d)–(f) show the estimates for D. polymorpha with separate plots for individual (panels a & d), wet-lab pooled (panels b & e) and 
computationally pooled libraries (panels c & f). Dots are individual loci and colours indicate the estimated power achieved. Note that in 
panels (a) and (d) regions with sampling effort estimates >1000 were capped to 1000 and in panels (b), (c), (e) and (f), regions with sampling 
effort estimates >10,000 were capped to 10,000. Sampling effort is measured as the number of biological replicates per site for individual 
libraries in panels (a) and (d), and sequencing coverage per pooled site for pooled libraries in panels (b), (c), (e) and (f). Regions with power 
>0.8 were plotted above other regions to aid visibility.
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congruence among DMRs but we note that the signal at specific 
regions were not necessarily congruent largely due to insufficient 
power and detection resolution. Our estimates of global meth-
ylation were also stable between pooled and individual libraries. 
These results are in line with previous research supporting a global 
or genome-wide correspondence of DNA methylation levels from 
pooled and individual libraries using different ways of measuring 
DNA methylation (Docherty et  al.,  2009, 2010; Gallego-Fabrega 
et al., 2015). In our data, both pooled and individual libraries showed 
a negligible difference in methylation between the polluted and non-
polluted groups and for both species but in all cases DMRs were 
detected.

4.2  |  Pooled libraries provide more data than 
individual libraries for an equivalent sequencing effort 
while reducing wet-lab costs

We found that there is at least a 7-fold decrease in the cost per 
sample for ‘bulk pooled’ libraries compared with individual librar-
ies (Table  3). The reduction depends on the number of biological 
replicates in each pool and this allows a great degree of flexibility 
to balance sample sizes, coverage and cost. The pooled libraries 

also produced orders of magnitude more final regions (between 20 
and 50× more than individual libraries) and lost notably less data 
throughout the workflow. There are a number of steps in the work-
flow at which data are lost. From our results we have pointed out a 
few noteworthy stages: lower alignment efficiencies compared to 
conventional WGS sequence alignment (30%–70% read pairs dis-
carded), filtering for specific subset of sites from the sequence data, 
data discarded from the overlap between paired reads, deduplica-
tion and other post-alignment steps/biases (~80% reduction relative 
to the expected coverage), the removal of suspected SNPs, cover-
age filtering (~36%–41% loss for pooled libraries, over 98% loss for 
individual libraries), finding loci in common across samples (52% loss 
for pooled libraries, 81%–95% loss for individual libraries), filtering 
out sites/regions that are not responsive to pollution (1%–21% re-
gions lost) and finally, the loss of sites/regions which have insuffi-
cient power to detect differences at the chosen MDM resolution 
(75%–95% of regions). This result is certainly in part a consequence 
of our sequencing strategy (i.e. equivalent sequencing effort per in-
dividual in pooled and individual libraries), however this was done 
deliberately to compare the data of pooled and individual libraries 
obtained with the same resource investment in sequencing. This re-
sult highlights the need for a particularly high coverage of individual 
WepiGS libraries (e.g. >15× initial coverage) to obtain a sufficient 
number of sites for final comparisons.

When estimating the required sampling efforts to reach sufficient 
power per region, pooled libraries produced as much as 90× more re-
gions with an achievable sampling effort for regions with detectable 
MDM (103 vs. 9358 regions for D. polymorpha). Achievable is defined 
here as regions with estimates of <100 samples per site (individual 
libraries) or coverage estimates below 100× (pooled libraries). The 
achieved power was greater for the pooled libraries while the individ-
ual libraries for both species had no regions that reached the threshold 
of 0.8 power. All of this strongly supports that pooled libraries produce 
sufficient data more reliably compared with individual libraries given 
similar per-sample coverage of 10× on average and with a subsequent 
filter of at least 10 reads per methylation call and considering the reso-
lution offered by the used coverage and filtering combination.

Low power is a concern even in well controlled studies, for ex-
ample of clinical ADHD (van Dongen et  al.,  2019). Theoretically, 
reasonable power (80%, p < .05) can be achieved with small sample 
sizes (100 cases-control pairs) and even with small effect sizes (as 
low as 4.5%) for array-based work (Tsai & Bell, 2015), and empiri-
cally, 95% power can be achieved with arrays (p < 10E-6) with >43 
pooled samples (Gallego-Fabrega et al., 2015). However, the work 
by Dongen et  al. detected very few differentially methylated loci 
(<20 out of >400 K; 0.005% of available loci) despite being able to 
directly or indirectly link loci to previous GWAS results, vouching for 
the accuracy of the signals detected. Their meta-analysis found no 
loci overlap between previous studies despite using the same geno-
typing array (see also Kaplow et al.  (2015) where overlap between 
studies was less than 53%, or 8 of 15 loci). In WepiGS, specific loci 
and the distribution of sequencing effort across the genome cannot 
be guaranteed so we expect far lower power at any particular site.

TA B L E  3 Cost comparison of pooled and individual libraries.

Individual
Nested 
pooled

Gross 
pooled

Pooling details

Populations 12 12 12

Libraries 192 48 24

Samples per library 1 4 8

Total samples 192 192 192

Material/Protocol total

NEBNext® Enzymatic 
Methyl-seq Kita

9374 2604 1302

General consumablesb 192 48 24

Library quantificationc 192 48 24

Library quality controlc 960 240 120

Total 10,718 2940 1470

55.82 15.31 7.66

Cost ratio 
(Individual:Pooled)

3.6 7.3

Note: Estimated costs per specimen in a scenario of sampling 12 
populations for a total of 192 biological replicates and no technical 
replicates. Costs are provided in Swiss Francs (CHF) with local 2023 
prices. Costs are likely to vary among countries based on local factors. 
Prices include local taxes. Where costs are equal between pooled 
and individual libraries, we omitted such costs (i.e. individual DNA 
extraction, quality control, shearing, sequencing depth).
a1 × 24 reaction kit for pooled and 2 × 96 reaction kit for individual 
libraries.
bPipette tips, general reagents, gloves, tubes etc.
cTapestation D1000 screen tape, reagents and consumables.
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In practice, our pooled libraries detected several thousand DMRs 
while the individual libraries detected <130 DMRs out of millions of 
initially available sites. These values are similar to that reported else-
where (e.g. pooled data 598; Venkataraman et al., 2020). These differ-
ences will make a meaningful impact on the return of investment and 
the possible scope of downstream interpretation in research. We also 
employed computational pooling which pools the data of the individual 
libraries post-hoc. Here we found it to successfully mitigate much of the 
data loss that individual libraries suffered from during the QC process. 
Computationally pooled libraries produced smaller volumes of input 
data and DMRs relative to the wet-lab pooled.

4.3  |  Pooled and computationally pooled libraries 
provided different DMRs in our dataset

Beyond the global signal, our results showed that genome-wide con-
gruence does not necessarily imply corresponding DMR signals for 
pooled and individual libraries. We found reasonable agreement in 
DMRs between individual, wet-lab pooled and computationally pooled 
libraries for the regions which did overlap across datasets (50%–77%) 
but a substantial amount of shared regions were not detected across 
methods which is contrasting with the correlations and PCA.

These differences may arise from several factors: (1) the indi-
viduals compared between the pooled and computationally pooled 
libraries were not exactly the same as four C. fluminea and two D. 
polymorpha individuals were excluded from downstream analyses as 
they failed conversion rate quality control; (2) lack of normalization 
of individual data before computational pooling; (3) stochasticity in 
the library preparation and sequencing processes (e.g. differential 
PCR during library preparation; cryptic biases in sequencing among 
the specimens of the pooled libraries); and (4) differences in achieved 
power. Based on these results, we discuss below the benefits and 
drawbacks of sample pooling, as well as possible improvements and 
ways forward.

4.4  |  Benefits and drawbacks of sample 
pooling and recommendations

There are important opportunities offered by WepiGS for ecologi-
cal and evolutionary studies, and authors have made clear that it 
is crucial to optimally use resources and consider trade-offs before 
initiating a project (Laine et al., 2022). We emphasize that there is 
not a single optimal solution for all projects and that the decision 
to sequence pooled or individual libraries depends on the scientific 
question of a particular project and should be planned at very early 
stages. Here we put our work in context and provide a summary of 
the key benefits and drawbacks of pooling libraries for WepiGS, as 
well as their implications (summary in Table 4).

Starting with the benefits, we showed that pooled libraries can be 
up to seven-fold more cost effective than individual libraries, when 
comparing wet lab costs. These costs are likely to be a limiting factor 

into the future, given that sequencing costs are constantly decreas-
ing. There is flexibility in cost adjustment when the pooling scheme 
varies (e.g. deciding how many pools to prepare) but there is presently 
limited research on the trade-offs of different degrees of pooling. 
Another important benefit of pooled libraries is that the number of 
individuals per pool can be increased; typically the number of indi-
viduals per investigated population is between 10 and 20, however 
it has been shown that a larger number of individuals is required to 
achieve sufficient power in natural populations (Lea et al., 2017; Tsai 
& Bell, 2015). For instance, when a predictor variable explains 15% of 
the difference between populations, 125 individuals per population 
are needed to reach 50% power (Lea et al., 2017). A third advantage 
was that a larger proportion of the sequencing data from pooled li-
braries can be used, resulting in many-fold increase in retrieved loci in 
our dataset. This was not only due to the higher coverage of pooled 
libraries, but also because there was a single union step using the 
pooled datasets (i.e. finding the loci in common among libraries). This 
union step typically leads to a large loss of data when using individual 
libraries. Thus, individual average coverage (10× in our study) should 
be substantially higher than the filtering threshold (10 reads in our 
study) if many biological replicates will be united at many loci. Ziller 
et al. (2014) have argued instead for increased sensitivity with more 
biological replicates and coverage rather than coverage alone, but this 
would increase the costs substantially. Finally, if a high sequencing 
coverage is not necessary (e.g. in our case 100× per pooled library), 
researchers can decide to lower the sequencing effort per pooled li-
brary, possibly decreasing even more the project costs.

Using pooled libraries has several drawbacks, though, the most 
important one being that there is no possibility of going back to the 
individual data. Hence, researchers should be extremely careful 
when thinking about the pooling design and make sure that every 
covariate that may impact the signal in the data has been taken into 
account (e.g. sampling locality, sampling time in the year, sex, age, 
tissue, experimental condition, etc.). If these covariate can be clearly 
identified and separated in sub-pools, then pooling the DNA of sam-
ples may be a good option to increase power and decrease costs. 
In contrast, if covariates cannot be identified or if the variability in 
the data are not known (e.g. first epigenomic assessment), we would 
recommend against pooling.

Individual libraries provide more flexibility and higher resolution 
as groups and comparisons can be done a posteriori (e.g. testing the 
impact of different covariates in a pilot study) and data can be reused 
for future projects (e.g. adding individuals from different populations or 
time points, or different comparisons can be made). Other drawbacks 
of using pooled libraries arise from the data analysis side. For instance, 
individual samples that failed cannot be excluded (e.g. low conversion 
rate; low amount of sequencing data), and thus equal conversion rates 
and sequencing depth for all individuals in a pool is assumed.

Furthermore, we observed that a large amount of computational 
resources was required to process the pooled datasets (e.g. alignment, 
methylation calling) and that the currently widely used bioinformatic 
tools have limited functionality/customizability (e.g. MethylKit run-
ning in R) and otherwise require users to develop workarounds for 
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many tasks. Moving data between tools to achieve piecemeal anal-
yses is often time-consuming and discouraged (Laine et  al.,  2022). 
Researchers could decide to filter out invariant sites early in the data 
analysis, and/or decrease the sequencing depth of the pools (i.e. less 
than 10× per sample), however the minimum sequencing depth to ob-
tain meaningful population methylation rates is not known. We note 
that this issue arises when study organisms have large genomes (in 
our case 1.6 and 1.8 Gb), but it may be less of a problem for organisms 
with smaller genome sizes (e.g. less than 1 Gb). Finally, we also noticed 
that there are fewer and less flexible statistical tests available for data 
analysis (e.g. Logistic regression cannot be used with two samples). A 
workaround to this problem may be to create subpools per condition 
(i.e. nested pooling) to still be able to use the logistic regression analy-
sis. We hope that new tools that can handle large pooled epigenomic 
datasets will be developed in the future.

To conclude, individual libraries provide greater flexibility and con-
trol therefore they are the best option for a first epigenomic dataset 
where covariate variation is unknown, or when samples are rare or 

limited. However, there are situations in which pooling DNA before 
library preparation would be the best option for population-level sig-
nals (Futschik & Schlötterer, 2010; Kaplow et al., 2015), to increase 
power and decrease costs. For instance, when the number of indi-
viduals per population is not limited (e.g. abundant species), in well-
studied systems where epigenomic variation is already characterized 
and researchers want to increase power in follow-up studies. In these 
systems, either a clear separation of covariates is possible or organ-
isms are small and whole organisms are used for DNA extraction, mak-
ing sure that all covariates are captured in a single DNA extraction 
(Harney et al., 2022). Finally, pooling would be particularly well-suited 
in systems with small genome sizes to facilitate downstream analyses.

4.5  |  Possible improvements and ways forward

We have shown that pooled libraries provide estimates of genome-
wide global methylation levels that are comparable to individual 

Topics Implications

Libraries

Individual Pooled

Costs Higher wet lab costs for individual libraries. 
Cost savings can be adjusted according to 
the pooling scheme (see Table 3 for details)

− +

Power Increased number of individuals included 
in a pool improves accuracy of population-
level metrics (e.g. Response to treatments, 
differences between environmental 
conditions) and increases power to detect 
differences

− +

Power/costs 20–30-fold more data when pooled 
libraries are sequenced at an equivalent 
sequencing effort to the individual libraries 
(see Table 2 for details). Additional cost 
savings are possible if sequencing effort of 
pooled libraries is reduced

− +

Flexibility Individual information (covariates) cannot 
be used with pooling. Nested pooling 
(pooling by condition, e.g. sampling locality, 
sex, age, tissue, experimental condition) is 
needed to measure variability in the data. 
Data reuse for subsequent projects is 
challenging

+ −

Data analyses Differences in individual conversion rates 
or individual sequencing depth are not 
taken into account when samples are 
pooled. Possible biased representation 
of some samples in the pool cannot be 
accounted for

+ −

Greater computational resources needed 
resulting from greater data volumes 
of pooled libraries. Many tools for 
methylation analyses are not adapted to 
handle large datasets from pooled libraries

+ −

Fewer, less flexible statistical tests are 
available for pooled datasets

+ −

TA B L E  4 Benefits and drawbacks of 
DNA pooling before library preparation.
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libraries. However, signals of differential methylation at specific 
regions were not necessarily congruent, most likely as a result of 
large differences in the number of loci retrieved and the recovered 
power, which was a consequence of our sequencing effort strategy. 
Another possible cause was that six individuals were excluded from 
the analyses due to low conversion rates and low sequencing data, 
resulting in true differences between the pooled and computation-
ally pooled datasets. In addition, stochasticity in the library prepara-
tion and sequencing processes may have led to further discrepancies 
between these datasets.

Genetic variation is a source of confounding effects with meth-
ylation variation (Venney et  al.,  2023). For example, in Ostrea lu-
rida (oyster) as much as 27% of methylation can be explained by 
inter-individual genomic variation (Silliman et  al.,  2023). While we 
removed likely SNPs prior to the DMR analysis, some detected 
DMRs may arise from C/T polymorphisms not detected or we may 
have false positives when the reference is divergent form the study 
populations. However, these polymorphisms would impact equally 
pooled and individual datasets.

These epigenomic datasets were the first ones for the two spe-
cies of interest, C. fluminea and D. polymorpha. Therefore, global 
DNA methylation levels were previously unknown, as well as the 
level of covariate variation. Based on these results, we would rec-
ommend to perform a pilot study using individual libraries to assess 
these metrics and make an informed decision on whether or not 
to pool a large number of individuals in subsequent studies before 
considering pooling. Furthermore, we acknowledge that we did not 
perform simulations in this study, because we wanted to focus on 
empirical data to explore commonalities and differences between 
individual and pooled libraries produced in the lab. Thus, we aimed 
to obtain a very practical result close to a real experiment. In future 
studies, it would be interesting to simulate the minimum coverage 
of a pool required to obtain reliable population-level DNA methyla-
tion rates, as a way of facilitating downstream analyses and further 
decreasing project costs. To conclude, our study brings important 
insights on the relevance of pooling DNA of individuals before li-
brary preparation in epigenomic studies of natural populations, and 
we believe that it will help researchers in making informed decisions 
for future epigenomic projects.
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