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Abstract
DNA	methylation	(DNAm)	is	a	mechanism	for	rapid	acclimation	to	environmental	con-
ditions.	In	natural	systems,	small	effect	sizes	relative	to	noise	necessitates	large	sam-
pling	efforts	to	detect	differences.	Large	numbers	of	individually	sequenced	libraries	
are	costly.	Pooling	DNA	prior	to	library	preparation	may	be	an	efficient	way	to	reduce	
costs	and	increase	sample	size,	yet	there	are	to	date	no	recommendations	in	ecological	
epigenetics research. We test whether pooled and individual libraries yield compara-
ble	DNAm	signals	in	a	natural	system	exposed	to	different	pollution	levels	by	generat-
ing	whole-	epigenome	data	from	two	invasive	molluscs	(Corbicula fluminea, Dreissena 
polymorpha)	collected	from	polluted	and	unpolluted	localities	(Italy).	DNA	of	the	same	
individuals	were	used	for	pooled	and	individual	epigenomic	libraries	and	sequenced	
with	equivalent	resources	per	individual.	We	found	that	pooling	effectively	captures	
similar genome- wide and global methylation signals as individual libraries, highlight-
ing that pooled libraries are representative of the global population signal. However, 
pooled libraries yielded orders of magnitude more data than individual libraries, which 
was	a	consequence	of	higher	coverage.	We	would	therefore	recommend	aiming	for	
a	 high	 initial	 coverage	 of	 individual	 libraries	 (15×)	 in	 future	 studies.	 Consequently,	
we	detected	many	more	differentially	methylated	 regions	 (DMRs)	with	 the	pooled	
libraries and a significantly lower statistical power for regions from individual libraries. 
Computationally pooled data from the individual libraries produced fewer DMRs and 
the overlap with wet- lab pooled DMRs was relatively low. We discuss possible causes 
for discrepancies, list benefits and drawbacks of pooling, and provide recommenda-
tions for future epigenomic studies.
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1  |  INTRODUC TION

Epigenetics	 includes	 the	 study	of	 the	 stable	but	 reversible	molec-
ular	modifications	that	do	not	alter	the	DNA	sequence	itself	(Fallet	
et al., 2020; Gallego- Fabrega et al., 2015; Paro et al., 2021; Venney 
et al., 2023).	These	modifications	can	be	established	and	removed	
in	 response	 to	 stimuli	 (Paro	 et	 al.,	 2021),	 making	 them	 far	 more	
variable	and	potentially	noisy	compared	to	genetic	variation	(Tsai	&	
Bell, 2015).	As	epigenetic	interactions	can	regulate	gene	expression	
(Fallet	et	al.,	2020),	this	mechanism	has	received	considerable	atten-
tion	(Brander	et	al.,	2017; Marin et al., 2019; Mounger et al., 2021).	
DNA	methylation	(DNAm)	is	the	most	frequently	studied	epigenetic	
modification, particularly in ecological epigenetic research focusing 
on comparisons between populations, this is in part due to the sim-
ilarity of the wet- lab and bioinformatic procedures to routine popu-
lation	genomics	(Fallet	et	al.,	2020; Lamka et al., 2022).	For	instance,	
of	 the	available	methods,	whole	epigenome	sequencing	 (hereafter	
WepiGS)	 for	 example	whole-	genome	bisulfite	 sequencing	 (WGBS)	
and	whole-	genome	enzymatic-	conversion	sequencing	(EMseq)	offer	
the highest resolution available as changes can be tracked as base- 
pairs	across	the	entire	genome	(Fallet	et	al.,	2020; Paro et al., 2021; 
Venney et al., 2023; Ziller et al., 2014).

Epigenetic	biomarkers	have	emerged	as	promising	 tools	 for	 in-
vestigating the drivers of responses to environmental stressors 
such	as	temperature	and	pollution	(see	Fallet	et	al.,	2020; Jeremias 
et al., 2020; Venney et al., 2023),	in	much	the	same	way	that	genetics	
has	been	 (e.g.	Weber	et	al.,	2013).	Notwithstanding,	so	far	 the	ef-
fects	of	xenobiotics	on	DNAm	were	assessed	only	on	a	limited	num-
ber of species and mostly under controlled laboratory conditions 
(see	Ardura	et	al.,	2018; Harney et al., 2022).	There	is	a	clear	need	
to increase representation in research to include more ecologically 
relevant species through the investigation of natural populations 
subjected	to	pollution	(Šrut,	2021).

Recent reviews of ecological epigenetic research have high-
lighted	the	absence	of	established	‘best	practices’	(Laine	et	al.,	2022),	
and	gaps	in	taxonomic	and	geographic	sampling,	and	the	lack	of	ad-
equate	replication	across	a	broad	range	of	research	topics	but	par-
ticularly	in	population-	level	studies	(Lamka	et	al.,	2022).	Methylation	
effect	sizes	in	ecological	settings	tend	to	be	small,	so	large	numbers	
of	samples	(e.g.	>100	individuals	per	population	or	condition)	are	re-
quired	to	detect	differences	(Lea	et	al.,	2017).	Increasing	sample	size	
is not always possible in the case of rare or endangered species, and 
in	most	cases	the	maximum	sample	size	is	limited	by	budget.	Indeed,	
the	preparation	of	individual	libraries	and	sequencing	have	a	strong	
impact	 on	 research	 costs.	 In	 WepiGS	 studies,	 data	 are	 typically	
obtained at the individual level as this is the current best- practice, 
however researchers may be interested in population- wide signals in 
which case individual variation within a population is not a primary 
interest. Indeed, ecologists are often most interested the diversity 
of ecologically important phenotypes and their interaction with en-
vironmental	conditions	across	broad	regions	(Laine	et	al.,	2022; e.g. 
Han et al., 2020; Tolley et al., 2019).	While	the	cost	of	sequencing	
has	 strongly	 decreased	 since	 its	 advent	 (Jobling	 et	 al.,	 2014)	 and	

is still decreasing, wet laboratory costs including individual library 
preparation	remain	a	major	obstacle	for	large	sample	sizes	in	many	
ecological	 epigenetic	 research	 projects.	 Hence,	 optimizing	 these	
steps is crucial to obtaining data with the highest statistical power in 
a cost- effective manner.

One means to decrease costs associated with library preparation 
would	be	to	pool	the	DNA	from	individual	samples	from	the	same	
population or condition prior to library preparation. The pooled li-
braries would thus represent the average signal of the individuals 
contained therein, with the advantage to prepare a single library. 
Pooling	 of	DNA	 samples	 is	 commonly	 used	 in	 population	 genom-
ics,	where	 accurate	population	 allele	 frequencies	 can	be	obtained	
from	a	large	number	of	pooled	samples	(Konczal	et	al.,	2013;	Ozerov	
et al., 2013).	Furthermore,	pooling	has	also	been	used	in	transcrip-
tomic	studies,	as	it	has	been	shown	that	pooling	RNA	samples	and	
reducing	coverage	are	effective	ways	to	optimize	costs	while	main-
taining	sufficient	power	 in	differential	expression	analyses	 (Assefa	
et al., 2020).	However,	so	far,	few	studies	compared	the	effects	of	
sample	pooling	using	DNAm	data	and	discussion	is	hampered	by	the	
lack	of	comparative	studies	(Laine	et	al.,	2022).	One	of	the	available	
studies showed consistent results between individually run samples 
and pooled samples, with correlation coefficients for CpG array data 
>.98	(Gallego-	Fabrega	et	al.,	2015).	Two	further	studies	focusing	on	
mass-	spectrometry	data	from	individual	and	pooled	DNA	produced	
strong	evidence	that	pooled	DNA	samples	provide	reliable	estimates	
of	group	DNA	methylation	averages	and	showed	that	the	agreement	
holds	up	with	a	range	of	individuals	in	a	pool	(Docherty	et	al.,	2009, 
2010).	 To	 date,	 however,	 the	 comparison	 between	 individual	 and	
pooled	samples	has	not	been	done	with	sequencing	data	(whether	
targeting	a	 reduced	fraction	of	 the	genome	such	as	bsRADseq,	or	
using	 whole-	genome	 data	 (e.g.	 WGBS	 or	 EMseq)).	 While	 pooling	
samples has a strong potential to increase power and reduce costs, 
there are important considerations related to methylation data 
which	have	led	to	recommending	against	sample	pooling	(see	Laine	
et al., 2022; Lea et al., 2017; Ziller et al., 2014).	First,	methylation	
data are more variable than genomic data by virtue of their inducibil-
ity	and	reversibility	(Tsai	&	Bell,	2015),	with	several	studies	reporting	
changes in the timescale of days to weeks in response to stressors 
(see	 review	by	Venney	et	al.,	2023).	 Second,	methylation	patterns	
may	be	tissue	specific	(Laine	et	al.,	2022; Lee et al., 2017),	thus	indi-
vidual samples are not only temporal and spatial snapshots but also 
somatically heterogeneous. More distantly related cell- types man-
ifest notably divergent methylation patterns, underscoring a sig-
nificant	limitation	in	methylation	analyses	(Blake	et	al.,	2020; Ziller 
et al., 2014).	Biases	may	be	 introduced	 if	 inter-	individual	 (or	 inter-	
tissue)	variation	cannot	be	accounted	for	(Teschendorff	et	al.,	2017).	
Finally, a particular concern has been that pooling masks variation 
prevents	inclusion	of	covariates	(Tsai	&	Bell,	2015; Ziller et al., 2014)	
and	ultimately	requires	more	biological	replicates	to	account	for	the	
hidden	variation	 (Futschik	&	Schlötterer,	2010).	Most	 importantly,	
when samples are pooled, there is no way to return to the individual 
data,	so	any	covariates	of	interest	in	the	data	that	were	not	expected	
or previously identified in the original pooling design will be masked.
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Up to now, the benefits and drawbacks of sample pooling in 
whole-	genome	 DNAm	 studies	 have	 not	 been	 formally	 compared,	
and there are currently no clear recommendations on the pertinence 
of	pooling	DNA	for	epigenomics	of	natural	populations.	To	address	
this gap, we investigated empirically the effects of sample pooling 
in	DNAm	by	using	whole-	epigenome	data	(WepiGS)	from	two	inva-
sive freshwater bivalves from polluted and unpolluted sites. We set 
out	to	use	the	same	resource	investment	in	sequencing	for	individ-
ual	and	pooled	 libraries.	The	aims	were:	 (1)	 to	 test	whether	global	
DNAm	signals	from	pooled	and	individual	libraries	are	equivalent,	(2)	
to compare the overlap between differentially methylated regions 
between polluted and unpolluted sites arising from individual and 
pooled	datasets	and	 (3)	 to	 incorporate	our	observations	 into	a	 list	
of benefits and drawbacks of sample pooling, and describe a set of 
recommendations on the pertinence of sample pooling for future 
ecological epigenetic projects.

2  |  METHODS AND MATERIAL S

2.1  |  Sampling

Adult	individuals	of	the	Asian	clam	(Corbicula fluminea,	O.	F.	Müller	
1774)	and	the	zebra	mussel	(Dreissena polymorpha,	Pallas	1771)	were	
collected	by	SCUBA	diving	at	either	polluted	or	unpolluted	sites	in	
Lake	Maggiore,	Italy,	and	frozen	at	−20°C	upon	arrival	in	the	labora-
tory	(Table 1).	Sampling	permits	were	not	necessary	as	both	species	
are	 invasive.	 Sampling	 sites	were	 chosen	 based	 on	 the	multi-	year	
monitoring	of	legacy	persistent	organic	pollutants	(POPs).	The	moni-
toring	has	been	running	in	Lake	Maggiore	since	1996	(https:// www. 
cipais. org/ web/ )	 (see	Table S1	for	further	details).	The	Baveno	site	
(polluted	locality)	is	located	within	the	Pallanza	Basin,	which	receives	
water inputs from the Toce River which is affected by industrial con-
tamination	of	DDx	and	Hg.	The	site	is	often	exceeding	the	probable	
effect	concentration	thresholds	for	sediments	(Guzzella	et	al.,	2018; 
Marziali	et	al.,	2021)	 and	 the	concentration	of	 legacy	POPs	meas-
ured D. polymorpha, in the freshwater mussel Unio elongatulus and 
eggs of Podiceps cristatus	 (see	 Table S1)	 was	 higher	 with	 respect	
to	other	sites	of	the	lake	(CIPAIS,	2021, 2022; Parolini et al., 2013; 
Riva et al., 2010).	Conversely,	Magadino	and	Cannobio	 sites	 (non-	
polluted)	are	 located	 in	 the	North	side	of	 the	 lake	and	are	 less	af-
fected by contamination of legacy pollutants both in sediments and 
in D. polymorpha	(CIPAIS,	1999, 2022).	No	measurements	are	avail-
able for Corbicula fluminea at these localities.

2.2  |  DNA extraction

We	 performed	DNA	 extractions	 for	 40	 individuals	 (summary	 of	
the	 experimental	 design	 in	 Figure 1),	 consisting	 of	 10	 samples	
for	 each	 species	 and	 for	 each	 site.	 Extractions	were	 performed	
using	foot	tissue	with	the	DNeasyBlood	and	Tissue	DNA	extrac-
tion	 kit	 (Qiagen	 Cat.no.	 69504),	 following	 the	 manufacturer's	 TA
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recommendations	(Elution	in	110 μL	elution	buffer).	DNA	integrity	
was	examined	using	agarose	gel	electrophoresis	and	DNA	concen-
tration	was	measured	using	Qubit	2.0	(Invitrogen).	Two	Corbicula 
extractions	 failed	 (1	CP,	1	CNP),	 leaving	38	DNA	extractions	 for	
individual library preparation.

2.3  |  Pooling design, enzymatic conversion, library 
preparation and sequencing

To ensure individual and pooled libraries were comparable, the 
pooled	libraries	were	prepared	using	the	same	individually	extracted	
DNA	(Table S2; Figure 1).	The	concentration	of	each	individual	DNA	
extraction	was	determined	using	Qubit	HS	dsDNA	assay.	The	same	
amount	of	DNA	(300 ng)	was	then	sheared	in	a	total	volume	of	60 μL 
using	 a	 Qsonica	 sonicator	 (Q800R2	 instrument)	 using	 different	
shearing	times	depending	on	the	level	of	DNA	integrity	previously	
assessed	using	agarose	gel	 electrophoresis:	 (1)	 samples	with	high-	
molecular	 weight	 DNA	were	 sheared	 2′45″	 min;	 (2)	 samples	 with	
semi-	degraded	 DNA	were	 sheared	 9′00″–11′30″	 min;	 (3)	 samples	
with	highly	degraded	DNA	were	not	sheared.	For	the	samples	with	
highly	degraded	DNA,	control	DNA	was	sheared	individually	(9 min)	
and	then	added	to	the	sample	DNA.

For	 the	 individual	 libraries,	25 μL	of	sheared	DNA	was	used	as	
input	volume	for	library	preparation.	For	the	pooled	libraries,	2.5 μL 
of	 sheared	DNA	of	 each	 individual	was	 pooled	 to	 have	 a	 starting	

volume	of	25 μL	 for	 library	preparation	 (for	 the	Corbicula libraries, 
2.5 μL of H20	was	added	to	reach	a	total	volume	of	25 μL).	The	fol-
lowing	four	pooled	libraries	were	generated;	(1)	Dreissena pool pol-
luted	 (DpoolP)	 representing	the	10	D. polymorpha individuals from 
the	polluted	locality;	(2)	Dreissena	pool	non-	polluted	(DpoolNP)	rep-
resenting the 10 D. polymorpha individuals from the non- polluted 
locality;	 (3)	Corbicula	 pool	 polluted	 (CpoolP)	 representing	 the	9	C. 
fluminea	 individuals	 from	 the	 polluted	 locality;	 (4)	 Corbicula pool 
non-	polluted	 (CpoolNP)	 representing	 the	 9	C. fluminea individuals 
from the non- polluted locality. We prepared a total of 42 librar-
ies consisting of 38 individual libraries and 4 pooled libraries. We 
used	 an	 enzymatic	 technique	 (EMseq)	 to	 convert	 unmethylated	
cytosines	 in	 thymidine	as	 it	minimizes	DNA	damage.	We	used	 the	
NEB	Next	Enzymatic	Methyl-	seq	Kit	(New	England	Biolabs	Cat.no.	
E7120S).	Control	DNA	(CpG	methylated	pUC19	and	unmethylated	
lambda)	used	to	estimate	conversion	rates	was	added	to	each	DNA	
extraction	 before	 shearing	 as	 per	 the	manufacturer's	 instructions	
(New	England	Biolabs).	Library	preparation	was	done	following	the	
manufacturer's	instructions	except	that	we	used	half	volumes	of	all	
reagents.

As	we	wanted	 to	compare	pooled	and	 individual	 libraries	on	a	
resource	 cost	 basis,	we	 aimed	 to	obtain	 the	 same	mean	 sequenc-
ing coverage per sample from both the individual libraries and the 
pooled	libraries.	Another	way	to	optimize	costs	further	would	be	to	
reduce	the	sequencing	effort	for	pooled	libraries,	but	we	do	not	spe-
cifically test this in this study.

F I G U R E  1 Experimental	design	of	
the study. Individuals from two species 
(Corbicula fluminea and Dreissena 
polymorpha)	were	collected	at	polluted	
and non- polluted localities in Lake 
Maggiore,	Italy.	See	Table 1. Individual 
DNA	extractions	were	performed.	The	
same	DNA	extractions	were	used	to	
construct 38 individual and four pooled 
libraries. Individual and pooled libraries 
were	sequenced	at	an	equivalent	per-	
individual	sequencing	coverage	(i.e.	~10× 
per	individual).
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We	 thus	 combined	 individual	 libraries	 in	 equimolar	 concentra-
tions	and	the	pooled	libraries	in	a	molar	concentration	x-	fold	higher	
than	the	individual	libraries	(i.e.	10× for D. polymorpha pools and 9× 
for C. fluminea	pools)	as	the	individual	and	pooled	libraries	of	a	par-
ticular	 species	were	sequenced	on	 the	same	 lane.	Specifically,	 the	
concentration	of	each	library	was	determined	by	Qubit,	using	the	HS	
dsDNA	assay	and	the	average	library	size	was	determined	by	using	
a	 TapeStation	 4150	 Instrument	 (Agilent	 Technologies).	 Molarities	
were then calculated by the following formula:

For the Dreissena	sequencing	pool	with	20	individual	libraries	
and 2 pooled libraries, 100 fmol were used per individual library 
and 1000 fmol per pooled library, which resulted in a total amount 
of 4000 fmol. For the Corbicula	sequencing	pool	with	18	individ-
ual libraries and 2 pooled libraries, 75 fmol were used per indi-
vidual	 library	and	675	 fmol	per	pooled	 library,	which	 resulted	 in	
a	 total	 amount	of	2700	 fmol.	These	 two	 sequencing	pools	were	
sequenced	on	two	lanes	of	a	S4	flowcell	on	an	Illumina	Novaseq	
6000	sequencer	 (150 bp	paired-	end)	at	the	Functional	Genomics	
Center,	Zürich.

2.4  |  Quality control and mapping

In total, 18 C. fluminea and 20 D. polymorpha individuals were se-
quenced	at	 an	average	of	74	 (±9.3)	million	 reads	 (Table S2).	The	
four	pooled	libraries	were	sequenced	at	an	average	of	620	(±66)	
million	 reads.	 The	 reads	 were	 quality-	assessed	 using	 FastQC	
v.0.11.9	 (Andrews,	2019)	 and	MultiQC	v.1.9	 (Ewels	 et	 al.,	 2016).	
Adapters	were	identified	and	removed	using	Trim	Galore!	v.0.6.6	
(Krueger,	2020)	with	default	settings.	To	correct	for	bias	of	meth-
ylation percentage at the read ends, reads were trimmed off 10 
bases on both the 3′ and 5′	ends	 (as	 recommended;	https://	felix	
krueg er. github. io/ Bisma rk/ bisma rk/ libra ry_ types/  ).	 Default	 set-
tings were retained for all other trimming steps, including the re-
moval	 of	 low-	quality	 bases	 (–quality 20)	 and	 dropping	 reads	
shorter	 than	 20	 bases	 (–length 20).	 Enzyme	 conversion	 effi-
ciency	was	assessed	using	the	two	control	DNA.	The	high	quality	
reads	having	passed	QC	were	then	aligned	to	the	respective	pub-
licly available reference genomes; C. fluminea	(Zhang	et	al.,	2021)	
and D. polymorpha	(McCartney	et	al.,	2022).

Alignment,	 de-	duplication	 and	 methylation	 extraction	 were	
performed	 with	 Bismark	 v.0.24.2	 (Krueger	 &	 Andrews,	 2011).	
Briefly, we first converted reference genomes computationally 
for	alignment	and	then	indexed	using	Bowtie2	v.2.4.4	(Langmead	
&	Salzberg,	2012)	with	default	settings	(command	bismark_ge-
nome_preparation).	 Alignment	 was	 run	 with	 directionality	
specified	using	the	default	alignment	score	(–score_min L,0,- 
1.2).	As	part	of	the	QC	for	the	trimmed	reads,	we	compared	the	

number of read- pairs, the level of read duplication and the align-
ment	efficiency	between	sites	within	species.	The	raw	Fastq	data	
from	each	 library	was	split	 into	six	 files	of	equal	size	 for	parallel	
alignment.	The	 files	were	concatenated	with	Bismark	 (–multiple)	
for	 deduplication.	 Methylation	 extraction	 was	 performed	 with	
default	 settings,	 including	 the	–exclude_overlap	 flag,	which	only	
considers data from one of the two strands available in case of 
overlap between forward and reverse reads. Tests were per-
formed	 using	 base	 R	 functions	 including	 the	 Shapiro–Wilk	 test	
(shapiro.test)	for	univariate	normality	(Shapiro	&	Wilk,	1965),	
the	Bartlett	 test	 (bartlett.test)	 for	homogeneity	of	variance	
(Bartlett,	1937)	and	the	ANOVA	performed	using	the	lm and sum-
mary.aov functions.

2.5  |  Single nucleotide polymorphism detection

Any	C	to	T	single	nucleotide	polymorphisms	 (SNPs)	 in	our	dataset	
would be incorrectly interpreted as an unmethylated cytosine by 
Bismark	(Krueger	&	Andrews,	2011).	We	therefore	removed	poten-
tial	variants	in	CpG	sites	using	the	BS-	SNPer	tool	(Gao	et	al.,	2015).	
Variants	were	 identified	for	each	sequenced	 library	 independently	
using the default settings and a minimum coverage of 10× to cor-
respond	to	filters	applied	in	MethylKit	downstream.

2.6  |  Coverage filtering and computational pooling

We	processed	the	aligned	reads	for	CpG	sites	(dinucleotide	sequence	
of 5′–CG–3′	within	a	DNA	molecule)	with	the	MethylKit R pack-
age,	 v.1.24.0	 (Akalin	 et	 al.,	 2012)	 available	 through	 Bioconductor	
(Huber	et	al.,	2015).	For	each	species	we	excluded	unplaced	contigs.	
We	decided	to	retain	bases	with	at	least	10	reads	(i.e.	minimum	cov-
erage of 10×).

We note that the mean coverage per individual library was 
10× and filtering for 10 reads will cause notable data loss but we 
opted for this value as it provides a resolution of 10% for changes 
in methylation.

We	further	excluded	over-	represented	sites,	which	may	reflect	
sequencing	bias,	 by	 removing	 the	 sites	 in	 the	99.9th	percentile	of	
coverage.	Regions	of	1000 bp	size	were	formed	as	non-	overlapping	
blocks using the tile function in MethylKit with default options 
(sliding	windows	of	1000 bp	and	regions	of	1000 bp).	In	another	mol-
lusc, Crassostrea virginica, CpG methylation islands have a median 
length	 of	 1024 bp	 (minimum,	 500 bp;	 Venkataraman	 et	 al.,	 2020).	
Our tiles may thus capture many islands in part or in whole.

We further performed computational pooling of individual library 
data to compare with the wet- lab pooled library data. Computational 
pooling is a post- hoc process that sums up the coverage within each 
site using the individual library data and creates one library per site 
or	 population.	We	 used	 the	 individual	 libraries	 after	 filtering	 (de-
scribed	above)	as	input	data	and	pooled	using	the	pool function in 
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MethylKit. For the individual libraries, we only included sites that 
were present in at least 75% of the libraries.

2.7  |  Evaluation of concordance between 
pooled and individual libraries

2.7.1  |  Genome-	wide	global	CpG	methylation	levels

To test for an agreement between the pooled and individual librar-
ies, we fit an overall correlation of the CpG methylation estimates 
for	all	samples	in	a	pairwise	fashion	using	Pearson's	correlations	with	
the getCorrelation function in MethylKit. We estimated the 
correlations per chromosome and discussed the coefficient aver-
aged across chromosomes.

To describe the relationship between the signal in the pooled and 
individual libraries and between the polluted and non- polluted sites, 
we performed clustering based on the % methylation estimates using 
a	principal	component	analysis	(PCA).	To	estimate	an	error	on	the	PCA	
coordinates, we performed a jackknife over linkage groups, estimating 
the	standard	error	(Busing	et	al.,	1999; as in Montinaro et al., 2015).	To	
confirm that jackknife iterations were reporting a similar clustering sig-
nal,	we	tested	for	a	correlation	between	the	PC	loading	matrix	across	
jackknife	iterations	using	the	Tucker's	coefficient	(Lorenzo-	Seva	&	ten	
Berge, 2006; Peres- Neto & Jackson, 2001).

To prevent any conflicts in the directional of components be-
tween jackknife iterations, we used a Procrustes transformation 
to	align	each	iteration	of	the	PCA	with	the	PCA	of	the	full	dataset	
(Peres-	Neto	&	Jackson,	2001).	The	transformation	coefficients	were	
examined	to	ensure	that	no	matrix	needed	excessive	transformation	
to align as this would indicate a big difference in the signal. Where 
PCs were strongly correlated across jackknife iterations, we pro-
ceeded to estimate the error.

2.7.2  |  Differential	methylation	in	response	to	
pollution

We tested whether there was overlap between regions show-
ing	 differential	 methylation	 (DMRs)	 between	 polluted	 and	 non-	
polluted sites from the individual, pooled and computationally 
pooled libraries. Differential methylation for the individual libraries 
was	estimated	using	a	logistic	regression	(Cramer	&	Howitt,	2004).	
This	regression	cannot	be	conducted	with	one	sample	per	site	(i.e.	
pooled	libraries),	so	differential	methylation	was	estimated	for	the	
pooled	and	computationally	pooled	libraries	using	the	Fisher's	exact	
test	(Fisher,	1934)	(Table S3).	p- values were corrected for multiple 
testing	under	a	sliding	linear	model	method	(Wang	et	al.,	2011)	and	
we report the q- values. Regions were considered to have signifi-
cant	 differential	 methylation	 (i.e.	 DMR)	 with	 q < .01	 and	 a	 mean	
methylation difference of at least 10%. To understand the direction 
of hyper/hypo- methylation, all tests were performed with the fol-
lowing orders for sites: ‘Pollution site’ versus ‘Non- Pollution site’. 

The	number	of	regions	in	common	between	tests	were	visualized	
with ggupset	(Ahlmann-	Eltze,	2020)	package	in	R.

2.7.3  | Methylation	profiles	by	genetic	context

To	examine	if	the	library	preparation	schemes	recovered	qualitatively	
different	DMRs	(i.e.	with	a	different	genetic	context),	we	profiled	the	
distribution of the DMRs detected according to available annotation 
features.	As	 the	annotation	file	 for	Corbicula fluminea was not avail-
able for this work, we present only the result of Dreissena polymorpha. 
We	used	the	available	gene	annotations	from	the	UCSC	website	 (as	
of	 2024-	03-	25,	 GCF_020536995.1_UMN_Dpol_1.0_genomic).	 We	
categorized	 DMRs	 as	 intergenic,	 exon	 or	 intron,	 with	 further	 sub-	
categories where relevant.

2.8  |  Estimates of recovered power

To gauge the available power in our dataset, we estimated the recov-
ered power per region in the contrast of polluted and non- polluted 
sites. The power of a test is defined as the probability that it correctly 
rejects the null hypothesis when the alternative hypothesis is true. 
First,	we	define	the	mean	difference	in	methylation	(hereafter	MDM)	
as the difference in the mean methylation estimates between the 
populations. We then identified regions which we considered to be 
non- responsive to pollution as regions with MDM of ~0. This meas-
ure takes into account both variance within and between sites and 
allows for some level of artificial variance due to errors. With the 
individual	 libraries	 power	 estimates	were	 based	 on	 a	 t-	test.	 Effect	
sizes	were	estimated	as	done	by	Mansell	et	al.	(2019).	We	estimated	
Cohen's	d,	which	is	the	expected	difference	in	means	divided	by	the	
standard	deviation	 across	 all	 samples	 (Cohen,	1988).	The	MDM	at	
each locus was based on that calculated in the estimation of DMRs, 
with α = .01	and	the	observed	sample	sizes	per	site	per	species.	We	
consider only loci with 100% overlap across all samples. The power 
values were calculated using the pwr.t.test function in the R 
package pwr	(Champely,	2018). For the pooled and computationally 
pooled	 libraries,	adjustments	were	needed	to	 replicate	 the	Fisher's	
exact	test.	With	binomial	count	data,	the	variance	is	a	function	of	the	
mean	(Everitt	&	Hothorn,	2010),	and	this	allows	us	to	estimate	the	
standard	deviation	as	the	square	root	of	the	variance	function	using	
only the proportions.

The	 effect	 size	 was	 estimated	 using	 the	 ES.h function which 
uses an arcsine transformation. The power was estimated using the 
pwr.2p2n.test function in the R package pwr. The pwr.2p2n.
test	test	considers	a	two-	proportion	test	with	unequal	sample	sizes	
(i.e.	coverage	in	this	context)	under	the	null	hypothesis	that	there	is	no	
difference in the site means. The region- specific coverage value was 
used in the calculation.

Variance =
p1

(

1 − p1
)n1 +

p2
(

1 − p2
)n2.
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    |  7 of 18DANIELS et al.

2.9  |  Estimates of the necessary sampling effort for 
significant detection

We estimated the distribution of the necessary sampling effort to 
detect statistically significant differences between polluted and 
non-	polluted	sites	at	each	region.	Sampling	effort	estimates	were	
made with the pwr.t.test function for the individual libraries and 
with the pwr.2p.test function for the pooled and computation-
ally	pooled	data.	We	set	the	power	threshold	to	80%	(power = 0.8, 
n = NULL)	in	all	cases	and	we	assumed	equal	sampling	effort.	In	this	
estimate the sampling effort for individual libraries is measured as 
the	number	of	biological	 replicates	 (each	providing	a	methylation	
estimate	as	a	continuous	number).	Sampling	effort	for	the	pooled	
and computationally pooled data are measured as the interaction of 
the	coverage	and	the	number	of	biological	replicates	(count	data	as	
either	methylated	or	unmethylated	read).

2.10  |  Laboratory costs estimation

We	 summarized	 the	 costs	 per	 sample	 in	 a	 hypothetical	 scenario	
where	12	populations	from	two	sites	have	been	sampled	(Table 3).	
We estimated the cost of creating a ‘bulk pooled’, ‘nested pooled’ 
and	 ‘individual	 libraries’	 with	 8,	 4	 and	 1	 individual(s)	 per	 library,	
respectively.	The	costs	were	based	on	quotes	as	of	2023	 in	Swiss	
Francs	 including	 local	 taxes.	 These	 costs	 exclude	 all	 procedures	
which	are	equivalent	between	the	pooled	and	the	individual	libraries	
(such	as	sample	collection,	DNA	extraction,	DNA	quality	control	and	
sequencing	of	 libraries,	assuming	equivalent	sequencing	depth	per	
individual).	We	aimed	to	obtain	equivalent	sequencing	depth	per	in-
dividual in individual and pooled libraries to have the same resource 
investment	in	both	sites.	Reducing	sequencing	effort	of	the	pooled	
libraries may be a way to further decrease costs, however we do not 
specifically test this in this study.

3  |  RESULTS

3.1  |  Quality control and mapping

All	reads	were	of	high	quality	with	an	average	per	base	Phred	score	
>32. Filtering by conversion rate efficiencies resulted in the re-
moval of four C. fluminea samples with less than 98.5% conversion 
efficiency and a further two D. polymorpha due to possible over- 
conversion	and	poor	recovery	of	the	control	sequences.	All	four	
pooled	libraries	had	adequate	conversion	rates.	For	the	remaining	
samples the conversion levels of the unmethylated lambda control 
in	the	CpG	context	were	99.34 ± 0.20%,	while	maintaining	meth-
ylation	 levels	of	96–98.3%	on	the	pUC19	control	 (Table S4).	For	
the individual libraries, the average number of reads after filter-
ing and end- trimming was 75 ± 9.3	million	(μ ± SD)	for	C. fluminea 
and	 70 ± 9.7	 million	 (μ ± SD)	 for	 D. polymorpha	 (Table S2).	 The	
pooled libraries had reads slightly under 10× the value of a sin-
gle	individual	library;	669 ± 10	million	(μ ± SD)	for	C. fluminea and 
636 ± 30	 (μ ± SD)	million	 for	D. polymorpha. The statistical com-
parison	of	the	read	QC	measures	between	pollution	sites	within	
species showed that all groups had a normally distributed number 
of	duplicated	reads	and	proportion	of	aligned	reads	(p- value >.05, 
Shapiro–Wilk	test).

3.2  |  Variant detection

Possible	SNPs	at	C/G	sites	were	removed	to	prevent	misinterpreta-
tion	as	C	to	T	enzymatic	conversion.	We	detected	a	total	of	15,781	
unique	variants	across	all	libraries	for	C. fluminea	and	18,216	for	D. 
polymorpha	 (Table S5).	The	vast	majority	 (95%–96%)	of	 these	vari-
ants	were	unique	to	single	individuals	(15,108	and	19,190	for	C. flu-
minea and D. polymorpha,	 respectively).	All	variants	were	 removed	
from downstream analyses.

TA B L E  2 Summary	of	data	loss	throughout	QC.

Species Treatment Pool Libraries

Before filter After filter Proportion loss

Mean SD Mean SD Mean SD

C. fluminea NP N 7 31,876,245 1,263,490 664,004 267,223 0.98 0.79

P N 7 30,608,103 2,281,176 532,142 290,244 0.98 0.87

NP Y 1 46,177,902 — 28,113,914 — 0.39 —

P Y 1 45,844,340 — 27,100,500 — 0.41 —

D. polymorpha NP N 8 51,086,375 1,789,694 568,528 285,859 0.99 0.84

P N 10 47,273,860 3,660,842 334,821 174,217 0.99 0.95

NP Y 1 76,126,510 — 48,759,866 — 0.36 —

P Y 1 75,759,688 — 47,910,153 — 0.37 —

Note:	Presented	are	the	mean	(±SD)	number	of	CpG	sites	before	and	after	applying	a	filter	for	10× minimum coverage, as well as the amount of data 
lost as a proportion.
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3.3 | Larger data loss in individual libraries compared 
with pooled libraries for equivalent sequencing effort

We applied a conservative minimum coverage filter of 10× for all 
work.	While	the	per-	individual	sequencing	effort	was	the	same	be-
tween individual and pooled libraries, the individual libraries yielded 
several orders of magnitude fewer sites than the pooled libraries for 
both	species	(Table 2).	A	steep	data	reduction	for	 individual	 librar-
ies	is	expected	as	the	average	coverage	was	10× per individual se-
quence	and	we	applied	a	filter	for	10× coverage.

Specifically,	 97%–99%	 of	 the	 individual	 library	 data	 was	 fil-
tered	 out	 at	 this	 step,	 while	 36%–41%	 of	 the	 pooled	 library	
data	was	 filtered	 out.	 This	 resulted	 in	 approximately	 75,000	 to	
1,200,000	sites	per	individual	library,	while	we	obtained	approx-
imately	27–48	million	sites	per	pooled	library	(Table 2).	Coverage	
values are variable among individual libraries, but there were no 
large	deviations	from	the	mean	to	warrant	exclusion	in	all	but	one	
site	(Table S2).

We	recovered	14,461	and	2410	regions	common	to	75%	of	the	
individuals for C. fluminea and D. polymorpha, respectively, repre-
senting a decrease of over 80% relative to the average number of 
regions available after filtering and tiling. In contrast, the number 
of	regions	for	the	pooled	library	data	declined	by	52%	(868,103	and	
1,180,209 for C. fluminea and D. polymorpha,	respectively).	The	num-
ber of regions retrieved from the computationally pooled datasets 

were	a	marginal	7%	loss	(C. fluminea)	and	10%	gain	(D. polymorpha)	
relative to the pre- united individual libraries.

The	observed	data	loss	is	due	to	two	major	steps:	(1)	initial	min-
imum	 coverage	 filtering	 per	 individual	 and	 (2)	 union	 step	 to	 find	
the regions common among individuals. This result is certainly a 
consequence	of	our	sequencing	strategy	(i.e.	equivalent	sequenc-
ing	 effort	 per	 individual	 in	 pooled	 and	 individual	 libraries);	 how-
ever, this was done on purpose to compare the data of pooled and 
individual libraries obtained with the same resource investment in 
sequencing.

3.4  |  Evaluation of agreement between pooled and 
individual libraries

3.4.1  |  Global	DNA	methylation	and	correlations	of	
genome- wide methylation levels

C. fluminea had slightly lower global methylation levels compared to 
D. polymorpha	 (~15.48%	vs.	19.67%;	Table S2).	These	values	are	at	
the	upper	end	of	 those	 reported	 for	other	molluscs	 (5%–15%;	see	
Fallet et al., 2020).	Differences	 in	methylation	were	negligible	be-
tween the polluted and non- polluted sites, and between the pooled 
and	individual	libraries	for	both	species	(C. fluminea, individual librar-
ies,	polluted	15.40 ± 0.74%	vs.	non-	polluted	15.44 ± 0.57%,	pooled	
libraries	15.5%	vs.	15.6%;	D. polymorpha, individual libraries polluted 
19.79 ± 2.15%	vs.	non-	polluted	19.58 ± 0.57%,	pooled	libraries	19.6%	
vs.	19.7%).

We	 examined	 the	 correlation	 of	 methylation	 percentage	 val-
ues between individual and pooled libraries to test for congruence 
between	 the	 two	 datasets	 that	 are	 expected	 to	 be	 equivalent.	
Correlations were slightly stronger for C. fluminea	(.90–.99)	compared	
to D. polymorpha	(.88–.98;	Figure 2),	but	overall	similar	trends	were	
detected. The percent methylation values were positively correlated 
between individual and pooled libraries with the pairwise correlation 
coefficients not going below .92, irrespective of the pollution site or 
species.	This	 is	expected	 if	pooled	 libraries	demonstrate	 the	 same	
signal as the individual libraries and where data have not been cen-
tered	(see	Xu	et	al.,	2015	for	the	importance	of	centring).

Unexpectedly,	 however,	 individual	 libraries	 correlated	 only	
slightly better with pooled libraries of the same site compared 
to	 correlations	 across	 sites	 (Figure 2).	 For	 both	 species,	 pooled	
libraries	 correlated	 best	 with	 each	 other	 (~.988).	 These	 results	
highlight that pollution has a weaker influence on correlation than 
the pooling method. For both species, the individual libraries from 
the pollution site had the lowest correlation coefficients for within 
site	 correlations	 (across	 both	 species:	 pollution	 .88–.93	 vs.	 non-	
pollution	 .90– .93).	 This	 suggests	 that	 there	may	 be	 a	 pollution-	
related response in methylation estimates influencing variation. 
Overall, we found that genome- wide methylation levels of in-
dividual and pooled libraries were well correlated following our 
expectations.

F I G U R E  2 Scatter	plots	of	the	correlation	coefficients	for	
percent methylation between pollution sites. Pearson correlation 
coefficients are based on the per- region % methylation for each 
pair of libraries when using all samples.
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3.4.2  |  Agreement	among	PCA	jackknife	iterations

To understand the similarity among samples, we tested for clus-
tering using a principal component analysis on the percent meth-
ylation values. We measured heterogeneity of the signal across 
the genome with a standard error based on a delete- one jack-
knife.	 This	measured	 changes	 to	 the	 PCA	 coordinates	when	 re-
moving	a	 linkage	group	with	each	iteration	of	the	PCA.	For	both	
species	and	nearly	all	PCA	iterations,	the	Tucker's	coefficient	was	
greater than .90 indicating an overall agreement in signal between 
the	global	PCA	and	each	iteration	(see	Figures S1).	For	both	spe-
cies,	three	of	the	jackknife	iterations	gave	notably	lower	Tucker's	
coefficients and greater Procrustes D values than the remaining 
iterations, indicating a disproportionate influence from the re-
spective	linkage	group	(C. fluminea LG05, LG08, LG12; D. polymor-
pha	NC_068364.1,	NC_068365.1,	NC_068370.1).	The	result	does	
argue that some linkage groups may have notable divergences 
from the majority of the genome.

3.4.3  |  PCA	of	genome-	wide	methylation	levels

In the C. fluminea	PCA	(all	 libraries,	94,912	regions;	Figure 3a),	the	
primary eigenvector captured ~10% of the variance and the first 11 
vectors accounted for the top 90% of the variance. There was no 
clear difference between pollution level and no clear differences in 
the variation within groups, with two outlying samples in the non- 
polluted group.

In the D. polymorpha	 PCA	 (all	 libraries,	 190,879	 regions;	
Figure 3c),	 the	 first	 eigenvector	 captured	 a	 significant	 part	 of	 the	
variance	(27%),	largely	describing	variation	within	the	polluted	popu-
lation. The remaining vectors captured similar, but small, proportions 
of	the	variance	(~8%–5%).	Again	we	see	no	clear	support	for	a	direc-
tional or consistent difference in central tendency of either pollution 
groups	(Figure 3d).

For both species the pooled libraries plotted central to all the 
individual libraries. This was confirmed by estimating the mean posi-
tion	of	individual	libraries	on	PC1	and	PC2.	With	one	exception,	the	
mean	positions	were	nearly	equivalent	to	their	pooled	counterparts	
(For	D. polymorpha	NP:	 individual	 libraries	−2.33,	−0.56	vs.	pooled	
libraries	−1.62,	0.86;	P:	 individual	 libraries	2.42,	0.55	vs.	pooled	 li-
braries 5.50, 0.37. For C. fluminea	NP:	For	individual	libraries	−3.99,	
−8.34	vs.	pooled	libraries	−0.18,	7.68).	Only	the	polluted	site	for	C. 
fluminea had the mean position notably away from the observed 
pooled	 libraries	 (individual	 libraries	 4.35,	 9.99	 vs.	 pooled	 libraries	
−2.36,	−3.85).

3.4.4  |  Comparison	of	differential	methylation	in	
individual versus pooled libraries

We used the pollution condition to assess if differential methyla-
tion estimates were similar between individual and pooled librar-
ies. For both species, there were orders of magnitude more DMR 
in either wet- lab or computationally pooled libraries compared 
with	individual	libraries	(Figure 4).	This	is	not	surprising	given	the	

F I G U R E  3 Principal	component	
analysis of the genome- wide percent 
methylation.	Panels	(a)	and	(c)	show	the	
variance	explained	by	each	component	
for C. fluminea and D. polymorpha, 
respectively. Highlighted bars show the 
components that make up the top 90% 
of	the	variance.	Panels	(b)	and	(d)	show	
the first two components with standard 
error bars based on the delete- one 
jackknife in C. fluminea and D. polymorpha, 
respectively. The percent variation 
explained	by	each	axis	is	indicated	on	the	
axis	label.
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large difference in input data. Both the pooled and computation-
ally pooled library of C. fluminea produced more hypermethylated 
regions	than	hypomethylated	regions	(12,517	vs.	9201	for	pooled	
and	 1191	 vs.	 879	 for	 computationally	 pooled).	 In	 contrast	 indi-
vidual libraries produced less than 130 DMRs in total with more 
hypermethylated regions.

Hypomethylated regions outnumbered hypermethylated regions 
for D. polymorpha	with	the	wet-	lab	pooled	data	(46,450	vs.	18,581,	
hypo-		 and	 hypermethylated,	 respectively).	 This	 was	 not	 the	 case	
with	 computationally	 pooled	 libraries	 (4066	 vs.	 2244,	 hyper-		 and	
hypo-	methylated,	 respectively).	 Individual	 libraries	 similarly	 pro-
duced	more	hypermethylated	regions	(80	vs.	25)	but	again	less	than	
130	regions	in	total	(Figure 4).

Despite the large number of regions detected by the tests with 
the pooled and computationally pooled data, there was a relatively 
low overlap in the identified regions. The incongruency was most 
pronounced for C. fluminea where the overlapping DMRs amounted 
to <5% of the identified DMRs from the computationally pooled 
data. For D. polymorpha, there was a substantially greater proportion 
of shared DMRs between the computationally pooled and wet- lab 
pooled data, with 29% of the hypermethylated and 17% of the hy-
pomethylated DMRs shared.

When	put	in	the	context	of	regions	overlapping	across	datasets,	
we see that for both species the number of DMRs detected is di-
rectly	 proportional	 to	 the	 number	 of	 input	 regions	 (see	 Figure 4; 
Figure S2).	Most	regions	in	common	between	library	datasets	were	
also identified as DMRs for those datasets. For both species, only a 
single region shared between individual libraries and either wet- lab 
or computationally pooled data was not also identified as a DMRs in 
the	respective	datasets	 (C. fluminea	one	of	128	regions).	For	over-
lapping regions between wet- lab and computationally pooled data, 

more than half of the regions were identified as DMRs in both pools 
(~50% for C. fluminea and 71%–77% for D. polymorpha)	 and	 these	
proportions were consistent for hypomethylation and hypermethyl-
ation	(see	Figure 4; Figure S2).

There were no distinct shifts in the proportion of hyper-
methylated regions relative to hypomethylated regions between 
datasets for C. fluminea	 (ratio	of	hyper:hypo-	methylated;	wet-	lab	
pooled	 1.36,	 computationally	 pooled	 1.35,	 individual	 libraries	
1.41).	In	sharp	contrast,	the	ratios	changed	notably	for	D. polymor-
pha	 (wet-	lab	 pooled	 0.40,	 computationally	 pooled	 1.81,	 individ-
ual	libraries	3.2).	This	likely	reflects	the	general	high	methylation	
across the genome of invertebrates being better represented in 
the wet- lab pool of D. polymorhpa by virtue of the greater number 
of regions recovered. Overall this indicates that when regions are 
recovered across different datasets, the majority do have consis-
tent outcomes.

3.5  |  Methylation profiles by genetic context

We	see	that	DMRs	are	over-	represented	in	genic	regions	(exon + in-
tron)	while	intergenic	regions	made	up	18%–35%	of	the	detected	
DMRs	(Figure 5).	Introns	were	the	largest	constituent	of	the	genic	
regions	(44%–52%)	with	exons	making	up	22%–27%	of	DMRs.	The	
DMRs detected in the two library pooling schemes show overall 
consistency	 in	 the	 distribution	 among	 contexts	 for	 both	 hyper-
methylation and hypomethylation. The similarity in profile was 
also	seen	when	considering	sub-	divisions	in	genic	context	where	
approximately	equal	proportions	of	regions	overlapped	with	start	
codons	and	stop	codons.	The	individually	sequenced	libraries	pro-
duced too few DMRs to reliably profile their distribution across 

F I G U R E  4 Intersection	of	the	identified	differentially	methylated	regions	(DMRs)	from	contrast	of	the	polluted	and	non-	polluted	
localities	for	the	individual,	pooled	and	computationally	pooled	libraries	for	(a)	C.	fluminea	and	(b)	D.	polymorpha.	The	indivdiual,	pooled	and	
computationally	pooled	libraries	are	each	a	‘set’	of	DMRs	as	show	by	the	rows	at	the	bottom.	The	‘intersections’	(columns)	are	the	DMRs	
shared between sets. The dot- plot in the bottom shows how DMRs from each set are distributed among intersections. The central barplot 
shows the number of DMRs within a particular intersection. Numbers in the plot indicate the DMR counts which are either hyper-  or hypo- 
methylated	for	each	bar	(proportion	of	total	DMRs	in	brackets	when	>0.01).	Font	colours	correspond	to	the	legend.
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    |  11 of 18DANIELS et al.

regions but do suggest an overall agreement with the computa-
tionally pooled data.

3.6  |  Estimates of the required sampling 
effort and the recovered power

To assess the available power in our data, we estimated the propor-
tion	of	regions	responsive	to	pollution	(Table S6)	the	level	of	power	
recovered	with	our	current	sampling	effort	(Table S7)	and	the	sam-
pling effort needed to achieve power at a level of 80% at each re-
gion	(Table S8).	We	used	region-	specific	estimates	of	effect	size	and	
mean	difference	in	methylation	(MDM)	between	sites	(i.e.	polluted	
vs.	non-	polluted).

A	 low	 proportion	 of	 regions	 (<25%)	were	 deemed	 to	 be	 non-	
responsive	to	pollution	(i.e.	with	MDM = 0)	across	all	contrasts.	The	
wet- lab pooled and computationally pooled libraries for both species 
produced more regions non- responsive to pollution than the indi-
vidual	 libraries	 (Table S6).	 Proportionally,	 wet-	lab	 pooled	 libraries	
produced >10× more than individual libraries and computationally 
pooled produced 4–5× more than wet- lab pooled.

For	 the	 regions	 responsive	 to	pollution	 (i.e.	with	 |MDM|	>0),	
the sampling effort estimates were very large. For the individual 
libraries, estimates were predominantly more than 100 individuals 
per	site	(Figure 6a,d).	Sample	effort	below	100	was	only	achieved	
for ~26%	 (669	 regions)–35%	 (4803	 regions)	 of	 the	 total	 regions	

considered, and no regions had sufficient power with our sampling 
effort.

Similarly,	 in	the	wet-	lab	and	computationally	pooled	data,	es-
timates	of	required	sampling	effort	were	>1000×	and	almost	ex-
clusively >100×	coverage	for	both	species	(Figure 6b,c,e,f).	For	a	
set	of	10	 individuals	 this	would	be	the	equivalent	of	~100× cov-
erage	each	to	achieve	adequate	coverage	for	less	than	50%	of	the	
variance	distribution.	We	recovered	adequate	power	at	only	~4%–
15% of regions in the pooled and computationally pooled libraries, 
highlighting that the majority of our regions were under- powered. 
Computationally pooled libraries produced greater proportions of 
regions with coverage estimates below 100× compared to pooled 
libraries	(Table S8).

The bias towards under- powered regions can be understood by the 
distribution	of	MDM	values.	Across	all	comparisons,	regions	with	the	
lowest MDM had the lowest power and largest sampling effort, which 
is	to	be	expected	as	larger	differences	require	fewer	samples.	Nearly	
the entire MDM distribution was predominantly under- powered and 
had	very	small	estimates	of	MDM.	For	example,	with	wet-	lab	and	com-
putationally pooled data, the lowest 50% of the MDM distribution 
(~1%	difference	 in	methylation)	had	no	regions	with	sampling	effort	
below 100×	coverage.	Such	low	MDM	would	be	below	the	detectable	
resolution with 10×	coverage	used	in	our	study	(Figure 6a,d; Table S8).	
For the wet- lab and computationally pooled data, it was only regions 
in the top 10% of MDM distribution which would be detectable with 
a 10×	coverage	as	used	in	this	study	(>10%	difference	in	methylation)	

F I G U R E  5 Distribution	of	regions	
used in the analyses, split by the three 
library preparation schemes and grouped 
according	genic	context.	Results	are	
shown for Dreissena polymorpha for the 
number of differentially methylated 
regions detected with hypermethylation 
(top	panel)	and	hypomethylation	(bottom	
panel)	split	by	association	with	different	
genic	contexts.	Library	preparation	
schemes	are	individual	libraries	(left),	
wet-	lab	pooled	libraries	(centre)	and	
computationally	pooled	libraries	(right).	
The number of regions and proportion of 
total regions for each sub- category are 
indicated on the plot. Colours correspond 
to the barplot and figure legend.
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and only 10% of these regions had sampling effort estimates below 
100×	coverage	(1%–3%	of	the	total	regions)	 (Table S8).	The	compu-
tationally pooled data of D. polymorpha	was	a	notable	exception	here	
as the upper 25% of the regions reached the detection limit of 10× 
coverage making up as much as 8% of the total regions. Individual 
libraries could produce a greater proportion of regions with achiev-
able	sampling	effort	for	lower	MDM	bins	(Table S8).	For	example,	the	
bottom	95%	of	the	MDM	distribution	(MDM	<9%)	had	~28% of re-
gions with achievable sampling effort estimates. However, we note 
that these differences would still be below the detection limit for each 
individual sample.

With regards to differences between the species, we see that D. 
polymorpha had a greater proportion of regions with achievable cov-
erage, this being double the proportions for C. fluminea in the pooled 
data and computationally pooled data. For the individual libraries 
this proportion was only slightly lower than that of C. fluminea	(28%	
vs.	33%).	 Similarly,	 a	 greater	proportion	of	 regions	 achieved	 suffi-
cient power with our sampling for D. polymorpha.

Finally we also note the greater MDM for D. polymorpha, as much 
as	49%	for	individual	libraries	(vs.	30%	C. fluminea).	For	the	pooled	
and	computationally	pooled	data,	the	two	species	had	equal	ranges	
for MDM, ~88%–100%. These differences may be attributed to sam-
ple	sizes	between	the	species,	the	library	pooling	and	the	possible	
differences in natural variation.

4  |  DISCUSSION

4.1  |  Individual and pooled libraries provide similar 
genome- wide methylation estimates

Here	we	examined	if	cost-	effective	pooled	whole-	epigenome	librar-
ies	 provide	 equivalent	 biological	 results	 to	 individually	 sequenced	
libraries. We found that pooled libraries produced a congruent epi-
genetic signature with individual libraries at the genome- wide level 
as	 seen	with	 pairwise	 correlations,	 the	 PCA	 and	 the	 predominant	

F I G U R E  6 Estimates	of	the	required	per-	region	sampling	effort	and	the	achieved	power.	Panels	(a)–(c)	show	the	estimates	for	C. fluminea, 
and	panels	(d)–(f)	show	the	estimates	for	D. polymorpha	with	separate	plots	for	individual	(panels	a	&	d),	wet-	lab	pooled	(panels	b	&	e)	and	
computationally	pooled	libraries	(panels	c	&	f).	Dots	are	individual	loci	and	colours	indicate	the	estimated	power	achieved.	Note	that	in	
panels	(a)	and	(d)	regions	with	sampling	effort	estimates	>1000	were	capped	to	1000	and	in	panels	(b),	(c),	(e)	and	(f),	regions	with	sampling	
effort estimates >10,000	were	capped	to	10,000.	Sampling	effort	is	measured	as	the	number	of	biological	replicates	per	site	for	individual	
libraries	in	panels	(a)	and	(d),	and	sequencing	coverage	per	pooled	site	for	pooled	libraries	in	panels	(b),	(c),	(e)	and	(f).	Regions	with	power	
>0.8 were plotted above other regions to aid visibility.
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congruence among DMRs but we note that the signal at specific 
regions were not necessarily congruent largely due to insufficient 
power and detection resolution. Our estimates of global meth-
ylation were also stable between pooled and individual libraries. 
These results are in line with previous research supporting a global 
or	 genome-	wide	 correspondence	 of	DNA	methylation	 levels	 from	
pooled and individual libraries using different ways of measuring 
DNA	 methylation	 (Docherty	 et	 al.,	 2009, 2010; Gallego- Fabrega 
et al., 2015).	In	our	data,	both	pooled	and	individual	libraries	showed	
a negligible difference in methylation between the polluted and non- 
polluted groups and for both species but in all cases DMRs were 
detected.

4.2  |  Pooled libraries provide more data than 
individual libraries for an equivalent sequencing effort 
while reducing wet- lab costs

We found that there is at least a 7- fold decrease in the cost per 
sample for ‘bulk pooled’ libraries compared with individual librar-
ies	 (Table 3).	 The	 reduction	 depends	 on	 the	 number	 of	 biological	
replicates	 in	each	pool	and	this	allows	a	great	degree	of	 flexibility	
to	 balance	 sample	 sizes,	 coverage	 and	 cost.	 The	 pooled	 libraries	

also	produced	orders	of	magnitude	more	final	regions	(between	20	
and 50×	more	 than	 individual	 libraries)	 and	 lost	 notably	 less	 data	
throughout the workflow. There are a number of steps in the work-
flow at which data are lost. From our results we have pointed out a 
few noteworthy stages: lower alignment efficiencies compared to 
conventional	WGS	 sequence	 alignment	 (30%–70%	 read	 pairs	 dis-
carded),	filtering	for	specific	subset	of	sites	from	the	sequence	data,	
data discarded from the overlap between paired reads, deduplica-
tion	and	other	post-	alignment	steps/biases	(~80% reduction relative 
to	the	expected	coverage),	 the	removal	of	suspected	SNPs,	cover-
age	filtering	(~36%–41%	loss	for	pooled	libraries,	over	98%	loss	for	
individual	libraries),	finding	loci	in	common	across	samples	(52%	loss	
for	pooled	libraries,	81%–95%	loss	for	 individual	 libraries),	filtering	
out	sites/regions	that	are	not	 responsive	to	pollution	 (1%–21%	re-
gions	 lost)	and	finally,	 the	 loss	of	sites/regions	which	have	 insuffi-
cient power to detect differences at the chosen MDM resolution 
(75%–95%	of	regions).	This	result	is	certainly	in	part	a	consequence	
of	our	sequencing	strategy	(i.e.	equivalent	sequencing	effort	per	in-
dividual	 in	pooled	and	 individual	 libraries),	however	 this	was	done	
deliberately to compare the data of pooled and individual libraries 
obtained	with	the	same	resource	investment	in	sequencing.	This	re-
sult highlights the need for a particularly high coverage of individual 
WepiGS	 libraries	 (e.g.	>15×	 initial	 coverage)	 to	 obtain	 a	 sufficient	
number of sites for final comparisons.

When	estimating	the	required	sampling	efforts	to	reach	sufficient	
power per region, pooled libraries produced as much as 90× more re-
gions with an achievable sampling effort for regions with detectable 
MDM	(103	vs.	9358	regions	for	D. polymorpha).	Achievable	is	defined	
here as regions with estimates of <100	 samples	 per	 site	 (individual	
libraries)	 or	 coverage	 estimates	 below	 100×	 (pooled	 libraries).	 The	
achieved power was greater for the pooled libraries while the individ-
ual libraries for both species had no regions that reached the threshold 
of	0.8	power.	All	of	this	strongly	supports	that	pooled	libraries	produce	
sufficient data more reliably compared with individual libraries given 
similar per- sample coverage of 10×	on	average	and	with	a	subsequent	
filter of at least 10 reads per methylation call and considering the reso-
lution offered by the used coverage and filtering combination.

Low	power	is	a	concern	even	in	well	controlled	studies,	for	ex-
ample	 of	 clinical	 ADHD	 (van	 Dongen	 et	 al.,	 2019).	 Theoretically,	
reasonable	power	(80%,	p < .05)	can	be	achieved	with	small	sample	
sizes	 (100	cases-	control	pairs)	and	even	with	small	effect	 sizes	 (as	
low	as	4.5%)	 for	array-	based	work	 (Tsai	&	Bell,	2015),	 and	empiri-
cally,	95%	power	can	be	achieved	with	arrays	(p < 10E-	6)	with	>43 
pooled	samples	 (Gallego-	Fabrega	et	al.,	2015).	However,	 the	work	
by Dongen et al. detected very few differentially methylated loci 
(<20 out of >400 K;	0.005%	of	available	loci)	despite	being	able	to	
directly	or	indirectly	link	loci	to	previous	GWAS	results,	vouching	for	
the accuracy of the signals detected. Their meta- analysis found no 
loci overlap between previous studies despite using the same geno-
typing	array	(see	also	Kaplow	et	al.	 (2015)	where	overlap	between	
studies	was	less	than	53%,	or	8	of	15	loci).	In	WepiGS,	specific	loci	
and	the	distribution	of	sequencing	effort	across	the	genome	cannot	
be	guaranteed	so	we	expect	far	lower	power	at	any	particular	site.

TA B L E  3 Cost	comparison	of	pooled	and	individual	libraries.

Individual
Nested 
pooled

Gross 
pooled

Pooling details

Populations 12 12 12

Libraries 192 48 24

Samples	per	library 1 4 8

Total samples 192 192 192

Material/Protocol total

NEBNext®	Enzymatic	
Methyl-	seq	Kita

9374 2604 1302

General consumablesb 192 48 24

Library	quantificationc 192 48 24

Library	quality	controlc 960 240 120

Total 10,718 2940 1470

55.82 15.31 7.66

Cost ratio 
(Individual:Pooled)

3.6 7.3

Note:	Estimated	costs	per	specimen	in	a	scenario	of	sampling	12	
populations for a total of 192 biological replicates and no technical 
replicates.	Costs	are	provided	in	Swiss	Francs	(CHF)	with	local	2023	
prices. Costs are likely to vary among countries based on local factors. 
Prices	include	local	taxes.	Where	costs	are	equal	between	pooled	
and	individual	libraries,	we	omitted	such	costs	(i.e.	individual	DNA	
extraction,	quality	control,	shearing,	sequencing	depth).
a1 × 24	reaction	kit	for	pooled	and	2 × 96	reaction	kit	for	individual	
libraries.
bPipette tips, general reagents, gloves, tubes etc.
cTapestation D1000 screen tape, reagents and consumables.
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In practice, our pooled libraries detected several thousand DMRs 
while the individual libraries detected <130 DMRs out of millions of 
initially available sites. These values are similar to that reported else-
where	(e.g.	pooled	data	598;	Venkataraman	et	al.,	2020).	These	differ-
ences will make a meaningful impact on the return of investment and 
the possible scope of downstream interpretation in research. We also 
employed computational pooling which pools the data of the individual 
libraries post- hoc. Here we found it to successfully mitigate much of the 
data	loss	that	individual	libraries	suffered	from	during	the	QC	process.	
Computationally pooled libraries produced smaller volumes of input 
data and DMRs relative to the wet- lab pooled.

4.3  |  Pooled and computationally pooled libraries 
provided different DMRs in our dataset

Beyond the global signal, our results showed that genome- wide con-
gruence does not necessarily imply corresponding DMR signals for 
pooled and individual libraries. We found reasonable agreement in 
DMRs between individual, wet- lab pooled and computationally pooled 
libraries	for	the	regions	which	did	overlap	across	datasets	(50%–77%)	
but a substantial amount of shared regions were not detected across 
methods	which	is	contrasting	with	the	correlations	and	PCA.

These	 differences	may	 arise	 from	 several	 factors:	 (1)	 the	 indi-
viduals compared between the pooled and computationally pooled 
libraries	were	not	exactly	the	same	as	four	C. fluminea and two D. 
polymorpha	individuals	were	excluded	from	downstream	analyses	as	
they	failed	conversion	rate	quality	control;	(2)	lack	of	normalization	
of	individual	data	before	computational	pooling;	(3)	stochasticity	in	
the	 library	preparation	 and	 sequencing	processes	 (e.g.	 differential	
PCR	during	library	preparation;	cryptic	biases	in	sequencing	among	
the	specimens	of	the	pooled	libraries);	and	(4)	differences	in	achieved	
power. Based on these results, we discuss below the benefits and 
drawbacks of sample pooling, as well as possible improvements and 
ways forward.

4.4  |  Benefits and drawbacks of sample 
pooling and recommendations

There	are	important	opportunities	offered	by	WepiGS	for	ecologi-
cal and evolutionary studies, and authors have made clear that it 
is crucial to optimally use resources and consider trade- offs before 
initiating	a	project	 (Laine	et	al.,	2022).	We	emphasize	that	there	 is	
not a single optimal solution for all projects and that the decision 
to	sequence	pooled	or	individual	libraries	depends	on	the	scientific	
question	of	a	particular	project	and	should	be	planned	at	very	early	
stages.	Here	we	put	our	work	in	context	and	provide	a	summary	of	
the	key	benefits	and	drawbacks	of	pooling	libraries	for	WepiGS,	as	
well	as	their	implications	(summary	in	Table 4).

Starting	with	the	benefits,	we	showed	that	pooled	libraries	can	be	
up to seven- fold more cost effective than individual libraries, when 
comparing wet lab costs. These costs are likely to be a limiting factor 

into	the	future,	given	that	sequencing	costs	are	constantly	decreas-
ing.	There	is	flexibility	in	cost	adjustment	when	the	pooling	scheme	
varies	(e.g.	deciding	how	many	pools	to	prepare)	but	there	is	presently	
limited research on the trade- offs of different degrees of pooling. 
Another	 important	benefit	of	pooled	libraries	 is	that	the	number	of	
individuals per pool can be increased; typically the number of indi-
viduals per investigated population is between 10 and 20, however 
it	has	been	shown	that	a	larger	number	of	individuals	is	required	to	
achieve	sufficient	power	in	natural	populations	(Lea	et	al.,	2017; Tsai 
& Bell, 2015).	For	instance,	when	a	predictor	variable	explains	15%	of	
the difference between populations, 125 individuals per population 
are	needed	to	reach	50%	power	(Lea	et	al.,	2017).	A	third	advantage	
was	that	a	 larger	proportion	of	the	sequencing	data	from	pooled	li-
braries can be used, resulting in many- fold increase in retrieved loci in 
our dataset. This was not only due to the higher coverage of pooled 
libraries, but also because there was a single union step using the 
pooled	datasets	(i.e.	finding	the	loci	in	common	among	libraries).	This	
union step typically leads to a large loss of data when using individual 
libraries.	Thus,	individual	average	coverage	(10×	in	our	study)	should	
be	 substantially	higher	 than	 the	 filtering	 threshold	 (10	 reads	 in	our	
study)	if	many	biological	replicates	will	be	united	at	many	loci.	Ziller	
et	al.	(2014)	have	argued	instead	for	increased	sensitivity	with	more	
biological replicates and coverage rather than coverage alone, but this 
would	 increase	 the	 costs	 substantially.	 Finally,	 if	 a	 high	 sequencing	
coverage	is	not	necessary	(e.g.	in	our	case	100×	per	pooled	library),	
researchers	can	decide	to	lower	the	sequencing	effort	per	pooled	li-
brary, possibly decreasing even more the project costs.

Using pooled libraries has several drawbacks, though, the most 
important one being that there is no possibility of going back to the 
individual	 data.	 Hence,	 researchers	 should	 be	 extremely	 careful	
when thinking about the pooling design and make sure that every 
covariate that may impact the signal in the data has been taken into 
account	 (e.g.	sampling	 locality,	sampling	time	 in	 the	year,	sex,	age,	
tissue,	experimental	condition,	etc.).	If	these	covariate	can	be	clearly	
identified	and	separated	in	sub-	pools,	then	pooling	the	DNA	of	sam-
ples may be a good option to increase power and decrease costs. 
In contrast, if covariates cannot be identified or if the variability in 
the	data	are	not	known	(e.g.	first	epigenomic	assessment),	we	would	
recommend against pooling.

Individual	 libraries	 provide	more	 flexibility	 and	 higher	 resolution	
as	groups	and	comparisons	can	be	done	a	posteriori	 (e.g.	testing	the	
impact	of	different	covariates	in	a	pilot	study)	and	data	can	be	reused	
for	future	projects	(e.g.	adding	individuals	from	different	populations	or	
time	points,	or	different	comparisons	can	be	made).	Other	drawbacks	
of using pooled libraries arise from the data analysis side. For instance, 
individual	samples	that	failed	cannot	be	excluded	(e.g.	low	conversion	
rate;	low	amount	of	sequencing	data),	and	thus	equal	conversion	rates	
and	sequencing	depth	for	all	individuals	in	a	pool	is	assumed.

Furthermore, we observed that a large amount of computational 
resources	was	required	to	process	the	pooled	datasets	(e.g.	alignment,	
methylation	calling)	and	that	the	currently	widely	used	bioinformatic	
tools	 have	 limited	 functionality/customizability	 (e.g.	 MethylKit	 run-
ning	 in	 R)	 and	 otherwise	 require	 users	 to	 develop	workarounds	 for	
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many tasks. Moving data between tools to achieve piecemeal anal-
yses	 is	 often	 time-	consuming	 and	 discouraged	 (Laine	 et	 al.,	 2022).	
Researchers could decide to filter out invariant sites early in the data 
analysis,	and/or	decrease	the	sequencing	depth	of	the	pools	(i.e.	less	
than 10×	per	sample),	however	the	minimum	sequencing	depth	to	ob-
tain meaningful population methylation rates is not known. We note 
that	 this	 issue	arises	when	 study	organisms	have	 large	genomes	 (in	
our	case	1.6	and	1.8	Gb),	but	it	may	be	less	of	a	problem	for	organisms	
with	smaller	genome	sizes	(e.g.	less	than	1	Gb).	Finally,	we	also	noticed	
that	there	are	fewer	and	less	flexible	statistical	tests	available	for	data	
analysis	(e.g.	Logistic	regression	cannot	be	used	with	two	samples).	A	
workaround to this problem may be to create subpools per condition 
(i.e.	nested	pooling)	to	still	be	able	to	use	the	logistic	regression	analy-
sis. We hope that new tools that can handle large pooled epigenomic 
datasets will be developed in the future.

To	conclude,	individual	libraries	provide	greater	flexibility	and	con-
trol therefore they are the best option for a first epigenomic dataset 
where covariate variation is unknown, or when samples are rare or 

limited.	However,	 there	are	situations	 in	which	pooling	DNA	before	
library preparation would be the best option for population- level sig-
nals	 (Futschik	&	Schlötterer,	2010;	Kaplow	et	al.,	2015),	 to	 increase	
power and decrease costs. For instance, when the number of indi-
viduals	per	population	 is	not	 limited	 (e.g.	abundant	species),	 in	well-	
studied	systems	where	epigenomic	variation	is	already	characterized	
and researchers want to increase power in follow- up studies. In these 
systems, either a clear separation of covariates is possible or organ-
isms	are	small	and	whole	organisms	are	used	for	DNA	extraction,	mak-
ing	 sure	 that	 all	 covariates	 are	 captured	 in	 a	 single	DNA	extraction	
(Harney	et	al.,	2022).	Finally,	pooling	would	be	particularly	well-	suited	
in	systems	with	small	genome	sizes	to	facilitate	downstream	analyses.

4.5  |  Possible improvements and ways forward

We have shown that pooled libraries provide estimates of genome- 
wide global methylation levels that are comparable to individual 

Topics Implications

Libraries

Individual Pooled

Costs Higher wet lab costs for individual libraries. 
Cost savings can be adjusted according to 
the	pooling	scheme	(see	Table 3	for	details)

− +

Power Increased number of individuals included 
in a pool improves accuracy of population- 
level	metrics	(e.g.	Response	to	treatments,	
differences between environmental 
conditions)	and	increases	power	to	detect	
differences

− +

Power/costs 20–30- fold more data when pooled 
libraries	are	sequenced	at	an	equivalent	
sequencing	effort	to	the	individual	libraries	
(see	Table 2	for	details).	Additional	cost	
savings	are	possible	if	sequencing	effort	of	
pooled libraries is reduced

− +

Flexibility Individual	information	(covariates)	cannot	
be used with pooling. Nested pooling 
(pooling	by	condition,	e.g.	sampling	locality,	
sex,	age,	tissue,	experimental	condition)	is	
needed to measure variability in the data. 
Data	reuse	for	subsequent	projects	is	
challenging

+ −

Data analyses Differences in individual conversion rates 
or	individual	sequencing	depth	are	not	
taken into account when samples are 
pooled. Possible biased representation 
of some samples in the pool cannot be 
accounted for

+ −

Greater computational resources needed 
resulting from greater data volumes 
of pooled libraries. Many tools for 
methylation analyses are not adapted to 
handle large datasets from pooled libraries

+ −

Fewer,	less	flexible	statistical	tests	are	
available for pooled datasets

+ −

TA B L E  4 Benefits	and	drawbacks	of	
DNA	pooling	before	library	preparation.
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libraries. However, signals of differential methylation at specific 
regions were not necessarily congruent, most likely as a result of 
large differences in the number of loci retrieved and the recovered 
power,	which	was	a	consequence	of	our	sequencing	effort	strategy.	
Another	possible	cause	was	that	six	individuals	were	excluded	from	
the	analyses	due	to	low	conversion	rates	and	low	sequencing	data,	
resulting in true differences between the pooled and computation-
ally pooled datasets. In addition, stochasticity in the library prepara-
tion	and	sequencing	processes	may	have	led	to	further	discrepancies	
between these datasets.

Genetic variation is a source of confounding effects with meth-
ylation	 variation	 (Venney	 et	 al.,	 2023).	 For	 example,	 in	Ostrea lu-
rida	 (oyster)	 as	much	 as	 27%	 of	methylation	 can	 be	 explained	 by	
inter-	individual	 genomic	 variation	 (Silliman	 et	 al.,	2023).	While	we	
removed	 likely	 SNPs	 prior	 to	 the	 DMR	 analysis,	 some	 detected	
DMRs may arise from C/T polymorphisms not detected or we may 
have false positives when the reference is divergent form the study 
populations.	However,	 these	polymorphisms	would	 impact	equally	
pooled and individual datasets.

These epigenomic datasets were the first ones for the two spe-
cies of interest, C. fluminea and D. polymorpha. Therefore, global 
DNA	methylation	 levels	were	 previously	 unknown,	 as	well	 as	 the	
level of covariate variation. Based on these results, we would rec-
ommend to perform a pilot study using individual libraries to assess 
these metrics and make an informed decision on whether or not 
to	pool	a	large	number	of	individuals	in	subsequent	studies	before	
considering pooling. Furthermore, we acknowledge that we did not 
perform simulations in this study, because we wanted to focus on 
empirical	 data	 to	 explore	 commonalities	 and	 differences	 between	
individual and pooled libraries produced in the lab. Thus, we aimed 
to	obtain	a	very	practical	result	close	to	a	real	experiment.	In	future	
studies, it would be interesting to simulate the minimum coverage 
of	a	pool	required	to	obtain	reliable	population-	level	DNA	methyla-
tion rates, as a way of facilitating downstream analyses and further 
decreasing project costs. To conclude, our study brings important 
insights	 on	 the	 relevance	of	 pooling	DNA	of	 individuals	 before	 li-
brary preparation in epigenomic studies of natural populations, and 
we believe that it will help researchers in making informed decisions 
for future epigenomic projects.
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