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Abstract
It cannot be decided whether a pushdown automaton accepts using a pushdown height, which
does not depend on the input length, i.e., when it accepts using constant height. Furthermore,
when a pushdown automaton accepts in constant height, the height can be arbitrarily large
with respect to the size of the description of themachine, namely it does not exist any recursive
function in the size of the description of the machine bounding the height of the pushdown.
In contrast, in the restricted case of pushdown automata over a one-letter input alphabet,
i.e., unary pushdown automata, the situation is different. First, acceptance in constant height
is decidable. Moreover, in the case of acceptance in constant height, the height is at most
exponential with respect to the size of the description of the pushdown automaton. We also
prove a matching lower bound. Finally, if a unary pushdown automaton uses nonconstant
height to accept, then the height should grow at least as the logarithm of the input length.
This bound is optimal.

1 Introduction

The investigation of computational devices working with a limited amount of resources is a
classical topic in automata theory. It iswell known that by limiting thememory size of a device
by some constant, the computational power of the resultingmodel cannot exceed that of finite
automata. For instance, if we consider pushdown automata in which the maximum height of
the pushdown is limited by some constant, the resulting devices, called constant-height push-
down automata, can recognize regular languages only. Despite their limited computational
power, constant-height pushdown automata are interesting since they allow more succinct
representations of regular languages than finite automata [8]. Further properties of these
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devices have been recently considered. A double-exponential size increase when convert-
ing a nondeterministic constant-height pushdown automaton into an equivalent deterministic
one, which cannot be avoided in the worst case, has been proven in [4]. A double-exponential
size gap also holds for the conversion of deterministic and nondeterministic constant-height
pushdown automata with a two-way input head into equivalent one-way devices [3]. Tight
bounds for the size costs of Boolean operations on constant-height pushdown automata have
been stated in [5].

A natural generative counterpart of constant-height pushdown automata are nonself-
embedding context-free grammars, roughly context-free grammars without “true” recursion
[7], which have been recently showed to be polynomially related in size to constant-height
pushdown automata [10].

In this paper,we focus onpushdownautomatawith anunrestricted pushdown store, namely
classical pushdown automata, that, however, are able to accept their inputs by making use
only of a constant amount of pushdown store. More precisely, we say that a pushdown
automaton M accepts in constant height h, for some given integer h ≥ 0, if, for each word
in the language accepted by M, there exists at least one accepting computation in which
the maximum height reached by the store is bounded by h. Notice that this does not prevent
the existence of accepting or rejecting computations using an unbounded pushdown height.
However, M can be converted into an equivalent constant-height pushdown automaton,
which stops and rejects each time a computation tries to exceed the height limit h, and has a
description whose size is a polynomial in both h and the size of the description of M.

While studying these size relationships, we tried to understand how large can h be with
respect to the size of the description of M. We discovered that h can be arbitrarily large.
Indeed, in the first part of the paper we prove that there is no recursive function bounding
the maximal height reached by the pushdown store in a pushdown automaton accepting in
constant height, with respect to the size of its description.

We also prove that it cannot be decided if a pushdownautomaton accepts in constant height.
We point out that this problem is different from the classical problem of deciding if a given
context-free language is regular, which has been proven to be undecidable long time ago [2].
In fact, there exist pushdown automata that recognize regular languages using nonconstant
height (an example is presented in the paper). Hence, while acceptance in constant height is
sufficient for the regularity of the accepted language, it is not necessary.

In the second part of the paper, we restrict the attention to the case of pushdown automata
with a one-letter input alphabet, namely unary pushdown automata. By studying the structure
of the computations of these devices, we are able to prove that, in contrast to the general
case, it can be decided whether or not they accept in constant height. Furthermore, we also
prove that if a unary pushdown automatonM accepts in height h, constant with respect to the
input length, then h is bounded by an exponential function in the size of M. By presenting
a suitable family of pushdown automata, we show that this bound cannot be reduced.

In the final part of the paper, we consider pushdown automata that accept using height
which is not constant in the input length. Our aim is to investigate how the pushdown height
grows. In particular, we want to know if there exists a minimum growth of the pushdown
height, with respect to the length of the input, when it is not constant. The answer to this
question is already known, and it derives from results on Turing machines: the height of the
store should grow at least as a double logarithmic function [1]. This lower bound cannot be
increased, because amatching upper bound has been recently obtained in [6], where a witness
language defined over an alphabet of 6 letters is presented. Using standard arguments, such
language can be encoded on a binary alphabet, without changing the use of the pushdown
store. Hence, in the case of an input alphabet with at least two letters, there are languages
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accepted by using a pushdown height which is double logarithmic with respect to the input
length.Whenwe restrict to a unary alphabet, the situation is different. In fact, as a consequence
of the constructions presented in the second part of the paper, we are able to prove that if a
unary pushdown automaton accepts using height, which is not constant with respect to the
input length, then the height should grow at least as a logarithmic function.We also show that
this logarithmic lower bound cannot be further increased, by presenting a unary pushdown
automaton accepting every word using logarithmic pushdown height.

2 Preliminaries

We assume the reader to be familiar with the standard notions from formal language and
automata theory, including the concepts of configurations and computations of recognizing
devices, as presented in classical textbooks, e.g., [12]. As usual, the cardinality of a set S is
denoted by #S, the length of a string x is denoted by |x |, the empty string is denoted by ε.

We first recall the notion of pushdown automata and present the form for these devices
that will be used in the paper. A pushdown automaton (pda, for short) is a tuple M =
〈Q,Σ, Γ , δ, qI , Z0, qF 〉 where Q is the finite set of states, Σ is the input alphabet, Γ is
the pushdown alphabet, qI ∈ Q is the initial state, Z0 ∈ Γ is the start symbol, qF ∈ Q is
the final state. We shall specify the transition function δ below, according to Items 3 and 4.
Without loss of generality, we make the following assumptions about pdas:

1. at the start of the computation the pushdown store contains only the start symbol Z0, being
at height 0, the input head is scanning the first input symbol, the finite control contains
the initial state qI ;

2. the input is accepted if and only if the automaton reaches the final state qF , the pushdown
store contains only Z0 and all the input has been scanned;

3. when the automaton reads an input symbol, it moves the head to the next symbol, and it
does not make any change on the pushdown. Notice that this implies that the contents of
the pushdown store can be changed only by ε-moves;

4. every push operation adds exactly one symbol on the pushdown.

The transition function δ of a pda M in this form can be written as:

δ : Q × (Σ ∪ {ε}) × Γ → 2Q×({−,pop}∪{push(A)|A∈Γ }).

In particular, for q, p ∈ Q, A, B ∈ Γ , σ ∈ Σ , (p,−) ∈ δ(q, σ, A) means that the pda M,
in the state q , with A at the top of the pushdown, by consuming the input σ , can reach the
state p without changing the pushdown contents; (p,pop) ∈ δ(q, ε, A) ((p,push(B)) ∈
δ(q, ε, A), (p,−) ∈ δ(q, ε, A), respectively) means that M, in the state q , with A at the
top of the pushdown, without reading any input symbol, can reach the state p by popping
off the pushdown the symbol A from the top (by pushing the symbol B onto the top of the
pushdown, without changing the pushdown, respectively).

Asusual, a configurationof a pda at a given instant represents its instantaneous description.
According to [12], it records the internal state of the pda, the portion of the input that has not
been scanned yet, and the pushdown contents. Accepting configurations can be described as
indicated above, according to Item 2.Notice that in any accepting computation the occurrence
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of the start symbol Z0 at the bottom of the pushdown is never removed, otherwise the next
move would be undefined, so halting in a nonaccepting configuration. 1

Now we present the main measure we consider in the paper, namely the pushdown height.
The height of a pda M in a given configuration is the number of symbols in the pushdown
store besides the occurrence of the start symbol Z0 at the bottom. Hence, in the initial and in
the accepting configurations the height is 0. The height of a computation C is the maximum
height reached in the configurations occurring in C.

We say that M uses height h(x) on an accepted input x ∈ Σ∗ if and only if h(x) is
the minimum pushdown height necessary to accept such a string, namely there exists a
computation accepting x of height h(x), and no computation accepting x of height smaller
than h(x). Moreover, if x is rejected, then h(x) = 0. To study pushdown height with respect
to the input length, we consider the worst case among all possible inputs of the same length.
Hence, for each integer n ≥ 0, we define h(n) = max {h(x) | x ∈ Σ∗, |x | = n}. When there
is a constant H such that, for each n, h(n) is bounded by H , we say that M accepts in
constant height. Each pda accepting in constant height can be easily transformed into an
equivalent finite automaton. So the language accepted by it is regular.

In the following, by the size of a pdawe mean the length of its description. Notice that for
each pda in the above-defined form, over afixed input alphabetΣ , the size isO((#Q)2(#Γ )2),
namely a polynomial in the cardinalities of the set of states and of the pushdown alphabet.

If we consider pdas in different forms, as that given in [12] in which any push operation
can replace the top of the pushdown by a string of symbols, to define the size we have to
take into account also the number of symbols that can be pushed on the store in one single
operation. However, pdas in that form can be turned into the form we consider here with a
polynomial increase in size and by preserving the property of being constant height. For a
further discussion on this point, we address the reader to [4].

We now present some technical notions and results that will be useful in order to state our
results. Let M = 〈Q,Σ, Γ , δ, qI , Z0, qF 〉 be a fixed pda.

A surface pair is defined by a state q ∈ Q and a symbol A ∈ Γ , and it is denoted by [q A].
The surface pair in a given configuration is defined by the current state and the topmost
pushdown symbol, namely the only part of the store which is relevant in order to decide the
next move.

A surface triple is defined by two states q, p ∈ Q and a symbol A ∈ Γ , and it is denoted
by [q Ap]. Surface triples are used to study parts of computations starting and ending at the
same pushdown height and that do not go below that height in between. More precisely, a
[q Ap]-computation on a string x ∈ Σ∗ is a computation C which starts from the state q
with A on the top of the pushdown at some height h and, after reading x from the input tape,
ends in the state p with A on the top of the pushdown at the same height h without reaching
pushdown height smaller than h in between. We also say that C consumes the string x . Notice
that, at the beginning of C, the input head is on the tape cell containing the leftmost symbol
of x , while at the end it is one position to the right of the rightmost symbol of x (this includes
also the case of inputs whose suffix is x , and the possibility of ε-transitions after reading
the rightmost of x). We point out that, during C, the symbol A at height h is never replaced.
Hence, C does not depend on h and on the symbols stored in the pushdown below A. The
pushdown increment during C is the difference between the pushdown height of C and the
pushdown height at the beginning and at the end of C. Notice that the surface pairs at the
beginning and at the end of C are [q A] and [pA], respectively.
1 Note that, according to the definition, a pushdown automaton can push the start symbol Z0, so it can appear
multiple times in the pushdown. However, in all our results, we never push or pop Z0, so in our constructions
and examples it only occurs at the bottom of the store.
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Wedenote by L [q Ap] the set of input strings consumed in all possible [q Ap]-computations.
We point out that the set of accepting computations ofM coincides with the set of [qI Z0qF ]-
computations.Hence, L [qI Z0qF ] is the language accepted byM. Furthermore, for each surface
triple [q Ap], if we modify M by using q , A, and p instead of the original initial state,
original start pushdown symbol, and the original final state, respectively, we obtain a pda
accepting L [q Ap] which, hence, is context-free.

A horizontal loop on a surface pair [q A] is any [q Aq]-computation consuming at least one
input symbol. Notice that such computation starts and ends in the same state q . By considering
a computation of 0 moves, we always have ε ∈ L [q Aq]. Hence, [q A] has a horizontal loop
when L [q Aq] contains at least one more string, besides ε. We obtain that:

Lemma 1 It is decidable if a surface pair [q A] has a horizontal loop.
Proof As seen above, L [q Aq] is a context-free language. It is an easy observation that L [q Aq] \
{ε} is context free as well. Thus, deciding if the surface pair [q A] has a horizontal loop
is equivalent to testing the emptiness of L [q Aq] \ {ε}, which is decidable for context-free
languages [2]. 	


If a [q Ap]-computationC consists of three parts, namely it beginswith a prefixX , followed
by a proper [q Ap]-subcomputation C′ using the same triple [q Ap], and ends by a suffix Y ,
such that the middle part C′ starts and ends with pushdown higher than at the beginning of C,
and then, the pair (X ,Y) is called vertical loop. Note that, during the execution of X , a
nonempty string Aα is saved on the top of the pushdown store2 above the symbol A which
was on the top at the beginning of C, and this string is popped off during the execution of Y .

A context-free grammar is a tuple G = 〈V ,Σ, P, S〉, where V is the set of variables,
Σ is the set of terminals, P is the set of productions of the form A → β, where A ∈ V
and β ∈ (V ∪ Σ)∗, and S ∈ V is the start symbol. If all productions in P are of the
form A → BC or A → a, where A, B, and C are variables and a is a terminal, then G is in
Chomsky normal form. Here, we will consider grammars in binary normal form, an extension
of Chomsky normal form where also unit productions A → B and ε-productions A → ε are
allowed.

If A → β is a production of P and α and γ are any strings in (V ∪ Σ)∗, then the
string αAγ derives in one step αβγ , in symbols αAγ ⇒ αβγ . For η, ι ∈ (V ∪ Σ)∗, k ≥ 0,

we write x
k⇒ y if x derives y in k steps, i.e., ∃x0, x1, . . . , xk ∈ (V ∪ Σ)∗ such that x0 = η,

xk = ι and xi−1 ⇒ xi , for i = 1, . . . , k. The transitive closure of ⇒ is denoted by
+⇒, while

its reflexive and transitive closure is denoted by
�⇒. If η

�⇒ ι, η, ι ∈ (V ∪ Σ)∗, we say that η
derives ι. For more details on standard notations, we refer the reader to classical textbooks
(see, e.g., [12]).

It is well known that context-free languages defined over a one-letter alphabet, i.e., unary
context-free languages, are regular [9]. The size cost of the conversion of unary context-free
grammar and pushdown automata into equivalent nondeterministic and deterministic finite
automata (nfas and dfas, respectively) has been investigated in [16]. In the paper, we will
use the following small extension of [16, Thms. 4, 6]:

Lemma 2 For each unary context-free grammar G = 〈V , {a}, P, S〉 in binary normal form,
with v variables, there exist:

– an equivalent nfa with at most 22v−1 + 1 states, and

2 The symbol A being at the top.
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– an equivalent dfa with less than 2v2 states.

Proof By applying a standard construction (see, e.g., [12]), from G we can obtain a gram-
mar G ′ in Chomsky normal form, having the same set of variables as G and generating the
same language, with the possible exception of the empty word (if generated by G).

Using Theorems 4 and 6 in [16], we can convertG ′ into equivalent finite automata satisfy-
ing the bounds on the number of the states given in the statement of the lemma. By inspecting
the proofs of those results, it can be observed that there are no transitions entering the initial
states of the resulting automata. This allows to safely mark the initial states as accepting, in
the case G generates the empty word, in order to make the resulting automata equivalent to
the original grammar G. 	

The following result, related to Diophantine equations, will be used in the paper:

Lemma 3 ([14, Lemma 2.6]) Let n, z, i0, i1, . . . , is be integers with 0 < i j ≤ n, j =
0, . . . , s, and z ≥ 0. If the equation i0x0 + i1x1 + · · · + is xs = z has a solution in natural
numbers, then it also has a solution in natural numbers satisfying i1x1 + · · · + is xs ≤ n2.

3 Undecidability and nonrecursive bounds

In this section, we prove that the problem of whether a given pda M accepts in constant
height is not decidable. In addition, with respect to the size ofM that does accept in constant
height, neither the maximal height, which is reached by the pushdown store of M, nor the
number of states of the minimal finite automaton equivalent to M can be bounded by any
recursive function.

These results are proven by using a technique introduced in [11], based on suitable
encodings of single-tape Turing machine computations. Roughly, configurations of such
a machine T with state set Q and alphabet Γ are denoted in a standard way as strings
from Γ ∗QΓ ∗. A computation consisting of m configurations α1, α2, . . . , αm is encoded as
a string of blocks, separated by a delimiter $ /∈ Q ∪ Γ , where the i th block is αi when i is
odd, and αR

i when i is even (in the following, we use α
(R)

i to denote either αR
i or αi according

to the parity of the index i).
Hence, the (encoding of a) valid computation of T on input w is a string C =

α1$αR
2 $α3$αR

4 $ · · · $α(R)
m , for some integer m ≥ 1 such that:

1. αi ∈ Γ ∗QΓ ∗, i.e., αi encodes a configuration of T , i = 1, . . . ,m;
2. α1 is the initial configuration on inputw, encoded by the string qIw, where qI is the initial

state of T ;
3. αi+1 is reachable in one step from αi , i = 1, . . . ,m − 1;
4. αm is a halting configuration of T , namely a configuration fromwhich nomove is possible.

A partial valid computation is defined in a similar way, by dropping Condition 4.
As proven in [11], the complement of the set of all valid computations ofT is a context-free

language.

Theorem 1 It is undecidable whether a pda accepts in constant height.

Proof Wegive a reduction from the halting problem.LetT be a deterministic Turingmachine.
With an easymodification, we suppose that arbitrarily long computations use arbitrarily large
amounts of tape (to this aim, it is sufficient to modify T by adding to the tape a track where
the machine, between any two original consecutive moves, marks a tape cell not yet visited).

123



Pushdown automata and constant height...

By adapting the techniques used in [11] to prove the above-mentioned result, we show
that the complement of the language partial(T, w) of partial computations of T on a
given input w, denoted (partial(T, w))c, is accepted by a pda MT,w in the following
way. Given D = β1$βR

2 $ · · · $β(R)
r , with βi ∈ (Q ∪ Γ )∗, i = 1, . . . , r , in order to decide

whether D ∈ (partial(T, w))c, MT,w guesses which one among Conditions 1, 2 and 3 is
not satisfied. For the first two conditions, the verification of the guess is done by only using
the finite control. For the third condition,MT,w nondeterministically selects one block β

(R)

i ,
1 ≤ i ≤ r , copies it on the pushdown store and then makes the verification. If i < r , this is
done by scanning the (i + 1)th block and by suitably comparing it with the block saved on
the pushdown store. If i = r , then the verification fails immediately.

We remind the reader that the pushdown height used to accept any input string x is the
minimum height of accepting computations on x . Hence, if D does not satisfy Condition 1
or Condition 2, then it is accepted with pushdown height 0; otherwise, the height is bounded
by the length of the first block β

(R)

i for which Condition 3 is not satisfied, i.e., the block
corresponding to the largest i such that β j = α j for j = 1, . . . , i , where α1, α2, . . . is the
(possibly infinite) sequence of configurations in the computation of T on w.

If T halts onw inm steps, then the maximum height of the pushdown store used to accept
strings in (partial(T, w))c is equal to |αm |. Otherwise, for each arbitrarily large integer h,
we can find an index i > 0 such that |αi | > h. To accept any string α1$αR

2 $ · · · $α(R)

i $β,
with β ∈ Γ ∗QΓ ∗ and β �= α

(R)

i+1, MT,w uses height |αi | > h.
This allows to conclude that T halts on input w if and only if MT,w accepts in constant

height. Hence, it cannot be decided whether a pda accepts in constant height. 	

In Theorem 8, we will present a pda which recognizes a regular language but does not

accept in constant height. Hence, the problem of deciding whether a pda accepts in constant
height is different from the regularity problem for context-free languages, namely the problem
of deciding if a given context-free language is regular, which is also undecidable [2].

We point out that in the restricted case of deterministic context-free languages, namely
languages accepted by deterministic pushdown automata, the regularity problem is decidable
[18]. Even the property in Theorem 1 becomes decidable when we consider deterministic
pdas. Indeed, it is already decidable in the case of unambiguous pdas [13].

Each pdaM accepting in height h can be converted into an equivalent pdaM′ in which
the height of each computation is bounded by h. This can be done by attaching a counter
either to the pushdown symbols or to the states to keep track, in any configuration, of the
current height, in order to stop and reject when a computation tries to exceed the height limit.
By encoding the pushdown store of M′ in a finite control, equivalent nfas and dfas with a
number of states exponential and double exponential in h, respectively, are easily obtained.
In the worst case, these bounds cannot be reduced [8]. We now show that, however, h cannot
be bounded by any recursive function in the size of M.

Theorem 2 For any recursive function f : N → N and for infinitely many integers n there
exists a pda of size n accepting in constant height H(n), where H(n) cannot be bounded
by f (n).3

Proof The argument is derived from [15, Prop. 7]. From among all single-tape deterministic
Turing machines having n states and tape alphabet Γ = {1, b̄} (a finite number of machines),
let us take all those that, starting with the empty tape, halt after a finite number of steps
(clearly, a finite number of machines again) and, from among them, let BBn be one—called

3 We point out that here H(n) is a function of the size of the pda and not of the input.
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a busy beaver—that stops with the largest number of 1’s, denoted as Σ(n), written down on
the tape. (There may exist more than one such machine; in that case, we can take the first one
in some fixed enumeration of Turing machines.) It is known that Σ(n) cannot be bounded
by any recursive function [17]. Hence, also the maximal length of configurations occurring
in such a computation cannot be bounded by any recursive function.

Let Cn be the encoding of the valid computation of BBn on ε. By adapting the arguments
used to prove Theorem 1, we can define a pdaMn which accepts all the strings over (Qn ∪
Γ ∪ {$})∗ different from Cn , using height bounded by the length of the longest configuration
occurring in Cn . Since n is fixed,Mn accepts in constant height. Moreover, it uses a constant
number of states for testing that either one of Conditions 1, 2, and 4 does not hold for Cn to be
a valid computation. For Condition 3, namely to checkwhether two configurations ofBBn are
not reachable in one step, themachine has to compare the parts of configurations representing
the cells of the tape different from the head position in the first configuration, which can be
done using the pushdown store and a constant number of states, and the part (state and symbol)
that is modified according to the transition function of BBn . Each transitions can be checked
using a constant number of states. BecauseBBn has n states and its working alphabet is fixed,
it has O(n) transitions. Hence, to check Condition 3,Mn uses O(n) states. Summing up, the
number of states ofMn is O(n), its pushdown alphabet has cardinality O(n). So, according
to Sect. 2, Mn has size O(n4).

Furthermore, by suitably modifying Cn (with the same method we applied in the last part
of the proof of Theorem 1 to a prefix of the string encoding the infinite computation of the
machine T on input w), we can obtain a string that requires height equal to the maximal
length of configurations occurring in Cn to be accepted by Mn .

This allows to conclude that the pushdown height used byMn cannot be bounded by any
recursive function in the size of Mn . 	


The pda Mn used to prove Theorem 2 accepts the complement of the singleton lan-
guage {Cn}. This implies that each equivalent deterministic automaton requiresmore than |Cn |
states. Hence,

Corollary 1 There is no recursive function bounding the size blowup from pdas accepting in
constant height to finite automata.

4 Constant height decidability in the unary case

In Sect. 3, we proved that it cannot be decided if a pda accepts in constant height. This
section is devoted to showing that this property turns out to be decidable in the restricted
case of pdas with a one-letter input alphabet. We point out that it is well known that unary
context-free languages are regular [9], so unary pdas can always be converted into equivalent
dfas and therefore also into equivalent pdas with constant height equal to zero. The problem
considered here is whether the given pdaworks or does not workwith a pushdown of constant
height. We first give an informal outline of the argument.

Any accepting computation on a sufficiently long input should contain horizontal or ver-
tical loops. The use of vertical loops can lead to computations using unbounded height.
However, we prove that if an accepting computation on an input a
 visits a surface pair on
which there exists a horizontal loop, then there is another accepting computation for the same
input in which almost all occurrences of the vertical loops are replaced by occurrences of
such a horizontal loop. The number of vertical loops that remain in the resulting computation
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is bounded by a constant that only depends on the automaton. Hence, the height of such a
computation is bounded by a constant. As a consequence, a
 is accepted in constant height.
This result is obtained by refining pumping arguments on grammars and the fact that, in
the unary case, input symbols commute. In contrast, if no accepting computation on a long
string a
 visits any surface pair having a horizontal loop, vertical loops and an increasing of
the pushdown height cannot be avoided. Hence, the given pda works in constant height if
and only if the cardinality of the language Lv \ Lh is finite, where Lh (Lv , resp.) is the set of
strings which are accepted by a computation visiting a (not visiting any, resp.) surface pair
having a horizontal loop. Since the languages Lv and Lh are accepted by pdas, so they are
context free, and they are defined over a one-letter alphabet, by a well-known result proved
in [9], they are regular. So the finiteness of their difference is decidable.

To obtain these results, we refine some of the arguments given in [16] to study the size
costs of the transformations of unary context-free grammars and pushdown automata into
equivalent finite automata.

4.1 Loops and grammars

In the following, we consider a grammar G = 〈V ,Σ, P, S〉 in binary normal form and we
denote by v = #V the number of its variables.

If T is a derivation tree whose root is labeled with a variable A ∈ V and such that the
labels of the leaves, from left to right, form a string γ ∈ (V ∪Σ)∗, then we write T : A �⇒ γ .
Furthermore, we indicate by ν(T ) the set of variables occurring as labels of the nodes in T .
As usual, the height of a derivation tree T is the maximum number of edges along the path
from the root to a leaf in T .

A gap tree T from a variable A ∈ V , also called A-gap tree, is a tree corresponding to
a nonempty derivation of the form A

+⇒ x Ay, with x, y ∈ Σ∗. When x = y = ε, the gap
tree T is said to be trivial, otherwise, i.e., when it has at least one leaf labeled by a terminal,
T is nontrivial.

Lemma 4 If A
�⇒ γ , A ∈ V , γ ∈ (V ∪ Σ)+, then there exists a derivation tree T : A �⇒ γ

of height at most (|γ | + 1)v.

Proof Given a derivation tree T : A
�⇒ γ of height h > (|γ | + 1)v, let n1, n2, . . . , nh be

the sequence of the internal nodes which are encountered on a longest path in T , moving
from the leaf to the root. With each node nk , we associate the pair (Ak, γk), where Ak is the
variable labeling nk and γk is the string generated by the subtree rooted at nk .

Hence, for k = 2, . . . , h, γk−1 is a factor of γk and γh = γ . Considering that γ1 could be ε,
the number of possible different second components in these pairs is bounded by |γ | + 1.

Since h > (|γ | + 1)v, this implies that there is a sequence of v + 1 > #V indices k, k +
1, . . . , k + v, with 1 ≤ k ≤ h − v, such that γk = γk+1 = . . . = γk+v . Hence, Ai = A j ,
for some i, j , with k ≤ i < j ≤ k + v, namely the tree T̂ obtained by removing from the
subtree of T rooted at n j the subtree rooted at ni , is a trivial Ai -gap tree. By removing T̂
from T , i.e., by replacing the subtree rooted at n j by the subtree rooted at ni , we obtain a

tree T ′ : A �⇒ γ with a smaller number of nodes than T .
We can iterate this process, up to obtain a tree for a derivation A

�⇒ γ of height bounded
by (|γ | + 1)v. 	


Lemma 5 Let T : A �⇒ γ , A ∈ V , γ ∈ (V ∪ Σ)+, be a derivation tree.
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1. Let k be the length of the longest path from the root to a leaf labeled by a terminal symbol,
if any. Then, γ contains at most 2k−1 terminal symbols, and less than 2k−1 symbols when γ

contains at least one variable.
2. If γ contains only terminal symbols, i.e., γ ∈ Σ∗, and the height of T is k, then |γ | ≤ 2k−1.
3. If γ = x Ay, xy ∈ Σ+, and T has a minimal number of nodes among all nontrivial A-gap

trees, then |xy| < 22v−1.

Proof The proof is given by adapting standard properties of derivation trees of grammars in
Chomsky normal form (see, e.g., [12]).

1. The statement can be proven by induction on k. If k = 1, then the tree consists only of
the root, labeled by A, with one son, labeled by a ∈ Σ , where A → a is a production
of G. In this case, the statement is trivial. If k > 1 then, in any subtree of the root, the
longest path to a leaf labeled by a terminal symbol has length at most k−1, so generating,
by induction hypothesis, a string containing at most 2k−2 terminal symbols. Due to the
form of the grammar, the root can have at most 2 subtrees. Hence, the number of terminal
symbols in γ is bounded by 2k−1. Furthermore, when γ contains one variable, one of the
subtrees of the root derives a factor of γ containing such a variable. Hence, by induction,
it generates a number of terminals which is strictly less than 2k−2. As a consequence, the
number of terminals in γ is less than 2k−1.

2. Consequence of Item 1.
3. Let n1, n2, . . . , nk be the sequence of the internal nodes on a longest path in T from a

leaf labeled by a terminal symbol a ∈ Σ to the root. With each node ni , i = 1, . . . , n, we
associate a pair (Ai , bi ) where Ai ∈ V and bi ∈ {0, 1} is 1 if and only if the factor of γ

generated by the subtree rooted at ni contains the variable A. Hence, the pair associated
with n1 is (B, 0) for some B ∈ V having the production B → a, while the pair associated
with the root nk is (A, 1).
Suppose k > 2v. Then, there are two nodes ni , n j , with 1 ≤ i < j ≤ k with (Ai , bi ) =
(A j , b j ). By replacing in T the subtree rooted at n j by the subtree rooted at ni , we obtain
an A-gap tree T ′ which still generates at least one terminal symbol and has less nodes
than T , which is a contradiction.
Hence, in T , each path connecting the root and a leaf labeled by a terminal symbol should
have length at most 2v, which, according to Item 1, implies |xy| < 22v−1. 	


From now on, let us suppose that G is unary, i.e., Σ = {a}. The following modified version
of Lemma 2(ii) in [16] is derived from the arguments of the classical “pumping lemma” for
context-free languages.

Lemma 6 Let T : S
�⇒ a
 be a derivation tree of G. If 
 > 2v2−1, then there exist three

integers s, i, j , with 
 = s + i + j , s ≥ 0, and 0 < i + j < 2v2 , a tree T1 : S
�⇒ as , a

variable A ∈ ν(T ), and an A-gap tree T2 : A +⇒ ai Aa j , such that ν(T ) = ν(T1) ⊇ ν(T2).

Proof We use a combinatorial argument similar to that in the proofs of Lemmas 4 and 5 .
Let n1, n2, . . . , ne be the sequence of the internal nodes which are encountered on a longest
path in T , moving from the leaf to the root. With each n f , we associate the pair (A f , α f ),
where A f ∈ V is the variable labeling n f and α f ⊆ ν(T ) is the set of variables occurring
in the subtree rooted at n f , f = 1, . . . , e. Hence, α1 = {A1}, αe = ν(T ), and α f −1 ⊆ α f ,
f = 2, . . . , e. Notice that we can have at most v different α f ’s.

Since 
 > 2v2−1, fromLemma 5(2)we get e > v2. Thus, there aremore than v consecutive
pairs (A f , α f )with the same second component and, so, the first components of two of them
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should coincide. In other words, we can find two nodes nx and ny , 0 < x < y ≤ v2 + 1,
such that (Ax , αx ) = (Ay, αy) and y − x ≤ v. By replacing in T the subtree rooted at

ny by the subtree rooted at nx , we get a new tree T1 : S
�⇒ as with s ≤ 
. Let T2 be

the gap tree obtained from T by taking as root ny and by deleting the subtree rooted at

nx . Then, T2 : Ax
+⇒ ai Axa j , for some integers i, j with s + i + j = 
. Furthermore,

ν(T ) = ν(T1) ⊇ ν(T2).
Since the root of T2 is ny , its height is at most v2+1. By Lemma 5(1), this implies i + j <

2v2 .
Finally, we observe that in case i + j = 0 and s = 
, we can repeat the same argument

after replacing T by T1. Since the number of nodes in the “new” T is smaller than in the
“old” one, by iterating this process, at some point we will finally obtain a tree T1 producing
a shorter string and a gap tree T2 producing at least one terminal symbol. 	

The following lemma will be crucial to obtain our main result. We prove that each long
enough string a
 can be derived by pumping a derivation tree of some short string by many
occurrences of a same gap tree. Furthermore, such a gap tree can be arbitrarily chosen among
“small” nontrivial A-gap trees, with A occurring in the derivation of a
.

Lemma 7 For any derivation tree T : S �⇒ a
 and for any A-gap tree TA : A �⇒ ai Aa j , with
0 < i+ j < 22v−1 and A ∈ ν(T ), there exists a derivation tree T ′ : S �⇒ a
 which is obtained
by pumping a tree T0 : S �⇒ a
0 such that ν(T0) = ν(T ), 0 ≤ 
0 ≤ 22v

2 − 3 · 2v2−1 + 1,
with k ≥ 0 occurrences of TA.

Proof If 
 ≤ 22v
2 − 3 · 2v2−1 + 1, then we take T0 = T , 
0 = 
, and k = 0. Otherwise,

we repeatedly apply Lemma 6 to “unpump” the tree T up to find a tree Tr : S �⇒ a
r , with

r ≤ 2v2−1 and ν(Tr ) = ν(T ).

Let {i1, . . . , is} ⊆ {1, . . . , 2v2 − 1} be the set of numbers of terminals that are generated
by the gap trees removed during this process. Hence, 
 = 
r + i1x1 + · · · + is xs , where,
for t = 1, . . . , s, xt > 0 is the number of gap trees generating it terminal symbols that have
been removed to obtain Tr . Let i0 = i + j < 22v−1 ≤ 2v2 be the number of terminals
generated by the tree TA. By Lemma 3 (applied with z = 
 − 
r and x0 = 0), we can
find integers x ′

0, x
′
1, . . . , x

′
s ≥ 0 in such a way that 
 = 
r + i0x ′

0 + i1x ′
1 + · · · + is x ′

s

and i1x ′
1 + · · · + is x ′

s ≤ (2v2 − 1)2. This means that we can pump the tree Tr with a suitable
number of occurrences of someof the gap trees removed in the previous process, in order to get
a tree T0 : S �⇒ a
0 , with 
0 = 
r+i1x ′

1+· · ·+is x ′
s ≤ 2v2−1+(2v2−1)2 = 22v

2−3·2v2−1+1
and ν(T0) = ν(T ). Furthermore, by pumping T0 with x ′

0 occurrences of TA, we finally get a

tree T ′ : S �⇒ a
. 	


4.2 Simulating vertical loops by a horizontal loop

From now on, let us consider a fixed pda M = 〈Q,Σ, Γ , δ, qI , Z0, qF 〉. We are going to
define a context-free grammar G = 〈V ,Σ, P, S〉, in binary normal form, which generates
the same language accepted by M. We give the same construction as in [16], which is a
minor variation of that used in classical textbooks (see, e.g., [12]) to present the standard
transformation of pdas into cfgs. The grammar G is defined as follows:

– The set of variables V consists of all triples [q Ap], with q, p ∈ Q, A ∈ Γ .
The name of the variable [q Ap] immediately evokes [q Ap]-computations. This reflects
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a strict relationship; indeed, the grammar is defined in such a way that the set of strings
generated by the variable [q Ap] coincides with the language L [q Ap] of strings consumed
in all possible [q Ap]-computations. This property will be proven, after the definition of
the grammar, in Lemma 8.

– The set of terminals coincides with the input alphabet Σ of M.
– P contains the following productions:

1. [q Ap] → [q Ar ][r Ap], for q, p, r ∈ Q, A ∈ Γ ;
2. [q Ap] → [q ′Bp′], for q, q ′, p, p′ ∈ Q, A, B ∈ Γ such that (q ′,push(B)) ∈

δ(q, ε, A) and (p,pop) ∈ δ(p′, ε, B);
3. [q Ap] → σ , for q, p ∈ Q, σ ∈ Σ ∪ {ε}, A ∈ Γ such that (p,−) ∈ δ(q, σ, A);
4. [q Aq] → ε, for q ∈ Q, A ∈ Γ .

– The start symbol S is the triple [qI Z0qF ].
We point out that the number of variables ofG is v = (#Q)2 ·#Γ . Furthermore, it is in binary
normal form.

We are going to prove that G generates the same language accepted by M. Since we are
interested in the height of M’s computations, we state such equivalence in a stronger form,
which also considers the use of the pushdown.

In particular, we relate the pushdown increment to the unit production height which, for
a derivation tree T of the above grammar G, is defined as the maximum number of edges
corresponding to unit productions, i.e., productions of the form A → B, with A, B ∈ V , in
a path from the root to a leaf of T .

Lemma 8 For any x ∈ Σ∗, q, p ∈ Q, A ∈ Γ , h ∈ N, there exists a derivation tree T :
[q Ap] �⇒ x with unit production height h if and only if there exists a [q Ap]-computation C
on x with pushdown increment h.

Proof Let T : [q Ap] k⇒ x , for some k > 0, be a derivation tree with unit production
height h. We prove by induction on k that there exists a [q Ap]-computation C on x with
pushdown increment h.

If k = 1, then the tree contains only the root and one leaf and it corresponds to the use of
one of the productions of the form 3 or 4. So the statement is trivial.

If k > 1, then the production used at the root level of T is either of the form 1 or of the
form 2.

In the first case, we have [q Ap] → [q Ar ][r Ap], for some r ∈ Q, the root of T has

left subtree T ′ : [q Ar ] k′⇒ x ′ and a right subtree T ′′ : [r Ap] k′′⇒ x ′′, for some k′, k′′ > 0
with k′ + k′′ = k − 1, x ′, x ′′ ∈ Σ∗, x ′x ′′ = x . Then, the unit production height h of T is
the maximum between the unit production heights h′ and h′′ of T ′ and T ′′, respectively, i.e.,
h = max{h′, h′′}. According to the induction hypothesis, there exist a [q Ar ]-computation
on x ′ and a [r Ap]-computation on x ′′ with pushdown increment h′ and h′′, respectively. By
concatenating these two computations, we obtain a [q Ap]-computation on x in which the
pushdown increment is max{h′, h′′}, namely h.

In case the production applied to the root of T is [q Ap] → [q ′Bp′], let T ′ : [q ′Bp′] k−1⇒ x
be the subtree of T rooted at the only son of the root. Since in T at the top level a unit
production is used, the unit production height on a path from the root of T ′ is h − 1. Also in
this case, from the induction hypothesiswe obtain a [q ′Bp′]-computation on x with pushdown
increment h− 1. By adding to this computation the initial push and the final pop from which
the production [q Ap] → [q ′Bp′] is defined, we obtain a [q Ap]-computation on x with
pushdown increment h.
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Conversely, let us consider a [q Ap]-computation C on x with pushdown increment h. We
proceed on the number k of steps of C.

If k = 1, then the computation C does not make any pushdown increment and it can only
correspond to a one-step derivation consisting of a production of the form 3 or 4. So the
statement is trivial.

If k > 1, then we consider two cases, depending on whether or not at some configuration
in C, after the first and before the last configuration, the pushdown is at the same height than
at the beginning and at the end of C.
– If such configuration exists, then we split C at that configuration into a [q Ar ]-

computation C′ and a [r Ap]-computation C′′, for some r ∈ Q, consuming some x ′, x ′′,
with x ′x ′′ = x and with pushdown increment h′, h′′, respectively. Then, the pushdown
increment in C is max{h′, h′′}. Using the induction hypothesis, we find two trees T ′
and T ′′ corresponding to such computations, with unit production heights h′ and h′′,
respectively. We can suitably combine T ′ and T ′′, using a production of form 1, in order
to obtain a tree T which derives x and has height equal to max{h′, h′′}.

– If such configuration does not exist, then the computation of C should start with a push
of a symbol B which is removed in the last step. Let C′ be [q ′Br ′]-subcomputation of C
which is obtained by removing the first and the last step. If h is the pushdown increment
in C, then the pushdown increment in C′ is h − 1. Let T ′ : [q ′Br ′] �⇒ x be the tree
corresponding to C′, obtained according to the induction hypothesis. Its unit production
height is h − 1. The tree T , which is obtained by taking T ′ as only subtree of a root with
label [q Ar ], derives x and has unit production height h. 	


As a consequence of Lemma 8, we get:

Corollary 2 For any integer h ≥ 0, a string x is accepted by M using pushdown height h if
and only if there is a derivation tree T of x in G with unit production height h.

Combining Corollary 2 with Lemma 4, we get the following upper bound for the height
of the pushdown store necessary to accept a string x :

Lemma 9 If x ∈ Σ∗ is accepted by M, then h(x) ≤ (|x | + 1)v, where v = (#Q)2 · #Γ .

Proof By contradiction, suppose that each computation of M accepting x uses pushdown
height greater than (|x |+1)v. As a consequence of Corollary 2, each derivation tree of x inG
has unit production height, and so height, greater than (|x | + 1)v, which is a contradiction
to Lemma 4. 	


Let us go back to the case of unary pushdown automata. Hence, from now on let M =
〈Q, {a}, Γ , δ, qI , Z0, qF 〉 be a fixed unary pda. Using Lemma 8, we can reformulate
Lemma 7 in terms of pushdown automata. Roughly, we can say that for each computation C
accepting a “long” input, there is another computation accepting the same input, which is
obtained by pumping a suitable computation C0, chosen from a finite set, with a repeated
pattern which is arbitrarily selected from another finite set that depends on C0. We will use
this property to replace, in any accepting computation C, almost all the vertical loops with
many occurrences of a horizontal loop, in the case a surface pair [r B] having a horizontal
loop occurs in C. In this way, we will be able to obtain an accepting computation of bounded
height on the same input.

Theorem 3 Let C be an accepting computation on input a
 which visits a surface pair [r B]
having a horizontal loop. Then, there exists an accepting computation on a
 of height smaller
than 22v

2+log2 v , where v = (#Q)2 · #Γ .
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Proof Let G be the above-defined grammar, obtained from M. First, we observe that if C
visits the surface pair [r B] then there exists a derivation tree T : S �⇒ a
 with [r Br ] ∈ ν(T ).
In fact, one of the triples [r Bs] or [sBr ] for some s ∈ Q should appear in the derivation
tree corresponding to C. Since G contains the productions [r Bs] → [r Br ][r Bs], [sBr ] →
[sBr ][r Br ] and [r Br ] → ε, we can suitably modify the tree in order to introduce one
occurrence of [r Br ], without changing the derived string.

Now we select a “small” [r Br ]-gap tree T[r Br ] deriving a nonempty string, i.e., T[r Br ] :
[r Br ] �⇒ ai [r Br ]a j , with 0 < i + j < 22v−1. We prove that such a gap tree should exist.
In fact, since [r B] has a horizontal loop, the language L [r Br ] should contain at least one

nonempty string w ∈ a∗. Hence, [r Br ] �⇒ w. Furthermore, the tree corresponding to the
derivation

[r Br ] �⇒ [r Br ][r Br ] �⇒ w[r Br ]
is a [r Br ]-gap tree. Hence, from Lemma 5(3), it follows that there exists a [r Br ]-gap
tree T[r Br ] : [r Br ] �⇒ ai [r Br ]a j , with 0 < i + j < 22v−1.

According to Lemma 7, we can obtain another tree T ′ : S �⇒ a
 by pumping a tree T0 :
S

�⇒ a
0 , such that ν(T0) = ν(T ), 0 ≤ 
0 ≤ 22v
2 − 3 · 2v2−1 + 1, with k ≥ 0 occurrences

of T[r Br ].
We observe that in the tree T ′, some of the k occurrences of T[r Br ], say t , could be nested,

possibly giving a pushdownheight of the corresponding computationwhich linearly increases
with k. To fix this problem, we modify T ′ as we now describe.

Let u be a node of T0 labeled by [r Br ] and Tu be the subtree of T0 rooted at u, such that T0
is pumped starting from u with t nested occurrences of T[r Br ], 1 < t ≤ k. (The subtree
rooted at u after the pumping is shown in Fig. 1, on the left.)We rearrange these t occurrences
of T[r Br ] in a sequence by inserting, starting from node u, a subtree corresponding to a deriva-

tion [r Br ] �⇒ [r Br ]t obtained by using t − 1 times the production [r Br ] → [r Br ][r Br ].
To each leaf of this subtree, we append one occurrence of the [r Br ]-gap tree T[r Br ]. Finally,
to the leaf labeled [r Br ] of the first occurrence of T[r Br ] we append the tree Tu , and to each
of the remaining t − 1 leaves labeled [r Br ] we append one leaf labeled with the empty word
(we remind the reader that [r Br ] → ε is a production of G). The subtree rooted at u after
the pumping and the one obtained after the rearrangement are shown in Fig. 1.

Let T ′′ be the tree obtained after this modification, which still generates a
. Using Corol-
lary 2, we now estimate the height of the computation C′′ corresponding to T ′′, by calculating
the unit production height of T ′′, which is bounded by the maximum number h0 of edges
corresponding to unit productions in any path in T0 plus the maximum number h1 of such
edges in any path in T[r Br ] which, in turn, are bounded by the height of T0 and T[r Br ], respec-
tively. Using Lemma 4, we get h0 ≤ (
0 + 1)v and h1 ≤ (i + j + 2)v (we remind the reader
that the tree T[r Br ] generates a string of length i + j + 1). Hence, the height of the pushdown
is bounded by h0 + h1 ≤ (
0 + i + j + 3)v. Considering the bounds on 
0 and i + j , we
obtain 
0 + i + j + 3 < 22v

2 − 3 · 2v2−1 + 22v−1 + 4.
For v ≥ 2, it can be verified that −3 · 2v2−1 + 22v−1 < −4. Hence, h0 + h1 < 22v

2 · v =
22v

2+log2 v .
In the case v = 1, the pda M can have only one state q , which is both initial and final,

and only one pushdown symbol Z0. Since in the formwe are considering for pdas transitions
consuming input symbols do not change the pushdown (cf. Sect. 2), the only possibility to
read an input symbol is that of having the transition (q,−) ∈ δ(q, a, Z0). If this is the case,
then any string in a∗ can be accepted by a computation which does not use the pushdown
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Fig. 1 On the left, the portion of the tree T0 from the node u pumped by using t repetitions of the tree T[r Br ].
These occurrences are rearranged by using t − 1 times the production [r Br ] → [r Br ][r Br ], as shown on the
right, in order to avoid a linear increase of the pushdown in the number of the repetitions of T[r Br ]. (In the
figure t = 3)

store, i.e., of height 0. Otherwise, M accepts the empty language and so, by definition, it
accepts in height 0. 	


4.3 Vertical increase without horizontal loops

Now we evaluate the increase of the pushdown in computations that do not use horizontal
loops, i.e., between any two repetitions of a same surface pair [r B] at the same height either
no input is consumed or there is at least one configuration with lower pushdown height.

Lemma 10 Let C be a [q Ap]-computation on a
 with pushdown increment bounded by h and
without horizontal loops. Then 
 ≤ (#Q − 1)h+1.

Proof We give the proof by induction on h. Let h0 be the pushdown height at the beginning
and at the end of C. We preliminary observe that since in C the pushdown height cannot
be lower than h0 and there are no horizontal loops, between any two repetitions of a same
state at pushdown height h0 no input symbols can be consumed, or else we would have a
horizontal loop, a contradiction. Hence, we can remove from C the part between any two
repetitions of such a state, to obtain a shorter [q Ap]-computation on the same input having
pushdown increment bounded by h. By iterating this process, we finally get C with atmost #Q
configurations at pushdown height h0.

If h = 0, i.e., the pushdown height is never incremented, then C consists of at most #Q−1
moves. Hence, 
 ≤ #Q − 1 = (#Q − 1)h+1. Otherwise, we decompose C in k < #Q
subcomputations C1, . . . , Ck , where, for i = 1, . . . , k, Ci starts with a push of a symbol,
which is popped off the pushdown only in the last move of Ci . Let C′

i be the subcomputation
obtained by removing from Ci the first and the last move and let a
i be the input consumed
during it. Then, the pushdown increment in C′

i is at most h− 1. By induction hypothesis, this
implies 
i ≤ (#Q − 1)h . Since push and pop moves do not consume input symbols, we get
that 
 ≤ k(#Q − 1)h ≤ (#Q − 1)h+1. 	


As a consequence of Lemma 10, the recognition of arbitrarily long strings without making
use of horizontal loops requires unbounded pushdown height. This fact will be used later to
derive a lower bound for such a pushdown height.
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4.4 Decidability

Using the tools we developed so far, we are now able to prove the main result of this section:

Theorem 4 LetM be a unary pda with n states and m pushdown symbols. Then,M accepts
in constant height if and only if it accepts in height smaller than 218v

2+log2 v+log2 3 = 3v·218v2 ,
where v = n2m.

Proof Let L be the language accepted byM.Wealso consider the following two languages Lh

and Lv:

– Lh is the set of strings accepted by the computations ofMwhich visit at least one surface
pair having a horizontal loop.

– Lv is the set of strings accepted by the computations ofMwhich visit only surface pairs
that do not have horizontal loops.

Clearly, the language L accepted by M is the union of Lh and Lv .
According to Theorem 3, all strings in Lh are accepted in constant height. More precisely,

fromMwe can build a unary pdaMh which accepts Lh by simulatingM and by accepting
when the simulated computation is accepting and visits at least one surface pair having a
horizontal loop, which can be decided according to Lemma 1.

To implement Mh , we double the cardinality of the state set, in order to remember if
some surface pair having a horizontal loop has been reached during the computation. That
is, for each state q we create a copy q ′. Thus, the simulation is straightforward but, after
visiting a surface pair having a horizontal loop, M switches to q ′ instead of q . Hence, the
final state of Mh is q ′

F . From Mh , we can obtain an equivalent grammar in binary normal
form with (2n)2m variables. However, in such a grammar, the triples [q ′Ap], where q and p
are states of M, cannot generate any string (in fact, once a pair having a horizontal loop is
reached, the computation ofMh can only visit states in the copy of Q). This allows to reduce
the number of variables to 3n2m = 3v. According to Theorem 3, each string in Lh can be
accepted using height smaller than 22(3v)2+log2(3v) = 218v

2+log2 v+log2 3.
If the set Lv \ Lh is infinite, then it should contain arbitrarily long strings; by Lemma 10,

an arbitrarily high pushdown is required to accept them.
Otherwise, when Lv \ Lh is finite, M accepts in constant height, which is bounded by

the maximum between the height used to accept strings in Lh and the height used to accept
strings in Lv \ Lh . To estimate the latter amount, first we notice that Lv is accepted by
a pda Mv , which can be obtained by just removing from M all the transitions defined
from surface pairs [r B] having horizontal loops. Hence, Lv is generated by a context-free
grammar in binary normal form with v = n2m variables. According to Lemma 2, from Mh

and Mv , we obtain equivalent dfas with less than 29v
2
and 2v2 states, respectively. From

them, using a standard product construction, we can obtain a dfa with less than 210v
2
states

accepting Lv \ Lh . Since such a language is finite, the length of each string in it is less than
the number of states of such a dfa, i.e., it is bounded by 210v

2
. By Lemma 9, this implies that

each string in Lv \ Lh is accepted using height bounded by v210v
2
, which is lower than the

bound we obtained for strings in Lh . By summarizing, we can conclude that ifM accepts in
constant height, then it accepts in height smaller than 218v

2+log2 v+log2 3. 	

Theorem 5 It is decidable whether a unary pda accepts in constant height.

Proof As seen in the proof of Theorem 4, the language accepted by a pdaM is the union of
the languages Lh (composed by the strings accepted by the computations of M which visit
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q

q p

r

q p

p

Xi

Ai−1 Bi−1

Fig. 2 The evolution of the pushdown store ofMk in a [qXi p]-computation, where the symbol Xi which is
initially on the top of the pushdown is either Ai , i = 1, . . . , k, or Bi , i = 1, . . . , k − 1. The horizontal dashed
lines should be replaced by a move reading one input symbol, when i − 1 = 0, and by the same pattern, in
the other cases

at least one surface pair having a horizontal loop) and Lv (composed by the strings accepted
by the computations of M which visit only surface pairs that do not have horizontal loops).
Since M accepts in constant height if and only if Lv \ Lh is finite, this problem reduces to
deciding the finiteness of Lv \ Lh , which is computable because Lv and Lh are both unary
context-free languages and hence regular. 	


5 Size versus height in the unary case

The arguments used in Sect. 4 to prove that it is decidable whether a unary pda accepts in
constant height give an exponential upper bound for the maximum pushdown height, with
respect to the size of a pda working in constant height (see Theorem 4). In this section, we
prove that such an exponential bound cannot be reduced.

To prove this result, we will make use of some modifications of the pda described in the
following example.

Example 1 Let us consider the language Lk =
{
a2

k
}
, where k > 0 is a given integer. A

deterministic pdaAk for Lk might work as follows. The automaton can exploit its pushdown
to implement the recursive function

f (i) =
{
1 if i = 0,
2 f (i − 1) otherwise,

in order to read f (k) = 2k input symbols. To this aim, it uses the state set Q = {q, r , p},
and the pushdown alphabet Γ = {A0, A1, . . . , Ak, B0, B1, . . . , Bk−1}.

One call to f (i) is implemented by a [qXi p]-computation, with Xi ∈ Γ . For i = 0,
such a computation consists of one move which reads one input symbol (Transitions 1 or 2).
Otherwise, the computation is split into two parts, both consuming 2i−1 input symbols, as
depicted in Fig. 2:

– a [qXir ]-computation that activates, by a recursive call, one [q Ai−1 p]-computation
(Transitions 3 or 4, and 7),

– a [r Xi p]-computation that activates, by a recursive call, one [qBi−1 p]-computation
(Transitions 5 or 6, and 8).

In this way, a [q Ak p]-computation consumes the string a2
k
. Hence, to recognize Lk the

automaton starts in the state q with Ak on the pushdown and accepts in the state p.
Formally, Ak = 〈Q, {a}, Γ , δ, q, Ak, p〉, where the transitions are:

1. δ(q, a, A0) = (p,−);
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2. δ(q, a, B0) = (p,−);
3. δ(q, ε, Ai ) = (q,push(Ai−1)), for i = 1, . . . , k;
4. δ(q, ε, Bi ) = (q,push(Ai−1)), for i = 1, . . . , k − 1;
5. δ(r , ε, Ai ) = (q,push(Bi−1)), for i = 1, . . . , k;
6. δ(r , ε, Bi ) = (q,push(Bi−1)), for i = 1, . . . , k − 1;
7. δ(p, ε, Ai ) = (r ,pop), for i = 0, . . . , k − 1;
8. δ(p, ε, Bi ) = (p,pop), for i = 0, . . . , k − 1.

We point out that the size of Ak is linear in the parameter k, while the minimum dfa
accepting Lk has 2k + 1 states. 	


We now present the main result of this section, by presenting a family of pdas accepting
in height which is constant in the input length but exponential with respect to the size of the
machines:

Theorem 6 For each integer k > 0, there exists a pda Mk having a size linear in k and
accepting in height which is constant with respect to the input length but exponential in k.

Proof For each integer k > 0, let us consider two automata A′
k and A′′

k , accepting the

languages
{
a2

k
}∗

and
{
a2

k+1
}∗
, respectively, obtained by modifying the automaton Ak of

Example 1 as follows:

– A′
k is obtained by adding toAk the transition δ(p, ε, Ak) = (q,−) and by choosing q as

final state. This allows A′
k to recognize

{
a2

k
}∗

with pushdown height k, using 3 states

and a pushdown alphabet of size 2k + 1. We point out that, from such a definition, each
accepting computation of A′

k visits the surface pair [q Ak] which has a horizontal loop.

– A′′
k , at the beginning of the computation, guesses howmany repetitions of the word a2

k+1

are concatenated in the input word. This is done, in a preliminary phase, by pushing one
occurrence of the symbol Ak on the store for each guessed repetition (Transitions 9
below). Then, for any such occurrence, A′′

k makes the following operations:

– it reads one a from the input (Transition 10),
– it simulates one execution of Ak , using Transitions 1–8 in Example 1,
– it pops the symbol Ak off the pushdown (Transition 11).

Formally, A′′
k = 〈Q′′, {a}, Γ ∪ {Z0}, δ′′, qI , Z0, s〉, where Q′′ = Q ∪ {qI , s}, and δ′′ is

a copy of δ with the addition of the following nondeterministic transitions:

9. δ′′(qI , ε, X) = {(qI ,push(Ak)), (s,−)}, for X ∈ {Z0, Ak};
10. δ′′(s, a, Ak) = {(q,−)},
11. δ′′(p, ε, Ak) = {(s,pop)}.
Notice that A′′

k has 5 states and 2k + 2 pushdown symbols. Furthermore, the pushdown

height used to accept the string aβ(2k+1) is β + k. So, A′′
k does not accept in constant

height.

It is easy to see that the automaton Mk obtained by concatenating the automata A′
k and A′′

k
using standard techniques (after renaming the states in such a way that the two sets of states
are disjoint) recognizes the language

Hk = {at | t = α2k + β(2k + 1), α, β ≥ 0}
and has 8 states and a pushdown alphabet of 2k + 2 symbols.
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By construction, the first part of each accepting computation of Mk is an accepting
computation of A′

k which, as above observed, visits a surface pair having a horizontal loop.
Hence, from Theorem 3 it follows that Mk accepts in constant height, with respect to the
input length.

We now prove that a height exponential in k is necessary.
Let us consider the string at ∈ Hk obtained by choosing α = 0 and β = 2k − 1, namely

t = (2k − 1)(2k + 1) = 22k − 1. We are going to prove that there is only one accepting
computation on at .

To this aim, we observe that, due to the structure of Mk , for each accepting computation
on at , there should exist two integers α′, β ′ ≥ 0, such that t = 22k − 1 = α′2k + β ′(2k + 1),
from which 22k − 1 − β ′ = 2k(α′ + β ′) and 22k − 2k(α′ + β ′) = β ′ + 1. So, 2k should
divide β ′ +1. The only possible solution of t = α′2k +β ′(2k +1) is obtained by taking α′ =
α = 0 and β ′ = β = 2k − 1. In fact, this solution corresponds to the smallest β ′ ≥ 0 such
that 2k divides β ′ + 1, while β ′(2k + 1) > t for any larger multiple β ′ of 2k . This allows to
conclude that the only accepting computation on at is the one in which the simulation ofA′′

k
uses height β + k, with β = 2k − 1.

Hence, to accept at an exponential height, with respect to the size of Mk , is
necessary. 	


6 An optimal lower bound for nonconstant height

In this section, we turn our attention to pdas accepting in nonconstant height. First of all, we
mention that each nondeterministic Turing machine, with a two-way read-only input tape,
which accepts in o(log log n) space, where n is the input length and the space is measured by
considering the portion of an auxiliarywork tape used during the least expensive computation,
actually uses only a constant amount of space [1]. Since pushdown automata can be seen as
a special case of this kind of machines, as a direct consequence, the height of the pushdown
store in any pda accepting in nonconstant height should be at least log log n, for infinitely
many n’s. Furthermore, this lower bound is optimal [6].

We show that in the unary case the optimal bound increases to a logarithmic function.
Let us start by proving the lower bound:

Theorem 7 Let M be a unary pda using height h(n). Then, either h(n) is bounded by a
constant or there exists c > 0 such that h(n) ≥ c log n infinitely often.

Proof According to the proof of Theorem 4, if h(n) is not constant, then there exist infinitely
many strings in Lv \ Lh that are accepted only by computations that use vertical loops and
do not visit surface pairs having horizontal loops. We are going to prove that to accept all
these strings a logarithmic pushdown height is necessary. To this aim, let us consider the
pdaMv accepting Lv , introduced in the proof of Theorem 4. This pda is obtained fromM
by removing all transitions from surface pairs having horizontal loops. Hence, Mv uses the
same set of states Q and the same pushdown alphabet Γ as M, but accepts without using
surface pairs having horizontal loops.

Let us fix an integer n such that an ∈ Lv \ Lh . We first notice that by the construction
ofMv , the sets of computations ofM andMv on an coincide. Hence, Mv accepts an in the
same height h(n) as M. Let us consider the pda Mh(n) obtained by bounding the height of
the pushdown of Mv to h(n), which is a constant since n is fixed. In this way, the language
accepted by Mh(n) is a subset of the language accepted by Mh(n). However, Mh(n) still
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accepts an . To obtain Mh(n), the pushdown alphabet of Mv is extended in order to keep
track of the pushdown height, together with each symbol pushed on the pushdown. Hence,
since the only symbol that appears at height 0 is Z0, the cardinality of the pushdown alphabet
ofMh(n) is bounded by #Γ ·h(n)+1. According to the construction in Sect. 4.2,Mh(n) can
be converted into an equivalent grammar in binary normal form with (#Q)2 · (#Γ · h(n)+1)
variables, from which, using Lemma 2, we can obtain an nfa Nh(n) which is equivalent
to Mh(n), and whose number of states is 2O(h(n)).

SinceMh(n) has pushdown height bounded by h(n), it cannot have vertical loops. Further-
more, since accepting computations of Mv do not use surface pairs with horizontal loops,
also accepting computations of Mh(n) do not use horizontal loops. This allows to conclude
that the language accepted byMh(n) is finite. Thus, in the equivalent nfaNh(n), the string an

is accepted by a path without any repeated state. Hence, the number of states ofNh(n), which
we already observed to be 2O(h(n)), must be greater than n.

To complete the proof, we finally notice that the previous argument can be applied to
each string in Lv \ Lh . Since the cardinality of Lv \ Lh is infinite, this allows to conclude
that 2O(h(n)) > n infinitely often, thus implying the existence of a constant c such that h(n) ≥
c log n for infinitely many integers n. 	


In the next theorem, we prove a matching lower bound. The language accepted by the pda
we present is a∗. It should be clear that such a pda is not the best machine for this language:
instead of a trivial one-state finite automaton, we use an inefficient pda which requires an
unbounded pushdown store.

Theorem 8 There exists a unary pda accepting every word a
, 
 > 0, using pushdown height
exactly �log2 
� + 1 and the empty word using height 0.

Proof Consider the pda =〈Q, {a}, Γ , δ, qI , Z0, qF 〉, where Q = {qI , q1, q2, qF }, Γ =
{Z0, 0, 1}, and the transition function δ is defined as follows:

1. δ(qI , ε, X) = (qF ,−), for X ∈ Γ ;
2. δ(qI , ε, X) = (qI ,push(0)), for X ∈ Γ ;
3. δ(qF , ε, 0) = (q1,pop);
4. δ(q1, a, X) = (q2,−), for X ∈ Γ ;
5. δ(q2, ε, X) = (qI ,push(1)), for X ∈ Γ ;
6. δ(qF , ε, 1) = (qF ,pop).

As a first observation, we point out that from the initial state qI it is possible to reach the
final state qF with the same pushdown height by using a subroutine implementing a recursive
strategy: either an ε-move is performed (Transitions 1), or two recursive calls of the same
subroutine, with one read operation between them, are executed. This is done, as depicted in
Fig. 3, by pushing 0 on the pushdown, while activating the first recursive call (Transition 2).
When such a recursive call ends, 0 is popped off the pushdown (Transition 3), a symbol a
is read from the input (Transition 4), and then, 1 is pushed while activating the second call
(Transitions 5). Finally, when such a call ends, the symbol 1 is popped off the pushdown
(Transitions 6).

Note that each string in a∗ is accepted by A.
In order to state how the length of a word and the height of the pushdown used for

accepting it are related, let us calculate the maximal length 
(h) of strings consumed by
[qI XqF ]-computations with pushdown increment h, for X ∈ Γ . We point out that the moves
made during such computations do not depend on the symbol X ; hence, also 
(h) does not
depend on X .
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qI

qI qF

q1 q2

qI qF

qF

0 1
a

Fig. 3 The evolution of the pushdown store ofA during the recursive subroutine leading from qI to qF , when
recursive calls are made. The dashed lines should be replaced either by an ε-move or, recursively, by the same
pattern

According to the recursive subroutine implemented by A (see also Fig. 3), we can write
the following recurrence:


(h) =
{
0 if h = 0,
2
(h − 1) + 1 otherwise,

which has solution 
(h) = 2h − 1. As a consequence, pushdown height h is sufficient to
accept all strings of length up to 2h − 1. Furthermore, since 
(h − 1) = 2h−1 − 1 is the
maximal length of strings accepted using height h − 1, we conclude that pushdown height h
is necessary and sufficient to accept all strings of length 
, with 2h−1 ≤ 
 < 2h . Hence,
for 
 > 0, the string a
 is accepted using pushdown height exactly �log2 
� + 1. 	
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