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ABSTRACT

Gravitational instability is thought to be one of the main drivers of angular momentum transport in young protoplanetary discs. The
disc around Elias 2−27 offers a unique example of gravitational instability at work. It is young and massive, displaying two prominent
spiral arms in dust continuum emission and global non-axisymmetric kinematic signatures in molecular line data. In this work, we used
archival ALMA observations of 13CO line emission to measure the efficiency of angular momentum transport in the Elias 2−27 system
through the kinematic signatures generated by gravitational instability, known as “GI wiggles”. Assuming the angular momentum is
transported by the observed spiral structure and leveraging previously-derived dynamical disc mass measurements, the amount of
angular momentum transport we found corresponds to an α-viscosity of α = 0.038 ± 0.018. This value implies an accretion rate onto
the central star of log10 Ṁ? = −6.99 ± 0.17 M� yr−1, which reproduces the one observed value of log10 Ṁ?,obs = −7.2 ± 0.5 M� yr−1

very well. The excellent agreement we have found serves as further proof that gravitational instability is the main driver of angular
momentum transport acting in this system.
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1. Introduction

Elias 2−27 is a young (∼0.5 Myr, M? = 0.46 M�) M0
star (Andrews et al. 2009) located at a distance of 116 pc
(Gaia Collaboration 2018) in the ρ-Oph star forming region,
hosting a likely gravitationally unstable disc. The circumstellar
disc shows two large-scale trailing spiral arms in dust continuum
emission (Pérez et al. 2016), whose origins were first attributed
to gravitational instability, due to the high dust mass. An esti-
mate of the total dynamical mass of the disc has been provided
by Veronesi et al. (2021), Md = 0.08±0.04 M�, implying a disc-
to-star mass ratio of 17%. Meru et al. (2017) performed three-
dimensional (3D) numerical SPH simulations to investigate the
origin of the spiral structure: by comparing gravitational insta-
bility and internal and external companion scenarios, they found
that GI best reproduces the observed morphology. Similar results
have also been found by Hall et al. (2018). In addition, due to its
high brightness, Elias 2−27 has become part of the DSHARP
sample (Andrews et al. 2018), allowing for more thorough stud-
ies of its dust morphology. Huang et al. (2018) characterised
annular substructures in the discs within the DSHARP sample,
finding that Elias 2−27 has a gap at ∼70 au. Even though the
main focus of the DSHARP program was dust emission, also
kinematic data on CO isotopologues were collected. Pinte et al.
(2020) found complex kinematic features in the Elias 2−27 sys-
tem, showing perturbations to the velocity field. However, due

to the low resolution of the data, a detailed analysis was not pos-
sible. Paneque-Carreño et al. (2021) presented new data on this
system and conducted a detailed analysis of the morphology and
the kinematics. Global perturbations in the velocity field of 13CO
and C18O were found and their morphology follows the shape of
the spiral, consistent with kinematic signatures of GI induced
density waves, or GI Wiggles (Hall et al. 2020; Longarini et al.
2021; Terry et al. 2022). From the same dataset, Veronesi et al.
(2021) studied the rotation curve and obtained the previously
mentioned disc mass, by measuring the super-Keplerian contri-
bution of the disc self-gravity.

In this Letter, we study the GI Wiggle in Elias 2−27. Thanks
to the disc mass estimate provided by Veronesi et al. (2021), we
have been able to constrain the amount of angular momentum
transported throughout the disc. In Sect. 2, we discuss the theo-
retical framework we use in this Letter. In Sect. 3, we present the
dataset and the analysis. In Sect. 4, we discuss the results and in
Sect. 5 we draw our conclusions.

2. Gravitational instability in protoplanetary discs

The onset of gravitational instability is determined by the
Toomre parameter

Q =
csκ

πGΣ
, (1)
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where κ is the epicyclic frequency, which (for a Keplerian disc)
is just the Keplerian frequency, Ωk; Σ is the surface density; and
cs the sound speed. Essentially, Q measures the strength of sta-
bilising terms (e.g. pressure and rotation, at the numerator) com-
pared to destabilising ones (e.g. self-gravity, at the denominator).
A protoplanetary disc is marginally unstable when Q ' 1: in
this regime, the disc develops a spiral structure and, by means
of shocks, this leads to energy dissipation and heating. One
of the most important consequences of gravitational instability
is its ability to drive angular momentum transport throughout
the disc, and therefore induce accretion onto the central object
(Lynden-Bell & Kalnajs 1972).

2.1. Gravito-turbulence and transport of angular momentum

A disc is in the gravito-turbulent regime when its angular
momentum transport is driven by gravitational instability. In this
context, the Rφ component of the vertically integrated stress ten-
sor can be written as:

TRφ =

∫ 〈gRgφ

4πG

〉
dz, (2)

where gR, gφ are the radial and azimuthal component of the per-
turbed self-gravitating field, and the brackets indicate azimuthal
averaging. To this stress, it is necessary to also add the induced
Reynolds stress, given by:

TRφ = Σ〈δvRvφ〉, (3)

where δvR and δvφ are the perturbed fluid velocities
(Balbus & Papaloizou 1999). In the classic viscous scenario,
this term is responsible for angular momentum transport in
the accretion disc. The Shakura and Sunyaev α-prescription
(Shakura & Sunyaev 1973) relates the stress tensor to the local
disc pressure

TRφ = αΣc2
s

d log Ω

d log R
, (4)

where, for a Keplerian disc, d log Ωk/d log R = −3/2. It is possi-
ble to show that the transport of energy and angular momentum
through the propagation of the GI spiral density waves can be
divided into two parts (Toomre 1969; Shu 1970): a non-local
term and a viscous-like term. Since the non-local term is impor-
tant only for very high disc-to-star mass ratios, Md/M? & 0.5
(Lodato & Rice 2005), gravitationally unstable protostellar discs
essentially behave as α-discs (Lodato & Rice 2004; Forgan et al.
2011).

To characterise the transport of angular momentum through
spiral density waves, we need to rely on numerical simulations
of gravitationally unstable discs (Cossins et al. 2009). Usually
in numerical simulations of gravitationally unstable discs, the β
cooling framework is adopted (Gammie 2001). We suppose that
the disc is cooling with a rate per unit mass of:

q− = −
e

tcool
, (5)

where e = c2
s/γ(γ − 1) is the internal energy per unit mass, with

the adiabatic index γ = 5/3, and the cooling time is defined in
terms of the dynamical one: tcool = βΩ−1. In the absence of exter-
nal heating mechanisms, an initially stable hot disc (Q � 1)
will cool down, eventually reaching the marginally stable state
(Q = 1). At this point, gravitational instability turns on: the
disc develops a spiral structure that, by means of compression

and shocks, leads to efficient energy dissipation and heating. In
this sense, the Q-stability condition acts as a thermostat so that
heating turns on only if the system is sufficiently cold, keeping
it in a marginally stable state (Kratter & Lodato 2016). In this
regime, namely, thermal saturation, the cooling is completely
balanced by heating provided by the shocks, and the amplitude
of spiral perturbations saturates at a fixed value, according to
Cossins et al. (2009):(
δΣ

Σ

)
=

[
2

εβγ(γ − 1)
1
MM̃

]1/2

= χβ−1/2, (6)

where ε is the heating factor, M and M̃ are the Mach num-
bers relative to the radial phase speed and Doppler-shifted radial
phase speed of the wave: respectively, mΩp/k and m(Ω −Ωp)/k,
with Ωp as the spiral pattern frequency. Cossins et al. (2009)
showed through numerical simulations that the relevant scaling
of the spiral density perturbation is β−1/2 and the other terms of
the order of unity. For this reason, we introduce χ, which is of
the order of unity. In the thermal saturation regime, the trans-
port of angular momentum provided by gravitational instability
is described within an α-framework (Kratter & Lodato 2016):

αGI =

∣∣∣∣∣∣d log Ω

d log R

∣∣∣∣∣∣−2 1
γ(γ − 1)β

· (7)

Combining Eqs. (6) and (7), we obtain the relationship between
the amplitude of the density wave and the amount of angular
momentum

δΣ

Σ
=

3χ
2

√
γ(γ − 1)α1/2

GI , (8)

where the last equation is valid for a Keplerian disc. In the fol-
lowing, we assume that the constant of proportionality is χ = 1,
which is well justified by numerical simulations (Cossins et al.
2009).

2.2. Kinematic signatures of gravitational instability

Kinematics offers a unique opportunity to quantify the transport
of angular momentum in a gravitationally unstable disc. Indeed,
when there is a spiral density wave, also the velocity field is
affected. Hall et al. (2020) predicted that a disc undergoing such
instability has clear kinematic signatures in molecular line obser-
vations across the entire disc azimuth and radius, called “GI
wiggles”. Longarini et al. (2021) provided an analytical model
to describe such kinematic signatures, implemented in the pub-
licly available code giggle1. Under the hypothesis of thin disc,
in a marginally unstable regime (Q = 1) and in thermal satu-
ration, the amplitude of the velocity perturbation increases with
the disc-to-star mass ratio (Md/M?), as has also been described
with numerical simulations (Terry et al. 2022), and which is pro-
portional to the cooling factor, β−1/2. However, from the analy-
sis carried out in Longarini et al. (2021), the actual quantity that
determines the amplitude of the velocity perturbations (δuR, δuφ)
is the amplitude of the spiral density wave, δΣ/Σ. This quan-
tity is intrinsically linked to the efficiency of angular momen-
tum transported by the spiral, which can be described within an
α-viscosity framework through Eq. (7). Thus, it is possible to
constrain the value of αGI from the amplitude of the wiggle.

1 https://doi.org/10.5281/zenodo.10205110
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Fig. 1. Toomre profile of Elias 2−27, where the shaded region indicates
the uncertainties on the disc and star mass from Veronesi et al. (2021).

Rewriting the velocity perturbations (Eq. (22) of Longarini et al.
2021) as a function of αGI, we obtain:

δuR = 3imα1/2
GI

√
γ(γ − 1)

(
Md

M?

)2

uk, (9)

δuφ = −
3iα1/2

GI

4

√
γ(γ − 1)

(
Md

M?

)
uk. (10)

The final expressions for the velocity field are:

uφ(R, φ) = RΩ +<
[
δuφ(R)ei(mφ+ψ)

]
= RΩ − |δuφ(R)| sin(mφ + ψ),

(11)

uR(R, φ) = <
[
δuR(R)ei(mφ+ψ)

]
= −|δuR(R)| sin(mφ + ψ). (12)

3. Gravitational instability in Elias 2–27

3.1. Toomre parameter

Veronesi et al. (2021) estimated the dynamical mass of
Elias 2−27 from 13CO and C18O rotation curves, and found
M? = 0.46 ± 0.03 M� and Md = 0.08 ± 0.04 M�. In their fit,
they used a self-similar surface density given by

Σ =
Md

2π(200 au)2

( R
200 au

)−1

exp
[
−

R
200 au

]
, (13)

where the scale radius has been fixed to Rc = 200 au. As for the
thermal structure, they assumed a vertically isothermal disc with
T (R) = 20(R/60 au)0.5 K taken from Pérez et al. (2016), which
corresponds to a sound speed of cs = 281 m s−1(R/60 au)−0.25.
With this information, it is possible to compute the Toomre
parameter profile for Elias 2−27, as displayed in Fig. 1. Despite
not being exactly Q = 1, the Toomre profile is close enough to
the critical threshold to consider gravitational instability to be
significant. In addition, we are not considering uncertainties on
T (R), that can impact on the Q-parameter estimate. Finally, we
know that the disc shows non-axisymmetric features in gas and
dust, making the azimuthally averaged Toomre profile solely an
approximation of the actual value.

3.2. Dataset

In this work, we use the 13CO J = 3−2 datacube presented in
Paneque-Carreño et al. (2021). The images have been obtained
with a robust parameter of 0.5, resulting in a beam size of
0.26′′ × 0.25′′ for the 13CO and a spectral resolution of ∆v =
111 m s−1. Further details of the observations and reduction can
be found in Paneque-Carreño et al. (2021). In this work, we
use a Gaussian velocity map obtained with bettermoments
(Teague & Foreman-Mackey 2018). The code also returns a map
of the errors on the velocity field (Teague 2019). In the analy-
sis, we masked the emission coming from the first two beams
(∼50 au).

3.3. Model of the GI wiggle of Elias 2–27

In the analytical model for the GI wiggle of Longarini et al.
(2021), the amplitude of the velocity perturbations is determined
by the disc to star mass ratio and the cooling factor. There is
a degeneracy between the two quantities; however, in the case
of Elias 2−27 the value of the disc to star mass ratio is known
(Veronesi et al. 2021). Longarini et al. (2021) showed that the
amplitude of the wiggle in the PP (position-position) space
scales as β−1/2 (i.e. α1/2

GI ), and they proposed this relationship as a
way to constrain this unknown parameter. In this paragraph, we
study the wiggle in the PV (position-velocity) space, as done in
Speedie et al. (2024). We consider the observed velocity field:

uobs(R, φ) =
[
uφ(R, φ) cos φ + uR(R, φ) sin φ

]
sin i, (14)

where uφ and uR are described by the model presented in
Eqs. (11) and (12) and i is the disc inclination. We compute the
variation of velocity along the semi-minor axis of the disc (i.e.
φ = −π/2), because along this axis only the radial velocity con-
tributes to the observed velocity field

uobs(R,−π/2) = −2mβ−1/2
(

Md(R)
M?

)2

uk sin (ψ(R) + ψ0) , (15)

where ψ(R) is the phase function of the spiral that is given by

dψ
dR

=
m

R tanαp
, (16)

with αp being the pitch angle of the spiral and ψ0 is just a
phase shift. We suppose that the pitch angle is constant over
the radial extent of the disc, that is well justified for GI spirals
(Cossins et al. 2009). We note that the last equation can be writ-
ten as a function of αGI as:

uobs(R,−π/2) = −3mα1/2
GI

√
γ(γ − 1)

(
Md(R)

M?

)2

uk sin (ψ(R) + ψ0) .

(17)

We then extract the PV wiggle by cutting along
the semi minor axis and considering just the south-
ern part of the disc, on account of cloud contamination
(Paneque-Carreño et al. 2021). The errors on the velocity are
returned by Teague & Foreman-Mackey (2018) as shown in
Fig. 2. The disc and spiral parameters we use are taken from
literature, namely, M? = 0.46 M�, Md = 0.08 M�, Rc = 200 au
(Veronesi et al. 2021), αp = 13◦, i = 56.2◦, PA = 118.8◦
(Paneque-Carreño et al. 2021), and m = 2. Hence, the only
free parameters in Eq. (17) are αGI and ψ0. To fit the curve
to the data, we used the method of nonlinear least squares
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implemented in scipy (Virtanen et al. 2020). While the spiral
pattern in the continuum extends to approximately 200 au,
non-axisymmetric kinematic signatures in the gas emission are
observable across the entire radial extent of the disk. Hence,
in the fitting procedure, we analysed the signal up to the outer
edge of the disc. The best-fit values are αGI = 0.038 ± 0.018
and ψ0 = 43◦ ± 1◦. The value of αGI corresponds to a β = 10.5,
meaning that the cooling time of the system is approximately
ten times the dynamical one. We estimated the error on αGI
propagating the uncertainties on star and disc masses2.

Figure 2 shows the comparison between the extracted PV
wiggle from 13CO data and the model that best describes the
data. By comparing the model and the data, we observe that the
overall shape of the perturbation is well reproduced. However, it
appears that there is a radial shift between the two curves. This
effect can be attributed to the fact that in the analytical model,
we assume that a single spiral mode is present, with m = 2,
and we also suppose that the perturbation wave-number, k, is
the most unstable (kuns). While the m = 2 mode, with k = kuns
may be the dominant one, determining the overall morphology of
the spiral, this does not prevent the presence of additional lower
amplitude modes that will interfere with the dominant one and
thus create a more complex pattern than the purely sinusoidal
one that we assume here. The scope of this work is to find the
amount of stress generated by gravitational instability; hence, we
are interested in the amplitude of the wiggle, not in the whole
shape. For this reason, the additional lower amplitude modes are
not a concern in terms of the amplitude of the perturbation.

Figure 3 shows the analytical observed velocity field with the
aforementioned parameters. Despite its simplicity, the analytical
model matches the shape of the different channels of the data. In
particular, the bending of the isovelocity contours is described
very well by the analytical model, especially in the blue-shifted
region, where the effect of cloud contamination are negligible.
The analytical models are produced using the publicly available
code giggle. It is important to point out that the model presented
in Longarini et al. (2021) is limited to two dimensions and does
not consider the vertical extent of the disc. There is evidence sug-
gesting that the 13CO emission in Elias 2−27 is optically thick
(Paneque-Carreño et al. 2022); consequently, the received signal
does not originate from the midplane, but from a layer at z , 0.
The analytical model we employ is not able to reproduce this
effect, and, for a proper comparison, hydrodynamical and radia-
tive transfer simulations would be needed. In any case, assum-
ing that z/R < 0.3 for the 13CO (Paneque-Carreño et al. 2022),
the difference in inclination induced by the finite height of the
emitting layer is δi = arcsin(0.3) ' 0.29. The corresponding
geometrical error is roughly 1 − sin(i + δi)/ sin(i) ' 15%, that is
subdominant compared to the one driven by the mass estimate.

3.4. Angular momentum transport and accretion

For a gravitationally unstable disc, kinematics offers a unique
opportunity to quantify the transport of angular momentum of
a gravitationally unstable disc. We show that gravitational insta-
bility in Elias 2−27 transports angular momentum and the equiv-
alent α-viscosity parameter is αGI = 0.038 ± 0.018. Since the
effective viscosity is responsible for the accretion process, it
is useful to predict the expected accretion rate onto the central
object, and compare it to the observed one.

2 The fitting procedure implemented in scipy returns an error for the
best fit parameters. As for the αGI parameter, the error provided by the fit
is subdominant compared to the one driven by the star and disc masses
uncertainties.

Fig. 2. GI wiggle in the PV space: comparison between the data (red
line) and the model (blue line). The shaded region represents the error
on the model, driven by the uncertainties on the star and disc masses
from Veronesi et al. (2021).

According to the self-similar solution (Lynden-Bell &
Pringle 1974), the surface density and the accretion rate of the
disc can be written as:

Σ =
Md

2πR2
c

(
R
Rc

)−1

exp
[
−

R
Rc

]
, (18)

Ṁ =
3Mdνc

2R2
c

exp
[
−

R
Rc

] (
1 −

2R
Rc

)
, (19)

where we have supposed that ν = νc(R/Rc), where the subscript c
means that the quantity is evaluated at the scale radius Rc. Within
a α-viscosity framework, the kinematic viscosity, ν, is

ν = αcsH = α
(H

R

)2

ukR. (20)

We note that within our assumption that T ∝ R0.5, for a constant
α the kinematic viscosity scales as ν ∝ R. In this way, we can
write the accretion rate onto the central object as the limit for
R→ 0 of Eq. (19):

Ṁ? = −
3α
2

(H
R

)2

Rc

MdΩc, (21)

where Ωc = Ω(Rc) =
√

GM?/R3
c .

Using αGI = 0.038 and the disc parameters described in the
previous paragraph, it is possible to compute the accretion rate
onto the central object by using Eq. (21). Thus, we obtain:

log10 Ṁ?[M� yr−1] = −6.99 ± 0.17, (22)

where the error has been computed through propagation from
the errors in αGI. The model for the accretion rate of Elias 2−27
reproduces the one measured by Natta et al. (2006) very well,
namely, log10 Ṁ?[M� yr−1] = −7.2 ± 0.5. They used J and
K-band spectra to derive the mass accretion rate of objects in
the ρ-Ophiuchi star forming region from the intensity of the
hydrogen recombination lines. More recently, a new estimate
of Elias 2−27 accretion rate was provided by Testi et al. (2022),
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Fig. 3. Comparison between Elias 2−27 velocity map (left) and the best fit model for the velocity field with αGI = 0.038 (right).

being log10 Ṁ?[M� yr−1] = −7.3, which is consistent with the
previous measurement.

To constrain αGI in Elias 2−27, we made the strong hypoth-
esis that this quantity, or equivalently the cooling β, is constant
throughout the disc. We are aware that, realistically, this is not
the case. However, we point out that our disc model is self con-
sistent. Indeed, assuming a self similar solution for the surface
density with Σ ∝ R−1, we are imposing that the kinematic vis-
cosity scales as ν ∝ R. Since ν = αcsH, with cs ∝ R−0.25

(Pérez et al. 2016) and H ∝ R1.25, the viscosity coefficient, α,
should be constant with radius. We also point out that, in order
to obtain an estimate of the amount of angular momentum trans-
ported within the disc from the GI wiggle, an assumption should
be made with respect to how α varies with the radius. A more
realistic disc model for Elias 2−27 is not within the scope of this
work. We stress that the choice of a self-similar profile for the
surface density was made to maintain consistency with the work
of Veronesi et al. (2021).

4. Discussion

The ability of our model to correctly reproduce the observed
accretion rate points to the fact that gravitational instability
is responsible for angular momentum transport in this sys-
tem. As a matter of fact, the value of the α-viscosity we get
from the GI wiggle is the one required to explain the observed
accretion rate onto the central object, having fixed the density
structure of Elias 2−27. In addition, the strong hypothesis we
made is that viscous processes are responsible for accretion.
The inferred value for the α-viscosity is higher than usually
assumed (∼10−3−10−4). This is not surprising, since the strength
of the viscosity generated by gravitoturbulent motions is higher
than the expected in the non-self gravitating state (Cossins et al.
2009).

4.1. Infall and interaction with the environment

Elias 2−27 is a young system, and its interactions with the sur-
rounding environment are possibly perturbing the disc. Specif-
ically, the disc is partially embedded within the molecular
cloud, which absorbs 12CO and a portion of the 13CO emission

(Pérez et al. 2016; Paneque-Carreño et al. 2021), then feeds the
disc with mass. In particular, infall is an alternative way to trigger
gravitational instability (Kratter & Matzner 2006; Kratter et al.
2008; Kratter & Lodato 2016). Gravitational instability occurs
when the Toomre parameter is of the order of unity, and this
threshold can be reached by cooling the disc (i.e. decreasing the
sound speed) or by adding mass (i.e. increasing the surface den-
sity). When GI is triggered by infall, there is a mechanism akin
to the thermal saturation (Kratter & Lodato 2016).

Our αGI estimate remains agnostic to the source of self-
regulation, whether it arises from cooling or from the addition
of mass to the disc. Indeed, what we are measuring through the
wiggle is the amplitude of the surface density perturbation, δΣ/Σ.
It is intrinsically linked to the efficiency of angular momentum
that is transported by the spiral, regardless of the origin of the
instability.

4.2. Planet formation in Elias 2−27

The value of β we measure is much higher than the threshold
for disc fragmentation into bound gas clumps (Gammie 2001;
Deng et al. 2017), implying that (while the disc is gravitation-
ally unstable) direct planet formation through gravitational insta-
bility is unlikely. However, many studies (Paardekooper 2012;
Young & Clarke 2015) showed that stochastic fragmentation of
gas in spiral arms can happen for high values of β. As for
the solid component, Longarini et al. (2023a,b), Rowther et al.
(2024) investigated the possibility of forming planetary cores in
gravitationally unstable discs through dust collapse. They found
that for a sufficiently long cooling time, β > 10, and high disc-to-
star mass ratio, Md/M? ∼ 0.2, dust efficiently collects inside spi-
ral arms and its dispersion velocity is so low to induce collapse
into bound objects with a mass of ∼10 M⊕. The inferred disc-
to-star mass ratio (Veronesi et al. 2021) and the cooling time
for Elias 2−27 make it a perfect candidate for planet formation
through dust collapse.

Huang et al. (2018) characterised annular substructures in
the discs within the DSHARP sample and found that Elias 2−27
has a gap at Rg = 69.1±0.4 au with a width of ∆ = 14.3±1.1 au.
Although several mechanisms can explain the origin of gaps
in protoplanetary discs, a common explanation is planet disc
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interaction. Under the planetary interpretation, the width of the
gap scales as the Hill radius of the planet, defined as:

Rh =

(
Mp

3M?

)1/3

Rg, (23)

where Mp is the mass of the protoplanet. The last relation has
been obtained by averaging results from hydrodynamical simu-
lations. Following Lodato et al. (2019), the relation between the
gap width and the Hill radius is ∆ = 5.5 Rh, that translates into

Mp = 3
(

∆

5.5 Rg

)3

M?. (24)

Using the gap width and location of Huang et al. (2018), and the
star mass of Veronesi et al. (2021), the inferred mass of the pro-
toplanet is Mp = 24 ± 6 M⊕. This result is in good agreement
with the mass range of Longarini et al. (2023a,b). Another ele-
ment that points towards the dust collapse is the value of the
Toomre parameter. As shown in Longarini et al. (2023a), when
the gravitational instability is driven by the cold component (dust
in this case), the critical value of the Toomre parameter is >1, as
observed in Elias 2−27 (see Fig. 1).

5. Conclusion

In this work, we investigate the kinematic signatures of grav-
itational instability in the protoplanetary disc Elias 2−27. It
is well known that gravitational instability leaves clear kine-
matic perturbations in molecular line emission (Hall et al. 2020)
and their characteristics are related to the spiral density wave
(Longarini et al. 2021). There are multiple arguments suggest-
ing that Elias 2−27 is undergoing gravitational instability. Under
the hypothesis that angular momentum is transported through
the GI spirals, we estimate the α-viscosity of the system, and
link it to the accretion rate onto the central object. We find
αGI = 0.038 ± 0.018 and log10 Ṁ? = −6.99 ± 0.17 M� yr−1.
There is a very good agreement between the observed accretion
rate and the one estimated from our model, pointing to the fact
that gravitational instability is at play in this system and that is
indeed driving angular momentum transport. We underline that
the results obtained in this work are valid assuming a disc model
(as described in Sect. 3.3) and by fitting for the amplitude of the
velocity perturbation in the central channel of the velocity map.
The range of disc masses (Veronesi et al. 2021) and cooling fac-
tors inferred by our model makes Elias 2−27 a perfect candidate
for dust collapse and the formation of planetary cores in spi-
ral arms. The gap present in dust continuum emission at ∼70 au
points to the presence of a ∼20 M⊕ protoplanet, in agreement
with the mass range of planets formed by collapse of the dust
component by Longarini et al. (2023b).
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